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30 Abstract

31 Cellulose nanofibers (CNFs) tethered with sulphur as anionic ligand were synthesized from 

32 medical absorbent cotton by dissolution with NaOH, CO(NH2)₂ followed by mechanical 

33 intrusion of sulphur from SC(NH₂)₂ at an elevated temperature. The solid-phase CNFs 

34 embedded with sulphur complexes possessed negative sites which were used to remove 

35 cationic metals viz., Pb(II) and Cd(II) from synthetic and industrial wastewater. The 

36 physicochemical properties of the CNFs were analyzed by Fourier transform infrared (FT-

37 IR) spectroscopy, scanning electron microscopy (SEM), pH point of zero charge (pHpzc) and 

38 X-ray photoelectron spectroscopy (XPS). Batch adsorption studies were conducted with 

39 synthetic wastewater to optimize the conditions for Pb(II) and Cd(II) removal by CNFs. 

40 Different adsorption kinetic models were applied to assess and define the adsorption 

41 mechanism. The maximum Langmuir adsorption capacity was found to be 1.16 and 0.82 

42 mmol g-1 for Pb(II) and Cd(II) ions, respectively. Regeneration studies showed that the 

43 CNFs can be reused using 0.1 M NaOH as eluent. The percentage removal efficiency of 

44 different cationic metals by CNFs from untreated industrial wastewater ranged from ca. 90 

45 to 98%. 

46

47

48 In this work, anionic sulphur tethered cellulose nanofibers were synthesized from absorbent 
49 cotton and used in the removal of cationic metals from synthetic and industrial wastewater. 

50

51

52

53 Keywords: Cellulose nanofibers; sulphur ligand; adsorption; lead; cadmium; modeling.
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54 1. Introduction

55 Heavy metals emanate from anthropogenic activities such as mining, smelters and refineries 

56 (Järup, 2003), natural processes such as weathering of heavy metal-bearing rocks, volcanic 

57 emissions and biological activities (Huang et al., 2011). The exposure routes include air, 

58 water, and food (Guagliardi et al., 2012), which are essential human needs. Heavy metals 

59 have been designated as highly toxic, non-biodegradable and cumulative poison (WHO, 

60 2011) and studies detailing these deleterious effects are well documented. To reduce the 

61 harmful effects of metals pollution, strict permissible levels of metals in drinking water are 

62 enforced by environmental protection agencies for example, 0.005 mg L-1 for cadmium 

63 Cd(II)) and 0.01 mg L-1 for lead Pb(II)) (WHO, 2008). Removal of heavy metals from water 

64 is necessary before discharging it to the environment. To remove heavy metals, various 

65 techniques including oxidative processes (Gihring et al., 2001), sorption (Manning and 

66 Goldberg, 1997), electrokinetic methods (Isosaari and Sillanpää, 2012) and membrane 

67 filtration (Kikuchi and Tanaka, 2012) have been used. These processes are, however, less 

68 efficient or can produce excess sludge (Kim and Benjamin, 2004). 

69 In contrast, adsorption process for heavy metals removal is an economical and efficient 

70 approach and also has the advantage of possible regeneration (Bhatnagar et al., 2012). 

71 Different types of adsorbents have been studied for heavy metals remediation in water and 

72 search is still ongoing. To find an efficient biomaterial for metals adsorption, varied sources 

73 including lignin-containing agricultural waste such as wheat straw, rice bran, wood sawdust, 

74 pineapple peel have been used (Ghasemi et al., 2014). The use of cellulose as a biosorbent 

75 is often inhibited by the existence of strong inter and intra molecular network of hydrogen 

76 bonds which limits its ability to adsorb metal ions (Qin et al., 2016). For this reason, 

77 cellulose has generally been used as a composite or biofillers (de Oliveira Barud, Hélida 

78 Gomes et al., 2016) or modified to induce cationic exchange capacity (CEC) and increase 
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79 their metal ion adsorption capacities (Singha and Guleria, 2014). The modification 

80 processes usually change cellulose to a reactive form by interfering with the H-bonds 

81 (Bhattacharya and Misra, 2004). These modifications are expensive, complex and time 

82 consuming (Qin et al., 2016) and usually require organic solvents. The current shift towards 

83 green economy and the intense interest in materials prepared by simple method using cheap 

84 readily available biomaterials with no or less detrimental derivatives is today’s need. 

85 This study aimed to synthesize novel S-ligand tethered cellulose nanofibers (CNFs) by 

86 mechanical intrusion of sulphur (S)-radical after polymerization reduction using medical 

87 absorbent cotton (as a cellulose source). The synthesized materials were used for the 

88 removal of Pb(II) and Cd(II) and other cationic metals from synthetic and untreated 

89 industrial wastewater. The tethered s-radical complexes were expected to enhance the 

90 adsorption of cationic metals (Pb(II) and Cd(II)) due to negative ionic characteristics, 

91 possessed by the adsorbent. The physico-chemical properties of prepared adsorbent were 

92 analyzed by various techniques such as Fourier transformed infra-red spectroscopy (FT-IR), 

93 scanning electron microscopy (SEM), pH at point of zero charge (pHzpc) and X-ray 

94 photoelectron spectroscopy (XPS). The adsorption of Pb(II) and Cd(II) onto the synthesized 

95 CNFs from synthetic wastewater was studied using different parameters including solution 

96 pH, adsorbent dosage, contact time, initial adsorbate concentration, temperature and ionic 

97 strength. The metal ions removal mechanisms were assessed by studying different kinetic 

98 and isotherm models.

99

100 2. Materials and methods

101 2.1. Chemicals

102 Absorbent cotton was purchased from a local pharmacy shop in Kuopio, Finland. Cadmium 

103 nitrate (Cd(NO3)2·4H2O), toluene and lead nitrate (Pb(NO3)2) were purchased from Sigma-
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104 Aldrich, (Germany). Altia Oyj, (Finland) supplied ethanol. Sodium hydroxide was 

105 purchased from Fisher scientific (UK). Thiourea and urea were supplied by Merck-

106 Schuchardt, (Germany). All stock solutions were prepared in milli-Q water. Untreated 

107 industrial wastewater was obtained from local metal coating industry and mining seep water.

108 2.2. Preparation of cellulose nanofibers (CNFs)

109 2.2.1. Dewaxing pretreatment

110 The dewaxing procedure on absorbent cotton was conducted using soxhlet extraction at (90–

111 100◦C) in a mixture of toluene and ethanol (2:1 v/v) for 6 h. The dewaxed cotton was washed 

112 in ethanol and dried in an oven (Memmert 100–800, Schwabach-Germany) at 80 oC to 

113 constant weight. The dewaxing process removed residual wax for unimpeded dissolution of 

114 the cotton fibers.

115 2.2.2. Dissolution and sulphur complexes intrusion processes

116 The dissolution and reduction of degree of polymerization by alkali oxidation procedure and 

117 subsequent sulphur (S) radical tethering was done by following modified procedures 

118 reported elsewhere (Abu-Danso et al., 2017;Haskins and Hogsed, 1950). Briefly, a solution 

119 containing 2.3 M NaOH, 1.8 M CO(NH₂)₂ and 1.75 M SC(NH₂)₂ as sulphur source was 

120 cooled to ca. -3 oC. The dewaxed cotton (ca. 3.0 g) was dissolved in the solution to form a 

121 cellulose gel. The NaOH served to disrupt the polymerization of the cellulose to shorter 

122 chain for easy functionalization. The CO(NH₂)₂ functioned as the organogelator to tether 

123 the sulphur complexes to the open-ended cellulose chain. This enabled formation of sulphur 

124 substituted complexes and activated the cationic exchange capacity of CNFs at ca. -3 0C. To 

125 complete the mechanical intrusion of sulphur complexes, the cellulose gel was spun with a 

126 stirrer at 150 rpm for 30 min. The cellulose gel was centrifuged (Biofuge Stratos Heraeus 

127 Intruments, kendro Lab., Germany) at 8000 rpm for 5 min to settle the cellulose and to 
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128 remove excess dissolution agents. The gel was then frozen in a refrigerator and freeze dried 

129 (Christ Alpha 1-2, Biotech, Germany) for 120 h and pulverized. 

130

131 2.3. Characterization of CNFs 

132 2.3.1. Fourier transform infrared spectroscopy (FT-IR)

133 Changes in the functional groups on the surface of the synthesized CNFs, before and after 

134 metals adsorption were analyzed using Fourier transform infrared spectroscopy (FT-IR) 

135 with Thermo Nicolet Nexus 8700 model (Thermo electron, Madison USA) from 400–4000 

136 cm−1 at 64 scans. The CNFs used for this analysis were thoroughly dried. The instrument 

137 was cooled with liquid nitrogen and measurements were done using the MCT-B detector.

138 2.3.2. Scanning electron microscopy (SEM)

139 The surface morphology of the synthesized CNFs was analyzed by using Zeiss sigma HDVP 

140 (Carl Zeiss GmbH, Oberkochen Germany) at different magnifications at 3 Kv. The CNFs 

141 were sputter-coated using agar auto sputter to prevent interaction between CNFs powder 

142 and the focused electron beam. 

143 2.3.3. X-ray photoelectron spectroscopy (XPS)

144 The surface state of the CNFs before and after metals ions adsorption was evaluated using 

145 XPS. The CNFs after the metals adsorption were centrifuged to aggregate the adsorbent and 

146 dried in the oven (air circulating) at 30 oC for 6 h. The XPS spectra were carried out with a 

147 Thermo Fisher Scientific ESCALAB 250Xi using a monochromatic Al Kα source (1486.6 

148 eV) and an indium foil was used as the sample platform. The spectra for wide scan were 

149 collected at each 1 eV and a pass energy of 150 eV. The high resolution spectra were 
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150 recorded with steps of 0.1 eV and a pass energy of 20 eV. The obtained data was analyzed 

151 with Avantage Software and the background correction was done using Shirley function. 

152 The charge correction was performed by setting the binding energy (BE) of adventitious 

153 carbon to 284.8 eV. The high resolution spectra were fitted using the Shirley background 

154 and the Gaussian-Lorentzian sum function.

155 2.3.4. Point of zero charge analysis 

156 To determine the point of zero charge (pHPZC) of the synthesized CNFs, 25 ml of 0.01 M 

157 NaCl solution was taken in different tubes. The initial pH (pHi) of the solutions in the tubes 

158 was adjusted from 2-10 using 0.1 M NaOH or HCl. To each of the solution, 0.005 g of CNFs 

159 was added and the solution was agitated at 80 rpm on a shaker for 24 h. The mixture was 

160 filtered and the final pH (pHf) was measured. The plot of pHi against change in pH (∆pH) 

161 was used to deduce the point of zero charge (pHPZC) of the CNFs following the procedure 

162 as reported elsewhere (Tangsir et al., 2016). 

163 2.4. Batch adsorption studies with synthetic wastewater

164 Solutions (200 mg L−1) of the adsorbates viz. Pb(II) and Cd(II) were prepared and diluted 

165 later to prepare the solutions of desired metal ions concentrations for the experiments. Batch 

166 adsorption experiments were performed with CNFs to study the Pb(II) and Cd(II) adsorption 

167 by CNFs. Adsorption kinetic experiments were carried out by adding a known amount of 

168 CNFs in 15 mL capped tubes containing 50 mg L−1 of Pb(II) or Cd(II) ions solution. The 

169 mixture was placed on a shaker and agitated at 80 rpm at room temperature to equilibrium. 

170 After equilibration time, cellulose acetate membrane filters (pore size 0.45 µm, Sartorius, 

171 Gmbh Germany) were used as a filter to separate the mixture and filtrate was analyzed for 

172 residual Pb(II) or Cd(II) ions concentration using Atomic Absorption Spectroscopy (AAS) 
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173 (PerkinElmer Analytik Jena Zeenit 700, Jena, Germany). The amount of metal ions 

174 adsorbed onto the CNFs was determined using eq. (1):

175  (1) where      qe = 𝑞𝑒 =  
(𝐶𝑒 ‒ 𝐶𝑖) ∗ 𝑉

𝑚  

176 adsorption capacity of adsorbent (mg g-1)

177                 Ci = initial concentration of metal ions (mg L-1)

178

179                 Ce = equilibrium concentration of metal ions (mg L-1)

180

181                 V = volume of the metal ion solution (L)

182

183                  m = weight of CNFs (g)

184

185 Percentage removal (R%) was calculated from eq. (2):

186    (2)(𝑅% 𝑟𝑒𝑚𝑜𝑣𝑎𝑙 ) =  
𝐶𝑖  ‒  𝐶𝑒

𝐶𝑖
 × 100

187

188 2.5 Adsorption studies with industrial wastewater

189 Industrial wastewater was obtained from metal coating (EPW) and mining industry (MSW) 

190 and characterized for conductivity and pH. The concentration of metal ions, that were 

191 present in the wastewater from both industries, was measured by total reflection X-ray 

192 fluorescence spectroscopy (TXRF) (Bruker Nano GmbH, Berlin, Germany). Lead and 

193 cadmium mining industries generate between 200 – 500 mg L-1 concentration of the metals 

194 in their wastewater as reported in other study (Ucun et al., 2003). To assess the applicability 

195 of the CNFs in industrial wastewater with high concentrations of the metals, the obtained 

196 industrial wastewater was divided into two parts. One part of the obtained wastewater was 

197 spiked with different concentrations of Pb(II) and Cd(II) viz. 200, 300 and, 400 mg L-1 to 
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198 increase their levels to the levels mining industries generate. The adsorption studies were 

199 subsequently conducted as described in section 2.4. The residual Pb(II) and Cd(II) ions were 

200 analyzed using AAS due to the high concentration of the metal ions. 

201  The other part of the wastewater (as received and no spiking of Pb(II) and Cd(II) ions) was 

202 used for the adsorption studies using CNFs. The residual metal ions (Zn, Hg, Co, Mn, Ba, 

203 Ni and Ba) were analyzed using Inductively coupled plasma mass spectrometry (ICP-MS) 

204 (PerkinElmer Analytik Jena Zeenit 700, Jena, Germany). The ICP-MS was used in this 

205 analysis due to high sensitivity for low concentration of metal ions and the ability to analyze 

206 a selected spectrum of metals with a good accuracy.

207

208 3. Results and discussion

209 3.1. Characterization

210 3.1.1. Point of zero charge analysis 

211 The pHPZC measurements for the CNFs at different pH scales exhibited different net proton 

212 charge as shown in (Fig. 1 a). Changes in initial pH from 2 to 10 resulted in a general 

213 decrease in acidity of the medium which also resulted in decreasing negativity. However, 

214 the decreasing negative charge was not low enough to reach a positive value hence, iso-

215 electric point could not be obtained thereby, making the CNFs surface negative in the pH 

216 range of 2 to 10. This was in agreement with previous report of zeta potential measurements 

217 (Abu-Danso et al., 2017). 

218 3.1.2 Fourier transform infrared spectroscopy (FT-IR)
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219 The FT-IR spectra of CNFs before and after Pb(II) and Cd(II) adsorption are shown in (Fig. 

220 1 b). The differences in the peaks between the synthesized S-tethered CNFs, and CNFs after 

221 Cd(II) and Pb(II) adsorption indicated the presence of metal ions on the surface of the CNFs, 

222 which is indicated by shifts in the peaks of functional groups of the parent CNFs. This 

223 phenomena of masking or distortion of functional groups is in agreement with studies 

224 reported elsewhere (Parsons et al., 2013). The observed differences in the spectra include 

225 the absence of peaks at 2094 cm-1 (-N-C-S intense), 1122 cm-1 (C-OCN stretch), 1594 cm-1 

226 (-NH primary bend), and 781 cm-1 (-CH2-S- thioethers stretch) in both Cd(II) and Pb(II) 

227 laden CNFs spectra. The diminished N-H stretch at 3443 cm-1 in the spectra after Cd(II) and 

228 Pb(II) adsorption also suggests some interactions between the metals and the N-H group 

229 since N-H is known to have chelating capabilities. The disappearance or diminishing of 

230 peaks in the Pb(II) and Cd(II) laden CNFs clearly suggest that the -S- groups interacted with 

231 the metals on the surface of CNFs. This mechanism of interaction between adsorbates and 

232 adsorbent surface is in agreement with other study (Wang et al., 2017). On the contrary, 

233 bands in the region of 3200 - 3300 cm-1 and 1300 - 1450 cm-1, which are indicative of -OH 

234 group stretch and -OH in plane bend, were present on the Pb(II) and Cd(II) laden CNF, 

235 which suggests that the -OH groups had no influence in the adsorption of these metals. 

236 3.1.3. Scanning electron microscopy (SEM)

237 The SEM images taken at magnifications (17 and 15 Kx) are shown in Fig. 1 c and d. Fig. 

238 1 c shows the mesh-like structure of the CNFs due to the freeze-drying process and treatment 

239 agents used while Fig. 1 d shows the porosity of the material upon drying. The analysis 

240 showed a complete disappearance of the cotton strands to form uniform cellulose which 

241 proves that the dissolution procedure used was successful. The BET and crystalline size 

242 distribution analyses of the CNFs have been previously reported (Abu-Danso et al., 2017).
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243 3.1.4. X-ray photoelectron spectroscopy (XPS)

244 3.1.4.1. Scans spectra of CNFs

245 The XPS scans of CNFs are represented in Fig. 1 e-i. The wide scan (Fig. 1 e) indicated the 

246 presence of C and O which are found around binding energies of 284 and 530 eV (Ishimaru 

247 et al., 2007;Monier et al., 2014) and typical of cellulose. The wide scan also revealed the 

248 presence of N, Na, and S as a result of the synthesis process. The C 1s spectra (Fig. 1 f) was 

249 fitted to four peaks corresponding to carbon atoms in different chemical environments; the 

250 C-C, C-H; 284.8 eV is the characteristic of cellulose (Yu et al., 2013), C-O, C-S, C-N; 286.5 

251 - 286.6 eV, O-C-O, C=O, N-C=S; 288 eV and the carboxylate group (O-C=O; 289.0-289.6 

252 eV). 

253 The S 2p, O 1s and N 1s spectra are presented in Fig. 1 g-i. The CO(NH₂)₂, and SC(NH₂)₂  

254 derivatives are indicated on the N 1s and S 2p spectra. The N 1s on the wide scan present in 

255 402.3 eV is in agreement with other study (Monier et al., 2014). The N 1s fitting revealed a 

256 peak at 399.6 eV, indicative of nitrogen atoms in -NH2- functional groups, is in agreement 

257 with (Lindberg et al., 1970;Li et al., 2016). The other peak at the lower binding energy 

258 (398.2 eV) could be attributed to -NH- shifted to lower binding energy at equilibrium which 

259 is a known behaviour of carbonyl of a keto form (Haushalter et al., 1996). The presence of 

260 S is indicated by S 2p at 168 eV (Monier et al., 2014;Li et al., 2016). The S fittings in Fig. 

261 1 g showed 3 peaks. Two of the sulphur components appear to have discharged in a ratio 

262 close to 1:1 at binding energies 162.0 eV (indicative of thiourea) and 168.2 eV although the 

263 spectra showed a bridge between the S components. The spectra also showed two other 

264 disproportionate sulphur as also reported (Lindberg et al., 1970;Liang et al., 2015). 

265 According to (Lindberg et al., 1970), the disproportionality of the sulphurs suggests a yield 

266 of unstable components which can also cause shifts in the peak. The S 2p3/2 peak around 
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267 166.5 eV is representative of sulphur complexes and thiosulphate at 168.2 eV (Lindberg et 

268 al., 1970;Li et al., 2016). The O 1s spectrum was fitted with two components (Fig. 1 h). The 

269 larger component is mainly O bonded to C around 531.3 eV, which is consistent with other 

270 study (Li et al., 2016). The smaller component at 532.7 is absorbed water (-OH) (Li et al., 

271 2016) as a result of the CNFs synthesis procedure.  

272 3.1.4.2. Elemental content of CNFs before and after sorption

273 The surface elemental composition of CNFs was analyzed and it showed a composition of 

274 the materials, involved in the synthesis process (Fig. 1 j). The XPS surface elemental 

275 analyses of the CNFs after adsorption of Cd(II) and Pb(II) also revealed a composition 

276 which included the adsorbed metals, as shown in Fig. 1 j. The CNFs revealed the presence 

277 of O, C, N, Na and S elements which are typical of cellulose treated with the combination 

278 of dissolution agents used in this study. 

279 3.2. Batch adsorption experiments

280 3.2.1. Effect of solution pH 

281 The solution pH in an adsorption process, influence the adsorption capacity of an adsorbent 

282 since the type of surface charges, possessed by the adsorbents and the adsorbate’s ionic 

283 character affects adsorption of metal ions. The effect of pH on the adsorption of Pb(II) and 

284 Cd(II) is shown in Fig. 2 a. The adsorption of Cd(II) and Pb(II) was found to increase with 

285 increasing pH which can be attributed to the changes in surface charge of CNFs under 

286 different pHs and the chelating properties of the CNFs. At low pH, more H+ ions were 

287 present in the solution and therefore, repulsion between the cationic metal ions and the H+ 

288 might have contributed to the low adsorption capacity of the CNFs which is also reported 

289 in other studies (Navarro et al., 1996;Qin et al., 2016). With increasing pH, H+ ions are 

290 available in less amount and the surface of the CNFs became mostly negative and as a result, 
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291 metal ions were adsorbed in higher amount due to electrostatic attraction (Qin et al., 2016). 

292 Overall, the capacity of CNFs to adsorb Pb(II) was higher than Cd(II). 

293 3.2.2. Effect of adsorbent dosage

294 The adsorption of Pb(II) and Cd(II) by different dosages of CNFs was studied and the results 

295 are shown in Fig. 2 b. The CNFs dosage was changed starting from 0.2 g L-1 to 1.6 g L-1 

296 and the trend of the results were similar for both Pb(II) and Cd(II). The highest removal 

297 efficiency was recorded with the highest adsorbent dosage. This phenomenon is attributed 

298 to increased availability of active sites with a higher adsorbent dose and hence, removal 

299 capacity increased from 52 to ca. 99% and 48 to ca. 97% for Pb(II) and Cd(II) ions, 

300 respectively. In contrast, a lower adsorbent dose provided less adsorption sites leading to 

301 the less adsorption and therefore, a low removal capacity was observed.

302 3.2.3. Effect of temperature 

303 Adsorption experiments were also conducted at 35 and 45 oC besides room temperature to 

304 study the effect of temperature on the adsorption of Pb(II) and Cd(II) by CNFs, as shown in 

305 Fig. 2 c. The results showed that adsorption capacity was slightly lower at room temperature 

306 (ca. 25 oC). The other studied temperatures (viz. 35 and 45 oC) did not show a remarkable 

307 difference in the adsorption of both Pb(II) and Cd(II) ions. This negligible effect of different 

308 temperature on adsorption capacity has been reported by (Bhatnagar et al., 2009) with wider 

309 temperature ranges. 

310 3.2.3.1. Thermodynamic parameters

311 The enthalpy change (ΔH°) and entropy (ΔS°) values for the thermodynamics of the 

312 adsorption of Pb(II) and Cd(II) ions by the synthesized CNFs were obtained from the slope 
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313 and the intercept of the plot of ln K0 vs 1/T. The Gibbs free energy (ΔG°) was calculated by 

314 using eq. (3): (Anastopoulos and Kyzas, 2016)

315 (3)∆G° =  - RTln (𝐾𝑀𝑎𝑑𝑠𝑜𝑟𝑏𝑎𝑡𝑒 ∗ 55.5)

316 where R is the gas constant (8.314 J mol-1 K), T represents absolute temperature (K), K (L 

317 g-1) represents thermodynamic equilibrium of Langmuir constant, M is molecular weight of 

318 adsorbent and 55.5 is water concentration. The change in free energy of the system was 

319 determined from eq. (4): 

320  (4)ln (𝐾𝑜) =‒ (𝛥𝐻°

𝑅𝑇 +
𝛥𝑆°

𝑅 )

321 The values of enthalpy change (ΔH°) and Gibb’s free energy (ΔG°) for both metals, Pb(II) 

322 and Cd(II) are presented in Table 1. The positive value of the standard enthalpy suggests 

323 that the adsorption of Pb(II) and Cd(II) by CNFs is an endothermic process.

324 The negative value of Gibb’s free energy also suggests that the adsorption process for Pb(II) 

325 and Cd(II) was a spontaneous process (Chella et al., 2015). The positive values obtained for 

326 ΔS° indicates an increase in the randomness of the attachment of the metal ions at the solid-

327 liquid interface of CNFs as reported elsewhere (Anastopoulos et al., 2013).

328 3.2.4. Effect of ionic strength

329 One important parameter in adsorption studies is the effect of the presence of salt (NaCl) in 

330 wastewater. The existence of high ionic strength can interfere with the adsorption processes 

331 (Xu et al., 2011). The sorption capacity of CNFs for Pb(II) and Cd(II) metal ions in the 

332 presence of different concentrations of salt is presented in Fig. 2 d.  

333 The NaCl concentrations were taken as 1.0 – 4.0 M in the studies with Pb(II) adsorption and 

334 0.5 – 3.0 M in the studies with Cd(II) adsorption. From Fig. 2 d, it can be seen that the 
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335 adsorption capacity of CNFs for Pb(II) ions decreased from ca. 86 mg g-1 (0.41 mmol g-1) 

336 to ca. 25 mg g-1 (0.12 mmol g-1) when the concentration of NaCl was increased from 1.0 M 

337 to 4.0 M. The adsorption capacity of CNFs for Cd(II) ions decreased from ca. 30 mg g-1 

338 (0.266 mmol g-1) to 2 mg g-1 (0.017 mmol g-1) in the presence of 0.5 M to 2.0 M NaCl. The 

339 CNFs showed no capacity to adsorb Cd(II) ions in the presence of 3 M NaCl as shown in 

340 Fig. 2 d. This adsorption behavior could be as a result of competition between Na+ ions with 

341 Pb(II) or Cd(II) ions for the same binding sites. Since the adsorption process has been 

342 considered to be monolayer, the sites for other ions (Pb(II) and Cd(II)) decreased due to the 

343 presence of Na+ ions, resulting in lower uptake of the target metal ions. The trend of 

344 decreasing adsorption capacity was gradual towards Pb(II) ions and steep towards Cd(II) 

345 ions. 

346 3.2.5. Effect of contact time and adsorption kinetics

347 The adsorption kinetics of Pb(II) and Cd(II) by CNFs is represented in Fig. 3 a and b. The 

348 results showed a similar trend for both metal ions. Adsorption was found to increase rapidly 

349 initially from 0 to ca. 40 min. and subsequently stabilized after ca. 60 min. indicating that 

350 equilibrium was achieved. The average adsorption capacity after equilibration was found to 

351 be ca. 123.78 mg g-1 (0.598 mmol g-1) for Pb(II) and ca. 57.97 mg g-1 (0.515 mmol g-1) for 

352 Cd(II), respectively. This greater affinity of Pb(II) ions to the binding sites of the CNFs 

353 compared to the Cd(II) ions has already been discussed in the results of the pH studies. 

354 The adsorption kinetics was assessed with different kinetic models. The pseudo-first order 

355 model can be given by eq. (5) (Lagergren, 1898): 

356 (5)       𝑞𝑡 = 𝑞𝑒 (1 ‒  𝑒
‒ 𝑘1𝑡)
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357 where qe and qt represent the amount of metals adsorbed (mg g-1) at equilibrium and time t 

358 (min) while k1 represents pseudo-first order (min-1) rate constant.

359 Pseudo-second order model assumes a chemical rate determining step and can be written as 

360 follows (Ho and McKay, 1999): 

361 (6)𝑞𝑡 =
𝑘2𝑞2

𝑒 𝑡

1 +  𝑘2 𝑞𝑒 𝑡

362 where k2 is the pseudo-second order rate (g mg-1 min-1) constant.

363 Avrami model (Avrami, 1939) can be given as follows:

364   (7)𝑞𝑡 =  𝑞𝑒(1 ‒  𝑒
( ‒  (𝑘𝑎𝑣𝑡)𝑛))

365 where KAV (min-1) is the Avrami constant.

366 The values of model parameters are summarized in Table 2. Based on the results, it was 

367 found that pseudo-second order model best describes the adsorption process compared to 

368 the other models, as shown from the correlation coefficients (R2). 

369 Besides correlation coefficients (R2), the calculated adsorption capacities, qe(cal), are also 

370 closer to those determined by experiments, qe(exp), in case of pseudo-second-order model, 

371 indicating that the adsorption kinetics of Pb(II) and Cd(II) on CNFs can be better described 

372 by pseudo-second-order model. 

373 The intra-particle diffusion model was also applied to determine the rate-limiting step 

374 (Weber and Morris, 1963) can be given as:

375   (8) 𝑞𝑡 = 𝑘𝑝 𝑡
1
2 + 𝑐
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376 where kp represents intra-particle diffusion rate constant (mg g-1 min -1/2) and C (mg g-1) is 

377 the intercept which measures the thickness of the boundary layer over which the diffusion 

378 occurs. The Weber and Morris plots of Pb(II) and Cd(II) adsorption (Fig. 3 c) showed two 

379 different phases. The first phase is attributed to the immediate utilization of the most readily 

380 available adsorbing sites on the adsorbent surface. Second phase may be attributed to very 

381 slow diffusion of the adsorbate from the surface site into the inner pores.

382 3.2.6. Adsorption isotherms 

383 To study the relationship between the concentration of the metal ions in liquid phase and 

384 the amount that can be adsorbed by the adsorbent at equilibrium, different adsorption 

385 isotherm models were studied. The equilibrium adsorption by the synthesized CNFs was 

386 studied as a function of Pb(II) and Cd(II) ions concentration and the experimental data were 

387 fitted to four isotherm models. The Langmuir model describes an adsorption process based 

388 as a monolayer surface adsorption in which ions/molecules of identical energy occupy 

389 definite localized sites (homogenous) on the surface involved (Langmuir, 1918). The 

390 strictness of the Langmuir model means that the localized ion has no lateral interactions 

391 between the adsorbed ions even on the adjacent sites and the localization will proceed to a 

392 plateau exponentially until no further adsorption as reported by (Langmuir, 1918). 

393 The Langmuir model can be given by eq. (9):

394  (9)𝑞𝑒 =  
𝑞𝑚𝐾𝐿𝐶𝑒

1 +  𝐾𝐿𝐶𝑒

395 where qe (mg g-1) is the amount of adsorbate adsorbed by the synthesized CNFs at 

396 equilibrium time, Ce represents adsorbate concentration at equilibrium time (mg L-1), qm (mg 

397 g-1) represents maximum monolayer adsorption capacity and KL is the Langmuir constant 

398 (L mg-1).
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399 The Freundlich model assumes a heterogeneous surface and a multilayer adsorption and 

400 predicts a non-uniform surface attachment using energy to drive the distribution of the ions 

401 (Freundlich, 1906).

402 The Freundlich model is described by the following equation:

403    (10)𝑞𝑒 =  𝐾𝐹𝐶1/𝑛
𝑒

404 where KF and n are constants for a given adsorbent – adsorbate system.

405 The Sips model is a three parameter model and combines the features of Langmuir and 

406 Freundlich models (Sips, 1948). 

407 The Sips model can be described by eq. (11):

408    (11)𝑞𝑒 =  
𝑞

𝑚(𝐾𝑠𝐶𝑒)𝑚

1 + (𝐾𝑠𝐶𝑒)𝑚

409 where KS (L mg-1) is the Sips affinity constant.

410 The Redlich-Peterson model is also a three parameter model that predicts both homogenous 

411 and heterogeneous systems (Redlich and Peterson, 1959). 

412      (12)𝑞𝑒 =  
𝐾𝑅𝑃𝐶𝑒

1 +  𝑎𝑅𝑃𝐶𝛽
𝐸

413 KRP (L g-1) and aRP (L mg-1) are Redlich-Peterson constants.

414 The fitting of the data into different adsorption isotherm models is presented in Fig. 3 d and 

415 e. The Langmuir model fitted better with the adsorption data of the two metal ions as shown 

416 by good correlation coefficients (Pb(II): 0.999, and Cd(II): 0.999) compared with the other 

417 models (Table 2) and thus, suggesting a monolayer adsorption during the process. The 

418 theoretical maximum adsorption capacity was calculated as 239.64 mg g-1 (1.160 mmol g-
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419 1) and 92.32 mg g-1 (0.821 mmol g-1) for Pb(II) and Cd(II), respectively. To check the 

420 favorability of the adsorption process, the separation factor (RL) was used by (Weber and 

421 Chakravorti, 1974) calculated from eq. (13):

422  (13)𝑅𝐿 =  
1

1 +  𝐶𝑜 𝐾𝐿

423 where RL is a dimensionless equilibrium parameter or the separation factor and C0 is the 

424 initial concentration of metal ions (mg L-1). The adsorption process is favorable if (0 < RL 

425 < 1), and unfavorable if (RL > 1). The results of this study showed that the adsorption of 

426 Pb(II) and Cd(II) metal ions by the synthesized CNFs is a favorable one since the RL value 

427 for both metal ions was between 0 and 1 (Table 2).                              

428 Generally, adsorption capacity of CNFs for Pb(II) ions was higher compared to Cd(II) ions. 

429 This high affinity for Pb(II) ions by CNFs over Cd(II) ions could possibly be as a result of 

430 the characteristics of Pb(II) ions, summarized in Table 3 and also reported elsewhere 

431 (Hossain et al., 2014). The higher removal efficiency of CNFs for Pb(II) as compared to 

432 Cd(II) can be explained considering the binding strength of the metal ions. Pb(II) and Cd(II) 

433 share features of both hard and soft ions and are termed as borderline ions. With soft donors 

434 like N, S, P, and As, soft cations form more stable complexes. Hard ions have the tendency 

435 to form strong bonds with highly electronegative donors (Dean, 1990). Hard ions also form 

436 ionic bonding to most extent. On the contrary, soft ions form covalent bonding wherein free 

437 energy is enthalpic in nature (Nieboer and McBryde, 1973). The important binding strength 

438 parameters of the two studied metals are presented in Table 3. The ionic bond strength of 

439 Pb(II) is greater than Cd(II) which is revealed by the (z2 / rhyd) criterion (Table 3). The 

440 parameter , introduced by Nieboer and McBryde (Nieboer and McBryde,  8502 .rX crystm 

441 1973), is a measure for the strength of covalent bonding. The contribution of N or O donors 

442 to the bond distance is given by the factor ‘0.85’. Soft ions are characterized by 
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443  > 7 and hard ions have   <  4.2. The relative contribution  8502 .rX crystm   8502 .rX crystm 

444 of covalent bonding follows the order, Pb(II) > Cd(II), which is confirmed by 

445  criterion. The total binding strength ( ) is higher for Pb(II) than Cd(II)  8502 .rX crystm  

446 (Table 3) which explains higher Pb(II) binding to CNFs as compared to Cd(II).

447 Furthermore, Pb(II) has a higher hydrolysis constant 43.61 (-log β pq) at room temperature 

448 in aqueous medium compared to Cd(II) 32.37 (-log β pq) (Brown, 1984). Pb(II) has lower 

449 enthalpy of fusion (5.121 kJ mol-1) compared to Cd(II) (6.11 kJ mol-1) (De Podesta, 2002) 

450 and therefore, Pb(II) requires less energy to be adsorb. This characteristic can be attributed 

451 to the higher adsorption of Pb(II) ions compared to Cd(II) as also reported by (Anastopoulos 

452 et al., 2015).

453 3.2.7. Reusability of synthesized CNFs

454 The reusability of adsorbents is important in water treatment as it makes the process 

455 economically feasible. To assess the reusability of synthesized CNFs, H2O and 0.1 M NaOH 

456 were chosen as the eluents. The results of 0.1 M NaOH as eluent are presented in Fig. 3 f. 

457 The results showed that 0.1 M NaOH is a better eluent for the regeneration of CNFs. After 

458 4 cycles, 0.1 M NaOH was still able to elute the Pb(II) and Cd(II) ions and the CNFs showed 

459 consistent removal efficiency. The removal efficiency with H2O as eluent for Pb(II) ions 

460 decreased from 63.7 to 19.8% from the 1st to 4th cycle (results not shown). The removal 

461 efficiency of Cd(II) however decreased significantly from 71.7 to 4.1% from the 1st to 2nd 

462 cycle (results not shown). This elution phenomenon could be as a result of the feasibility of 

463 the reaction; Pb(NO3)2 + 2NaOH → Pb(OH)2 + 2NaNO3 compared to the feasibility of 

464 Pb(NO3)2 + H2O temp→ Pb(OH)NO3 + HNO3 at room temperature. From the two equations, 

465 the reaction of the Pb(II) ions with water requires heat to proceed. However, the elution 

466 reaction proceeded at room temperature. This is likely to result in weak metal ion – H2O 
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467 complexation to create free sites on the CNFs for repeated usage thereby making water a 

468 poor eluent compared to NaOH. One other limitation of water as an eluent is from the self-

469 ionization reaction; H2O + H2O ↔ H3O+ + OH- characteristic in aqueous media as reported 

470 by (Brown and Ekberg, 2016).  The unstable hydoxonium cation (H3O+) interferes in the 

471 elution of the metal ion by forming varied ionized forms of the metal and H+ which can 

472 attach to the adsorbent and prevent elution by the same water (Brown and Ekberg, 2016).  

473 The percentage removal efficiency of CNFs for Pb(II) and Cd(II) metal ions was > 90 and 

474 60%, respectively. The results herein indicate that the synthesized CNFs can be used 

475 repeatedly to remove Pb(II) and Cd(II) metal ions using the adsorption and desorption 

476 cycles. 

477

478 3.3. Application of CNFs for industrial wastewater treatment 

479 The CNFs herein synthesized were used as an adsorbent for the removal of different cationic 

480 metal ions from real (untreated) metal coating and mining seep wastewater. The results 

481 revealed that CNFs are effective in removing Pb(II) and Cd(II) from spiked wastewater 

482 (Table 4). For the metal coating wastewater, the highest uptake capacities were found to be 

483 890 mg g-1 (4.30 mmol g-1) and 246.9 mg g-1 (2.20 mmol g-1) for Pb(II) and Cd(II), 

484 respectively by CNFs. For the mining seep wastewater, the highest uptake capacities were 

485 observed as 782.49 mg g-1 (3.78 mmol g-1) and 170.80 mg g-1 (1.52 mmol g-1) for Pb(II) and 

486 Cd(II), respectively (Table 4). The trend of these results was similar to the results with 

487 synthetic water and the reason for this phenomenon has been explained in the previous 

488 sections. Generally, the adsorption capacity increased when the metal concentration was 

489 increased. However, there was a reverse of the trend in the adsorption of Cd(II) in the mining 
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490 seep wastewater where the uptake capacity reduced with a higher metal concentration as 

491 shown in Table 4.

492 The results of the other wastewater which was studied without additional metal ion spiking 

493 are also presented in Table 4. The results revealed that the removal efficiency of the metal 

494 ions ranged from ca. 90 to 98%. The removal efficiency was however significantly low for 

495 manganese (52.7%).  

496

497 3.4. Mechanism of metals adsorption by CNFs 

498 The XPS wide scan analysis of the synthesized CNFs after adsorption of Pb(II) and Cd(II) 

499 is shown in Fig. 4 a. The analysis shows substituted Pb(II) and Cd(II) peaks compared with 

500 XPS wide scan of CNFs (Fig. 1 e). The presence of these new peaks coincided with absence 

501 or the suppression of S groups as also shown in the FT-IR analysis (Fig. 1 b). The high 

502 resolution scan of Pb(II) 4f (Fig. 4 b) showed a doublet with Pb(II) 4f7/2 at 138.4 eV and the 

503 high resolution scan of Cd(II) 3d (Fig. 4 c) showed a doublet Cd(II) 3d5/2 peak at 405.6 eV 

504 and Cd(II) 3d3/2 peak at 412.4 eV confirming the accumulation of Pb(II) and Cd(II) ions on 

505 the surface of the CNFs after adsorption. Furthermore, the S 2p peaks before adsorption of 

506 metal ions at 162 eV reduced after adsorption as shown in Fig. 4 d and e suggesting 

507 exchange of sulphur-complexes for the metal ions.

508 The proposed adsorption mechanism is presented in Fig. 5. which suggests that higher metal 

509 ions-S-groups complexation takes place between metals and CNFs. This phenomenon might 

510 be due to the capacity of S-ligand in SC(NH₂)₂ to interact easily with the Pb(II) and Cd(II) 

511 ions which is aided by the diffuse electron cloud of SC(NH₂)₂ (Gregoret et al., 1991). 

512 Furthermore, the head group orientation of SC(NH₂)₂ allows multiple interactions with 

513 positive species within the bonding region. This is in contrast to one dimensional bonding 
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514 behavior of CO(NH₂)₂, as also reported in other studies (Wilson and Tarbell, 1950;Stefaniu 

515 et al., 2015). This phenomenon favours sulphur-complexes-metal ions interactions 

516 compared to CO(NH₂)₂. All these features of SC(NH₂)₂ might be responsible for the 

517 adsorption of Pb(II) and Cd(II) by CNFs. 

518 4. Conclusions 

519 In this study, cellulose nanofibers (CNFs) tethered with sulphur as anionic ligand were 

520 synthesized from medical absorbent cotton by dissolution with NaOH, organogelator 

521 CO(NH₂)₂ followed by mechanical intrusion of sulphur from SC(NH₂)₂. The CNFs were 

522 characterized by pHpzc, FT-IR, SEM and XPS and used for the removal of Pb(II) and Cd(II) 

523 and other metal ions from synthetic and untreated industrial wastewater. The experimental 

524 data fitted well with Langmuir isotherm model. The maximum monolayer uptake capacity 

525 was found to be 239.64 mg g-1 (1.160 mmol g-1) and 92.32 mg g-1 (0.821 mmol g-1) for 

526 Pb(II) and Cd(II) ions, respectively. The adsorption kinetics was rapid and equilibrium was 

527 reached in less than 1 h. The pseudo-second order kinetic model best described the metals 

528 adsorption which suggests the adsorption process was a chemical process. Regeneration 

529 studies showed that CNFs can be reused multiple times with 0.1 M NaOH as an eluent. The 

530 synthesized CNFs removed ca. 90-98% of the metal ions present in industrial wastewater.  

531 The prepared CNFs show promising results and suggest that the material can be used in 

532 water treatment (cationic metals removal).

533
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FIGURES

Fig. 1. (a) pHPZC measurements, (b) FT-IR spectra, (c, d) SEM images at different magnifications, XPS spectra of CNFs: (e) wide scan, (f) C1s, (g) S 2p, (h) O 1s, (i) N 

1s, and (j) elemental composition of synthesized S-tethered CNFs. 
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Fig. 2. Effect of (a) pH, (b) adsorbent dosages, (c) temperature, (d) ionic strength on adsorption of Pb(II) and Cd(II) by CNFs (metal ions concentration: 50 mg L-l, CNFs 
dose: 0.5 g L-1).
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Fig. 3. (a, b) Pb(II) and Cd(II) adsorption kinetics modelling, (c) intra-particle diffusion modelling (metal ions concentration: 50 mg L-1, CNFs dose: 0.5 g L-1); (d, e) 

Pb(II) and Cd(II) adsorption isotherms modelling (metal ions concentration: Ci: 10 – 200 mg L-1 CNFs dose: 0.5 g L-1 ), (f) regeneration studies of Pb(II) and Cd(II) 

adsorption by synthesized CNFs using 0.1 M NaOH as eluent.
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Fig. 4. (a) XPS wide scan spectrum of Pb(II) and Cd(II), (b, c) high resolution spectra of Pb(II) 4f and Cd(II) 3d, (d, e) S 2p spectra of Pb(II) and Cd(II) after adsorption 

onto CNFs.
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Fig. 5. Proposed mechanism of polymerization disruption and tethering of sulphur complexes on the disrupted cellulose chain and adsorption mechanism of metal ions.
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Highlights:

(1) S-ligand tethered cellulose nanofibers were synthesized for metals adsorption.
(2) Adsorption capacity of S-CNFs was 1.16 mmol g-1 for Pb and 0.82 mmol g-1 for Cd.
(3) Ligand exchange is suggested as possible mechanism for both metal ions.
(4) Reusability studies revealed that synthesized adsorbent is resilient. 
(5) Synthesized CNFs can be effectively used in industrial wastewater treatment.
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TABLES

Table 1. Thermodynamic parameters of the adsorption of Pb(II) and Cd(II) by CNFs.

  ΔG° (kJ mol-1)          ΔH° (kJ mol-1)          ΔS° (kJ mol−1 K−1)Temperature (oC) Temperature (K)

  Pb(II)  Cd(II)   Pb(II) Cd(II) Pb(II) Cd(II)

25 298.15 – 34.29 – 23.95 253.10 3.03 0.88 0.02

35 308.15 – 41.87 – 24.87

45 318.15 – 53.61 – 25.76

Table 2. Adsorption kinetics and isotherm parameters of Pb(II) and Cd(II) adsorption by synthesized 

CNFs. 

          Metal ion        Metal ion
Kinetic 
model

Parameter Pb(II) Cd(II) Isotherm model Parameter Pb(II)     Cd(II)

Pseudo-
first 
order

qe exp (mg g-1)
qe cal (mg g-1)
k1 (min-1)
RMSE
R2

126.74            57.96
120.23            55.22
    0.41 0.09
  13.23 3.48
    0.959 0.984

Langmuir qexp (mg g-1)
qcal (mg g-1)
KL (L mg-1)
RMSE
R2

RL

239.41      92.90
239.64     92.32
    0.24       0.08
    3.90       1.52
    0.999      0.999
    0.37        0.59

Pseudo-
second 
order

qe exp (mg g-1)
qe cal (mg g-1)
k2 (g mg-1 min-1)
RMSE
R2

126.74            57.96
123.78            57.97
    0.01 0.00
    6.91 1.64
    0.986 0.995

Freundlich              KF (mg g-1)
             n
             RMSE
             R2

110.34      15.79
    3.95        2.34
  23.90        6.01
    0.984      0.988

Avrami qe exp (mg g-1)
qe cal (mg g-1)
kav (g mg-1 min-1)
RMSE
R2

126.74            57.96
120.23            55.21
    0.43              0.03
  13.23 3.47
    0.959 0.989

Sips qexp (mg g-1)
Ks (L mg-1)

              ns
              RMSE
              R2

239.41      92.90
    0.57        0.06
    1.23        0.87
    7.69        2.20
    0.998 0.979

Intra-
particle 
diffusion

qe exp (mg g-1)
Kp (g mg-1 min-1/2)
C (mg g-1)
RMSE
R2

126.74            57.96
    3.43              4.08
  64.47            11.38
  13.03              2.73
    0.897             0.897

Redlich-
Peterson

              KRP (L mg-1)
              qPR (mg g-1)
              RMSE
              R2

116.09    207.90
  51.66      39.76
  19.62        6.01
    0.988 0.985
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Table 3. Binding strength characterization parameters.

Cd(II) Pb(II)
z (charge) 2 2
Rcryst

a (Å) 0.95 1.19

Rhyd
b (Å) 4.26 4.01

Xm
c 1.70 1.80

z2/rcryst
d1(1/Å) 4.21 3.36

z2/rhyd
d2(1/Å) 0.94 1.00

 (Å)  e
crystm .rX 8502  5.20 6.61

f
mX 1.80 1.70

 gmXexp 41 2 0.56 0.51

 (1/Å) 4exp1 22
mhyd

h Xrz  1.69 1.94

a Shannon crystal radii (Evans, 1995)
b Nightingale hydrated ion radii(Kertes and Marcus, 1969) 
c Pauling electronegativity (Dean, 1990)
d Parameter for hydration (1) or ionic bonding (2) strength(Phillips, 1965) 
e Parameter for covalent bond character (0.85 is an appropriate constant assumed to reflect the radius of 
O and N donor atoms) (Nieboer and McBryde, 1973)
f Parameter for ionic bond character (Electronegativity of the metal relatively to oxygen) 
g Fraction of ionic bond character (Pauling, 1967)
h Parameter for total binding strength.
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Table 4. Adsorption capacity and removal efficiency of synthesized CNFs for different concentrations 

of metal ions from metal coating and mining seep wastewater. 

Metal coating wastewater Mining seep wastewater

Metal Before 
adsorption
(mg L-1)     

After
adsorption
(mg L-1)

Adsorption 
capacity
 (mg g-1)

Removal 
efficiency
   (%)

 Metal Before
adsorption
(mg L-1)     

After
adsorption
(mg L-1)

Uptake 
capacity
 (mg g-1)

Removal 
efficiency
   (%)

Pb 250*     2.73 504.14 98.92  Pb 230*     5.01 452.62 98.22

310*     6.02 611.35 98.06 340*     9.99 667.43 97.22

490*   46.44 889.71 90.54 420*   37.75 779.30 91.16

Cd 200* 135.88 133.44 32.84  Cd 192* 107.21 170.58 44.30

310* 202.70 232.80 36.53 300* 227.20 158.04 25.84

400* 275.40 244.84 30.77 400* 336.20 121.80 16.33

Zn 12.43    0.56   23.73 95.46  Zn 4.03     0.04     7.94 98.53

Hg 1.02    0.02    2.00 98.31  Ba 5.33     0.09   10.50 98.52

Mn 2.18    0.03    4.28 98.32  Mn     1.80     4.36 52.71

Ni 2.27    0.07    4.40 96.78

Co 2.66    0.13    5.05 94.89

(*Spiked concentrations)


