Preparation and characterization of multi-component tablets containing co-amorphous salts: combining multimodal non-linear optical imaging with established analytical methods

Ojarinta, R

Elsevier BV

Tieteelliset aikakauslehtiartikkelit
© Elsevier B.V.
CC BY-NC-ND https://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.ejpb.2018.09.013

https://erepo.uef.fi/handle/123456789/7095
Downloaded from University of Eastern Finland's eRepository
Preparation and characterization of multi-component tablets containing co-amorphous salts: combining multimodal non-linear optical imaging with established analytical methods

Rami Ojarintaa,*, Jukka Saarinenb, Clare J. Strachanb, Ossi Korhonena, Riikka Laitinena

a School of Pharmacy, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
b Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00014 University of Helsinki, Finland

*Corresponding author:
Tel. +358 40 355 3870
E-mail: rami.ojarinta@uef.fi
ABSTRACT

Co-amorphous mixtures have rarely been formulated as oral dosage forms, even though they have been shown to stabilize amorphous drugs in the solid state and enhance the dissolution properties of poorly soluble drugs.

In the present study we formulated tablets consisting of either spray dried co-amorphous ibuprofen-arginine or indomethacin-arginine, mannitol or xylitol and polyvinylpyrrolidone K30 (PVP).

Experimental design was used for the selection of tablet compositions, and the effect of tablet composition on tablet characteristics was modelled. Multimodal non-linear imaging, including coherent anti-Stokes Raman scattering (CARS) and sum frequency/second harmonic generation (SFG/SHG) microscopies, as well as scanning electron microscopy, X-ray diffractometry and Fourier-transform infrared spectroscopy were utilized to characterize the tablets.

The tablets possessed sufficient strength, but modelling produced no clear evidence about the compaction characteristics of co-amorphous salts. However, co-amorphous drug-arginine mixtures resulted in enhanced dissolution behaviour, and the PVP in the tableting mixture stabilized the supersaturation. The co-amorphous mixtures were physically stable during compaction, but the excipient selection affected the long term stability of the ibuprofen-arginine mixture. CARS and SFG/SHG proved feasible techniques in imaging the component distribution on the tablet surfaces, but possibly due to the limited imaging area, recrystallization detected with x-ray diffraction was not detected.

KEYWORDS: Co-amorphous, amino acid, tablet, deformation, dissolution, multimodal non-linear imaging, CARS, SFG, SHG

ABBREVIATIONS

1 ACN, acetonitrile; ARG, arginine; CA, co-amorphous; CARS, coherent anti-Stokes Raman scattering; ER%, elastic recovery (%); FTIR, Fourier-transform infrared spectroscopy; HPLC, high-performance liquid chromatography; IBU, ibuprofen; IND, indomethacin; IR, infrared; KL, Kuentz-Leuenberger; PM, physical mixture; PVP, polyvinylpyrrolidone K30; SD, spray drying; SEM, scanning electron microscopy; SFG, sum frequency generation; TFA, trifluoro acetic acid; XRD, X-ray diffraction
1. INTRODUCTION

The majority of drugs currently under development possess poor water solubility, which may lead to limited oral bioavailability as well as challenges in drug formulation and in vitro and in vivo testing during drug development [1,2]. Transformation of a crystalline drug to the amorphous form is a promising option for overcoming these challenges, since it has been shown to effectively increase the apparent solubility and dissolution rate of poorly soluble drugs [3-5]. However, the use of amorphous drugs has been limited due to their poor physical stability (i.e. tendency to recrystallize).

To stabilize the amorphous form, different glass solution subtypes, i.e. polymeric amorphous solid dispersions, mesoporous silicon or silica-based glass solutions, and co-amorphous formulations have been introduced [4-9]. Of these formulations, the solid dispersions are the most extensively studied, but during the last decade the interest towards co-amorphous formulations (i.e. single-phase amorphous mixtures of the drug and two or more pharmaceutically active or inactive low molecular weight substances) has increased due to the potential for good physical stability, combination therapy and the reduced size of the final dosage form [4,7-10]. Additionally, co-amorphous formulations (especially co-amorphous salts) have been shown to increase dissolution rates, and in some studies even stabilize supersaturation, when compared to the crystalline or, more importantly, to the pure amorphous drugs [9-13].

Being a relatively novel formulation approach, the co-amorphous mixtures have mainly been prepared by small scale methods, but in recent years also preparation methods that can be scaled up, such as spray drying (SD) and hot-melt extrusion, have been successfully utilized [9,14-19].

However, even though the co-amorphous systems are generally developed to improve the oral bioavailability, the development of oral dosage forms containing co-amorphous mixtures is still in its infancy [10,20]. Recently, some authors have successfully included co-amorphous mixtures in tablet formulations [21-23], but the deformation properties of the co-amorphous mixtures and the
effect of tablet composition on tablet properties has remained unexplored, even though the
compaction properties of the co-amorphous components may differ from their crystalline
counterparts and the excipients may significantly affect the deformation properties, mechanical
strength, drug release as well as physical stability of the amorphous components [24-27].
Additionally, both Lenz et al. [21] and Petry et al. [22] investigated the physical stability of co-
amorphous indomethacin-arginine (IND-ARG) from ground tablets with conventional methods (X-
ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR)), even though the
recrystallization may be more pronounced on the tablet surface, and it may be too otherwise limited
to be observed with conventional methods [27,28].
Non-linear optical imaging techniques, including coherent anti-Stokes Raman scattering (CARS)
and sum frequency/second harmonic generation (SFG/SHG) microscopies, are relatively new
imaging modalities with interesting capabilities. The general benefits of these techniques include
label-free, chemically-specific signal, fast data-acquisition time and inherent non-destructive
“confocal”- like imaging [29]. The label-free nature of CARS is based on the non-linear probing of
molecular vibrational resonances [30], whereas materials with non-centrosymmetric structures
generate SFG/SHG signals [31]. Most of the research in the use of non-linear optics has been
focused on instrument development, however studies of the applications of non-linear optical
imaging in different fields are increasing. Mostly, these techniques have been used in biomedical
applications, where especially CH$_2$ stretching of lipids has been probed with CARS [32], while
collagen has been imaged with SHG [33]. However, pharmaceutical applications including solid-
state analysis of non-linear optical imaging have also been increasing [29]. For example CARS has
been used to identify solid-state forms of IND on tablet surfaces [34,35] and to monitor the solid-
state changes of theophylline during dissolution [36]. On the other hand SFG/SHG, can be
especially useful in solid-state analysis, since only non-centrosymmetric crystals produce SFG/SHG
signals. SHG has been quantitatively used to analyse pharmaceutical solid-solid mixtures [37] and
has also been utilized in imaging, for example to visualize trace crystallinity in powder mixtures with a detection limit of 4 ppm [38]. In multimodal non-linear optical imaging, CARS and SFG/SHG can be simultaneously combined. It was recently shown that such a combination is well-suited to the detection of different polymorphs and the amorphous form on tablet surfaces with high sensitivity [35]. Crystallisation processes during storage can be imaged in detail. While in that study tablets were composed of pure drug, the multimodal technique also has much potential for analysing relatively complex multicomponent tablets. Multimodal CARS and SFG/SHG imaging has not yet been used to image formulations containing both drug and excipient, nor changes in their crystallinity and component distribution upon storage.

In the present study, we prepared tablets containing amorphous salts of ibuprofen (IBU) and ARG and IND and ARG, and employed multi-modal non-linear optical imaging and established analytical methods to explore the effect of formulation variables on pharmaceutical performance. The tablet compositions were selected with an experimental design that consisted of three factors, i.e. the amount of drug-ARG salt, the amount of polyvinylpyrrolidone K30 (PVP) and the sugar alcohol species. Our aim was to investigate the effect of the abovementioned variables on the compaction characteristics, on the mechanical properties of the tablets as well as on the drug release behaviour and the physical stability of the co-amorphous salts. Additionally, CARS and SFG/SHG were combined in order to explain compaction properties by visually detecting the drug and excipient distribution and to detect possible phase separation and re-crystallization on the surface of complex multi-component tablets during storage.

2. MATERIALS AND METHODS

2.1 Materials

ARG (L-enantiomer) and PVP were purchased from Sigma-Aldrich Co. (St. Louis, USA) and γ-IND from Hangzhou Dayanchem (Hangzhou, China). Racemic R,S-IBU and the sugar alcohols
(mannitol (Pearlitol® 200SD) and xylitol (Xylisorb® 200DC)) were kindly donated by Orion Corporation (Espoo, Finland) and Roquette (Lestrem, France), respectively. Glacial acetic acid (Riedel de Haën, Seelze, Germany), hydrochloric acid (HCl, 37%; Riedel-de-Haën, Seelze, Germany), potassium chloride (J. T. Baker, Deventer, Holland), sodium acetate (Riedel-de-Haën, Seelze, Germany), sodium hydroxide (NaOH; VWR Chemicals, Leuven, Belgium), and potassium dihydrogen phosphate (KH₂PO₄; Merck, Darmstadt, Germany) were used in the preparation of the buffer solutions. During the storage of the samples, dry conditions were maintained with phosphorus pentoxide (P₂O₅), while approximately 33% RH was maintained with saturated magnesium chloride (MgCl₂) solution. Ultrapurified water (class I; Elga Purelab Ultra, Elga LabWater, UK) was used in the high-performance liquid chromatography (HPLC) mobile phase as well as to prepare the drug-ARG solutions prior to the SD. Otherwise class II water (Elix 5, Millipore S.A.S., Molsheim, France) was used throughout the study. Acetonitrile (ACN; HPLC grade; VWR Chemicals, Leuven, Belgium and Fisher Chemical, Loughborough, UK) and trifluoro acetic acid (TFA; HPLC-grade; Sigma-Aldrich, Germany) were the other components of the high performance liquid chromatography (HPLC) mobile phase.

2.2 Methods

2.2.1 Preparation of the co-amorphous salts

The co-amorphous IBU-ARG and IND-ARG salts were prepared by spray drying as described in our previous article [19]. Briefly, an amount of drug was dissolved in a corresponding amount of 5% ARG-water solution in order to obtain a drug-ARG molar ratio of 1:1, and once the solution was visually clear, it was spray dried with a Büchi Mini Spray Dryer B-191 (Büchi Labortechnik AG, Flawil, Switzerland). The water content of the freshly prepared samples was measured in triplicate with a coulometric Karl-Fischer titrator (Mettler Toledo C30, Mettler-Toledo GmbH, Greifensee, Switzerland). After preparation, the co-amorphous systems were stored in brown glass jars under 4 °C 0% RH conditions until the tablets were prepared.
2.2.2 Tablet composition and experiment design

The tablet mixture compositions (Table 1) were based on a 2-level full factorial experiment design with three centre points that was conducted with Modde Pro-software (11.0.1, MKS Umetrics AB, Sweden). The experimental factors were drug load, amount of PVP, and the sugar alcohol species, whereas the responses were tablet tensile strength, elastic recovery, $1/C$-value from the Kuentz-Leuenberger (KL) equation (Eq. 3, see section 2.2.5), the cumulative dissolved amount of drug after 15 min ($CDA_{15\text{min}}$), and the area under the cumulative dissolved drug amount-time curve after the 2h dissolution study ($AUC_{0-120\text{min}}$). The compaction force and the relative amount of the sugar alcohol were kept constant (20 kN and 60% (m/m) of the tablet mass, respectively). Thus, the tablet mass was changed according to the drug dose and the amount of PVP.

2.2.3 Preparation of the powder mixtures

The powder blends for tableting were prepared in a mortar by first mixing the drug-ARG mixture with PVP and then adding the sugar alcohol in two or three batches depending on the amount of the final mixture. The homogeneities of the prepared powder mixtures were investigated with two model formulations (B4 and N2) by dissolving five parallel tablets in 250 ml of phosphate buffer (pH 7.4) in ambient conditions and analysing the drug content with HPLC after 24h.

2.2.4 Tablet preparation

Flat faced tablets (diameter 13 mm) were compressed with a compaction simulator (PCS-1, PuuMan Ltd., Kuopio, Finland) using a double-sided sine wave compression profile (duration 1500 ms). Due to high ejection forces, powder sticking and tablet fracturing occurred during preliminary studies without lubrication, and thus magnesium stearate was added to the die walls and lower punch using a brush prior to every compression except for the tablets for stability studies. The compaction force was set to approximately 20 kN with every formulation. The tablets were weighed immediately after compression, whereas the dimensions were measured the next day.
2.2.5 Compaction characteristics

The force-displacement data of five parallel compressions were collected and corrected according to the punch deformations. This corrected data was utilized to determine the relative density (ρ) of the different formulations at various compaction pressures according to Eq. 1:

$$\rho = \frac{\rho_{app}}{\rho_{t,mix}}$$

where ρ_{app} is the density at a certain pressure and $\rho_{t,mix}$ is the true density of the formulation that was calculated according to Eq. 2:

$$\rho_{t,mix} = \frac{w_1 + \cdots + w_n}{\rho_{t1} + \cdots + \rho_{tn}}$$

Here, w denotes weight fraction and ρ_t the true density, while the subscripts 1 and n refer to the different components of the formulation [40]. The ρ_t-values of the single components were obtained from the literature [41-43].

The deformation properties of the different formulations were evaluated using the KL-equation (Eq. 3):

$$\sigma = \frac{1}{C} \left[\rho_c - \rho - (1 - \rho_c) \ln \left(\frac{1 - \rho}{1 - \rho_c} \right) \right]$$

where σ is the compaction pressure, $1/C$ is a plasticity parameter (interpretation corresponds to the yield pressure from Heckel equation) and ρ_c is the critical relative density (relative density where mechanical rigidity emerges in the powder bed) [44,45]. To determine the ρ_c, the pressure susceptibility (χ_p; susceptibility of the powder bed to external pressure) at each data point was calculated using Eq. 4 after which the χ_p was plotted against relative density as described by Kuentz and Leuenberger [44]. The ρ_c was considered as the pressure where the χ_p began to systematically decrease with increasing ρ (an example shown in the supplementary material (Figures S1A and S1B)). Finally, the constant C was obtained by fitting Eq. 3 to the σ vs. ρ data (Figure S1C) using...
nonlinear regression that was conducted with SigmaPlot 14.0 (Systat Software Inc., San Jose, CA, USA).

\[\frac{d\rho}{d\sigma} = x_p(1 - \rho) \]

(4)

The percentage of axial elastic recovery (ER%) was obtained by using Eq. 5 [46]:

\[\text{ER\%} = \frac{H - H_c}{H_c} \times 100\% \]

(5)

where \(H \) is the tablet height measured 24h after compression and \(H_c \) is the tablet height at maximum pressure.

A universal tester (CT-5 tester, Engineering Systems, Nottingham, England) was used to determine the crushing strengths of the tablets (\(n = 5 \)) 24h after the compression. The tensile strengths (\(\sigma \)) were calculated according to Eq. 6:

\[\sigma = \frac{2P}{\pi D t} \]

(6)

where \(P \) is the applied load (crushing strength), \(D \) is the tablet diameter, and \(t \) is the tablet thickness [47].

2.2.6 Dissolution studies

The dissolution studies were performed with Sotax AT6 and Sotax AT7 smart dissolution testers (Sotax AG, Basel, Switzerland) equipped with paddle stirrers. Each tablet formulation was studied in triplicate in 500 ml of dissolution medium (pH 1.2 HCl buffer for IBU-tablets and pH 5.0 acetate buffer for IND tablets) that was kept at 37 °C and stirred at 50 rpm. The duration of the study was 2 hours, the samples were taken at 5 min, 10 min, 15 min, 30 min, 60 min, 90 min, and 120 min time points, and the sample volume (5 ml) was replaced with buffer solution. The samples were filtered through 0.22 µm membrane filters (Syringe filter 30 mm Dia, PES 0.22 µm Membrane, Sterile,
Porvair Sciences, Leatherhead, UK), and the drug concentration was analysed with HPLC (see section 2.2.7). Prior to the HPLC analysis, the samples were diluted with ACN to reach ACN/H$_2$O-ratio of 70/30, and if necessary, further dilution was conducted with 70/30 ACN/H$_2$O mixture to obtain drug concentrations below 100 µg/ml.

The effect of the formation of amorphous state and the effect of ARG on the dissolution behaviour of the drugs were investigated by performing the 2h dissolution studies with tablets corresponding to B4 and N2 formulations but containing either physical mixtures of the crystalline drug and ARG or only the crystalline drug (ARG replaced by mannitol) instead of the co-amorphous salt. Additionally, to investigate the effect of PVP on the supersaturation stability of the co-amorphous salts, a 24h dissolution study was conducted with B4- and N2-formulations as well as with formulations corresponding to B4 and N2, but in which the PVP was replaced with excess mannitol. In these studies, the samples were taken at 5 min, 10 min, 15 min, 30 min, 1 h, 2 h, 4 h, 6 h, 8 h and 24 h time points.

2.2.7 HPLC

The HPLC equipment consisted of Gilson 321 pump and Gilson UV-vis 151 detector (Gilson Inc., Middleton, WI, USA), Gilson 234 auto injector (Gilson, Roissy-en-France, France), and a reversed phase column (Phenomenex Gemini NX 5u C18 110A, 250x4, 60 mm, sr. nr. 590531-19, USA) with a pre-column. The mobile phase (70/30 ACN/H$_2$O acidified with 0.1% TFA) flow rate was 1.2 ml/min and the detection wavelengths were 221 nm for IBU and 225 nm for IND. The standard solutions (1, 5, 25, 50, 75, and 100 µg/ml) were prepared in 70/30 ACN/H$_2$O-mixture and measured with HPLC to obtain standard lines that were linear ($R^2 > 0.997$) in the examined concentration range.

2.2.8 Tablet characterization
The tablet formulations were stored under 25 °C/33% RH to investigate the effect of compaction and tablet composition on the physical stability of co-amorphous salts. XRD and FTIR were used as standard methods to detect re-crystallization during the 20-week test period.

X-ray diffractograms were collected from intact tablet surfaces using a Bruker D8 Discover diffractometer (Bruker AXS GmbH, Karlsruhe, Germany) with Cu Kα radiation (λ = 1.54 Å) and a motorized slit. An acceleration voltage of 40 kV and current of 40 mA were used to perform a scan between 5 and 35° 2θ with a scan speed of 0.1 s/step and step size of 0.011°. DIFFRAC.V3-software (Bruker AXS GmbH) was utilized for data collection.

The attenuated total reflectance (ATR) FTIR measurements were conducted with Thermo Nicolet Nexus 8700 spectrometer (Thermo Electron Corp., Madison, WI, USA) and with Nicolet iS50 FT-IR spectrometer (Thermo Scientific, Madison, WI, USA). The spectra were collected over a wavenumber range of 650-4000 cm⁻¹ as an average of 64 scans with the resolution of 4 cm⁻¹. OMNIC-software (Thermo Scientific) was used for data collection and analysis.

Additionally, CARS and SFG/SHG microscopies were utilized as more novel non-linear imaging methods to characterize the raw materials and to detect phase separation and recrystallization on the tablet surface as well as to image the drug-excipient distribution on the tablet surface. A Leica TCS SP8 CARS microscope (Leica Microsystems, Wetzlar, Germany) was used. Briefly, the imaging system consisted of an inverted microscope with a laser-scanning confocal scan-head and photomultiplier tube (PMT) and GaAsP hybrid (HyD) photodetectors. The Stokes beam (ωS) for CARS excitation was emitted from a Nd:YVO₄ solid-state laser (1064.5 nm) (picoEMERALD®, APE, Berlin, Germany). Laser source was integrated with an optical parametric oscillator (OPO) that generated tunable pump/probe beams (ωp and ωpr). The bandwidth of the Stokes beam (ωS) was about 2-3 cm⁻¹ and the repetition rate was 80 MHz. The pulse duration was 7 ps for the Stokes and 5-6 ps for the pump (ωp) and probe beams (ωpr). The pump beam wavelength can be tuned so that the energy difference between these beams corresponds to some molecular vibrational resonance.
The vibration is then probed with a probe photon, which can originate from the same beam as the pump photon. These beams are coherently driven into the sample and wave mixing results in generation of the fourth, blue-shifted, anti-Stokes photon (ω_{as}), which is then detected. A water-immersion objective (25× 0.95 NA) HCX IRAPO L (Leica) was used to focus the light onto the sample that was placed on a microscope slide No. 1.5. Epi-CARS detection was used to collect anti-Stokes signal using a nondescanned PMT detector, while another nondescanned PMT detector was simultaneously used to collect epi-directed SFG/SHG signals with the bandpass filter 465 nm ± 85 nm. HeNe laser (633 nm) was also used to visualize the tablet surfaces as reflected light was detected with a PMT detector. Images of 512 × 512 or 1024 × 1024 pixels were acquired with a pixel dwell time of 1.2 µs (scanning speed 400 Hz, line average 2). For the spectroscopic analysis, the wavelength of the pump beam was systematically changed 33 times from 893 nm to 925 nm covering the CARS shifts between 1804 cm⁻¹ and 1417 cm⁻¹. The acquisition time for each spectral scan was approximately 15 mins. CARS spectra in the figures are offset for clarity. Contrast was adjusted individually for each image. The Leica Application Suite Advanced Fluorescence (LASAF) was used for image acquisition and processing together with Fiji ImageJ (open-source distribution), GNU Image Manipulation Program v2 (open-source distribution) and Origin 2018 (OriginLab, Northampton, Massachusetts, USA). RGB color images based on PCA were generated as described elsewhere using MATLAB R2016a (MathWork, MA, USA) [35]. Briefly, spectral data was mean centered and SNV corrected and the PC score values were normalized so that the minimum PC score value was set to 0 and the maximum score value to 1 and all values in between scaled linearly. PC1, PC2, and PC3 scores are represented by red, green, and blue coloring, respectively.

To verify the morphological aspects observed with CARS, the fresh and stored (6 months) tablets as well as the spray dried drug-ARG powders were imaged with scanning electron microscopy (SEM). The morphology of the spray dried particles was micrographed with a field emission scanning
electron microscope (Zeiss Sigma HD VP, Carl Zeiss NTS, Cambridge, UK) using Everhart-Thornley type secondary electron detector and a 30 μm aperture in high vacuum with acceleration voltage of 4 kV. With the tablets, the images were obtained under low vacuum conditions (15 Pa chamber pressure with dry nitrogen gas) with a VPSE G3 detector (Carl Zeiss NTS, Cambridge, UK) and an acceleration voltage of 10 kV. The low vacuum (higher gas pressure) conditions were used with the tablets, because the tablet height (2-3 mm) and the porous structure of the tablets including microfractures decreased the electric conductivity of the specimen. The charge due to the electron beam was eliminated with the nitrogen gas medium.

2.2.9 Statistical analysis

The effect of the selected tablet composition variables (factors) on the tablet properties (responses) were investigated with multiple linear regression (MLR) using MODDE Pro-software (11.0.1, MKS Umetrics AB, Sweden). A separate model was created for each response, and the non-significant interaction terms were excluded to provide the best possible model. The goodness of fit (R²) and goodness of prediction (Q²) were utilized to evaluate the models. In a good model, R² should gain values close to 1, whereas a Q² above 0.5 indicates good predicting power [48,49].

GraphPad Prism 5.03 (GraphPad Software Inc., La Jolla, USA) was used for the determination of the AUC_{0-120min} and to conduct single-factor ANOVA with Tukey’s post-hoc test. The results of the statistical analyses were considered significant if p < 0.05.

3. Results and discussion

3.1 Tablet preparation

3.1.1 Spray drying

The spray drying of IBU-ARG solution resulted in white and loosely packed powder, whereas the spray dried IND-ARG powder was yellow and slightly denser packed. Both of the powders were
rather cohesive and non-free flowing and, according to the SEM images (Figure 1), the spray dried particles were spherical in shape and possessed diameters from less than 1 µm to a few dozens of micrometres, which is typical for spray dried materials [50]. The average yields of the spray drying were 31% with IND-ARG and 42% with IBU-ARG, which were similar with the values of our recent study (29.2%-34.4% [19]) but lower than the yield reported by Jensen et al. (~70% [16]). Additionally, the moisture contents of the freshly prepared powders (2.8±0.6% (IBU-ARG) and 3.3±0.2% (IND-ARG)) were close to those reported previously for spray-dried IND-amino acid mixtures (3-4% [16]), and this amount of water is probably due to the water reuptake from the environment rather than incomplete drying, since similar values were also measured from ball-milled samples [16].

3.1.2 Preparation of the powder mixtures and tablet compaction

The prepared drug-ARG-PVP-sugar alcohol mixtures were homogenous, at least in terms of drug content (tested with B4- and N2-formulations), since relative standard deviations of the released drug amounts between the parallel tablets were 5.7% with B4 and 4.0% with N2. However, neither of the formulations released the full drug dose (84% and 91% released from B4 and N2, respectively). The discrepancy between the theoretical drug content and actual released drug amount from B4 and N2 formulations may indicate that the poor flow properties of the spray dried mixtures resulted in challenges in the mixing process, i.e. sticking of the drug-ARG mixtures onto the weighing boats, mixing cards and onto the rough mortar surfaces, rather than uneven drug-ARG distribution in the powder mixture. Lenz et al. [21] avoided this challenge with spray dried IND-ARG by combining it in a premixture with colloidal silicon dioxide that improved the powder flow properties and probably decreased the surface adherence of IND-ARG. However, the additional formulation components might have overcomplicated the analyses performed in the present study, and thus, no premixture was prepared.

3.2 Tablet properties
3.2.1 Mechanical properties

The exact values for variables describing the mechanical properties of the different formulations are presented in the supplementary material (Table S1). The tablets containing IND-ARG (N-formulations) were slightly stronger than those containing IBU-ARG (B-formulations), but between corresponding formulations the difference was statistically significant only with pairs B3-N1 and B8-N4. With elastic recovery, no clear trend could be seen between the B and N formulations. The plasticity parameter (1/C) was significantly higher with every N formulation when compared to the corresponding (i.e. B1-N5, B2-N6, B3-N1, B4-N2, B5-N7, B6-N8, B7-N3, B8-N4) B formulations. Also, the \(\rho_c \) values were slightly higher with IND-ARG formulations, but since the same value was used for every parallel tablet, no statistical analysis could be made.

The tensile strengths (1.9-3.5 MPa; Table S1) of the tablets produced in the present study with a compaction force of 20 kN (compaction pressure ~150 MPa) were in agreement with observations of Lenz et al. [21], who reported tensile strengths of 2.0 and 4.5 MPa for tablets consisting of spray dried IND-ARG, mannitol, croscarmellose sodium, colloidal silicon dioxide and magnesium stearate that were compressed under pressures of 82.3 and 198.6, MPa respectively. The modelling of the effect of the tablet composition on tensile strength was challenging especially with B-formulations as indicated by summary of fit plots in the supplementary material (Figure S2), which can probably be explained by the low variation in tensile strength values together with the relatively large deviation between the parallel measurements. However, as observed also in previous research, mannitol formed stronger tablets than xylitol (Figure 2) [51]. Other main factors were insignificant. Additionally, despite the one significant interaction factor for the N-formulations (Figures 2 and 3 (1.)), the direction of the changes in tensile strength, caused by varied tablet composition, were well estimated by the significant main factor.

According to Tanner et al. [52], elastic recovery values between inelastic (e.g. glucose or calcium hydrogen phosphate) and highly elastic (e.g. starch) materials can vary from 1 to 18%. Thus, the
axial elastic recovery percentages obtained in the present study indicate that both B and N
formulations possessed low or moderate elasticity. Additionally, even though elastic recovery as
well as other compaction characteristics may depend not only on the material properties but also on
the processing factors such as compaction force or speed, the elastic behaviour of the B and N
formulations were in accordance with those reported for the single components [53-59].

The model characteristics R^2 and Q^2 (Figure S2) indicated that the modelling of the effect of tablet
composition on the elastic recovery could be more successful than the modelling of tensile strength.
The model prediction of decreasing elasticity with increasing amount of drug-ARG mixture (Figure
2) could be explained by the more efficient coverage of the excipient particles by the drug-ARG
mixture, which could enhance particle bonding either by increased plasticity or adsorbance of water
as observed with spray dried lactose [24,60]. However, due to the inconsistencies between the
models of B and N formulations (opposite effect of sugar alcohol species on the ER% (Figure 2), no
significant interactions in model for B formulations (Figure 2) vs. highly significant interactions
with N formulations (Figures 2 and S3)), the conclusions concerning the effect of tablet
composition on the elastic recovery must be made with caution.

In this study, the KL-equation was utilized instead of the widely used Heckel equation to evaluate
the deformation properties due to its suggested better reliability [45]. According to R^2 and Q^2 values
(Figure S2), the 1/C value could be modelled reliably for both B and N formulations. Additionally,
the interaction plots (Figure 3 (2. and 3.)) indicated that the direction of the change in the 1/C value
could be predicted reasonably well with the main factors. The sugar alcohol species had the most
prominent effect on the 1/C value (Figure 2), which could again be expected due to their high
proportion in the tablets. Xylitol resulted in lower 1/C values than mannitol, indicating higher
plasticity [45]. This seems contradictory with previously reported deformation properties of primary
mannitol and xylitol particles, but may be explained by sodium carboxymethyl cellulose (~2%)
included in Xylisorb® 200DC, which lowered the yield pressure of metformin hydrochloride, when
co-spray dried with the drug [51,61]. In addition to the sugar alcohol species, both amount of drug-ARG mixture and amount of PVP affected the plasticity of the powder mixtures (Figure 2). The linear regression analyses between 1/C values of formulations containing low and high percentages (instead of absolute amounts) of drug-ARG mixture or PVP further indicated increased plasticity with an increasing proportion of drug-ARG mixture (slopes: -6.9 (B2-B5), -0.04 (B4-B7), -8.0 (N2-N3) and -3.2 (N6-N7)) and a decrease in plasticity with an increase in the proportion of PVP (slopes: 6.9 (B2-B5), 0.04 (B4-B7), 7.9 (N2-N3) and 3.1 (N6-N7)). The effect of drug-ARG amount on plasticity was consistent with previous studies in which plasticity increased with amorphous components [24,62-64], but the increase in the plasticity with the decrease in the amount of PVP was inconsistent with its previously reported plastic nature [65]. However, in the present study, the increase PVP proportion accompanied a decrease in the amount of the apparently plastic drug-ARG mixture, which may explain the inconsistency.

3.2.2 Dissolution properties

The cumulative amount of dissolved drug increased up to 30 min, after which it remained steady or began to decrease (Figure 4). None of the B-formulations released the full drug dose, whereas with the N-formulations six out of nine tablets exhibited over 90% drug release.

The CDA15min and AUC0-120min values of the different formulations are presented in the supplementary material (Table S2). Since the B formulations were unable to release the full drug dose, there was only limited deviation between the AUC0-120min values of the B-formulations. However, the deviation was more pronounced in the CDA15min value between B formulations as well as in both AUC0-120min and CDA15min values between the N formulations. Thus, only a rather poor model (Q2-value 0.23) could be formed to predict the effect of different factors on the AUC0-120 of the B-formulations (not further analysed) but modelling of the CDA15min of B formulations as well as AUC0-120min and CDA15min of N formulations was more successful (Q2-values of 0.58, 0.75
and 0.82, respectively (Figure S4)). As with the models predicting the mechanical properties, most
of the interaction plots (Figure 5) of the AUC$_{0-120}$ and CDA$_{15\text{min}}$ models revealed that the direction
of the change in the response could be predicted by the main coefficients, but the magnitude of the
cchange may be dependent on another interacting factor.

According to the model, the amount of drug-ARG mixture and PVP were the most prominent
factors affecting the AUC$_{0-120\text{min}}$ and CDA$_{15\text{min}}$ of the N-formulations (Figure 6). The increase in
AUC$_{0-120\text{min}}$ by increasing the IND-ARG amount was expected, since this factor described the drug
load instead of relative drug amount. Surprisingly, the model showed a negative effect of increasing
amount of PVP on both AUC$_{0-120\text{min}}$ and CDA$_{15\text{min}}$, even though PVP has been reported to enhance
the dissolution properties and stabilize the supersaturation of IND both freely in solution and in
solid dispersions [66-68], and, also in the present study, the ability of PVP to stabilize the
supersaturation of IND was clearly demonstrated in the 24h dissolution test with N2 formulations
containing and lacking PVP (Figure 7D). Some authors have, however, reported decreased
dissolution with amorphous solid dispersions with high PVP-IND ratios when compared to a
formulations with low PVP-IND ratio [69,70]. This phenomenon was attributed to increased
viscosity, which may have also reduced the IND release in the present study. With the B
formulations, the amount of IBU-ARG had no significant effect on the CDA$_{15\text{min}}$, probably due to
the incomplete drug release. According to the model, an increase in the amount of PVP, however,
significantly increased the CDA$_{15\text{min}}$ of the B formulations suggesting the positive effect of PVP on
IBU release, which has been reported previously [71].

The drug release from formulations containing co-amorphous mixtures was faster than from
formulations containing physical drug-ARG mixture or plain crystalline drug, even though ARG in
the physical mixtures also enhanced drug release (Figure 7A and B). Additionally, with the N2-
formulation, the presence of ARG and the formation of an amorphous system significantly
increased the cumulative dissolved amount of IND at the end of the dissolution study (7.7%, 57.0%
and 92.7% drug release from tablets containing plain IND, physical IND-ARG mixture and co-amorphous IND-ARG salt, respectively). The drug release was highest also from the B2 formulation containing co-amorphous IBU-ARG (45.2%), but there was no significant difference in the amount of released drug between tablets containing physical mixture or crystalline IBU (31.9% and 25.5%, respectively). The enhanced IBU and IND dissolution upon formation of the co-amorphous system has been attributed to both its amorphous nature as well as salt formation between the acidic drug and basic ARG [11,16,19,72]. With IND-ARG, enhanced drug release also from the tablet formulation has been observed previously [21]. However, in our previous study [19], the IND-ARG physical mixture (crystalline components) and γ-IND seemed to result in similar dissolution profiles, whereas in the present study, drug release was higher with the physical mixture. This may be due to the in situ amorphization of IND-ARG, which has been previously observed to occur in tablets containing an IND-ARG physical mixture [21,22]. Lenz et al. [21] observed a colour change from white to yellow when tablets containing physical IND-ARG were immersed in the dissolution medium as well as a clear supersaturation followed by a rapid decrease in IND concentration (recrystallization). In the present study, the colour change could also be observed, but the PVP added to the tablet formulation possibly inhibited drug precipitation from supersaturated solution.

Based on the dissolution profiles from the 24h dissolution study (Figure 7C), the cumulative dissolved amount of IBU from the B4-formulation containing PVP remained relatively constant (~34 mg or 45%) between 15min and 24h, whereas with the tablets lacking PVP only ~11 mg (15%) was released after 15 min of dissolution. However, the release of IBU from tablets without PVP continued throughout the study, and at 24h, the difference in cumulative dissolved amounts between tablets containing and lacking PVP was no longer significant. With the N2-formulation (Figure 7D), the IND release from both tablets (with and without PVP) was relatively fast (~69 mg (92%) after 15 min). However, with the formulation without PVP, the dissolved amount of IND
began to decrease already after 15 min, and from 2h onwards it was significantly lower than with
the formulation containing PVP. The cumulative dissolved IND from the N2-formulation
containing PVP decreased only slightly during the 24h. These observations clearly indicated the
solubilizing and precipitation inhibitory effects of PVP. With IND the precipitation inhibitory effect
of PVP has been attributed to crystal growth inhibition caused by adsorption of PVP on IND
surfaces, whereas with IBU the solubilization is due to the strong interactions between IBU and
PVP [67,73-82].

It has also been relatively unknown, if the co-amorphous formulations maintain their dissolution
advantage over for example PM or amorphous drug alone, when formulated as tablets [10].
However, based on the present study, even a relatively small addition of stabilizing polymer as a
physical mixture with co-amorphous powder might stabilize the supersaturation of the amorphous
drug. A similar observation was made by Petry et al. [22] by coating tablets containing co-
amorphous IND-ARG with a polymeric coating. However, even though the film coating was
applied to protect the formulation from moisture, the coating process itself causes various stresses
(heat, moisture, mechanical) to the formulation. Thus, incorporating the polymer to the tablet
formulation, as shown in the present work, might be suitable also for materials that cannot
withstand a coating process.

3.2.3 Tablet characterization

The stability studies were conducted with every formulation (B1-B9 and N1-N9), but since the
observations from the formulations containing the same drug-ARG mixture and sugar alcohol
resembled each other, the X-ray diffractograms and FTIR spectra of B2-, B4-, N2- and N6-
formulation are shown here as examples (Figure 8). The diffractograms and spectra of other formulations can be found from the supplementary material (Figures S5 and S6).

At day 0, the majority of the diffractograms showed only peaks originating from either mannitol or xylitol (Figure 8A and Figures S5 and S6), which indicates that despite the possible mechanical and heat stresses [24,25], the co-amorphous salts were physically stable under compaction. Additionally, no signs of recrystallization could be observed during the 20-week stability study in the diffractograms of either the IBU-ARG formulations containing mannitol or any of the N-IND-ARG formulations. IND-ARG has been found to be highly stable under various conditions and as a pure powder or when formulated as tablets [11,16,19,21,22]. Additionally, in our previous study [19], co-amorphous IBU-ARG did not recrystallize over one year in dry conditions, but at 60% RH liquefaction occurred. In the present study, the tablets retained their original appearance, and in the tablets containing mannitol, the IBU-ARG mixture remained amorphous. However, already at day 0, the diffractogram of B1-formulation included a small peak appeared at approximately 16.8° (20), which could be observed in the diffractograms of every formulation containing IBU-ARG and xylitol after 6 weeks. Additionally, a peak at approximately 19.0 ° (20) emerged in almost every diffractogram of these formulations. In the diffractograms from 12- and 20-week time points, these peaks became more obvious, and a peak at approximately 6.0° (20) began to appear.

The IR spectra between 1400-1800 cm⁻¹ of all the N-formulations and the spectra of mannitol containing B-formulations corresponded to the spectra reported previously [16,19,21,72], and remained unchanged during the 20 week stability study indicating salt formation between the components as well as high physical stability (Figures 8B and S6). However, with B-formulations containing xylitol, peak shifted and new peaks appeared (Figures 8B and S5). Instead of the broad CN stretch band at 1540 cm⁻¹ in the spectrum of co-amorphous IBU-ARG salt, a peak with two maxima at 1566 and 1577 cm⁻¹ appeared in the spectra of the stored B1-, B2-, B5-, B6- and B9-formulations. These peaks may originate from the antisymmetric stretch of the ionized carboxylic
acid group of IBU as well as from the shifted CN-stretching vibration of ARG [72]. Additionally, the peak at 1632 cm\(^{-1}\) (ARG guanidyl group stretching) and the shoulder at 1668 cm\(^{-1}\) (ARG COO\(^-\) and guanidyl group stretching) in the IBU-ARG spectrum had shifted to a peak at 1629 cm\(^{-1}\) and to a shoulder at 1657 cm\(^{-1}\), respectively, and a new shoulder appeared at 1704 cm\(^{-1}\) (IBU carbonyl stretching). With B1-, B2-, B6- and B9-formulations, these changes occurred already after 6 weeks of storage, and after 20 weeks they were present also in the spectrum of the B5-formulation (samples were not measured at 12 weeks).

The peaks appearing in the diffractograms of the B formulations containing xylitol could be attributed to either crystalline IBU (peaks at 6.1°, 16.6°, 16.7° and 19.0° (2θ)) or ARG (peaks at 16.8° and 19.1° (2θ)) (diffractograms not shown), but the components may also have crystallized as a salt, as observed by Kasten et al. [83] with IND-lysine. Additionally, Petry et al. [84] observed the formation of a crystalline IND-ARG salt after storing the IND-ARG physical mixture under 75% RH. However, since we have been unable to produce crystalline IBU-ARG [19], no reference diffractogram of crystalline IBU-ARG salt was available. The appearance of a shoulder at 1704 cm\(^{-1}\) in the IR spectra of these formulations suggest that IBU had, at least partly, recrystallized as a free acid. However, due to the other spectral changes, also the crystalline IBU-ARG salt may be present in the xylitol containing IBU-ARG formulations. The presence of PVP complicates the analysis further, since it interacts strongly with IBU and even solid-state in situ amorphization has been observed [73,85,86]. Thus, the exact nature of the recrystallized species could not be resolved with the current methods, and the coexistence of amorphous IBU-ARG together with crystalline IBU and/or ARG and/or IBU-ARG salt seemed possible. However, xylitol reduced the physical stability of co-amorphous IBU-ARG, possibly due to its higher hygroscopicity when compared to mannitol [51].

Multimodal non-linear optical imaging, specifically involving CARS and SFG/SHG, was used to visualize the tablet surfaces over the 20 week period. Crystalline arginine, xylitol and mannitol
exhibited strong SFG/SHG signals due to their non-centrosymmetric crystal structures. L-arginine has a monoclinic crystal structure with space group P2\(_1\) (CSD code TAQBIY [87]) and xylitol and D-mannitol have orthorhombic crystal structures with space group P2\(_{1}2_12_1\) (CSD codes XYLTOLO4 [88] for xylitol and DMANTL08 [89] and DMANTL09 [90] for the alpha and beta polymorphs of D-mannitol, respectively) [91-93]. The spray-dried co-amorphous mixtures and centrosymmetric crystalline ibuprofen and gamma indomethacin did not exhibit SFG/SHG signals (data not shown). Gamma indomethacin has a triclinic structure with space group \(P\overline{1}\) (CSD code INDMET03 [94]) and ibuprofen has a monoclinic structure with space group \(P2_1/c\) (CSD code IBPRAC06 [95,96]). The SFG/SHG activities of amorphous, gamma and alpha indomethacin, their Raman and CARS spectra as well as the tendency of indomethacin to recrystallize to the gamma-form under relatively dry conditions are known [35].

The CARS and Raman spectra of the co-amorphous IND-ARG mixture exhibited similarities to the spectra of amorphous indomethacin with two distinguishable C=O stretching peaks at 1579 cm\(^{-1}\) and 1676 cm\(^{-1}\) (Figure S7 A and B) [35,98]. Crystalline ibuprofen exhibited a distinguishable CARS peak at 1603 cm\(^{-1}\) (Figure S7 B). This C-C stretching peak [99] typically moves to higher Raman shifts when the ibuprofen is amorphous, for example in an amorphous solid dispersion with PVP [100]. The CARS spectra of the co-amorphous mixture of IBU-ARG revealed this shift with the peak at 1615 cm\(^{-1}\) (Figure S7 B and C). PVP exhibited its broad amide C=O stretching peak at around 1640 – 1676 cm\(^{-1}\) (Figure S7 A and B) [101]. Xylitol and mannitol exhibited a CH\(_2\) stretching peak at 1472 cm\(^{-1}\) and 1460 cm\(^{-1}\) in the CARS spectra, respectively [102] (Figure S7 A and B). The CARS spectrum of arginine lacked any distinguishable peaks (Figure S7 A and B).

On the basis of these analyses, the distribution of different chemical components on tablet surfaces could be imaged by combining CARS and SFG/SHG microscopies. Xylitol and mannitol could be probed by SFG/SHG, while amorphous IND-ARG, IBU-ARG and PVP could be imaged using CARS (Figure 9 and S9-13). In the images some regions appear darker than others due the surface
roughness of the tablets (the non-linear optical signal is generated only at the small focal point).

Since CARS spectra were measured on tablet surfaces, it was possible to use different approaches to form images and extracted spectra from different regions could be further used to identify different chemical and solid-state components spatially. A PCA based approach was successfully used to visualize component distribution on the IBU-ARG tablet surfaces (formulations B2 and B4, Figure 9 A,D,G,I). However, the indomethacin signal from IND-ARG tablets was so dominant that a PCA based approach was not able to identify PVP (data not shown). However, PVP could be distinguished by visualizing the tablet surface using a single CARS shift at 1652 cm$^{-1}$ (C=O stretching specific to PVP) with supportive spectral information extracted from regions of interest confirming the spectral profile of PVP (Figure S9). On the other hand spectral differences between the PVP and drug-ARG mixtures could be utilized in fast narrowband single-shift CARS imaging, together with simultaneous SFG/SHG imaging, as demonstrated in tile scan obtained from the IBU-ARG formulation B2 (Figure S10).

The CARS and SEM images (Figure 9 and Figures S9-S12 and S14) suggest that the spray dried particles were much more prominent on the surfaces of the freshly prepared tablets than could be expected based on the high mass percentage of mannitol or xylitol. Additionally, the CARS images indicated that the spray-dried particles were considerably smaller than the PVP and sugar alcohol particles, and that the sugar alcohol particles as well as PVP particles were surrounded by the spray dried particles. Barra et al. [103] reported the adherence of small excipient particles with preferable compaction properties on larger poorly compacting drug particles, which resulted in enhanced compaction properties of the mixture when compared to mixtures where no interactions existed between the drug end excipient particles. Thus, the observations on component distribution based on CARS images might have indicated a significant effect of the amount of drug-ARG mixtures on the compaction properties of the powders as well as on the mechanical properties of the tablets.

However, the models predicting compaction and tablet properties suggested that the sugar alcohol
species was the most significant factor affecting the investigated responses and only with elastic recovery, the model prediction could possibly be explained by the visual observations (i.e. coverage of the sugar alcohol particles by the spray-dried particles). This discrepancy between model predictions and visual observations may be explained by the small changes in the amounts of drug-ARG mixtures when compared to the change of the entire sugar alcohol species. Thus, in the future, it would be beneficial to perform compaction studies with larger variation in the amount of the spray-dried material in order to verify the significance of the co-amorphous material on the compaction process suggested by the CARS and SEM.

The most prominent difference between CARS/SFG/SHG images of IBU-ARG and IND-ARG obtained over the 20 week period was the change in surface morphology, which was confirmed by the SEM images from fresh and stored (6 months) tablets (Figures S11, S12 and S14). On day 0, the co-amorphous drug-ARG particles could be clearly seen in both B- and N- formulations. However, the surface of IBU-ARG tablets (B4- and B2- formulations) became smoother and individual particles were not visible anymore. This change in surface morphology could be observed already on week 4 (Figure S13) and smooth surface appearance remained over 20 week period (Figure 9). However, CARS spectroscopy revealed that spectra extracted from tablet surfaces on day 0 and on week 20 resembled closely each other in IBU-ARG formulations B4 and B2 (Figure 9) and IND-ARG formulations N2 and N6 (Figure S9), thus any recrystallization in both IBU-ARG and IND-ARG tablets was not observed with the non-linear optical imaging.

Since signs of recrystallization were observed in the B2 formulation with XRD and FTIR already after 6 weeks of storage, these techniques were also used to measure the tablets imaged with CARS after 14 and 20 weeks of storage (data not shown). After 14 weeks no crystallization was observed with any of the formulations, but after 20 weeks a small peak at 16.9° 2θ appeared in the diffractogram of B2 formulation and minor changes could also be observed in its IR spectrum. The higher stability of the B2 formulation imaged with CARS when compared to the one examined with
XRD and FTIR may be due to the moisture absorption of the spray dried powder prior to the compression, which was more pronounced during the preparation of the tablets for XRD and FTIR than for the non-linear optical imaging. However, since recrystallization could also be detected with XRD and FTIR in the B2 formulation imaged with CARS, it seems that the crystallisation was limited and occurred outside the limited surface area (465x465 µm) probed with non-linear optical imaging. Detection of recrystallization with CARS may also have been compromised by the lack of reference IBU-ARG crystalline salt, although it is likely that the crystalline salt would have exhibited some CARS spectral and/or SFG signal differences compared to the amorphous form.

One main benefit of coherent Raman imaging such as CARS with SFG/SHG microscopy is the imaging speed. Tile scan shown in Figure S10 was composed of 20 1024 × 1024 pixel images acquired at two CARS shifts 1652 cm⁻¹ (PVP) and 1615 cm⁻¹ (IBU-ARG) with a pixel dwell time of 1.2 µs resulting in a total acquisition without laser tuning of approximately 1 min. Additionally, data-acquisition time in spectral scan was approximately 15 min, whereas it can take up to hours to perform spontaneous Raman mapping [104]. In the present study, it was shown that non-linear optical imaging is well-suited to stability analysis of formulated tablet surfaces. Nevertheless, confirming and thus imaging the chemical- and solid-state forms of different species requires non-linear optical knowledge of the crystallizing species and proper reference materials.

4. Conclusions

In the present study, tablets of sufficient strength could be produced from both co-amorphous IBU-ARG and IND-ARG salts, which also were found to be relatively physically stable during tablet compaction, even though this may be affected by the excipients. However, based on the results of the experimental design, mannitol could be recommended as a diluent for co-amorphous formulations over xylitol, since mannitol produced stronger tablets with no recrystallization in any of the formulations, whereas XRD and FTIR detected signs of recrystallization from tablets
containing IBU-ARG and xylitol. The drug release was more efficient from the tablets containing co-amorphous mixtures when compared to physical mixtures, and a small amount of PVP added to the formulation as a physical mixture was found to be effective in preventing drug recrystallisation from supersaturated solutions, which might be useful with physically stable co-amorphous mixtures that may be unable to stabilize supersaturation. In the present study, synergistic and simultaneous CARS/SFG/SHG imaging/spectroscopy was successfully used to map different chemical components on tablet surfaces. We were unable to detect phase separation or recrystallization of the co-amorphous components due to their high physical stability. Thus, due to the capability of high speed imaging of tablet surfaces, CARS and SFG/SHG are interesting options to complement the traditional XRD and FTIR in physical stability monitoring.

ACKNOWLEDGMENTS

The authors thank Microscopy laboratory at SIB Labs, University of Eastern Finland for providing laboratory facilities, PhD Jari Leskinen for SEM imaging and Master student Jarmo Maaranen for his skilful technical assistance. RO acknowledges the support from the Doctoral Programme in Drug Research in the Doctoral School of University of Eastern Finland as well as Nordforsk (NordicPOP, project number 85352). JS and CS acknowledge the Academy of Finland (project number 289398) and Business Finland (project number 462073).

APPENDIX

Supplementary data associated with this article can be found in the online version.
REFERENCES

34

LIST OF FIGURES AND TABLES

Tables

Table 1. The compositions of different tablet formulations determined by DoE.

<table>
<thead>
<tr>
<th>Tablet identifier</th>
<th>Amount of IBU-ARG (amount of IBU)</th>
<th>Amount of PVP</th>
<th>Sugar alcohol*</th>
<th>Tablet mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>92.2 mg (50 mg)</td>
<td>30.7 mg</td>
<td>Xylitol</td>
<td>307.3 mg</td>
</tr>
<tr>
<td>B2</td>
<td>138.3 mg (75 mg)</td>
<td>30.7 mg</td>
<td>Xylitol</td>
<td>422.5 mg</td>
</tr>
<tr>
<td>B3</td>
<td>92.2 mg (50 mg)</td>
<td>30.7 mg</td>
<td>Mannitol</td>
<td>307.3 mg</td>
</tr>
<tr>
<td>B4</td>
<td>138.3 mg (75 mg)</td>
<td>30.7 mg</td>
<td>Mannitol</td>
<td>422.5 mg</td>
</tr>
<tr>
<td>B5</td>
<td>92.2 mg (50 mg)</td>
<td>46.1 mg</td>
<td>Xylitol</td>
<td>345.8 mg</td>
</tr>
<tr>
<td>B6</td>
<td>138.3 mg (75 mg)</td>
<td>46.1 mg</td>
<td>Xylitol</td>
<td>461.1 mg</td>
</tr>
<tr>
<td>B7</td>
<td>92.2 mg (50 mg)</td>
<td>46.1 mg</td>
<td>Mannitol</td>
<td>345.8 mg</td>
</tr>
<tr>
<td>B8</td>
<td>138.3 mg (75 mg)</td>
<td>46.1 mg</td>
<td>Mannitol</td>
<td>461.1 mg</td>
</tr>
<tr>
<td>B9</td>
<td>115.3 mg (62.5 mg)</td>
<td>38.4 mg</td>
<td>Xylitol</td>
<td>384.3 mg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tablet identifier</th>
<th>Amount of IND-ARG (amount of IND)</th>
<th>Amount of PVP</th>
<th>Sugar alcohol*</th>
<th>Tablet mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>74.3 mg (50 mg)</td>
<td>24.8 mg</td>
<td>Mannitol</td>
<td>247.8 mg</td>
</tr>
<tr>
<td>N2</td>
<td>111.5 mg (75 mg)</td>
<td>24.8 mg</td>
<td>Mannitol</td>
<td>340.8 mg</td>
</tr>
<tr>
<td>N3</td>
<td>74.3 mg (50 mg)</td>
<td>38.5 mg</td>
<td>Mannitol</td>
<td>282.0 mg</td>
</tr>
<tr>
<td>N4</td>
<td>111.5 mg (75 mg)</td>
<td>38.5 mg</td>
<td>Mannitol</td>
<td>375.0 mg</td>
</tr>
<tr>
<td>N5</td>
<td>74.3 mg (50 mg)</td>
<td>24.8 mg</td>
<td>Xylitol</td>
<td>247.8 mg</td>
</tr>
<tr>
<td>N6</td>
<td>111.5 mg (75 mg)</td>
<td>24.8 mg</td>
<td>Xylitol</td>
<td>340.8 mg</td>
</tr>
<tr>
<td>N7</td>
<td>74.3 mg (50 mg)</td>
<td>38.5 mg</td>
<td>Xylitol</td>
<td>282.0 mg</td>
</tr>
<tr>
<td>N8</td>
<td>111.5 mg (75 mg)</td>
<td>38.5 mg</td>
<td>Xylitol</td>
<td>375.0 mg</td>
</tr>
<tr>
<td>N9</td>
<td>92.9 mg (62.5 mg)</td>
<td>31.65 mg</td>
<td>Mannitol</td>
<td>311.4 mg</td>
</tr>
</tbody>
</table>

*Neither mannitol or xylitol have been shown to undertake Maillard reactions [39]

Figures

Fig. 1. Scanning electron microscope images of the spray dried ibuprofen-arginine (A) and indomethacin-arginine (B) mixtures.
Fig. 2. The normalized coefficient plots of the models describing the effect of the amount of co-amorphous ibuprofen-arginine (IBU-ARG) or indomethacin-arginine (IND-ARG) salt, the amount of PVP and the sugar alcohol species (mannitol OR xylitol) on the mechanical properties of the tablets.
Fig. 3. The interaction plots of models describing the effect of changes in tablet composition on the tensile strength of N formulations (1.) as well as on the 1/C value of B formulations (2.) and N formulations (3.).
Fig. 4. Dissolution profiles of A. IBU-ARG and xylitol containing tablets in pH 1.2, B. IBU-ARG and mannitol containing tablets in pH 1.2, C. IND-ARG and xylitol containing tablets in pH 5.0 and D. IND-ARG and mannitol containing tablets in pH 5.0. The drug doses in different formulations were 50 mg (B1, B3, B5, B7, N1, N3, N5, N7), 62.5 mg (B9, N9) or 75 mg (B2, B4, B6, B8, N2, N4, N6, N8).
Fig. 5. The interaction plots of models predicting the effect of the tablet composition on the CDA\textsubscript{15min} of B formulations (1.) as well as on the AUC\textsubscript{0-120min} (2.) and CDA\textsubscript{15min} (3.) of N formulations.

Fig. 6. The normalized coefficient plots of the models describing the effect of the amount of co-amorphous ibuprofen-arginine (IBU-ARG) or indomethacin-arginine (IND-ARG) salt, the amount of PVP and the sugar alcohol species (mannitol or xylitol) on the area under the cumulative dissolved drug amount-time curve between 0 and 120 minutes (AUC\textsubscript{0-120min}) and on the cumulative dissolved drug amount after 15 minutes (CDA\textsubscript{15min}).
Fig. 7. The investigation of the effect of arginine (ARG) and the formation of co-amorphous salt (CA) on the release of ibuprofen (IBU) and indomethacin (IND) from B4- and N2-formulations (A and B, respectively) as well as the effect of polyvinylpyrrolidone K30 (PVP) on the supersaturation stability after drug release from B4- and N2-formulations (C and D, respectively). PM denotes physical mixture and Cryst crystalline drug.
Fig. 8. The X-ray diffractograms (A) and FTIR spectra (B) of B2-, B4-, N2- and N6-formulations at day 0 and after storage under ambient temperature and 33% relative humidity. With formulations that showed no signs of recrystallization, only the data from the beginning and end of the study are shown, but with B2 formulation the data from several time points is included. The diffractograms of mannitol and xylitol are also included for comparison.
Fig. 9. The PCA based CARS images of tablet surfaces of B4- and B2- formulations (left column, A,D,G,J), corresponding the overlaid CARS/SFG/SHG images (at 1652 cm⁻¹) (middle column, B,E,H,K) and CARS spectra extracted from regions marked with white arrows and numbers (right column, C,F,I,L) on day 0 and on week 20. The PCA RGB image is generated from a CARS
spectral scan in the region 1417–1804 cm$^{-1}$, using the score values of the first three PCs. PCA loadings are shown in Figure S8. The scale bar is 80 µm.