2019

Early seizures and temporal lobe trauma predict post-traumatic epilepsy: A longitudinal study

Tubi, MA

Elsevier BV

Tieteelliset aikakauslehtiartikkelit
© Elsevier Inc
CC BY-NC-ND https://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.nbd.2018.05.014

https://erepo.uef.fi/handle/123456789/7503
Downloaded from University of Eastern Finland's eRepository
Early seizures and temporal lobe trauma predict post-traumatic epilepsy: A longitudinal study

PII: S0969-9961(18)30152-9
DOI: doi:10.1016/j.nbd.2018.05.014
Reference: YNBDI 4176
To appear in: Neurobiology of Disease
Received date: 13 April 2018
Accepted date: 29 May 2018

Please cite this article as: Meral A. Tubi, Evan Lutkenhoff, Manuel Buitrago Blanco, David McArthur, Pablo Villablanca, Benjamin Ellingson, Ramon Diaz-Arrastia, Paul Van Ness, Courtney Real, Vikesh Shrestha, Jerome Engel, Paul M. Vespa, Denes Agoston, Alicia Au, Michael J. Bell, Craig Branch, Manuel Buitrago Blanco, Ross Bullock, Jan Claassen, Robert Clarke, James Cloyd, Lisa Coles, Karen Crawford, Ramon Diaz-Arrastia, Dominique Duncan, Benjamin Ellingson, Jerome Engel, Brandon Foreman, Aristeia Galanopoulou, Emily Gilmore, Grohn Olli, Neil Harris, Jed Hartings, Hirsch Lawrence, Martin Hunn, Nathalie Jette, Leigh Johnston, Nigel Jones, Andres Kanner, David McArthur, Martin Monti, Andrew Morokoff, Solomon Moshe, Wenzhu Mowrey, Tomas Naughton, Terence O'Brien, Kristine O'Phelan, Asla Pitkanen, Rema Raman, Courtney Robertson, Eric Rosenthal, Sandy Shultz, Terrance Snutch, Richard Staba,

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Predictors of Post-traumatic epilepsy – Tubi et al

Early Seizures and Temporal Lobe Trauma Predict Post-Traumatic Epilepsy: A Longitudinal Study

Meral A. Tubi, BA¹; Evan Lutkenhoff, PhD²; Manuel Buitrago Blanco, MD, PhD³; David McArthur, PhD, MPH³; Pablo Villablanca, MD, PhD³; Benjamin Ellingson, PhD³; Ramon Diaz-Arrastia, MD,⁴ Paul Van Ness, MD⁵; Courtney Real, MSN³; Vikesh Shrestha, BS³; Jerome Engel Jr., MD, PhD³; Paul M. Vespa, MD³, For the EpiBioS4Rx Study Group

Affiliations:
Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, USC Keck School of Medicine¹; Department of Psychology, UCLA²; David Geffen School of Medicine at UCLA³; Department of Neurology, University of Pennsylvania⁴; Department of Neurology and Neurophysiology, Baylor College of Medicine⁵

Study Funding:
This manuscript was supported by the following grants: NS080181, NS058489, PT074268, NS049471, K08 NS02089, NS086090. NINDS Center without Walls, U54 NS100064 (EpiBioS4Rx)

Corresponding Author:
Paul M. Vespa, MD
Gary L. Brinderson Family Chair in Neurointensive Care
Professor of Neurology and Neurosurgery
David Geffen School of Medicine at UCLA Healthcare
757 Westwood Blvd, RR 6236A
Los Angeles, CA 90095
Phone: 310-267-9448
Fax: 310-267-3841
Email: Pvespa@mednet.ucla.edu
ABSTRACT

Objective:
Injury severity after traumatic brain injury (TBI) is a well-established risk factor for the development of post-traumatic epilepsy (PTE). However, whether lesion location influences the susceptibility of seizures and development of PTE longitudinally has yet to be defined. We hypothesized that lesion location, specifically in the temporal lobe, would be associated with an increased incidence of both early seizures and PTE. As secondary analysis measures, we assessed the degree of brain atrophy and functional recovery, and performed a between-group analysis, comparing patients who developed PTE with those who did not develop PTE.

Methods:
We assessed early seizure incidence (n=90) and longitudinal development of PTE (n=46) in a prospective convenience sample of patients with moderate-severe TBI. Acutely, patients were monitored with prospective cEEG and a high-resolution Magnetic Resonance Imaging (MRI) scan for lesion location classification. Chronically, patients underwent a high-resolution MRI, clinical assessment, and were longitudinally monitored for development of epilepsy for a minimum of 2 years post-injury.

Results:
Early seizures, occurring within the first week post-injury, occurred in 26.7% of the patients (n=90). Within the cohort of subjects who had evidence of early seizures (n=24), 75% had a hemorrhagic temporal lobe injury on admission. For longitudinal analyses (n=46), 45.7% of patients developed PTE within a minimum of 2 years post-injury. Within the cohort of subjects who developed PTE (n=21), 85.7% had a hemorrhagic temporal lobe injury on admission and 38.1% had early (convulsive or non-convulsive) seizures on cEEG monitoring during their acute ICU stay. In a between-group analysis, patients with PTE (n=21) were more likely than patients who did not develop PTE (n=25) to have a hemorrhagic temporal lobe injury (p<0.001), worse functional recovery (p=0.003), and greater temporal lobe atrophy (p=0.029).

Conclusion:
Our results indicate that in a cohort of patients with a moderate-severe TBI, 1) lesion location specificity (e.g. the temporal lobe) is related to both a high incidence of early seizures and longitudinal development of PTE, 2) early seizures, whether convulsive or non-convulsive in nature, are associated with an increased risk for PTE development, and 3) patients who develop PTE have greater chronic temporal lobe atrophy and worse functional outcomes, compared to those who do not develop PTE, despite matched injury severity characteristics. This study provides the foundation for a future prospective study focused on elucidating the mechanisms and risk factors for epileptogenesis.

Keywords: Brain Trauma; Post-traumatic Epilepsy; Coma; Seizures; Brain Atrophy; status epilepticus
INTRODUCTION

Traumatic brain injury (TBI) is an inherently heterogeneous condition, which can result in debilitating secondary injuries, such as seizures and post-traumatic epilepsy (PTE). TBI is one of the primary causes of acquired epilepsy, with brain injury severity a leading risk factor for PTE development. Specific injury types and admission injury characteristics, related to injury severity, have been linked to an increased incidence of seizures after brain injury: penetrating injury, hemorrhagic lesion, skull fracture, dural injury, surgical treatment, and prolonged impaired consciousness. Beyond severity, few established etiological risk factors for PTE exist. Although demographic factors, such as age and sex, are associated with an increased risk for PTE, no well-established brain or clinical biomarkers exist for prognostic risk assessment of PTE after a moderate to severe brain injury.

Although severity of injury is a well-established risk factor for PTE, whether lesion location differentially influences the propensity of seizure development has yet to be defined. Animal studies may provide insight to the importance of injury location in epileptogenesis. For example, lesions to the perirhinal, entorhinal, and postrhinal cortices have a lower seizure threshold. Additionally, ictal and interictal discharges may originate from medial temporal lobe structures. These region-specific findings suggest that damage to temporal lobe structures could disrupt specific neural networks that have a higher propensity to elicit seizures. However, in humans, there has been limited assessment of the correspondence between cortical injury location and seizure development, making it an important point of investigation.

Onset of seizures after brain injury is quite variable, defined as manifesting either early (within 7 days) or late (after 7 days) post-injury. Early seizures, whether convulsive or non-convulsive in nature, can be identified utilizing intensive care unit (ICU) based physiological monitoring, such as continuous electroencephalography (cEEG). ICU cEEG monitoring has revealed a high incidence of both clinical seizures and subclinical interictal epileptiform activity early after injury, with associated metabolic consequences. Late seizures develop after a latent period, which can temporally range from 7 days post-injury up to 30 years post-injury, although most seizures manifest by 2 years post-injury. Latency of seizure onset may be an important marker of future epileptogenesis, as emerging evidence indicates that the timing of initial seizure onset is associated with PTE development. However, it remains unclear what role early seizures signify in the epileptogenic process.

The complexity of PTE, resulting from the heterogeneous nature TBI and variable onset of seizure manifestation, has made identifying early biomarkers and mechanisms of epileptogenesis difficult. To address these hurdles, it remains imperative to identify potential acute clinical biomarkers of epileptogenesis, by longitudinally assessing a robust and well-powered sample of patients with moderate-severe TBI. As an initial first step, our study sought to 1) map the correspondence between injury location and seizure incidence, 2) identify potential acute clinical predictors of PTE, and 3) identify the statistical power needed for a future multi-center prospective study on PTE. We analyzed a large cohort of moderate-severe TBI patients, who were assessed both acutely post-injury and chronically through longitudinal follow-up assessments. Acutely, patients were monitored with prospective cEEG and underwent a high-resolution Magnetic Resonance Imaging (MRI) scan for lesion location classification. Chronically, patients underwent a high-resolution MRI, clinical assessment, and were longitudinally monitored for development of epilepsy for a minimum of 2 years post-injury.

We hypothesized that injury location, specifically the temporal lobe, would be associated with a higher incidence of 1) early seizures and 2) development of post-traumatic epilepsy (PTE) longitudinally. Additionally, we hypothesized that early seizures (either convulsive or non-convulsive in nature), assessed with ICU cEEG, would be associated with an increased risk for development of PTE. As secondary analysis measures, we sought to characterize the functional recovery and degree of brain atrophy between those patients who developed PTE and those who did not.

METHODS
Patient Inclusion & Exclusion

From January 2001 through December 2011, a prospective sequential series of acute moderate-severe TBI patients at the UCLA Brain Injury Research Center (BIRC) was enrolled in the study. Inclusion criteria included TBI with admission Glasgow Coma Scale (GCS) score ≤ 8 or a GCS of 9-12 with evidence of a mass lesion demonstrating an intracranial bleed. Patients were excluded if they had a GCS > 12 with a non-significant computed tomography (CT) brain scan, brain death, pre-existing neurological disease, previous seizures, or a previous TBI. Informed consent was obtained from a surrogate family member or legal authorized representative (LAR), using IRB approved consent methods.

General TBI Continuous EEG Monitoring Protocol and Quantification of Epileptiform Activity

Intensive Care Unit (ICU) surface continuous electroencephalography (cEEG) monitoring was prospectively performed to evaluate for early seizures for the duration of their acute ICU stay, according to standardized neurocritical care guidelines. Patients were monitored for at least the first 7 days after TBI. Early seizures were prospectively determined either by a neurointensivist or electroencephalographer. Seizure detection was performed using manual review of the raw EEG and review of quantitative trends including total power and spectral edge envelope using a standardized protocol. Occurrence of early seizures and status epilepticus was documented in the patient’s medical record. All patients were routinely placed on seizure prophylaxis medication, phenytoin, for 7 days post injury. Phenytoin was discontinued at 7 days if no seizures occurred during that period. Patients demonstrating early seizures had anticonvulsants continued as per standard of care. Patients demonstrating status epilepticus received standard of care treatment including lorazepam 0.1 mg/kg bolus followed in stepwise fashion by continuous midazolam infusion 0.5-2 mg/kg/hr to induce burst suppression and secondary anticonvulsants were added to phenytoin. Patients then failing to be controlled were advanced to pentobarbital infusion to induced burst suppression. cEEG monitoring was performed for a minimum of 7 days in all cases. Confirmatory review of EEG from this cohort was undertaken retrospectively to confirm the initial clinical EEG interpretation. For the current study, we characterized ICU cEEGs based on evaluation criteria based on 1) presence/absence of seizures, 2) interictal spikes, or 3) the interictal continuum.

Longitudinal Follow up and Post-Traumatic Epilepsy (PTE) Assessment

Patients were longitudinally monitored in the study from time of hospital admission to discharge, and prospectively seen in research clinic at 3, 6 and 12 months. Scheduled structured follow-up clinic visits documented presence/absence of epilepsy, neurocognitive function (Glasgow Outcome Score Extended; GOSE), and clinical exam. Attrition over time occurred, where 82% of patients completed the 6 month follow up, 48% of patients completed the 1 year in-person follow-up. In September 2013 (2-10 year follow-up), in a retrospective study for the incidence of PTE, these same 90 subjects were contacted for telephonic follow-up. 46/90 (51%) completed the telephonic follow-up which included the Extended Glasgow Outcome Scale (GOSE) and a structured epilepsy interview questionnaire to document presence of PTE, seizure onset, latency, prevalence, and seizure type. Subsequently, three clinicians (PV, RDA, PVN) were provided blinded copies of the telephonic interview questionnaire and independently adjudicated the diagnosis of post-traumatic epilepsy including epilepsy subtype. Only those subjects meeting consensus agreement on PTE among the panel were considered to have PTE. Demographic, clinical and neuropsychological data were retrospectively collected on the respondents. The inclusive attrition rate was 49% with 35 (38.8%) patients lost to follow-up. 6 (6.7%) patients refused the follow-up interview and clinical evaluation. Three (3.3%) patients were reported deceased. Subjects not available for a follow-up interview were excluded from the remaining analysis.

MRI Acquisition and Analysis Methods

High-resolution MRI was acquired acutely, within 14 days post-injury, and chronically, at 6 months post-injury. For all subject’s (n=90) acute volumetric MRI, a radiologist (PV) reviewed the following brain injury types for lesion location classification analysis: intraparenchymal hematoma, intraventricular hemorrhage (IVH), subdural
hematoma (SDH), epidural hematoma (EDH), traumatic subarachnoid hemorrhage (tSAH), contusion, diffuse axonal injury (DAI), skull fracture, and temporal lobe lesion.

For the longitudinal cohort (n=46), we performed volumetric analysis, using T1-weighted three-dimensional gradient echo sequence, on 42 patients. Each cortical lobe was identified and masked using the MNI structural atlas. Next, a nonlinear registration was performed using ANTs to align each individual subject’s T1 whole-head structural MRI to the atlas standard space, confirmed by visual inspection to ensure accurate alignment. The transform was then inverted to calculate the registration from the atlas to each individual subject’s space, and again visually inspected. The volume of each mask (cortical lobe), estimated using FSL utilities, was used to determine within-subject volume changes (i.e. atrophy) from acute to chronic time points. For each cortical lobe (e.g. frontal, parietal, temporal, occipital lobe), we evaluated the amount of atrophy over 6 months. We subtracted the chronic cortical volumetric measurement from the acute volumetric measurement, then divided by the initial acute volume to obtain a percent decrease in volume.

STATISTICAL ANALYSES

Clinical data was acquired using SQL Server 2012 version 11.0.3128.0 and subsequently integrated into Microsoft office products 2003 (Microsoft Corp., Redmond WA). All statistical analyses were performed with R version 3.2.2 (University of Auckland, New Zealand). Count data were analyzed by test of proportions. Univariate analyses and the Yuen-Welch T-Test were performed for the primary group comparisons, using analysis of variance and mixed effects model statistics as necessary.

The longitudinal cohort (n=46) was verified as representative of the entire cohort (n=90) by performing a two-group Yuen-Welch T-Test across demographic and clinical variables. No statistically significant differences were found between subjects who responded and subjects who did not respond to the longitudinal (2-10 year) epilepsy interview.

For between-group analysis, we corrected for multiple comparisons, using False Discovery Rate (FDR) methods. Predictive modeling was conducted using a generalized linear model (GLM) and results of such modeling were further studied using multi-model inference techniques, which mathematically examine the relative strengths of competing submodels to determine how close solutions might be when terms and/or interactions are selectively entered or dropped.

RESULTS

ACUTE ASSESSMENT: EARLY CEEG SEIZURE EVALUATION (N=90)
The cohort was comprised of 73 males and 17 females, with a mean age of 37.72 ± 17.83 and admission GCS of 5.76 ± 3.63. The main injury characteristics are shown in Table 1. The primary mechanism of injury was falls (28.9%) followed by auto accidents (26.7%).

In an ICU cEEG classification analysis, derived from the first 7 days of cEEG monitoring after injury, 63.3% of patients had no evidence of epileptiform activity, 26.7% had epileptic seizures, and 10% had evidence of interictal spikes or cEEG on the interictal continuum. Early cEEG classification is shown in Table 2. Of the 26.7%, who had early epileptic seizures (n=24), 75% also had evidence of a hemorrhagic lesion to the temporal lobe on MRI.

LONGITUDINAL ASSESSMENT: PTE EVALUATION (N=46)
PTE Characterization
A subgroup of 46 (51%) patients from the initial acute assessment cohort (n=90) completed the longitudinal epilepsy assessment (2-10 years post-injury). The subgroup of 46 patients was a representative sample of the larger cohort of 90 patients; the two groups had no significant differences across demographic and injury severity variables. Of the 24 patients who had early seizures during the acute assessment, 10 (41.7%) were available for longitudinal follow-up. The cohort was comprised of 37 males and 9 females, with a mean age of 36.9 ± 17.3 years.
Predictors of Post-traumatic epilepsy – Tubi et al

and admission GCS of 5.5 ± 3.3. 73.9% were Caucasian, 21.7% Hispanic, 2.2% Asian, and 2.2% African American. Skull fractures occurred in 28 (60.9%) patients. Twenty-nine (63.0%) patients underwent a craniotomy or hemicraniectomy surgical intervention. Forty-four (95.7%) of the patients had an external ventricular drain (EVD) placed for intracranial pressure (ICP) management and control.

At the time of the longitudinal assessment (minimum of 2 years post-injury), 45.7% of the patients had developed PTE. Of those with early seizures, who were available at longitudinal follow-up (n=10), 80% developed PTE. Table 3 shows the seizure subtype for the PTE group. In the cohort of patients who developed PTE, 38.1% had their first seizure early (within 7 days post injury) and 61.9% had a delayed latency in seizure onset, manifesting late (after 7 post-injury days). Overall, the latency between injury and initial seizure onset ranged from 1 day to 6 years post-injury. However, the majority of patients had their first initial seizure within 2 years after injury. Figure 1 shows the timing of seizure onset.

PTE vs no-PTE Group Comparison

Injury Severity and Location Classification

In a between-group analysis, comparing patients who developed PTE (n=21) and those who did not (n=25), we established that the groups had similar levels of injury severity; no significant differences in age, initial GCS, or other admission characteristics. However, patients who developed PTE had a significantly higher incidence (85.7%) of acute temporal lobe hemorrhagic injury than patients who never developed PTE (36.0%) (p<0.001). Additionally, patients who developed PTE had a significantly lower incidence of diffuse axonal injury (DAI) when compared to those patients who did not develop PTE (p=0.030). Overall, injury to the temporal lobe was the only injury characteristic resulting in a robust (p<0.001) difference between patients who developed PTE and those who did not (Table 4).

Atrophy Analysis

Patients who developed PTE, compared to patients who did not develop PTE, had significantly greater temporal lobe atrophy (p=0.029). Specifically, patients who developed PTE had an average of 7.7 ± 3.9% reduction in temporal lobe volume, whereas patients who did not develop PTE had an average of 4.7 ± 4.3% reduction. No other differences between regional cortical atrophy measures were found between groups.

Functional Recovery Assessment

At 6 months post-injury, patients with PTE had significantly worse GOSE functional outcomes (4.06 ± 1.66) than patients who did not develop PTE (5.39 ± 1.62) (p=0.006), which became more robust (p=0.003) at the time of their longitudinal epilepsy assessment (minimum of 2 years post-injury).

Longitudinal Predictive Modeling

In the longitudinal cohort (n=46), we ran two generalized linear models (GLM) to assess potential early predictors of PTE. In the first GLM, based on demographic and early admission factors (e.g. age, gender, GCS, acute neurosurgical intervention, and early seizures), we identified that occurrence of early seizures (p=0.026) was the only significant predictor of PTE. In the second GLM analysis, based on MRI injury characteristics, we found that skull fractures (p=0.018) and temporal lobe injury (p<0.001) were the only significant injury types associated with PTE.

Based on the GLM results, we combined the significant predictors of clinical and lesion location data (e.g. early seizures, temporal lobe injury, and skull fractures) in a multi-model inference analysis to assess the combination of features that was most predictive of PTE development. The most predictive model indicated that the combination of early seizures, skull fractures, and a temporal lobe injury together were most predictive of PTE development. Temporal injury was a significant contributor to the top models. The top three models are shown in Table 5.

DISCUSSION
This study indicates that after a severe TBI (1) there is a high incidence of both early seizures and PTE after a moderate-severe TBI; (2) The development of PTE is associated with hemorrhagic contusional injury to the temporal lobe, but not to overall injury severity (i.e. GCS) alone; (3) PTE develops in a greater percentage of patients who have early seizures during the ICU course; (4) PTE is associated with greater atrophy in the temporal lobe at 6 months; and (5) PTE is associated with poor functional outcome (i.e. GOSE) longitudinally.

Moderate-severe TBI is a life-threatening condition known to be a risk factor for PTE. ICU cEEG studies have shown a high incidence (18-30%) of early seizures within 7 days after TBI, most of which are nonconvulsive seizures, which is consistent with our finding that 26.7% of the patients had early seizures. Depth EEG monitoring recently revealed a higher incidence of seizures. Early seizures are associated with induced higher intracranial pressure (ICP), worsening brain edema, metabolic crisis, and hippocampal atrophy. Thus, early seizures have established negative consequences acutely, during the period of critical care. However, the long-term influence of EEG-confirmed early seizures on PTE has not been well established. In this study, we extend our understanding of the relationship between the incidence of early cEEG seizures and the development PTE. Our findings indicate that early seizures not only have acute consequences, but increase the risk of PTE longitudinally.

Epidemiological studies have documented that the latency between injury time and seizure onset varies greatly. Recent data suggest that the majority (86%) of patients will develop a subsequent seizure within 2 years of their first late onset seizure. In the current cohort, we found that the occurrence of early seizures, as detected by cEEG, was a predictive factor for PTE. This result is important in itself since it suggests another negative long-term effect of early post-traumatic seizures. Moreover, this result may inform the design of future longitudinal interventional studies on PTE and specifically suggest that cEEG may be a useful metric to select an enriched population of TBI patients, who are at higher risk for PTE. Because seizures occur early, and those patients have an elevated risk of PTE development, we postulate that epileptogenesis may be starting during the acute critical care period, despite the long latency to manifest epilepsy. Further experimental studies will be needed to determine if the early seizures signify the onset of PTE or whether they are just markers of future PTE. But, the current data suggest a translational paradigm that can be tested experimentally.

TBI phenotype and location may be important predictors of PTE (Wang et al., 2013). PTE arises most frequently in the temporal lobe (57%), occasionally in the frontal lobe (35%), and rarely from the occipital and parietal lobes. Not only is the temporal lobe the region most frequently implicated in PTE, its underlying medial structures have been associated with both medically intractable PTE in humans, lower seizure threshold and susceptibility in animal models, and enhanced glutamatergic excitatory connectivity in-vitro. Additionally, temporal lobe structures are at an increased risk for atrophy, as our past and present findings suggest that seizures are associated with increased temporal lobe and hippocampal atrophy. Hence, early seizures may be intertwined with both the genesis and consequences of PTE. In the current study, we found that temporal lobe hemorrhagic injury was independently associated with PTE, and that other trauma phenotypes such as subdural hemorrhage, diffuse axonal injury or parenchymal hemorrhages in other non-temporal lobe regions were not. Interestingly, we found that patients with DAI had a lower incidence of PTE, suggesting that non-specific axonal disconnection does not play a significant pathophysiologic role in PTE development. Moreover, these findings may point to a biological mechanism for the genesis of PTE that involves disruption of specific regional networks, such as those implicated in the temporal lobe, rather than diffuse white matter connections. We postulate that disruption of temporal lobe associated circuits could lead to epileptogenesis. Such disruption of circuits, altered by an increase in metabolic load required by the excitation of seizures, may ultimately lead to cell death, explaining the susceptibility to increased atrophy in the temporal lobe. Since abnormalities to the mesial temporal structures have been associated with epileptogenic neural networks, injury to the underlying structures may disrupt normal neural processing, engendering the construction and maturation of an epileptogenic network. These findings suggest that the temporal lobe and its underlying structures are an important area of focus for future studies assessing the genesis and progression of PTE.

Patients with PTE had worse long term functional outcome compared with the non-epileptic group. This finding is consistent with previous literature, suggesting that the electrophysiological and structural consequences of PTE and/or the treatment of PTE manifest in depressed functional outcome after TBI. Functional recovery differences
between the cohorts were significant even at 6 months post-injury and became robust at the 2 to 10 year follow-up interview. In some cases, this is before the occurrence of PTE. This finding could suggest that early seizures have a detrimental effect on functional recovery and morbidity over time or could suggest co-morbidity of epileptogenesis and cognitive function, before manifestation of the epilepsy in the chronic setting. Detailed study of the mechanisms that relate to poor functional outcome and PTE, including functional assessment of neural networks stemming from the temporal lobe could help to illuminate the process of epileptogenesis further.

There appears to be both phenotypic anatomical and electrophysiological indicators that predict the occurrence of PTE. These findings suggest that there may be utility to adopting routine use of cEEG and MRI in moderate-severe TBI patients in order to guide intermediate therapy with regards to anticonvulsants. By isolating specific brain regions and functions, this study will help drive future prospective studies to evaluate mechanistic links between TBI and epileptogenesis.

LIMITATIONS

Considering the heterogeneous nature of TBI, the current study included a small sample size with a high attrition rate. The high attrition rate may contribute a bias, because patients may be more willing to consent to follow-up interviews by clinicians if they are experiencing seizures and impairments in functional outcome. The cohort was primarily comprised of Caucasian males, and consequently, may not be generalizable to other demographic groups. Data were collected retrospectively and observationally, obviating study of causal relationships. Clinical practice such as the use and duration of anticonvulsants was standardized for the initial 7 days after TBI, but the drug selection varied and it is possible that clinical anticonvulsant use beyond the acute hospitalization varied in ways that bias the development of PTE. Since patients self-reported to a clinician, seizure incidence and recovery may be misrepresentative. A prospective longitudinal study is needed to resolve these limitations and to clarify causal and biomarker relationships between traumatic brain injury and the development and progression of epilepsy after injury.
Table and Figure Legends:

Table 1 – Abbreviations: GCS – Glasgow Coma Score, Bike vs. Auto – Bicycle struck by motor vehicle, GSW – Gunshot wound, MCA – Motorcycle accident, MVA – Motor vehicle accident, Peds vs. Auto – Pedestrian struck by automobile, GOSE – Glasgow Outcome Scale Extended.

Table 2 – Abbreviations: cEEG – Continuous Electroencephalograph

Table 3 – Abbreviations: PTE – Post-Traumatic Epilepsy

Table 4 – Abbreviations: PTE – Post-Traumatic Epilepsy, GCS – Glasgow Coma Score, % ICP > 20 – Percentage of time by patient intracranial pressure was above 20, GOSE – Glasgow Outcome Scale Extended.

Table 5 – Abbreviations: SE – Standard Error, AICc – second order Akaike information criterion, GCS – Glasgow Coma Score

Figure 1 – The timing seizure onset in the longitudinal cohort (n=46)
Table 1: Main Injury Characteristics (n=90)

<table>
<thead>
<tr>
<th>Summary (n=90)</th>
<th>Demographics</th>
<th>Injury Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Age</td>
<td>37.72 ± 17.83</td>
</tr>
<tr>
<td></td>
<td>GCS</td>
<td>5.76 ± 3.63</td>
</tr>
<tr>
<td></td>
<td>% Male</td>
<td>81.10%</td>
</tr>
<tr>
<td>Ethnicity</td>
<td>Asian</td>
<td>2.2%</td>
</tr>
<tr>
<td></td>
<td>Black</td>
<td>4.4%</td>
</tr>
<tr>
<td></td>
<td>Hispanic</td>
<td>21.1%</td>
</tr>
<tr>
<td></td>
<td>White</td>
<td>71.1%</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>1.1%</td>
</tr>
<tr>
<td>Mechanism</td>
<td>Bike vs. Auto</td>
<td>4.4%</td>
</tr>
<tr>
<td></td>
<td>Blunt</td>
<td>10.0%</td>
</tr>
<tr>
<td></td>
<td>Fall</td>
<td>28.9%</td>
</tr>
<tr>
<td></td>
<td>GSW</td>
<td>2.2%</td>
</tr>
<tr>
<td></td>
<td>MCA</td>
<td>14.4%</td>
</tr>
<tr>
<td></td>
<td>MVA</td>
<td>26.7%</td>
</tr>
<tr>
<td></td>
<td>Peds vs Auto</td>
<td>13.3%</td>
</tr>
</tbody>
</table>

Table 2: Early Seizure Subtype (Within 7 days post-injury)

<table>
<thead>
<tr>
<th>Early Seizure Subtype (n=90)</th>
<th>N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>57 (63.3%)</td>
</tr>
<tr>
<td>EEG Nonconvulsive or Clinical Seizures</td>
<td>24 (26.7%)</td>
</tr>
<tr>
<td>EEG Interictal Continuum</td>
<td>9 (10.0%)</td>
</tr>
</tbody>
</table>

Table 3: PTE Subtype (assessed at longitudinal follow-up)

<table>
<thead>
<tr>
<th>PTE Subtype (n=46)</th>
<th>N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>26 (56.5%)</td>
</tr>
<tr>
<td>Focal</td>
<td>11 (23.9%)</td>
</tr>
<tr>
<td>Focal with secondary generalized</td>
<td>6 (13.0%)</td>
</tr>
<tr>
<td>Generalized</td>
<td>4 (8.7%)</td>
</tr>
</tbody>
</table>
Table 4: No PTE vs. PTE Comparison Summary Table

<table>
<thead>
<tr>
<th></th>
<th>No PTE</th>
<th>PTE</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>33.64 ± 12.67</td>
<td>40.76 ± 21.22</td>
<td>0.393</td>
</tr>
<tr>
<td>GCS</td>
<td>5.96 ± 3.55</td>
<td>4.70 ± 3.01</td>
<td>0.090</td>
</tr>
<tr>
<td>Admission Events</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surgery</td>
<td>56.0%</td>
<td>71.4%</td>
<td>0.311</td>
</tr>
<tr>
<td>% ICP > 20</td>
<td>9.3%</td>
<td>10.3%</td>
<td>0.965</td>
</tr>
<tr>
<td>MRI Lesion Type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contusions</td>
<td>44.0%</td>
<td>57.1%</td>
<td>0.396</td>
</tr>
<tr>
<td>Diffuse Axonal Injury</td>
<td>52.0%</td>
<td>23.8%</td>
<td>0.061</td>
</tr>
<tr>
<td>Epidural Hematoma</td>
<td>12.0%</td>
<td>19.0%</td>
<td>0.526</td>
</tr>
<tr>
<td>Intraparenchymal Hemorrhage</td>
<td>56.0%</td>
<td>52.4%</td>
<td>0.808</td>
</tr>
<tr>
<td>Intraventricular Hemorrhage</td>
<td>24.0%</td>
<td>28.6%</td>
<td>0.698</td>
</tr>
<tr>
<td>Skull Fracture</td>
<td>48.0%</td>
<td>76.2%</td>
<td>0.061</td>
</tr>
<tr>
<td>Subarachnoid Hemorrhage</td>
<td>72.0%</td>
<td>71.4%</td>
<td>0.929</td>
</tr>
<tr>
<td>Subdural Hemorrhage</td>
<td>72.0%</td>
<td>61.9%</td>
<td>0.467</td>
</tr>
<tr>
<td>Temporal Lobe Injury</td>
<td>36.0%</td>
<td>85.7%</td>
<td>< 0.001*</td>
</tr>
<tr>
<td>GOSE Scores</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discharge</td>
<td>2.67 ± 0.52</td>
<td>2.56 ± 0.69</td>
<td>0.471</td>
</tr>
<tr>
<td>6 Months</td>
<td>5.39 ± 1.62</td>
<td>4.06 ± 1.66</td>
<td>0.006*</td>
</tr>
<tr>
<td>12 Months</td>
<td>5.62 ± 1.56</td>
<td>4.33 ± 1.66</td>
<td>0.057</td>
</tr>
<tr>
<td>2-10 Year</td>
<td>6.64 ±1.29</td>
<td>4.81 ± 2.06</td>
<td>0.003*</td>
</tr>
</tbody>
</table>

*P-value is statistically significant after FDR multiple comparisons correction

Figure 1: Latency of Seizure Onset
Table 5. Multi-Model Inference Analysis for prediction of PTE

<table>
<thead>
<tr>
<th>Model</th>
<th>Predictors</th>
<th>Estimate</th>
<th>SE</th>
<th>P-Value</th>
<th>AICc</th>
<th>Delta</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Temporal Lobe Injury + Skull Fracture + Early Seizure</td>
<td>3.03</td>
<td>0.96</td>
<td>0.002*</td>
<td>48.30</td>
<td>0.00</td>
<td>0.69</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.92</td>
<td>0.87</td>
<td>0.028*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.35</td>
<td>1.13</td>
<td>0.038*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Temporal Lobe Injury + Skull Fracture</td>
<td>2.83</td>
<td>0.86</td>
<td>0.001*</td>
<td>51.40</td>
<td>3.04</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.88</td>
<td>0.82</td>
<td>0.022*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Temporal Lobe Injury + Early Seizure</td>
<td>2.57</td>
<td>0.86</td>
<td>0.003*</td>
<td>51.60</td>
<td>3.22</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.27</td>
<td>1.05</td>
<td>0.031*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Predictors of Post-traumatic epilepsy – Tubi et al

Works Cited

Predictors of Post-traumatic epilepsy – Tubi et al

Predictors of Post-traumatic epilepsy – Tubi et al

Predictors of Post-traumatic epilepsy – Tubi et al

EpiBioS4Rx Study Group Investigators

Agoston, Denes
University of Pittsburgh Medical Center

Au, Alicia
Children’s National Health System, Washington D.C.

Bell, Michael J.
Albert Einstein College of Medicine

Branch, Craig
University of California, Los Angeles

Buitrago Blanco, Manuel
University of Miami Miller School of Medicine

Bullock, Ross
Columbia University

Clarke, Robert
University of Pittsburgh Medical Center

Cloyd, James
Regents of the University of Minnesota

Coles, Lisa
Regents of the University of Minnesota

Crawford, Karen
University of Southern California

Diaz-Arrastia, Ramon
University of Pennsylvania

Duncan, Dominique
University of Southern California

Ellingson, Benjamin
University of California, Los Angeles

Engel, Jerome
University of California, Los Angeles

Foreman, Brandon
University of Cincinnati

Galanopoulou, Aristea
Albert Einstein College of Medicine

Gilmore, Emily
Yale University

Olli, Grohn
University of Eastern Finland

Harris, Neil
University of California, Los Angeles

Hartings, Jed
University of Cincinnati

Lawrence, Hirsch
Yale University

Hunn, Martin
The Alfred Hospital, Melbourne

Jette, Nathalie
University of Calgary

Johnston, Leigh
University of Melbourne

Jones, Nigel
University of Melbourne

Kanner, Andres
University of Miami Miller School of Medicine

McArthur, David
University of California, Los Angeles

Monti, Martin
University of California, Los Angeles

Morokoff, Andrew
University of Melbourne

Moshe, Solomon
Albert Einstein College of Medicine

Mowrey, Wenzhu
Albert Einstein College of Medicine

Naughton, Tomas
Phoenix Children’s Hospital

O’Brien, Terence
University of Melbourne

O’Phelan, Kristine
University of Miami Miller School of Medicine

Pitkanen, Asla
University of Eastern Finland

Raman, Rema
University of Southern California

Robertson, Courtney
Johns Hopkins University

Rosenthal, Eric
Massachusetts General Hospital

Shultz, Sandy
University of Melbourne

Snutch, Terrance
University of British Columbia

Staba, Richard
University of California, Los Angeles

Toga, Arthur
University of Southern California

Van Horn, Jack
University of Southern California

Vespa, Paul
University of California, Los Angeles

Willyerd, Frederick
Phoenix Children’s Hospital

Zimmermann, Lara
University of California, Davis