Computational evaluation of altered biomechanics related to articular cartilage lesions observed in vivo

Myllyranta, KAH

Wiley

Tieteelliset aikakauslehtiartikkelit
© Orthopaedic Research Society
All rights reserved
http://dx.doi.org/10.1002/jor.24273

https://erepo.uef.fi/handle/123456789/7564
Downloaded from University of Eastern Finland's eRepository
Computational evaluation of altered biomechanics related to articular cartilage lesions observed in vivo†

Katariina A. H. Myller1,2,3, Rami K. Korhonen1,2, Juha Töyräs1,2,7, Jari Salo5,6, Jukka S. Jurvelin1,2, Mikko S. Venäläinen1,4

1 Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
2 Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
3 Centre of Oncology, Kuopio University Hospital, Kuopio Finland
4 Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
5 Orthopaedics and Traumatology Clinic, Mehiläinen, Helsinki, Finland
6 Department of Orthopaedics, Traumatology and Hand Surgery, Kuopio University Hospital, Kuopio, Finland
7 School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia

Correspondence:
Katariina AH Myller, MSc.
Department of Applied Physics, University of Eastern Finland
P.O. Box 1627, 70211 Kuopio, Finland
Tel: +358 504659802
Fax: +358 162585
Email: katariina.myller@uef.fi

†This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: [10.1002/jor.24273]

Received 24 September 2018; Revised 19 January 2019; Accepted 17 February 2019

Journal of Orthopaedic Research®
This article is protected by copyright. All rights reserved
DOI 10.1002/jor.24273
Email addresses of co-authors: rami.korhonen@uef.fi, juha.toyras@uef.fi, jari.salo@mehilainen.fi, jukka.jurvelin@uef.fi, mikko.venalainen@utu.fi

Manuscript length 3716 words (the main text), 6 figures, 1 table

ABSTRACT

Chondral lesions provide a potential risk factor for development of osteoarthritis. Despite the variety of in vitro studies on lesion degeneration, in vivo studies that evaluate relation between lesion characteristics and the risk for the possible progression of OA are lacking. Here, we aimed to characterize different lesions and quantify biomechanical responses experienced by surrounding cartilage tissue. We generated computational knee joint models with nine chondral injuries based on clinical in vivo arthrographic computed tomography images. Finite element models with fibril-reinforced poro(visco)elastic cartilage and menisci were constructed to simulate physiological loading. Systematically, the lesions experienced increased maximum principal and maximum shear strains and, moreover, decreased minimum principal strain in the surrounding chondral tissue \((p<0.01)\) compared with intact tissue. Depth, volume and area of the lesion correlated with the maximum shear strain \((p<0.05, \text{Spearman rank correlation coefficient } \rho=0.733-0.917)\). Depth and volume of the lesion correlated also with the maximum principal strain \((p<0.05, \rho=0.767 \text{ and } \rho=0.717, \text{ respectively})\). However, the lesion area had non-significant correlation with this strain parameter \((p=0.06, \rho=0.65)\). Potentially, the introduced approach could be developed for clinical evaluation of biomechanical risks of a chondral lesion and planning an intervention.

Statement of Clinical Relevance: In this study, we computationally characterized different in vivo chondral lesions and evaluated their risk of cartilage degeneration. This information is vital in decision-making for intervention in order to prevent post-traumatic osteoarthritis. This article is protected by copyright. All rights reserved

This article is protected by copyright. All rights reserved
Key terms: Knee joint, Injury, Computed tomography, Osteoarthritis, Finite element analysis

INTRODUCTION

Chondral lesions might be caused by injury or trauma, possibly leading to degeneration of articular cartilage and post-traumatic osteoarthritis (OA)\(^1\)\(^-\)\(^3\). OA is a common joint disease, with irreversible nature, causing pain and immobility\(^4\). The degeneration mechanisms in articular cartilage are complicated and comprise several factors from the abnormal joint structure to inflammation processes\(^5\)\(^-\)\(^7\). Inevitably, biomechanics of the joint and loading of the tissue contribute to the degeneration process\(^7\)\(^-\)\(^{11}\). Nevertheless, no clear consensus exists on which kind of lesions result in OA and which characteristics might be the most contributory related to further degeneration.

Novel imaging techniques and sophisticated computational modeling offer new insights in the evaluation of injuries in the knee joint and to examine the joint function. Arthrographic computed tomography (CT) utilizes contrast agents which enable rapid visualization of cartilage defects in high resolution\(^12\)\(^,\)\(^13\). Despite the invasiveness of the contrast agent injection, in professional use they are considered safe\(^14\)\(^-\)\(^16\). Furthermore, the arthrographic CT allows for quantifying spatial distribution of subchondral bone mineral density\(^17\)\(^,\)\(^18\). Based on imaging data, finite element (FE) modeling can be further applied to simulate the biomechanical function of the knee under physiologically relevant loading conditions\(^19\)\(^-\)\(^22\). Simulation of knee joint function can reveal diagnostically valuable information on the status of the joint; for instance, strain or stress levels and distributions in the cartilage can be applied to estimate the failure of the tissue\(^19\)\(^,\)\(^23\)\(^-\)\(^25\). At present, this kind of quantitative
evaluation of the biomechanical response of the tissue is unachievable without computational modeling.

A recent study combined arthrographic CT imaging with FE modeling to study the biomechanical response of tibial cartilage around a chondral lesion during walking20. It was observed that even though the presence of cartilage defects increases the experienced strains in tissue adjacent to a lesion, the amplitude of changes is highly dependent on the location of the lesion on the articular surface. However, this study investigated the alterations only in a single knee. Additionally, in another computational study with simplified loading, it was observed that both larger lesion size and high weight-bearing location are factors potentially contributory to OA progression26. However, since cartilage lesions can be found on all articulating surfaces of the knee and they can considerably vary in both shape and size, more investigations with physiologically relevant loading conditions and different knee joint geometries are needed to better understand the role of lesion characteristics in biomechanical response of the tissue in a patient-specific manner. In clinical decision making, treatment and rehabilitation are highly dependent on the information about the lesion severity6,27.

The aim of this study was to examine the effect of chondral lesions on the biomechanical response of knee joint cartilage using clinical arthrographic CT imaging and FE modeling. The detailed geometries of the knee joints with cartilage lesions were obtained from the arthrographic CT images to create FE representations of the joint with advanced tissue-specific material properties. In all cases, the knee joint function was simulated under loading conditions mimicking the stance phase of gait. Here, we focused on analyzing the effect of the characteristics of the lesion on the tensile, shear, and compressive strains in the surrounding tissue since they have been linked to cartilage matrix damage or chondrocyte apoptosis in previous experimental studies28-30. We hypothesized that combining arthrographic CT imaging with FE modeling could reveal novel insights into the contribution of
different lesion characteristics to alterations in cartilage biomechanics as well as enable the classification of lesions into higher and lower risk subgroups.

METHODS

Patients
Five subjects with possible knee joint injuries were enrolled in the study after giving a written consent and having a clinical examination. The study protocol was reviewed by the Ethical Committee of Kuopio University Hospital, Kuopio, Finland (Favourable Opinion No: 54/2011) and the study adhered the Declaration of Helsinki.

Imaging and segmentation
Knees \((n = 5)\) of the patients were imaged using cone beam computed tomography (CBCT) device (Verity, Planned Oy, Finland). The patients were in a sitting position during imaging. Prior to imaging, an anionic contrast agent \((V = 20 \text{ mL}, \ q = -1, \ M = 1269 \text{ g/mol}, \ 320 \text{ mg iodine/ml}, \ \text{Hexabrix}^\text{TM}, \ \text{Mallinckrodt Inc., St. Louis, MO, USA})\), diluted to half of its concentration using saline, was injected into the joint space. Subsequently, the knee joint was flexed and extended a couple of times to ensure even distribution of the contrast agent. During the CT imaging, patients had a custom-made hydroxyapatite phantom belt placed around the tibia\(^17\). Tube voltage of 100 kV and 54 mAs were used with a voxel size of 200 x 200 x 200 \(\mu\text{m}^3\). In total, nine distinct defects were observed in the imaged knee joints. Segmentation of articular cartilages, menisci, bones, and lesions was done manually using an open source software (Fig. 1 a) (v2.2.3, Seg3D, Scientific Computing and Imaging Institute, University of Utah, UT, USA). Geometries of lesion sites with intact tissue were also created; the geometry was otherwise exactly the same, but the cartilage surface was considered as
intact. In addition to segmentation of damaged cartilage, masks representing completely intact tissue were also created by manually interpolating the intact tissue surface over the defect, similarly as before20.

In order to analyze the detailed biomechanical response of the chondral lesion with minimum computational cost, submodeling approach was applied to all lesion sites to allow for a greater mesh density within the region of interest20 (Fig. 1 b). This approach allowed us to observe the subtle alterations in strain patterns in the defected cartilage site (Fig. 1 c).

Finite element analysis

Segmentations were first converted to 3D stereolithographic (STL) format for post-processing in an open source mesh processing software (MeshLab, ISTI – CNR, www.meshlab.net). After minimizing the amount of surface irregularities and decreasing the number of tiny surface elements, the surface meshes were converted into Standard ACIS Text (SAT) format (MATLAB, R2014a, MathWorks Inc., Natick, MA, USA) for the modelling. ABAQUS (v6.14, Dassault Systèmes, Providence, RI, USA) was used for the generation of the finite element models and running the simulations.

Linear, hexahedral elements (type C3D8P) were used for all tissues except for bone which was meshed using first order tetrahedral elements (type C3D4). In the lesion region, second order tetrahedral elements (type C3D10P) were applied to cartilage to retain realistic shape of the lesion. On average, element sizes of ~2.9 mm, ~2.3 mm, ~2.4 mm, and ~1.8 mm were used for bone, femoral cartilage, tibial cartilage and menisci in the joint-level analysis, respectively. The surface area of the lesion was defined as an area between the edges of the lesion. It was determined by summing up of the area of the faces from the corresponding area in the generated intact surface mesh.
Fibril-reinforced poroviscoelastic (FRPVE) and fibril-reinforced poroelastic (FRPE) material properties were applied for cartilage and menisci, respectively. In principle, the FRPVE material is composed of porohyperelastic non-fibrillar matrix, to represent the mechanical function of tissue proteoglycans and interstitial fluid, and viscoelastic fibrillar matrix to represent the function of collagen fibrils31,32. In the FRPE material, collagen fibrils were assumed elastic. In cartilage, the primary collagen fibrils followed an arcade-like depth-wise orientation, aligning into distinct split-line patterns on the articular surface (Fig. 1 a)31–34 whereas in menisci, the primary collagen fibrils were oriented circumferentially35. The present values of material parameters have been previously reported for both cartilage19 and menisci36. Similarly as before, the material properties implemented for the damaged cartilage were the same as for the intact tissue at the same location and no alterations in the fibrillar or non-fibrillar matrix were considered20. The attachments of meniscal horns to the tibia were modeled using linear springs with total spring constants of 350 N/mm37. These springs resisted only tension.

Bone was modelled as linearly elastic and isotropic material with element-specific Young’s modulus based on CT Hounsfield units (HU) (Fig. 1 a). Correspondence between HU values and bone mineral density was defined using the custom-made hydroxyapatite phantoms with their known volumetric bone mineral densities17. The conversion of bone mineral densities to Young’s moduli was made using density-elasticity relationship and assigned to each element using an advanced mapping strategy38,39, similarly as in the previous study18.

In all cases, the function of the knee was simulated under loading conditions typical to the stance phase of gait. Since subject-specific information on kinematics and kinetics of walking was not available, the loading protocol was obtained from the literature. This was implemented by applying the time-dependent axial force, scaled based on subject’s weight, and flexion angle40,41 (Fig. 1 a) to the reference point located at the middle of transepicondylar axis of femur and fixing the distal end.
of tibia. Varus-valgus movement was set free to ensure sufficient contact between both lateral and medial condyles of the knee19,42 whereas anterior-posterior and medial-lateral movements were restricted due to their small variations and internal-external rotation due to its patient-specific alteration43,44. More detailed description of implementing the load can be found from the previous study20.

All mechanical contacts between articulating surfaces and menisci were assumed to be frictionless45 and were modeled using pressure-overclosure relationship and surface-to-surface discretization. Since the loading in the model is instantaneous, cartilage can be considered incompressible and fluid flow through surfaces can be considered negligible36, and, therefore, it was restricted through all articular cartilage and meniscus surfaces except on the inner boundaries of the defect. This reflects fluid flow through the defect surfaces due to collagen damage and the effect of missing intact superficial collagen fibril network that contributes to fluid pressure46.

In order to decrease the calculation time and enable subtle analysis of the defects, submodels (Fig. 1 b) with substantially denser meshes were created for the chondral lesion sites for both damaged and intact cartilage. In all submodels, at least 3 mm wide zone of intact cartilage tissue was included in the region of interest around the defect. The displacements of the exterior surfaces of region of interest in the global model were used to drive the mechanical response of the submodel. All submodels were meshed using linear tetrahedral elements (type C3D4P). This element type was previously observed to restrict excessive element distortion efficiently leading to convergence difficulties20. The average element size in the submodels was \textasciitilde0.7 mm and the sufficiency of the mesh densities was verified by carrying out additional simulations with denser meshes. A mesh density was considered to be sufficient if absolute differences of less than 2\% were observed in the peak values of studied strain measures between the selected mesh and a denser mesh.
Comparison of lesions and statistical analysis

The effect of the lesion on the biomechanical response of surrounding cartilage was evaluated in terms of changes in maximum principal (tensile) strain, minimum principal (compressive) strain and shear strain, of the tissue by comparing defect and intact (artificially corrected lesion) sites. These parameters were chosen since they have been linked to the failure of the cartilage tissue\(^{28,47}\). The peak values of these variables during gait were determined within the 1 mm distance from the lesion and compared using the Wilcoxon signed rank test (R, v3.4.2, R Core Team\(^{48}\)). Spearman rank correlation was used for the comparison of lesion properties with changes in different strain measures. The parameters characterizing the lesions included maximum lesion depth (normalized with respect to the thickness of healthy tissue), surface area of the lesion, and volume of the lesion. In addition, to estimate the relative stress level at the lesion site, average cumulative stress during the whole gait was calculated similarly as in a previous study\(^{19}\) and normalized using the maximum cumulative stress in the joint compartment.

RESULTS

FE models of knee joints (\(n = 5\)) with chondral lesions (nine in total) were constructed based on 3D geometries generated from arthrographic CT image segmentations (Fig. 1). In all five knee joints, cartilage defect observed in the medial femoral condyle was found to alter the strain distributions in the tissue surrounding the defect (Fig. 2). Although the amplitude and extent of changes varied greatly between different lesions, maximum principal strains were typically elevated close to lesion edges as compared to the intact tissue. Similar changes were also observed for lesions located on other articulating surfaces of the knee (Fig. 3). However, the magnitude and extent of changes varied between different lesions.
Despite different shapes, sizes and locations of the lesions, statistically significant increases in peak values of maximum principal strains and maximum shear strains ($p < 0.01$, Wilcoxon signed rank test) were observed in the tissue within 1 mm distance from the defect between the models with damaged and intact cartilage (Fig. 4). Similarly, a statistically significant decrease in peak values of minimum principal strains ($p < 0.01$) was found. In median values of peak maximum principal strains and shear strains, the increases were approximately 1.6-fold and 2.0-fold, respectively, whereas in median minimum principal strains, the decrease was approximately 1.6-fold. For only the lesions of the medial femoral condyle, the differences were nearly significant ($p = 0.06$).

The correspondence between changes in peak strain values (maximum principal strain, minimum principal strain, and shear strain) and lesion size parameters (depth, area, and volume) was calculated (Table 1). A very high positive correlation (Spearman rank correlation coefficient $\rho = 0.917$, $p < 0.01$) was found between the lesion depth and maximum shear strain. Furthermore, a good correlation was found when comparing depth and volume of the lesion with the maximum principal strain. The average cumulative stress distribution on the knee was calculated during the gait to determine the level of the cumulative stress at the lesion sites. This was done to study the effect of the chondral lesion location, i.e. relative stress level, in the knee. Despite of varying shape and size, most of the lesions were located at areas under high cumulative stress over one loading cycle (Fig. 5). A strong dependence ($\rho = 0.883 - 0.933$, $p < 0.01$) was found between the relative stress level and all of the size parameters (depth, area, and volume).

DISCUSSION

In this study, the effect of different chondral lesions, observed in a clinical in vivo setting, on the biomechanical response of articular cartilage in human knee was evaluated. The changes in the biomechanical response, as compared to healthy tissue, were studied in terms of changes in maximum
principal (tensile) strains, minimum principal (compressive) strains and shear strains. In addition, the association of changes to the fundamental characteristics of the lesion, i.e. depth, area, volume and location, was evaluated.

All the lesions caused noticeable changes in the studied strain measures in the tissue surrounding the defect (Fig. 4). This is most probably related to inconsistent geometries of lesions; the decrease in the cartilage-cartilage contact area due to discontinuity and irregularity of cartilage surface might be the reasons why, for example, the edges of lesions experience higher maximum principal strains (Fig. 2, Fig. 3). Noticeably, the median levels of minimum principal strains and shear strains were also found to reach levels corresponding to previously suggested failure limits for cartilage, i.e. -30% and 32%, respectively. Naturally, bottoms of the lesions, which lack the direct contact with the opposing articulating surface, experienced lower maximum principal strains. Since higher strains predispose the tissue for deterioration either via failure of the collagen network or cell apoptosis, our results suggest that the presence of lesions can increase the risk of tissue degeneration. However, the change in strains was found to vary greatly and the suggested failure limits were exceeded only in some of the lesions. Notably, all the lesions exceeding the failure limit for shear strain exceeded also the failure limit for minimum principal strain.

The lesion depth had high correlation with changes in both maximum principal strain and shear strain whereas the area had slightly less effect on the strains. This contradicts slightly with the current cartilage lesion diagnostics from magnetic resonance images (MRI) that trust evaluation of the area of the lesion. Moreover, MRI has been reported to have challenges in accurate detection of shape and size of chondral lesions.

The distribution of the lesion locations did not cover the joint surface; most of the lesions were located at areas with high cumulative stress (Fig. 5). Interestingly, in curved lesions, the inner and shorter side showed higher stresses than the longer outer border. This could suggest that in cartilage repair...
procedures special attention should be paid to clean this side to form more round-like than flap-like area on the cartilage surface. Potentially, this kind of repairing procedure could help to decrease the shear strains and inhibit further damage of the cartilage. Altogether, our suggested approach enables dividing lesions into higher and lower risk ones based on their strain levels which can help to make the decision of the intervention.

Maximum shear strains correlated to all the lesion size parameters (Table 1). Higher values in shear strain at area close to a lesion are conceivably due to the material properties of cartilage; the uppermost layer of the cartilage consists of collagen network which is parallel to the surface\(^{34}\) (Fig. 1 a), therefore restricting excessive shear strains. When the uppermost surface of the cartilage is lacking, the surface movements parallel to the surface are freer.

Interestingly, none of the lesion properties correlated statistically significantly with minimum principal strain, possibly indicating that compression of the cartilage tissue around the lesion is more non-systematic. On the other hand, the size of the lesion correlated with its location on the joint: the higher the cumulative stresses on the lesion region, the greater the lesion. This is in line with the previous studies, \textit{i.e.} the location of the lesion is usually at the medial condyle\(^{51}\), known as the contact area in the joint where the stresses are higher.

Previously, the prevalence and progression of chondral lesions as well as alterations in cartilage biomechanics in \textit{in vitro} models of cartilage lesions have been investigated\(^ {52-59}\). \textit{In vitro} models and strain-based degeneration algorithm have, for example, been able to reproduce experimentally found cartilage degeneration in terms of proteoglycan loss under similar levels of strain as reported here\(^ {60,61}\).

In spite of these investigations, no other studies exist, to the best of our knowledge, which have studied the relationship between simulated articular cartilage biomechanics and lesion characteristics using \textit{in vivo} data from several clinically observed cartilage lesions. Our results point out relevant aspects to be taken into account when considering an intervention; this kind of quantitative approach...
could be clinically used for classifying lesions as higher or lower risk for the progression of OA. Even though the longitudinal analysis of lesion progression was not possible to carry out in the current study due to absence of follow-up data, the present findings serve as an important next step towards understanding the changes in the biomechanics of the knee due to cartilage lesions.

Previous studies have shown that articular cartilage properties, such as proteoglycan content at areas close to lesion, differ from the other cartilage tissue in the joint, possibly indicating post-traumatic degeneration of cartilage. Depletion of proteoglycans have been suggested to be one of the earliest signs in OA development and, further, disruption of the collagen network occurs in OA. Here, the effect of changes in material properties of cartilage were not modeled because we assumed that tissue properties do not change immediately after injury. Nevertheless, it has been reported previously that both the disruption of the collagen network and the loss of proteoglycan content can lead to increased strains in cartilage and that the increased strains can further contribute to the progressive loss of tissue integrity and function in an iterative manner. Therefore, it is expected that the inclusion of changes in cartilage structure and composition would have only emphasized the effect of cartilage lesions in the present study. Previously, spatial differences in material properties, such as subject-specific collagen architecture and fixed charge density distributions, have been estimated and implemented in FE models of the knee using T2 mapped or 23Na MR imaging, respectively. Since diffusion of contrast agents in contrast-enhanced CT imaging has been found to correlate with proteoglycan content, CBCT arthrography has potential to acquire lesion-specific tissue properties for modeling purposes. In addition to measuring strain values, stress-based failure criteria have been used in evaluation of cartilage degeneration around lesions. However, since maximum principal stresses in cartilage have been suggested to be connected to degeneration caused by chronic overloading, we prioritized our analyses to the strain measures that have experimentally shown to be related to tissue degeneration, i.e. cell death or proteoglycan loss, close to lesions.
We aimed to analyze real lesions, instead of artificially created ones, at their actual locations, i.e. at both tibial and femoral cartilage and at different distances from the contact area. To make assessments reliable, we analyzed lesions by calculating the difference of defected and intact surface from the same region. This study concentrates on the biomechanical aspects of the lesion using patient-specific geometries from in vivo arthrographic CT data and general gait simulation. The literature-based loading resulted in contact pressures that agreed well with previously reported contact pressures. For example, during the first peak load of the stance phase, the peak contact pressures on the studied articulating surfaces varied between 7 MPa and 11 MPa which is within the range of 2-15 MPa reported in a number of experimental and numerical studies. Furthermore, for almost all of the models with intact cartilage, the peak compressive strains (Fig. 4b) were within the 7-23% range reported for cartilage in the tibiofemoral contact. Minor differences between the model predictions and values reported in the literature are most likely due to individual variation and differences in loading conditions. Overall, these findings suggest that our model predictions represented realistic measures of knee and contact biomechanics during the stance phase of gait.

To our best knowledge, this is the first study to computationally characterize the biomechanical response of different focal chondral lesions observed in a clinical, in vivo set. All the lesions caused changes in the strain levels of the surrounding cartilage, indicating elevated risk for the degeneration. However, substantial variation in these changes was observed between the lesions. The depth and volume of the lesion within the joint were found to be the main factors affecting strains in the cartilage tissue. This indicates that more than one characteristic should be taken in consideration when evaluating severity of lesions, and when planning an intervention. Potentially, this study introduces a novel approach to develop quantitative and multivariate analysis method to predict mechanical risk of the lesion.
ACKNOWLEDGEMENTS

The research leading to these results has received funding from Academy of Finland (307932, and 269315), the Research Committee of the Kuopio University Hospital Catchment Area for the State Research Funding (project 5041757), Kuopio, Finland), and Doctoral Program in Science, Technology, and Computing (SCITECO, University of Eastern Finland). CSC—IT Center for Science, Finland, is acknowledged for providing computational resources and the modeling software.

AUTHOR CONTRIBUTIONS

K.A.H.M.: design of the study, conducting analyses, interpreting the results, the main writer of the manuscript, approval of the manuscript; R.K.K.: design of the study, interpreting the results, critical review of the manuscript, approval of the manuscript; J.T.: design of the study, interpreting the results, critical review of the manuscript, approval of the manuscript, J.S.: design of the study, interpreting the results, critical review of the manuscript, approval of the manuscript; J.S.J.: design of the study, interpreting the results, critical review of the manuscript, approval of the manuscript; M.S.V.: original design of the study, running simulations, conducting analyses, interpreting the results, writing the manuscript, approval of the manuscript.

COMPETING INTERESTS

The authors declare no conflicts of interest.

REFERENCES

This article is protected by copyright. All rights reserved

This article is protected by copyright. All rights reserved

This article is protected by copyright. All rights reserved

45. Mow VC, Ratcliffe A, Robin Poole A. 1992. Cartilage and diarthrodial joints as paradigms

This article is protected by copyright. All rights reserved

Progression of Knee Osteoarthritis and Comparison to Experimental Follow-up Data: Data from the Osteoarthritis Initiative. Sci. Rep. 7(1):9177.

Figure legends

This article is protected by copyright. All rights reserved
Figure 1. a) Global model of the knee was constructed based on the 3D geometries generated from the arthrographic CT image segmentations. The collagen architecture in the cartilage and bone mineral density were taken into account in the model, similarly as in previous studies18,20. In all cases, physically relevant loading, mimicking the stance phase of gait, was used to simulate joint function40,41. b) For all lesion sites, submodels with substantially denser meshes (average element edge length \(~0.7\text{mm}\)) were created to obtain even more accurate estimation of strains in tissue surrounding the lesion. c) All analyses were carried out using values obtained from the detailed strain distributions. In the given example, a noticeable elevation in maximum principal (tensile) strains can be observed (red) in the edges of the lesion.

Figure 2. a) Locations and shapes of the lesions located at the medial femoral condyle ($n = 5$). Each row in the figure represents one lesion site. The red dashed line on top of the lesion geometry represents the location of the crosscut slices. Maximum principal (tensile) strain distributions differed noticeably between the models with b) intact and c) defected cartilage. The time points selected for each comparison of intact and defected cartilage comparison correspond to the phase of stance with maximum difference in peak values between the models.

Figure 3. a) Locations and shapes of the lesions at the lateral femoral condyle ($n = 2$, top of the figure) and tibial condyle ($n = 2$, bottom of the figure) modeled in this study. Each row at the figure represents one lesion site. The red dashed line on top of the lesion geometry represents the location of the crosscut slices. Maximum principal (tensile) strain distributions differed between the models with b) intact and c) defected cartilage. The time points selected for each intact versus defected cartilage comparison correspond to the phase of stance when maximum difference in peak values between the models was observed.

Figure 4. Peak values of maximum principal strains, minimum principal strains, and maximum shear strains in tissue surrounding the lesion (within 1 mm distance) for models with defected and intact cartilage.
cartilage during the entire stance phase of gait. The red horizontal lines in the images represent the suggested failure limit of cartilage tissue based on the literature28,47. Based on this, the lesions can be separated into higher risk and lower risk groups.

Figure 5. Illustration of the cumulative stress levels of the lesions. Each value is normalized to the maximum cumulative stress value at the current anatomical location of the lesion, for instance tibial condyle. Only two of the lesions are located at lower stress level region in the knee. Three radiiuses represent normalized cumulative stress levels of 0, 0.5, and 0.9.
Table 1. Spearman correlation coefficients between lesion parameters (* p < 0.05, ** p < 0.01).

<table>
<thead>
<tr>
<th></th>
<th>Defect area</th>
<th>Defect volume</th>
<th>Defect cumulative stress</th>
<th>Change in max. prin. strain</th>
<th>Change in min. prin. strain</th>
<th>Change in max. shear strain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defect max. depth</td>
<td>-</td>
<td>-</td>
<td>0.833**</td>
<td>0.767*</td>
<td>-0.400</td>
<td>0.917**</td>
</tr>
<tr>
<td>Defect area</td>
<td>-</td>
<td>-</td>
<td>0.900**</td>
<td>0.650</td>
<td>-0.333</td>
<td>0.750*</td>
</tr>
<tr>
<td>Defect volume</td>
<td>-</td>
<td>-</td>
<td>0.933**</td>
<td>0.717*</td>
<td>-0.467</td>
<td>0.733*</td>
</tr>
<tr>
<td>Change in max. principal strain</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-0.800*</td>
<td></td>
<td>0.717*</td>
</tr>
<tr>
<td>Change in min. principal strain</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>-0.450</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1

Global model of the knee joint

Submodel of the cartilage lesion

Biomechanical evaluation of the lesion

Maximum principal (tensile) strain
<table>
<thead>
<tr>
<th>Defect location</th>
<th>Maximum principal strain (intact cartilage)</th>
<th>Maximum principal strain (defected cartilage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lateral Medial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lateral Medial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lateral Medial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lateral Medial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lateral Medial</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2
Figure 3

<table>
<thead>
<tr>
<th>Defect location</th>
<th>Maximum principal strain (intact cartilage)</th>
<th>Maximum principal strain (defected cartilage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lateral Medial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lateral Medial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lateral Medial</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4

a) Max. principal strain

b) Min. principal strain
c) Max. shear strain
Figure 5

Cumulative stress level

Lesion 1
Lesion 2
Lesion 3
Lesion 4
Lesion 5
Lesion 6
Lesion 7
Lesion 8
Lesion 9

This article is protected by copyright. All rights reserved