The relationship of defecation symptoms and posterior vaginal wall prolapse in women undergoing pelvic organ prolapse surgery

Karjalainen, PK

Elsevier BV

Tieteelliset aikakauslehtiartikkelit
© Elsevier Inc
CC BY-NC-ND https://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.ajog.2019.05.027

https://erepo.uef.fi/handle/123456789/7833

Downloaded from University of Eastern Finland's eRepository
The relationship of defecation symptoms and posterior vaginal wall prolapse in women undergoing pelvic organ prolapse surgery

Päivi K. Karjalainen, MD, Nina K. Mattsson, MD, Kari Nieminen, PhD, Anna-Maija Tolppanen, PhD, Jyrki T. Jalkanen, Adjunct professor

PII: S0002-9378(19)30685-4
DOI: https://doi.org/10.1016/j.ajog.2019.05.027
Reference: YMOB 12695

Received Date: 27 December 2018
Revised Date: 30 April 2019
Accepted Date: 17 May 2019

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Title:
The relationship of defecation symptoms and posterior vaginal wall prolapse in women undergoing pelvic organ prolapse surgery

Author names:
Päivi K. KARJALAINEN, MD⁴,⁶
Nina K. MATTSSON, MD²,⁶
Kari NIEMINEN, PhD³,⁷
Anna-Maija TOLPPANEN, PhD⁴
Jyrki T. JALKANEN, Adjunct professor⁵,⁷

Affiliations:
¹Department of Obstetrics and Gynecology, Central Finland Central Hospital, Jyväskylä, Finland
²Department of Obstetrics and Gynecology, Kanta-Häme Central Hospital, Hämeenlinna, Finland
³Department of Obstetrics and Gynecology, Tampere University Hospital, Tampere, Finland
⁴School of Pharmacy, University of Eastern Finland, Kuopio, Finland
⁵Central Finland Hospital District, Finland
⁶University of Eastern Finland, Kuopio, Finland
⁷Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
Conflict of interest statement:

The authors report no conflict of interest.

Funding

Financial support for this project was provided by Finnish Society for Gynecological Surgery, a non-profit organization. Dr. Karjalainen has received grants from Finnish Cultural Foundation, The Finnish Medical Foundation and State Research Funding/Hospital District of Northern Savo. Funding sources were not involved with analysis or interpretation of the data.

Presented at the 27th Annual Congress of European Society for Gynaecological Endoscopy, Vienna, Austria, October 7-10, 2018

Corresponding author:
Päivi K Karjalainen; E-mail: paivikristiina.karjalainen@gmail.com; tel +358142691811; Address: Keskussairaantie 19, 40620 Jyväskylä, Finland

Word count of the abstract: 326
Word count of the main text: 2826
Condensation, Implications and Contributions, and short version of title

Condensation

Posterior vaginal wall prolapse is an important contributing factor behind obstructive defecation symptoms measured by the short form of Pelvic Floor Distress Inventory.

Short Title

The relationship of defecation symptoms and posterior vaginal wall prolapse

AJOG at a Glance

A. Why was this study conducted?

- The association between posterior vaginal wall prolapse and defecation symptoms remains unclear

B. What are the key findings?

- Prevalences of splinting, straining, incomplete evacuation, incontinence of liquid stool, pain during defecation and symptom of anorectal prolapse increase with advancing stage of posterior vaginal wall prolapse
- Obstructed defecation symptoms show strongest correlation with posterior wall anatomy and also improve most after surgery
- Incontinence symptoms and anorectal prolapse are less specific to posterior vaginal wall pathology

C. What does this study add to what is already known?
• This study supports the view that posterior vaginal wall prolapse contributes to obstructed defecations symptoms

• Other than obstructed defecation symptoms increase along with the degree of posterior vaginal prolapse but their improvement is not specific to posterior compartment surgery
Abstract

Background
Defecation symptoms are common among women with pelvic organ prolapse. However, the relationship between posterior vaginal wall prolapse and defecation symptoms remains debatable. Even though there is a plausible biomechanical rationale for posterior wall prolapse to cause obstructed defecation, previous studies have drawn contradictory conclusions regarding the association.

Objective
We aimed to examine the association between posterior vaginal wall prolapse and defecation symptoms by assessing 1) does prevalence of defecation symptoms increase along with posterior wall prolapse severity, 2) is postoperative symptom improvement greater in women who underwent posterior compartment procedures in comparison to those who did not, and 3) is symptom improvement related to the symptom’s correlation with the degree of prolapse.

Study Design
We used data from a nationwide longitudinal cohort study with 3515 women undergoing pelvic organ prolapse surgery. We measured the prevalence of nine defecation symptoms at baseline and at 6 and 24 months after surgery using the short form of Pelvic Floor Distress Inventory. Baseline degree of prolapse was categorized in stages as defined by Pelvic Organ Prolapse Quantification System. The relationship between the degree of posterior wall prolapse and prevalence of bothersome defecation symptoms was studied with logistic regression and adjusted for patient characteristics and severity of anterior wall and apical prolapse. Generalized estimating
equations was used to assess the longitudinal change in symptom prevalence in groups of participants with and without repair for posterior vaginal compartment. Correlations between symptom improvement and symptom dependency on the degree of prolapse was assessed by calculating Pearson’s correlation coefficient.

Results
The stage of posterior wall prolapse (stage 2 versus stage 0) correlated with splinting, straining, incomplete evacuation, fecal incontinence of liquid stool, pain during defecation, fecal urgency and anorectal prolapse (adjusted odds ratios 2.7, 2.1, 2.0, 1.5, 2.1, 1.4 and 2.2 respectively; \(p<0.007 \) for all). Flatal incontinence and fecal incontinence of solid stool were not associated to the severity of posterior vaginal wall prolapse. Obstructed defecation symptoms (splinting, straining and incomplete evacuation) improved more in women undergoing posterior compartment surgery compared with women undergoing repair for other compartments. The greatest improvement at follow-up was observed for those symptoms that showed strongest association with the degree of prolapse at baseline.

Conclusion
Obstructed defecation symptoms are dependent on the posterior wall anatomy. Women presenting with posterior wall prolapse and these symptoms can expect to improve after surgery. Other defecation symptoms also improve after POP surgery, but they are not as specific to posterior wall anatomy as obstructed defecation symptoms.

Keywords
Pelvic organ prolapse; Posterior vaginal wall prolapse; Pelvic Floor Distress Inventory; Defecation; Obstructed defecation; Fecal incontinence

Introduction

Problems with defecation like obstructed defecation and anal incontinence are more common among women with pelvic organ prolapse (POP) than in general population.1,2 However, based on previous literature it is not clear, whether POP is the cause or a consequence of these symptoms, or whether they only share a common etiology.3

Biomechanically, it is plausible that posterior vaginal wall prolapse interferes with rectal evacuation resulting in obstructed defecation symptoms like splinting (need to digitally support vagina or perineum to assist defecation), straining to defecate and feeling of incomplete bowel evacuation. However, many studies have failed to reliably demonstrate a relationship between posterior wall prolapse and obstructed defecation symptoms.4–12 Some studies have reported an association between presence of posterior vaginal wall prolapse and obstructed defecation symptoms13,14, and a few studies have found a dose-response effect (higher risk for symptoms with increasing prolapse severity).15–20 None of these studies assessed whether the symptoms improved after the anatomical defect was repaired, which would serve as further evidence for
posterior vaginal wall prolapse being a contributing factor per se for obstructed defecation symptoms.

Association of posterior vaginal wall prolapse with other but obstructive defecation symptoms (i.e. fecal urgency, pain during defecation, symptoms of anorectal prolapse and anal incontinence) is less plausible and evidence scarce. The association may be due sharing a common cause, e.g. neuromuscular damage by obstetric trauma, rather than one being the cause for the other. Thus, restoring posterior vaginal wall anatomy may not relieve the symptoms.

We hypothesized that if posterior wall prolapse is a contributing factor for defecation symptoms, a dose-response relationship would exist: the greater the anatomical defect, the higher the symptom burden. Also, symptoms should improve after correction of posterior vaginal wall prolapse. Further, symptoms that are dependent on the anatomy should show greater improvement after surgery compared with those not related to anatomy.

The aim of this longitudinal cohort study was to study the association between posterior vaginal wall prolapse and defecation symptoms. We did this by quantifying the association between the degree of posterior vaginal wall prolapse and defecation symptoms included in the short form of Pelvic Floor Distress Inventory (PFDI-20). Further, we studied whether these symptoms improved more after posterior compartment surgery compared with surgery for other vaginal compartments. We also evaluated if individual symptom’s dependency on anatomy at baseline predicts the improvement of the symptom. We used data from a national population-based study comprising preoperative and follow-up details from 3515 women operated due to pelvic organ prolapse.
Materials and methods

Setting

The population of this longitudinal cohort study consists of participants in the FINPOP nationwide trial (ClinicalTrial.gov NCT02716506). The primary aim of the cohort is to assess effectiveness of pelvic organ prolapse surgery. FINPOP is organized and funded by Finnish Society for Gynecological Surgery.

We invited all Finnish hospitals performing POP surgery to recruit all of the patients operated for POP during 1.1.2015-31.12.2015. 41/45 (91%) centers participated including 5/5 (100%) university hospitals, 17/18 (94%) secondary care hospitals, 15/17 (88%) primary care hospitals and 4/5 (80%) private hospitals.

The study follows the ethical standards for human experimentation established by the Declaration of Helsinki of 1964, revised in 2013. The Research Ethics Committee of the Northern Savo Hospital District approved the study on 20th of May 2014 (Reference number 5//2014) and each participating hospital granted an approval for conducting the study.

Participants
We recruited participants only after the decision to operate was made and the decision to operate was not related to the trial. The surgeons made the decision on the method of POP surgery according to their normal practice. The inclusion criteria for the participants were: age more than 18 years; sufficient mental and psychological ability to understand study information and give consent; ability to communicate in written and oral Finnish or Swedish. Written informed consent was obtained from each patient. We excluded participants with missing data at baseline from this analysis.

Baseline characteristics and operative data

Participants’ baseline characteristics in the FINPOP cohort included medical history, history of previous pelvic surgery, height, weight, parity and smoking status. The trial also administered Pelvic Floor Distress Inventory (PFDI-20), Pelvic Organ Prolapse/Urinary Incontinence Sexual Questionnaire (PISQ-12) and a generic health-related quality of life instrument (15D). The surgeons assessed the degree of prolapse at baseline using a simplified Pelvic Organ Prolapse Quantification (POP-Q) system, as a single most distal point (in centimeters from hymen) for each three compartments of vagina (anterior, posterior and apical compartment).

Follow-up

Participants completed and returned PFDI-20, PISQ-12 and 15D questionnaires at 6 and 24 months after surgery. We also asked them if they had been operated for recurrence.

Data handling and analysis
The participant data was collected on standardized paper or electronic forms based on participants preference. Data collected in paper forms was entered in an electronic registry. Doctors recorded preoperative and operative data in electronic forms.

We categorized the baseline degree of posterior wall prolapse into 4 groups: stage 0, stage 1, stage 2 and stage 3-4 according to Pelvic Organ Prolapse Quantification System. We did not record total vaginal length, so we were not able to specify stage 4 separately.

PFDI-20 is a validated, condition-specific questionnaire including total of 20 questions related to pelvic floor function. Each question first asks whether patient has the symptom or not (“yes” or “no” response). If patient answers “yes”, she is asked to rate the degree of bother. Scale is as follows: 1 – not at all, 2 - somewhat, 3 – moderately, 4 – quite a bit. Nine defecation-related questions are: splinting, straining, incomplete emptying, fecal incontinence of solid stool, fecal incontinence of liquid stool, flatal incontinence, pain during defecation, fecal urgency and anorectal prolapse. Splinting, straining and incomplete evacuation were considered as obstructed defecation symptoms.

We calculated the proportions of patients with each symptom and symptom bother at baseline. We defined responses 3 (moderately) and 4 (quite a bit) as bothersome symptoms. We calculated the prevalence of bothersome symptoms at baseline by dividing the number of patients with bothersome symptoms by total number of patients at that time point.
We used binary logistic regression to assess the association between the degree of posterior vaginal wall prolapse and bothersome symptoms at baseline. Confounders (most distal point of anterior vaginal wall and apex, age, BMI, parity, previous hysterectomy and previous POP surgery) were selected on the basis of previous literature and clinical experience, i.e. factors associated with both the exposure and the outcome but not on the causal pathway, as motivated by Hernan et al. Nagelkerke’s R^2 was calculated to assess the model’s ability to predict the proportion of variance in defecation symptoms.

Population-averaged panel data models with generalized estimation equations (GEE) were fitted to evaluate the impact of surgery for posterior vaginal wall in improvement of symptoms over time. Specifically, we divided the population into two groups: 1) women who had a procedure for posterior vaginal wall as part of their operation and 2) women who did not have a procedure for posterior vaginal wall as part of their operation. To assess if symptoms improved more among women with posterior compartment surgery in comparison to women without posterior compartment surgery, we included time * group interaction in the model. The models were adjusted for confounders.

We assessed if dependency of each individual symptom on the anatomy of posterior vaginal wall correlated with the improvement of the same symptom after surgery (i.e. if the most dependent symptoms improved the most and the least dependent improved the least after surgery). Here, the adjusted ORs from baseline logistic regression (stage 2 versus stage 0) represented each symptom’s dependency on anatomy, and adjusted ORs from GEE (baseline versus six months)
represented each symptom’s improvement after surgery. We then calculated Pearson’s correlation coefficient (r) for symptom improvement versus dependency on anatomy.

We report mean and standard deviation (SD) for normally distributed continuous variables and median and interquartile range for variables not following normal distribution. We report OR estimates with 95% confidence intervals (CI). We considered p<0.05 as significant in all analyses.

Results

The entire FINPOP cohort included 3535 operations for 3515 women. This covered 83 % of the 4240 POP operations done in the whole country during the study period (National database: The Finnish Hospital Discharge Register of the National Institute for Health and Welfare). Population in this study consisted of 2924/3515 (83 %) participants with baseline patient questionnaires available for analysis. The flowchart and the data availability are presented in Figure 1. Table 1 presents demographic data at baseline.

2355/2924 (81%) operations were done using native tissue. Vaginal or abdominal mesh was used in 357 (12%) and 212 (7,3%) operations, respectively. 1424 (49%) operations included some procedure aimed to correct posterior vaginal wall, and in 539 cases the posterior vaginal wall was the only operated compartment. By 24 months follow-up, 165/2349 (7,0%) participants reported having had surgery for recurrent prolapse for any compartment. More details on the methods of surgery in FINPOP have been published previously.

25
At baseline, 2637 (90%) participants presented with at least one defecation symptom of any degree of bother and 1474 (50%) with at least one bothersome defecation symptom (responses “moderately” or “quite a bit”). 2123 (73%) participants presented with at least one obstructed defecation symptom of any degree of bother and 1063 (36%) participants with at least one bothersome obstructed defecation symptom. Baseline prevalence of defecation symptoms is presented in table 2.

The unadjusted OR for bothersome defecation symptoms increased linearly from posterior vaginal wall prolapse stage 0 to stage 2 for all symptoms except flatal incontinence and fecal incontinence of solid stool. Thereafter, prevalence did not increase along with the severity of posterior vaginal wall prolapse stage (figure 2, table 3). After adjusting for confounders, we observed strongest relationship between anatomy and splinting followed by straining, incomplete evacuation, pain during defecation and anorectal prolapse. Association was weaker for fecal urgency and incontinence of liquid stool. (table 3) We observed no correlation between posterior vaginal wall prolapse severity and incontinence of solid stool or flatus.

Nagelkerke R^2 for each symptom was as follows: splinting 0.09, straining 0.07, incomplete evacuation 0.09, incontinence of liquid stool 0.03, pain during defecation 0.04, fecal urgency 0.02 and anorectal prolapse 0.04.

The impact of posterior compartment surgery on symptom improvement over time is shown in figure 3. The baseline prevalence of all symptoms was higher among women who underwent surgery including a procedure for posterior compartment compared with the group of women
without a procedure for posterior compartment. In both groups, the prevalence of each symptom decreased significantly during the six months follow-up ($p \leq 0.004$). At 24 months, symptom improvement remained significantly better compared with baseline except for anorectal prolapse among women without a procedure for posterior compartment ($p \leq 0.004$). The time*group interaction was significant for ODS symptoms, fecal incontinence with liquid stool and flatal incontinence and women with posterior compartment surgery experienced greater improvement in these symptoms compared with women without posterior compartment surgery. (figure 3)

Symptom dependency on anatomy at baseline (stage 2 vs stage 0) correlated strongly with relative symptom improvement at six months follow-up. Similar correlations were observed in the entire population and in women who underwent surgery for posterior compartment ($r=0.77$ and $r=0.76$, respectively). This indicates that the symptoms with the strongest dependency on anatomy showed the greatest relative improvement after anatomy was restored (figure 4).

Comment

Our data provides evidence on posterior vaginal wall prolapse being a contributing factor for obstructed defecation symptoms. Splinting, straining and incomplete evacuation showed a linear dose-response effect of increasing likelihood from posterior vaginal wall stage 0 to stage 2. These symptoms were also more likely to improve after surgery including a procedure for posterior compartment than after surgery for other vaginal compartments. Furthermore, these symptoms showed strongest correlation with the degree of prolapse at baseline and were also more likely to improve after surgery compared with the other symptoms.
These findings, together with the biomechanical rationale for rectocele interfering with successful defecation, support the hypothesis that posterior vaginal wall prolapse results in obstructed defecation symptoms and not vice versa. Although this study cannot prove causality, it is likely that the posterior wall anatomy is either a contributory causal factor, modifies the effect of independent anorectal pathology, or both. Greater symptom improvement after posterior wall repair compared with no repair is hard to reconcile if the direction of causality was the opposite.

On average, women with at least stage 2 posterior vaginal wall prolapse were almost three times more likely to report splinting and two times more likely to report straining and incomplete evacuation compared with women having normal posterior vaginal wall anatomy. The linear increase in symptom prevalence was present from stage 0 to stage 2. Our data does not explain why women with stage 3-4 prolapse did not report more symptoms in comparison to women with stage 2 prolapse but this is in concordance with a study by Tan et al. The reason may lie in different psychometric profiles of women with advanced prolapse: patients presenting with advanced prolapse might tolerate more severe symptoms and also report less bother. Also, it is possible that intensifying symptoms caused by the growing bulge begin to dominate the defecation symptoms reducing their relative meaning.

Prevalence of pain during defecation and anorectal prolapse symptoms are not as specific to posterior vaginal wall pathology as obstructed defecation symptoms. They showed increased symptom burden with advancing stage of posterior wall prolapse. They were also more common at the baseline among women who had posterior compartment repair. However, these symptoms
showed comparable improvement regardless of the repaired compartment implying that they may be related to pelvic organ prolapse in general.

The association between anal incontinence symptoms and posterior wall prolapse was weak. Only incontinence of liquid stool correlated with the degree of prolapse, and it improved more with posterior compartment repair compared with other compartment repair. Incontinence of flatus and solid stool did not correlate with the anatomy, they improved less after surgery, and the improvement occurred regardless of the repaired compartment. Thus, we postulate that although incontinence symptoms improve after POP surgery, they are likely caused by other pathology such as obstetric anal sphincter or nerve injury, and the prolapse may intensify the effect.

Previous studies have drawn inconsistent conclusions on association between posterior wall prolapse and obstructed defecation symptoms. Some authors have found a significant, but weak correlation between increasing posterior wall prolapse stage and obstructed defecation symptoms.15–20 Saks et al and Fialkow et al found an association between presence but not the severity of posterior vaginal wall prolapse and obstructed defecation symptoms.13,14 However, many studies have failed to find any relationship.4–12 Often the authors have concluded that the lack of this relationship suggests posterior wall prolapse not being a causal factor behind obstructed defecation symptoms.3,6,10,13 The previous data regarding the association of posterior wall prolapse and other than obstructive defecation symptoms is limited. Saks et al did not find a significant correlation, but their sample size was only 260.13
The discrepancies between this study and those not finding a significant association probably derives from different inclusion criteria and sample sizes. Studies not finding an association have had smaller study populations11,12 or have not included patients with stage 0 and 1 and therefore lacked sufficient contrast.4 Our large sample size gave the means to analyze the dependency in finer detail dividing the material in four categories and not just in dichotomy. Our population included the whole spectrum from normal posterior wall to stage 4 and the positive linear correlation between stage and symptoms was evident only between stages 0-2. Excluding lesser degrees of posterior wall prolapse would stifle the findings also in this cohort.

While our findings suggest that a causal relationship between posterior vaginal wall prolapse and obstructed defecation symptoms may exist, it is important to acknowledge that the applied multivariable models explained only 2-9% of observed variation in the outcome. Further, improvement of these symptoms after surgery was incomplete, and women without any posterior wall defect also had these symptoms and improved after surgery. These facts indicate that there are also other factors explaining the defecation symptoms, and the factors likely have interactions, which are difficult to assess. Intussusception, often resulting in obstructed defecation and fecal urgency, and anal sphincter defects, risk factor for fecal incontinence, are common in POP population.2,26 Furthermore, functional gastrointestinal disorders like functional or slow transit constipation, may explain some of the defecation symptoms also in POP population.

The most important limitation of this study is possible bias in data regarding improvement after repair. First, we had no data on the improvement of anatomy after surgery. Second, the improvement in reported symptoms is not solely caused by improvement in the state of the
disease. Non-specific effect such as regression towards the mean, and placebo effect can contribute to the change. However, there is no reason to believe that non-specific factors impact one symptom more than the others. Thus, the relative improvements seen at six months are likely similarly biased for all symptoms.

Further, we had multiple doctors performing clinical assessments and that has probably increased the variation (i.e. random measurement error) in grading the degree of the prolapse. Because this was likely random, it does not lead to systematic bias but may have caused imprecision (i.e. wider confidence intervals) in the estimates.

Heterogeneity in baseline severity and in surgical interventions limits the interpretation of improvement of symptoms. This is not a limitation regarding the correlation analysis, but we want to emphasize that the observed changes in symptoms should not be generalized for individual procedures. Furthermore, the cohort consists solely of patients who were operated, and the results may not be directly applicable to patients who do not meet indications for surgery.

Strengths of our study are: a large, representative population-based cohort; longitudinal design allowing assessment of symptom improvement and correlation with anatomy; and a validated questionnaire used to measure the symptom burden.

To conclude, obstructed defecation symptoms are dependent on the posterior vaginal wall anatomy. Women presenting with posterior wall prolapse and these symptoms can expect to improve after surgery. Other defecation symptoms also improve after POP surgery, but they are not as specific to the posterior vaginal wall prolapse as obstructed defecation symptoms are. In
particular, anorectal prolapse, fecal urgency, and anal incontinence symptoms should raise a clinical suspicion of an underlying anorectal pathology.

Acknowledgments

The first author has received grants from Finnish Cultural Foundation, The Finnish Medical Foundation and State Research Funding/Hospital District of Northern Savo.

References

TABLE 1 Baseline patient characteristics. N=2924

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
<th>Data missing, N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age, years (SD)</td>
<td>64 (11)</td>
<td>2 (0.1)</td>
</tr>
<tr>
<td>Mean BMI, kg/m2 (SD)</td>
<td>27 (4.1)</td>
<td>99 (3.4)</td>
</tr>
<tr>
<td>Parity, median (IQR)</td>
<td>2 (2 - 3)</td>
<td>47 (1.6)</td>
</tr>
<tr>
<td>Prior hysterectomy, n (%)</td>
<td>974 (33)</td>
<td>0</td>
</tr>
<tr>
<td>Prior prolapse surgery, n (%)</td>
<td>731 (25)</td>
<td>0</td>
</tr>
<tr>
<td>Prior rectocele repair, n (%)</td>
<td>349 (12)</td>
<td>0</td>
</tr>
<tr>
<td>Diabetes, n (%)</td>
<td>283 (10)</td>
<td>0</td>
</tr>
<tr>
<td>Current smoker, n (%)</td>
<td>255 (8.8)</td>
<td>11 (0.4)</td>
</tr>
<tr>
<td>Laxative use, n (%)</td>
<td>190 (6.5)</td>
<td>0</td>
</tr>
<tr>
<td>POP-Q stage, posterior vaginal wall</td>
<td>105 (3.6)</td>
<td></td>
</tr>
<tr>
<td>Stage 0, n (%)</td>
<td>728 (26)</td>
<td></td>
</tr>
<tr>
<td>Stage 1, n (%)</td>
<td>451 (16)</td>
<td></td>
</tr>
<tr>
<td>Stage 2, n (%)</td>
<td>1220 (43)</td>
<td></td>
</tr>
<tr>
<td>Stage 3-4, n (%)</td>
<td>420 (15)</td>
<td></td>
</tr>
<tr>
<td>POP-Q point Ba ≥ 0, n (%)</td>
<td>1851 (66)</td>
<td>96 (3.3)</td>
</tr>
<tr>
<td>POP-Q point Bp ≥ 0, n (%)</td>
<td>1259 (45)</td>
<td>105 (3.6)</td>
</tr>
<tr>
<td>POP-Q point C ≥ 0, n (%)</td>
<td>1134 (41)</td>
<td>130 (4.4)</td>
</tr>
</tbody>
</table>

SD, standard deviation; BMI, body mass index; POP-Q, Pelvic Organ Prolapse Quantification
TABLE 2 Prevalence and degree of bother for individual defecation symptoms at baseline. N=2924.

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Present</th>
<th>Symptom bother</th>
<th>Splinting</th>
<th>Straining</th>
<th>Incomplete evacuation</th>
<th>FI, solid stool</th>
<th>FI, liquid stool</th>
<th>FI, flatus</th>
<th>Pain during defecation</th>
<th>Fecal urgency</th>
<th>Anorectal prolapse</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>1337 (47%)</td>
<td>1358 (48%)</td>
<td>1150 (41%)</td>
<td>2309 (81%)</td>
<td>1355 (49%)</td>
<td>1071 (38%)</td>
<td>2157 (76%)</td>
<td>1349 (48%)</td>
<td>2160 (76%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>42 (1.5%)</td>
<td>14 (0.5%)</td>
<td>53 (1.9%)</td>
<td>7 (0.2%)</td>
<td>32 (1.2%)</td>
<td>63 (2.2%)</td>
<td>6 (0.2%)</td>
<td>81 (2.9%)</td>
<td>52 (1.8%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not at all</td>
<td>708 (25%)</td>
<td>767 (27%)</td>
<td>963 (34%)</td>
<td>357 (13%)</td>
<td>825 (30%)</td>
<td>1046 (37%)</td>
<td>450 (16%)</td>
<td>898 (32%)</td>
<td>435 (15%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Somewhat</td>
<td>492 (17%)</td>
<td>483 (17%)</td>
<td>494 (18%)</td>
<td>130 (4.6%)</td>
<td>388 (14%)</td>
<td>443 (16%)</td>
<td>174 (6.1%)</td>
<td>350 (13%)</td>
<td>128 (4.5%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderately</td>
<td>241 (8.5%)</td>
<td>211 (7.4%)</td>
<td>151 (5.4%)</td>
<td>51 (1.8%)</td>
<td>167 (6.0%)</td>
<td>191 (6.8%)</td>
<td>61 (2.1%)</td>
<td>124 (4.4%)</td>
<td>56 (2.0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quite a bit</td>
<td>104 (3.6%)</td>
<td>91 (3.1%)</td>
<td>113 (3.9%)</td>
<td>70 (2.4%)</td>
<td>157 (5.4%)</td>
<td>110 (3.8%)</td>
<td>76 (2.6%)</td>
<td>122 (4.2%)</td>
<td>93 (3.2%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All values reported as number (percentage)

FI, fecal incontinence
TABLE 3 Regression analysis to calculate odds ratio for each bothersome defecation symptom by increasing prolapse stage at baseline. Stage 0 used as reference.

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Degree of prolapse</th>
<th>N symptom / N total (%)</th>
<th>Unadjusted OR (95% CI)</th>
<th>p<sup>c</sup></th>
<th>Adjusted OR (95% CI)</th>
<th>p<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Splinting</td>
<td>Stage 0</td>
<td>101 / 704 (14)</td>
<td>1.0</td>
<td><0.001</td>
<td>1.0</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Stage 1</td>
<td>81 / 423 (19)</td>
<td>1.4 (1.0-1.9)</td>
<td>1.5 (1.0-2.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stage 2</td>
<td>408 / 1191 (34)</td>
<td>3.1 (2.4-4.0)</td>
<td>2.7 (2.1-3.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>>/=Stage 3</td>
<td>133 / 399 (33)</td>
<td>3.0 (2.2-4.0)</td>
<td>2.8 (2.0-3.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Straining</td>
<td>Stage 0</td>
<td>108 / 712 (15)</td>
<td>1.0</td>
<td><0.001</td>
<td>1.0</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Stage 1</td>
<td>84 / 425 (20)</td>
<td>1.4 (1.0-1.9)</td>
<td>1.3 (1.0-1.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stage 2</td>
<td>375 / 1188 (32)</td>
<td>2.6 (2.0-3.3)</td>
<td>2.1 (1.6-2.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>>/=Stage 3</td>
<td>115 / 406 (28)</td>
<td>2.2 (1.6-3.0)</td>
<td>1.8 (1.3-2.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incomplete</td>
<td>Stage 0</td>
<td>99 / 696 (14)</td>
<td>1.0</td>
<td><0.001</td>
<td>1.0</td>
<td><0.001</td>
</tr>
<tr>
<td>evacuation</td>
<td>Stage 1</td>
<td>69 / 423 (16)</td>
<td>1.2 (0.8-1.6)</td>
<td>1.2 (0.8-1.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stage 2</td>
<td>354 / 1184 (30)</td>
<td>2.6 (2.0-3.3)</td>
<td>2.0 (1.5-2.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>>/=Stage 3</td>
<td>114 / 407 (28)</td>
<td>2.3 (1.7-3.2)</td>
<td>2.0 (1.4-2.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incontinence,</td>
<td>Stage 0</td>
<td>40 / 708 (5.6)</td>
<td>1.0</td>
<td>0.24</td>
<td>1.0</td>
<td>0.13</td>
</tr>
<tr>
<td>solid stool</td>
<td>Stage 1</td>
<td>22 / 436 (5.0)</td>
<td>0.9 (0.5-1.5)</td>
<td>0.8 (0.5-1.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stage 2</td>
<td>89 / 1197 (7.4)</td>
<td>1.3 (0.9-2.0)</td>
<td>1.3 (0.9-2.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>>/=Stage 3</td>
<td>25 / 413 (6.1)</td>
<td>1.1 (0.6-1.8)</td>
<td>1.0 (0.6-1.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incontinence,</td>
<td>Stage 0</td>
<td>111 / 692 (16)</td>
<td>1.0</td>
<td>0.001</td>
<td>1.0</td>
<td>0.002</td>
</tr>
<tr>
<td>liquid stool</td>
<td>Stage 1</td>
<td>77 / 422 (18)</td>
<td>1.2 (0.8-1.6)</td>
<td>1.2 (0.9-1.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symptom</td>
<td>Stage 0</td>
<td>Stage 1</td>
<td>Stage 2</td>
<td>Stage 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flatus incontinence</td>
<td>1.0</td>
<td>1.2</td>
<td>1.4</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pain during defecation</td>
<td>1.0</td>
<td>1.5</td>
<td>2.6</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faecal urgency</td>
<td>1.0</td>
<td>1.1</td>
<td>1.6</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anorectal prolapse</td>
<td>1.0</td>
<td>1.5</td>
<td>2.2</td>
<td>1.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OR, odds ratio; CI, confidence interval; BMI, body mass index

1 Posterior vaginal wall stage by Pelvic Organ Prolapse Quantification; 2 prevalence of bothersome symptom (answers moderately and quite a bit); 3 binary logistic regression; 4 binary logistic regression, adjusted for most distal point of anterior wall and apex, age, BMI, parity, previous hysterectomy, previous POP surgery
FIGURE 1

Cohort flowchart

Number of patients enrolled and analyzed at different time points.

POP, pelvic organ prolapse

FIGURE 2

Prevalence of bothersome symptoms by prolapse stage at baseline.

Crude prevalence of bothersome symptoms on y-axis according to the stage of prolapse (x-axis).

Bothersome symptom defined as answers “moderate” or “quite a bit” for symptom bother (assessed by using short form of Pelvic floor distress inventory, PFDI-20). Stage defined according to Pelvic Organ Prolapse Quantification (POP-Q) system.

FI, fecal incontinence

FIGURE 3

Impact of posterior compartment prolapse surgery on the prevalence of bothersome defecation symptoms during the follow-up

The bars denote 95% confidence intervals for symptom prevalence.

* indicates \(P<0.05 \), NS indicates non-significant \((P>0.05) \) for between-group comparison at different time-points
FIGURE 4

Association between symptom’s dependency on anatomy and symptom improvement.

Both axes shown on a logarithmic scale. On Y-axis, adjusted odds ratios for bothersome symptoms with stage 2 prolapse at baseline (stage 0 as reference). On X-axis, adjusted odds ratio for symptom prevalence at 6 months follow-up on (baseline as reference): graph on the left includes the entire population; graph on the right includes patients with surgery for posterior compartment. Higher odds ratio at baseline indicates stronger correlation between symptom and anatomy. Lower odds ratio at follow-up indicates greater relative improvement of symptoms.
4240 operations for POP in Finland during 2015

n= 3015 women recruited to FF/POP cohort

n=2924 population of this study

n=2526 (86%) analyzed at 6 months

n=2348 (86%) analyzed at 12 months

611 excluded from this study for no baseline data

m=338 missing data at 6 months

m=575 missing data at 12 months