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A DYNAMIC THEORY OF ECONOMICS:  
WHAT ARE THE MARKET FORCES? 

Alia Asha DANNENBERG, Matti ESTOLA and Anna DANNENBERG 

Abstract. The main weakness in the neoclassical theory of economics is its 
static nature. By a static model one cannot explain observed time paths of 
economic quantities, like the flows of production of firms, the flows of 
consumption of consumers, and the prices of goods. The error in the 
neoclassical framework is that there economic units are assumed to be in 
their optimum state and thus not willing to change their behavior. Therefore, 
in neoclassical models a static equilibrium prevails. In this paper, the 
authors change this assumption so that economic units are assumed to be 
willing to improve their current state that may not be the optimal one. In this 
way, one can explain economic dynamics where every economic unit is 
changing its behavior towards improving its welfare. The authors define the 
economic forces acting upon the production of firms, the consumption of 
consumers, and the prices of goods. They show that in this dynamic system, 
business cycles and bankruptcies of firms emerge in a natural way like in the 
real world. 
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1. Introduction 

The fundamental weakness in current macroeconomic theory is the 
absence of a consistent micro level foundation. Here we present a new 
microeconomic theory where the macro state of a system is the aggregate 
of states of the micro units as proposed by Lux and Westerhoff (2009) in 
the spirit of classical analytical mechanics. Throughout our framework, we 
define and apply a consistent unit system for economics presented by De 
Jong (1967), comparable to that of physics. 
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As e.g. Lux and Westerhoff (2009) state, the neoclassical economic 
theory is widely known of its inability to model the behavior of real 
economic phenomena. The most fundamental shortcoming in the 
prevailing neo-classical framework, acknowledged e.g. by Mas-Colell et 
al. (1995), is that it is essentially static in nature, whereas real economic 
systems are always dynamic. There have been attempts to dynamize the 
neoclassical theory for consumers by e.g. Ramsey (1928); Cass (1965); 
Koopmans (1965) and for firms by Evans (1924), but these theories are, 
according to e.g. Estola (2013), inconsistent with the static neo-classical 
framework. Within the neoclassical framework, economic units are 
assumed to be in their optimum state, resulting in that the equations do not 
cover situations outside the optimum. 

This article introduces a dynamic theory of economics, compatible 
with real economic phenomena. It can be considered as a dynamic 
extension to the neoclassical framework, including the latter one as a 
special case with a static setup. Our theory can explain observed dynamic 
economic phenomena also outside optimum states. Therefore, it can be 
used to simulate economic systems in a realistic way such as economic 
crises that the neo-classical framework is unable to forecast or handle, see 
Lux and Westerhoff (2009). Our theory has been tested with extensive 
simulations and two empirical evaluations, and it has been found consistent 
with real data, as shown in Estola and Dannenberg (2012); Estola (2015). 

2. Firm and production 

In building our theory, let us begin from the basics. Let the profit Π 
with unit €/time of a multi-product firm under perfect competition be 
 Π = ∑ 푃 푄̇ − 퐶 푸̇ , (1) 
 

where 푄̇ 	is the flow of production of good k with unit	푝푖푒푐푒 /푡푖푚푒, 푃 the 
price of product k with unit € 푝푖푒푐푒⁄ , and 퐶 푸̇ 	with unit € 푡푖푚푒⁄  the 
costs of the firm at the production flow vector 푸̇ = 푄̇ , … , 푄̇ . Now, the 
optimum conditions are 

 Π
̇ = 푃 − 푸̇

̇ = 0,			푘 = 1, … ,퐾	,  (2) 

where 휕퐶 푸̇ 휕푄̇ 	⁄ with unit € 푝푖푒푐푒 	⁄ denotes marginal costs. 
This is the neoclassical optimum that corresponds to the “zero-force” 

situation in Newtonian mechanics (Newton’s first law): “A body does not 
change its state of motion unless there is a force acting upon it”. If the 
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flows of production of a firm yield the maximum profit, the firm does not 
want to change them. But what if		푃 − 휕퐶 푸̇ 휕푄̇⁄ ≠ 0? Then the firm is 
not in its optimum and, according to Fisher (1983); Varian (2006), the firm 
should either increase or decrease its flow of production of good k to gain 
higher profit. For a profit-seeking firm, there is then a “force” that drives it 
to adjust its flow of production. In the neoclassical theory, these economic 
forces have been acknowledged but never defined exactly which, according 
to Mirowski (1989), has led to the static framework. 

Definition 1: Quantity	퐹 ̇ = 푃 − 휕퐶 푸̇ 휕푄̇⁄  is the economic force 
acting upon the production of good k of the firm. The unit of this 
economic force is the same as the unit of price, i.e., € 푝푖푒푐푒⁄ . 

 

Definition 2:	퐹 ̇ = 푚 ̇ 푄̈ . Economic force퐹 ̇ causes either positive or 
negative acceleration on production of good 푘; if 퐹 ̇ > 0 then 
푄̈ > 0, and vice versa. 

This is similar with Newton’s second law.	푄 	is the accumulated 
amount of production of good k, 푄̈ 		the acceleration of accumulated 
production, and 푚 ̇ the inertia of production1 (it takes time to speed up or 
wind down production). The unit of this positive inertia term is	 
€	 × 푡푖푚푒 푝푖푒푐푒⁄ . 

The work done by the economic force acting upon production can be 
calculated like the work of physical force, see Estola and Dannenberg 
(2016): 

																				∆푊 = 퐹 ̇ ∙ 푑푸

= 푚 ̇ 푄̈ 푑푄

= 푚 ̇
푑푄̇
푑푡

푑푄 = 푚 ̇
푑푄
푑푡

푑푄̇

=
1
2
푚 ̇ 푄̇ ,

−
1
2
푚 ̇ 푄̇ , .																																																																(3) 

                                                             
1 We are assuming that inertias of production and consumption are time-

independent. Time-dependent masses are possible, though would complicate the 
equations. 
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Eq. (3) suggests that kinetic energy of production exists in the 
production process. The unit of economic kinetic energy and work is €, see 
e.g., Dragulescu and Yakovenko (2000); Kusmartsev (2011). On the other 
hand, work	∆푊 	is 
 

∆푊 = 퐹 ̇ 푑푄
,

,

= 푃 푄̇ − 푄̇
휕퐶
휕푄̇

푑푡 = 푄̇ 푃 −
휕퐶
휕푄̇

푑푡, 
 

where ∫ 푃 푄̇ 푑푡 is the revenues from sales of good 푘 and the term 

∫ 푄̇ 휕퐶 휕푄̇⁄ 푑푡 represents the costs within the time interval	∆푡 = 푡 − 푡  
if unit cost equals marginal cost. If푃 > 휕퐶 휕푄̇⁄ , force 퐹 ̇  does work to 
change the kinetic state of production, increasing the flow of production 
(note that 푄̇ ≥ 0). However, if 푃 < 휕퐶 휕푄̇⁄  production does work 
against the force퐹 ̇ . 

3. Consumer and consumption 

For a consumer, the corresponding definitions are the following: 
Definition 3: There exists a force acting upon the consumption of a 

consumer of good k: 퐹 ̇ = 휕퐻 푿̇ 휕푋̇⁄ − 푃 . 

This is similar with Definition 1.	퐻(푿̇) with unit € 푡푖푚푒⁄  is the 
willingness to pay of a consumer for the consumption flow vector	푿̇, 
and	휕퐻 푿̇ 휕푋̇⁄ 	the marginal willingness to pay of the consumer that 
corresponds to the marginal costs of a firm, see Dannenberg and Estola 
(2018). The consumer surplus (measured in unit€ 푡푖푚푒⁄  like the profit of a 
firm) is 휙 = 퐻 푿̇ − ∑ 푃 푋̇ , and its optimum corresponds to the zero 
force acting upon consumption, i.e., 퐹 ̇ = 0	 ⇔ 	휕퐻 푿̇ 휕푋̇⁄ = 푃 . 
Consumers’ marginal willingness to pay for a good can be measured, e.g., 
by making a consumer survey, see Cameron and James (1987). 
 
Definition 4: The force acting upon consumption causes either positive or 

negative acceleration in consumption, i.e.,	퐹 ̇ = 푚 ̇ 푋̈ . 
This is similar with Definition 2. 푋̈  is the acceleration of 

consumption of good 푘 andthe consumption of good k has kinetic 
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energy		 푚 ̇ 푋̇ . Since according to e.g. Dannenberg and Estola (2018) 
the theories of a firm and a consumer are symmetric and have the same 
mathematical form, similar work effects for force 퐹 ̇ 	are obtained for 
consumer dynamics. 
 

4. Market mechanism as a spring system 

Let us consider a simple physical problem: two masses, 
say	푚 	and	푚 , are attached to each other with a spring with spring 
constant k, length L and rest length zero. 

 
Figure 1. A simple spring system. 

The masses have initial velocities 푋̇  and 푄̇  towards the direction of 
the symmetry axis. Moreover,	푚 	is drawn by force	퐹 	and there is 
dragging force −	퐹 		affecting	푚 . Figure 1 illustrates the setup. The 
forces are, according to Hooke’s law, 

																																				푚 푄̈ = 퐹 − 퐹 ,  (5) 

																																			푚 푋̈ = 퐹 − 퐹 ,  (6) 

																															퐹 = 푘퐿 = 푘(푋 − 푄).  (7) 
Now one can calculate the time evolution of the system. 
As Definitions 1 and 3 state, the forms of the economic forces are 

similar with the spring forces. Most notably, price	푃 	resembles the 
harmonic force퐹 that in economics connects production with consumption. 
We observe the following similarities: (i)	퐹 	~	푃 . (ii) 퐹 	~ 	휕퐶 푸̇ 휕푄̇⁄ , 
and 퐹 	~ 	휕퐻 푿̇ 휕푋̇⁄ . Marginal costs and marginal willingness to pay are 
external forces. (iii) The time derivative of Eq. (7) yields the law of 
demand and supply	푃̇ = 푘 푋̇ − 푄̇ 	that relates price changes to excess 
demand or supply as shown e.g. by Samuelson (1941, 1942). 
Forces		휕퐶 푸̇ 휕푄̇⁄  and		휕퐻 푿̇ 휕푋̇⁄  depend on the corresponding 
velocities. (iv) Natural constraints are	푋̇ ≥ 0,푄̇ ≥ 0, and	푃 ≥ 0 because 
it is impossible to produce or consume negative amounts of goods or pay 
negative prices. 
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Definition 5: Price	푃 	is a harmonic force that connects the flows of 
production and consumption. 

Recall Hooke’s law and Definitions 1 and 3. Price 푃 	is an external 
force for individual consumers and firms because they all participate on 
determining the “right” price. 
Definition 6: For each action, there is equal reaction in opposite direction. 

The law of mutual forces of action and reaction (Newton’s third law) 
holds in economics as well. The sum of forces of a closed system is zero. 
However, most economic systems are open, as is our simulation example. 
The whole real global economy is naturally a closed system. 

 

5. Simulated economic crises 

Now, one can construct an arbitrarily large system consisting 
of	푖 = 1, … , 퐼	firms,	푗 = 1, … , 퐽		consumers and		푘 = 1, … ,퐾	goods. The 
equations governing the dynamics are 

 

                                 	푚 ̇ , 푄̈ , = 푃 −
휕퐶 푸̇
휕푄̇ ,

,																																											(8) 

																																							푚 ̇ , 푋̈ , =
휕퐻 푿̇
휕푋̇ ,

− 푃 ,																																											(9) 

                                    
1
푘

푃̇ = 푋̇ , − 푄̇ , .																							(10) 

The law of demand and supply in Eq. (10) is familiar from the neo-
classical theory, see e.g. Samuelson (1941, 1942). Equations governing 
production (8) and consumption (9) do not exist in the neo-classical theory, 
but they are fundamental in the dynamic theory of economics, see Estola 
and Hokkanen (2008); Estola (2017). The effects of production and 
consumption on prices cannot be treated separately but by using the whole 
system. The neoclassical optimum is obtained by setting all masses 
푚 ̇ ∧ ̇ → 0 and 1 푘 → 0⁄ . 

For simulating economic crises, we use a standard cost function 
퐶 푸̇ = 퐴 + ∑ 퐵 , 푄̇ , + 퐷 , 푄̇ ,  for firm i, where 퐴  represents fixed 
costs and 퐵 , , 퐷 ,  are the constants of variable costs. Each firm produces 
three randomly chosen products. Moreover, we use utility function for 
consumer 푗 
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푈 = 푢 1 − 푒푥푝 −퐸 , 푋̇ , 푋̇ , + 1 − 푒푥푝 −퐸 , 푋̇ , 푋̇ , + ⋯

+ 1 − 푒푥푝 −퐸 , 푋̇ , 푋̇ ,  

= 푢 1 − 푒푥푝 −퐸 , 푋̇ , 푋̇ ,  
 

that obeys positive and decreasing marginal utility for all goods  
푘 = 1, … ,퐾,  

 

휕푈
휕푋̇ ,

= 푢
퐸 ,

푋̇ ,
푒

,
̇ ,
̇ , > 0,

휕 푈
휕푋̇ ,

= −푢
퐸 ,

푋̇ ,
푒

,
̇ ,
̇ , < 0.	 

 

Constant	퐸 ,  measureshow much consumer j prefers good 푘 and 
푋̇ ,  is the initial consumption of good 푘 of consumer 푗. Our utility 
function has some advantages over the usual logarithmic utility functions 
used by e.g. Varian (2006), most notably that utility can never  
be infinite.	푈 = 0 if 푋̇ , = 0	∀	푘 and the maximum of 푈  is 퐾푢  if 
푋̇ , = ∞	∀	푘. This function is realistic for people’s real consumption. 

The willingness to pay function of consumer 푗 for his/her 
consumption flow vector 푿̇  is 퐻 푿̇ = 휂 (푀 )푈 (푿̇ ), where 휂  with unit 
€/푢푡푖푙	is the utility-money conversion factor of consumer 푗, 

 

휂 = 퐹 1 − 푒푥푝 −퐺 푀 < 푀 >⁄ . 

Factor 휂  obeys the law of decreasing marginal utility of money 
assumed e.g. by Bernoulli (1738); von Neumann and Morgenstern (1953). 
The bigger is 휂 , the more consumer 푗 is willing to pay for his consumption 
flow vector	푿̇ , that is, the more he/she values consumption over saving. 
The bigger are positive constants	퐹 , 퐺 	and the higher is the income ratio 
of consumer 푗 to average income, 푀 /< 푀 >, the more consumer j prefers 
spending over saving.	푀 = 푀 + 휌 푟푊 		is the income of consumer 푗 that 
consists of labor income	푀 	and interest earnings or payments on 
wealth	푟푊  depending on whether 푊 > 0 or 푊 < 0. The maximum of 휂  
is 퐹  if	푀 = ∞, and the minimum of 휂  is 0 if	푀 = 0. We assume enough 
consumers that the effect of the income of consumer 푗 on the average 
income can be neglected. Then we get 
휕휂
휕푀

= 퐹
퐺

< 푀 >
푒 > 0,					

휕 휂
휕푀

= −퐹
퐺

(< 푀 >) 푒 < 0. 
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Thus, with higher income consumer 푗	is willing to pay more for 
his/her consumption flow vector	푿̇ , but raising income increases factor 휂  
in a decreasing way (see Dannenberg and Estola (2018) for details). For 
simplicity, the same rate is assumed for interest revenues and costs 
and	휌 	is a consumer specific factor that magnifies or dilutes the wealth 
effect if	휌 > 1 or 휌 < 1.2 

The consumer spending problem is an open optimization problem 
with soft boundaries like the optimization problem of a firm, see 
Dannenberg and Estola (2018). Consumers may use credit or spend only a 
part of their income, depending on their marginal willingness to pay and 
the prices of goods. The marginal willingness to pay 휕퐻 (푿̇ ) 휕⁄ 푋̇ , 	is 
calculated from the willingness to pay function	퐻 푿̇ = 휂 (푀 )푈 (푿̇ ). 
“Masses”		푚 ̇ , ,푚 ̇ ,  are the inertias of consumption and production, 
and	푘 	is the spring constant of price 푃 . 

 
Figure 2. (a) GDP and central bank interest rate of the simulated economy. 
Lowering interest rate temporarily increases GDP. (b) Capitals of firms. If 
the capital of a firm decreases to zero, the firm is declared into bankruptcy. 
The amount of bankruptcies affects the interest rate adjusted by central bank. 

                                                             
2 The units of our parameters and new functions are: [푈 ∧ 푢 ]:	푢푡푖푙 푡푖푚푒⁄ ;	[휂 ∧

퐹 ]:	€ 푢푡푖푙⁄ ; [푀 ∧푀 ]:	€ 푡푖푚푒⁄ ; [푊 ]: €; [푟]:	1 푡푖푚푒⁄ , and	퐸 , , 퐺 , 휌  are pure numbers. 
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Figure 3. (a) Production, (b) consumption and (c) price of goods in the 
simulated economy. A business cycle of 300-500 days is clearly visible in 
consumption. Production and prices follow consumption, but they are slower 
to react to changes in the market. 

 
With fixed initial conditions	푋̇ , ,푄̇ , 		and		푃 ∀	푖, 푗, 푘,	one can 

solve the dynamics of the system by numerical simulations. For simplicity, 
we set the initial wealth of consumer j to zero,	푊 = 0, and the firms have 
randomly distributed initial capitals. The system is open because income 
and interest earnings come from outside the system, and costs and interest 
payments go outside the system; it is possible, though, to make the system 
closed. Unlike many economic models, bankruptcies are allowed: in this 
our first approximation model, a firm that loses all of its capital is declared 
into bankruptcy and taken instantly out of the market by setting its 
production to zero. Moreover, there is an exogenous “central bank” that 
sets the interest rate r by economic conditions, basically based on the 
bankruptcy rate of firms. 
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In our simulations, we have created an economy of 100 firms,  
50 goods and 5000 consumers and simulated it for 7200 days. All 
parameters in the model are balloted from a uniformly distributed interval 
before every simulation, and they are not changed during the simulation. 
The masses of production are assumed roughly ten times bigger than those 
of consumption. The model GDP is calculated as 퐺퐷푃 = ∑ ∑ 푃 푄̇ , . 

Figures 2 and 3 illustrate the results. The most notable result is that 
from the complexity of many interacting agents, business cycles emerge 
naturally. This can be understood by the physical model in Figure 1 
because it is well-known that the adjustment in a spring system finds its 
equilibrium via oscillations. The duration of a business cycle depends on 
the initial conditions; with our initial values, it varies roughly between 300 
and 500 days. The business cycles are most clearly visible in the figures 
representing GDP (2a) and consumption (3b) of the economy. Notice that 
we have assumed no technical progress in production which would propel 
economic growth in time, see e.g. Estola (2001). 

The central bank actions suppress natural business cycles in 
production and prices. Figure 2 shows that each time the interest rate is 
lowered, GDP temporarily increases, but it quickly returns to its original 
level or even lower demanding a new intervention. While production and 
prices have greater inertia than consumption, the central bank interventions 
prevent them from getting low enough for the next healthy expansion 
phase of the economy. Instead, they are supported by lower interest rate 
that allows consumers more credit. The interest rate policy is effective in 
saving firms from bankruptcy (see Fig. 2), but it results in over-
indebtedness of consumers. 

The whole economy is thus highly dependent on central bank actions. 
In the end of our simulation, the interest rate is lowered to ≈1%/year, and 
there is not much ammo left in the central bank’s interest rate arsenal. (The 
real global economy passed this mark a couple of years ago, causing 
central banks to adopt extraordinary measures such as “quantitative 
easing”.) In our model, central bank actions seem to improve the short-
term economic situation but ultimately result in economic crises. 

Our title asks: “What are the market forces?”. Our analysis gives a 
well-defined answer: the market forces are marginal costs, marginal 
willingness’s to pay and prices. 
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