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Abstract

Near infrared spectroscopy (NIRS) is an analytical technique for determin-

ing the chemical composition or structure of a given sample. For several

decades, NIRS has been a frequently used analysis tool in agriculture, phar-

macology, medicine, and petrochemistry. The popularity of NIRS is con-

stantly growing as new application areas are discovered. Contrary to mid

infrared spectral region, the absorption bands in near infrared spectral re-

gions are often non-speci�c, broad, and overlapping. Analysis of NIR spec-

tra requires multivariate methods which are highly subjective to noise aris-

ing from instrumentation, scattering e�ects, and measurement setup. NIRS

measurements are also frequently performed outside of a laboratory which

further contributes to the presence of noise. Therefore, preprocessing is a

critical step in NIRS as it can vastly improve the performance of multivari-

ate models. While extensive research regarding various preprocessing meth-

ods exists, selection of the best preprocessing method is often determined

through trial-and-error. A more powerful approach for optimizing prepro-
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cessing in NIRS models would be to automatically compare a large num-

ber of preprocessing techniques (e.g., through grid-search or hyperparameter

tuning). To enable this, we present,nippy , an open-source Python module

for semi-automatic comparison of NIRS preprocessing methods (available at

https://github.com/uef-bbc/nippy ). We provide here a brief overview

of the capabilities of nippy and demonstrate the typical usage through two

examples with public datasets.

Keywords: Near infrared spectroscopy, Preprocessing, Chemometrics

1. Introduction1

Near infrared spectroscopy (NIRS) is a widely used vibrational spectro-2

scopic technique for quantitative evaluation of the composition and structure3

of a given sample. In NIRS, the target sample is illuminated with near in-4

frared (NIR) light (750 { 2500 nm wavelength range) and the re
ected and5

backscattered light are measured with a spectrometer. NIR-active molecu-6

lar bonds in the sample absorb the incoming light at di�erent overtone and7

combination spectral bands, thus producing the NIR absorbance spectrum.8

Compared to other infrared spectroscopy methods, NIRS has increased pene-9

tration depth and less stringent requirements for sample preparation [1]. The10

robustness and portability of NIRS devices enables their use as diagnostic11

probes outside laboratory environments [1, 2]. NIRS is a relatively old an-12

alytical technique with pertinent research spanning well over three decades.13

Today, NIRS is utilized heavily in multiple �elds, including agriculture [3],14

food processing [4], pharmaceutical industry [5], and medical research [6].15

The objective of a typical NIRS analysis is to relate the measured NIR16
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spectra to a target property of the sample which is either directly or indirectly17

linked to its chemical composition or structure. For instance, a common ex-18

ample is the determination of the octane number of gasoline samples from the19

corresponding NIR spectrum [7]. In this example, the number of CH-bonds in20

hydrocarbons, like methyl and methylene, correlates with the gasoline octane21

rating and can, therefore, be detected using NIRS. Compared to traditional22

mid infrared spectroscopy, the NIR spectrum is more complex and di�cult23

to analyse due to the presence of overlapping overtones and combination24

bands. The proper analysis of NIR spectral data, therefore, requires mul-25

tivariate statistical models. On the other hand, the robust-nature of NIRS26

instrumentation enables integration of sensors for continuous monitoring of27

chemical processes or as portable scanners for performing measurement and28

analysis of solid samples on the �eld (e.g., soil or crops analysis). The best29

practices in analysing NIRS data have been the topic of active research in30

the �eld of chemometrics [1].31

The canonical analysis process of regression-based NIRS models is very32

similar to other chemometric applications. First, a training set of data (i.e.,33

the calibration set) is collected by measuring both the NIR spectrum and34

the desired target property. The calibration set should contain a relatively35

large number of samples (e.g., N = 100 { 200, estimate derived from recom-36

mendations by Burns et al.[8] and ISO 12099:2017[9]) and cover the entire37

current (and future) range of expected variation of the spectra and the target38

property. The calibration dataset is used to construct a calibration model,39

capable of predicting the target property of future samples. The resulting40

calibration model should be reported with appropriate �gures of merit (root41
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mean squared error, RMSE; coe�cient of determination, R2; etc.) [10, 11]42

that approximate the real-world performance.43

The work
ow for generating the calibration model can be divided into44

three main steps: preprocessing, variable selection (also known as frequency45

selection or feature extraction), and calibration (i.e., training the classi�-46

cation or regression model). Preprocessing aims to remove all sources of47

uninformative variance (e.g., instrumentation and scattering e�ects) from48

the measured spectrum. Typical preprocessing steps include normalization,49

linearization, and smoothing [12]. The variable selection aims to reduce the50

full feature space (i.e., di�erent wavelengths) to a subset of most important51

features. Variable selection methods include various decomposition methods,52

such as principal and independent component analysis, sequential methods53

like uninformative variable elimination, and optimization techniques like ge-54

netic algorithms [13, 14]. In the last two cases, the process of variable selec-55

tion is performed in tandem with the calibration step. Finally, the calibration56

step trains a classi�cation/regression model which maps the extracted spec-57

tral features to explain the property of interest. Each of the three steps has58

multiple viable methods and con�gurable parameters which can be tuned59

for achieving the best possible predictive performance. The combination of60

preprocessing, variable selection, and calibration producing the model with61

the best performance depends heavily on the instrumentation and intended62

application.63

As the work
ow for constructing the calibration model dictates how well64

the technique will perform, a large number of studies have focused on op-65

timizing this process. A substantial amount of time and e�ort has been66
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used to compare di�erent preprocessing [15, 16, 17, 12], feature extraction67

[14, 13, 18], and classi�cation methods [19, 20, 21] in order to build opti-68

mal predictive NIRS models. More recently, the e�ectiveness of di�erent69

combinations of preprocessing methods (often termed "preprocessing strate-70

gies") has been investigated. Engel et al.[22] produced the �rst critical review71

of chemometric preprocessing strategies which demonstrated that the model72

performance between di�erent preprocessing strategies can vary substantially73

and highlighted the drawbacks in methods currently in use for selecting these74

strategies. A study by Gerretzen et al.[23] addressed the problem by utilizing75

design-of-experimentsapproach for selecting the best preprocessing strategy.76

This approach was later expanded to cover both preprocessing and variable77

selection, with the aim of improving not only the model performance but also78

its interpretability[24]. Earlier, Bocklitz et al.[25] presented a similar solution79

based on genetic algorithms for �nding the optimal preprocessing strategy in80

Raman spectroscopy. Earlier investigations of various methods have resulted81

in a collective consensus of good methods in the �eld of NIRS research. How-82

ever, in order to combine these methods to form the best possible calibration83

model, each part of the model (i.e., preprocessing, variable selection, and84

calibration) should be optimized individually for each application.85

Recent advances in the �eld of machine learning have produced power-86

ful methods (such as automated learning and hyperparameter tuning) for87

seeking further optimized models. The optimization of calibration models,88

however, has mainly focused on tuning the variable selection and classi�-89

cation/regression parts of the process with little focus on the preprocessing90

stage. While preprocessing has a critical impact on model outcomes, it is91
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often not subjected to similar pruning. Likewise, the e�ect of di�erent pa-92

rameter values (e.g., �ltering window length) on the model performance is93

rarely exhaustively studied or their e�ects reported.94

To help �nd an e�ective combination of preprocessing methods, we present95

nippy : a toolbox to rapidly test di�erent preprocessing combinations in con-96

junction with di�erent machine learning methods. nippy is a Python 3.6+97

module, open source under the MIT license, and fully compatible with the98

Python scienti�c stack (e.g., scikit-learn [26] machine learning module99

and scipy [27]). While nippy is intended for spectral preprocessing, it can100

be combined with the powerful outlier detection (e.g., elliptic envelopes, iso-101

lation forests, etc.), variable selection (e.g., variance thresholding, recursive102

feature elimination, etc.), and model validation (e.g., classi�cation/regression103

metrics, dummy estimators, etc.) methods of thescikit-learn module in104

order to produce state-of-the-art calibration models. It implements all rec-105

ommended preprocessing methods (such as scatter correction, smoothing,106

and computing derivatives) as well as a framework for testing the e�ects of107

di�erent combinations of preprocessing methods and their parameters. To108

be clear, we are not aiming to produce a comprehensive benchmarking of109

di�erent preprocessing methods but rather provide a tool for researchers and110

practitioners to �nd an e�ective preprocessing strategy for their data.111

We provide here a brief overview of the module and its capabilities and112

demonstrate the typical usage through two example cases using previously113

published datasets. Full documentation and the source code ofnippy are114

also available athttps://github.com/uef-bbc/nippy .115
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2. Materials and methods116

2.1. Overview ofnippy117

The near infrared preprocessing in Python toolbox(abbreviated asnippy )118

is a Python module that enables the user to easily de�ne multiple di�erent119

preprocessing strategies for NIRS data. The module is written in Python120

3.6 and should, therefore, be compatible with all later versions. The module121

is also fully compatible with the data format used by thescikit-learn -122

module, enabling easy integration with powerful machine learning methods.123

A standard con�guration �le provided with the modules can be used to install124

nippy automatically using the Python package management system (i.e.,pip125

or conda).126

The nippy module consists of two main components: a preprocessing127

module and a handler function. The preprocessing module collects all cur-128

rently accepted preprocessing methods under one �le. Inputs to these meth-129

ods have been standardized and the general naming convention from NIRS130

literature has been used when possible. To improve performance and reduce131

the burden of maintenance, the best methods from existing larger modules132

(such assklearn and numpy) have been used. The modular structure of133

preprocessing methods also enables the user to implement custom prepro-134

cessing methods if they so desire. An overview of the preprocessing methods135

currently provided by nippy can be found in the section 2.2. The handler136

component of nippy constructs preprocessing pipelines per users requests.137

The user provides a list of methods and a list of parameters for each method138

through a con�guration �le. The handler parses the con�guration and pro-139

duces all possible permutations which can then be executed as a combination140
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of appropriate functions of the preprocessing module. The default usage of141

the handler function is covered in section 2.3.142

2.2. Preprocessing methods143

In total, six di�erent preprocessing categories are supported innippy and144

they are performed in the following order.145

1. Clipping146

2. Scatter correction147

3. Smoothing148

4. Derivatives149

5. Trimming150

6. Resampling151

It should be noted, that the order in which the preprocessing operations152

are performed can have an e�ect on the model performance. The order se-153

lected fornippy represents the consensus among the authors and is based on154

the order typically found in literature. If needed, the order of the operations155

can be changed by modifying the source-code (details for this can be found in156

the online documentation). Some of the above-mentioned operations (such157

as scatter correction) can contain multiple alternative methods. The han-158

dler component ofnippy will make sure that only one operation from each159

category is included in each of the preprocessing pipes.160

Clipping operation removes or substitutes data points with values ex-161

ceeding the user-de�ned threshold. This method is intended to eliminate162

short spike-like artifacts that might otherwise distort further analysis. As163

this method induces short discontinuities in the data, it is advisable to only164
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use it for gross artifacts. Larger noise-contaminated regions can be removed165

with the trimming operation.166

Scatter correction methods aim to counter the particle size e�ect. In167

nippy , the three standard methods (standard normal variate, SNV [28]; mul-168

tiplicative scatter correction, MSC [29]; and normalization [12]) have been169

implemented. The non-parametric version of SNV, known as robust normal170

variate (RNV) is also implemented [30]. In SNV, the correction is performed171

according to the mean and standard deviation of the spectrum and in RNV172

(which is intended for more noisy data) according to the median value and173

user-speci�ed inter-quartile interval. In addition, localized version of SNV174

(LSNV) [31] is also included, where SNV operation is performed piece-wise175

inside user-de�ned spectral windows. In MSC, correction is only possible to176

the mean of the spectra. The extended version of MSC (EMSC) can also177

be used, which takes into account both the linear and quadratic terms when178

performing the correction. [32, 33] Normalization of the spectra can be per-179

formed to the value ranges speci�ed by the user (e.g., between 0 and 1). If180

no normalization range is provided, each spectrum is normalized with the re-181

spective Euclidean norm. Instead of scatter correction,nippy also supports182

baseline correction which only mean-centers the spectra.183

Smoothing of the NIR spectra can be helpful for removing environmental184

or instrumentation-related noise.nippy provides both convolution-based and185

Savitzky-Golay �ltering [34] as smoothing methods. The Savitzky-Golay186

�lter is also able to return smoothed derivatives of the original spectrum.187

Sometimes using the entire available range of wavelengths is not de-188

sired and instead the analysis is constrained to speci�c optical windows [35].189
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Trimming operation enables the extraction of continuous and non-continuous190

wavelength regions from the full spectral data.191

As a �nal step, the spectra can be resampled to a new spectral resolu-192

tion using the Fourier method. This step can be useful, for instance, when193

combining spectra acquired with multiple devices having di�erent spectral194

resolutions.195

2.3. Usage ofnippy196

The default format for data entry in nippy is numpy-matrices. The mod-197

ule requires one vector specifying the wavelengths and a matrix containing198

the spectra. The �rst dimension of the matrix must correspond to the wave-199

lengths while the second dimension corresponds to samples.200

Pipelines in nippy are de�ned using a con�guration �le. Structure of201

the con�guration �le follows the INI format ( https://en.wikipedia.org/202

wiki/INI_file ). In the con�guration �le, preprocessing methods are en-203

tered as sections and parameters askey-valuepairs. Most parameters (such204

as the length of the �ltering window) accept multiple variations of the pa-205

rameter value which can be separated with a comma. An up-to-date list206

of preprocessing methods and related parameters can be found in the on-207

line documentation (https://github.com/UEF-BBC/nippy/blob/master/208

CONFIGURATION.md). Reading the con�guration �le will produce a list of209

nested dictionaries where the dictionaries contain the argument-value pairs210

of the preprocessing functions.211

Once the NIR data and the pipeline con�guration have been loaded, they212

can be passed tonippy . The handler module ofnippy then automatically213

applies all combinations of preprocessing methods de�ned in the con�gura-214
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tion �le. The operation returns a list of copies of the original data, each215

modi�ed according to the methods in the pipeline list. The preprocessed216

data is returned asnumpy-arrays, meaning it can be fed directly in most217

machine learning methods. The module also supports iteration through a218

Preprocessor-class, which returns one preprocessed version of the original219

data at a time.220

nippy also supports data export to other platforms (such as MATLAB221

or R). The export formats currently supported are MAT, CSV, and Pickle.222

An in-depth description of the data structure in exported �les can be found223

from the online documentation.224

3. Results225

The basic operation ofnippy (�g. 1) is demonstrated through two real-226

world examples. In both cases, the construction of a calibration model227

is optimized by �nding the best NIRS preprocessing pipeline through grid228

search. Source code for both examples is available athttps://github.com/229

uef-bbc/nippy-aca-2019 .230

3.1. Example 1: Classi�cation of Ethiopian barley variants using NIR231

The �rst example case is a classi�cation task with a publicly available NIR232

dataset. The dataset (originally published by Kosmowski et al. [36]) consists233

of NIR measurements of 1200 samples of Ethiopian barley from 24 di�erent234

barley cultivar variants. The objective of the example is to classify the barley235

cultivar variant (Ardu 1260 B, Bahati, Bekoji-1, etc.) of a given sample236

based on the NIR spectrum. This example represents a typical agricultural237
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application where data collected in a �eld with a portable device is utilized238

for quality control.239

As in Kosmowski et al., the dataset was �rst split into training (70%) and240

testing (30%) sets. The test set was strati�ed over the 24 classes resulting in241

15 samples per class. Preprocessing of the data was performed usingnippy .242

Similar to the original analysis by Kosmowski et al., classi�cation of the sam-243

ples was performed using support vector machines (SVMs). A nu-regularized244

SVM with a polynomial kernel function was trained separately for each in-245

dividual preprocessing pipeline and the hyperparameters of each model were246

optimized using a �ve-fold cross-validation. As the initial inspection of the247

NIR spectra looked noise-free and relatively 
at (�g. 2a), the preprocessing248

techniques were restricted to Savitzky-Golay �ltering and two scatter correc-249

tion methods (SNV and RNV). The parameter combinations used to build250

these preprocessing pipelines are listed in table 1.251

In total, 38 di�erent preprocessing combinations (table 1) and one base-252

line model without preprocessing were tested (see �g. 2a for original data253

and 2b for di�erent preprocessing methods). The e�ect of each preprocess-254

ing method was quanti�ed by comparing the accuracies of hold-out test and255

training datasets over di�erent pipelines (�g. 3). The best overall accuracy256

(82.6% for training and 87.2% for test set) was obtained using a preprocessing257

pipeline with SNV scatter correction and a �rst-order derivative Savitzky-258

Golay �ltering (3rd order polynomial, 11-point window length).259

The baseline model without any preprocessing yielded an accuracy of260

75.0% for training and 80.3% for test set. The confusion matrices of the261

classi�cation results were computed for the baseline model and the best per-262
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forming preprocessing method (�g. 4). The classi�cation accuracy of the263

best performing preprocessing pipeline was identical to the best performing264

model reported by Kosmowski et al. [36].265

3.2. Example 2: Regression model for predicting the instantaneous modulus266

of equine articular cartilage267

The second example focuses on complex and noisy data, where NIR spec-268

tra were measured from the articular cartilage surface of equine fetlock joints269

(�g. 5). Articular cartilage is a layer of viscoleastic connective tissue cover-270

ing the ends of articulating bones within a joint. Material properties of the271

cartilage layer (such as instantaneous modulus) are an important indicator of272

joint health. Ability to determine the material properties of cartilage during273

an arthroscopic procedure could have substantial diagnostic signi�cance in274

identifying healthy and degraded regions of the joint.275

The dataset was originally published by Sarin et al. [37] and optimal276

regression and variable selection methods for this data were subsequently277

investigated by Prakash et al. [38]. NIRS measurements were performed278

on 869 points from the proximal phalanx and the metacarpal bone of �ve279

horses. Instantaneous modulus at each measurement point was determined280

using a custom material testing device (for details see[37]). The dataset and281

an in-depth description of di�erent variables can be found in [39].282

The objective of this example is to construct a calibration model capable283

of predicting the instantaneous modulus of cartilage from the NIR spec-284

trum. An earlier investigation of model selection and regression methods285

for this dataset [38] determined that the best prediction performance (R2 =286

0.51, RMSEP = 2.46 MPa) was obtained with a �ve-component partial least287
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squares regression. The preprocessing used in that analysis consisted of a288

third order Savitzky-Golay �ltering (25 nm window size) and second order289

spectral derivation. Identical regression technique was used here and the ef-290

fect of preprocessing was investigated usingnippy . The model was validated291

with the same holdout test method (N=70, 9% of the dataset) used in the292

original study[38]. Baseline test set prediction performance without any kind293

of pretreatment of the spectra was R2 = 0.25 and RMSEP = 3.06 MPa.294

The pipelines (i.e., parameter combinations) used for the preprocessing295

consisted of 3rd order Savitzky-Golay �ltering with (12 window sizes, up296

to the 2nd derivative) and convolution �ltering (12 window sizes). Parti-297

cle size e�ects were compensated using MSC, SNV, LSNV (four di�erent298

window sizes), and RNV (four di�erent interquartile ranges). Preprocessing299

was performed on the full spectral range, as well as subsets of 700 - 900 nm300

and 850 - 1050 nm. The absence of each aforementioned preprocessing step301

was also investigated by leaving them out of the analysis. In total,nippy302

was used to generate 1618 comparable pipelines (table 2) which were then303

compared using PLSR. Number of components for each PLSR model was304

determined using �ve-fold cross-validation. Best test set prediction perfor-305

mance in terms of R2 was obtained using the wavelength range of 700 { 950306

nm, RNV scatter correction (85% { 15% interquartile range), and a Savitzky-307

Golay �ltering with 73 nm window size (see �gs. 6A and 6B). In comparison308

to the baseline PLSR model, the preprocessing pipeline increased the coef-309

�cient of determination by approximately 38% (R2 = 0.63, RMSEP = 2.15310

MPa, see �g. 6C). Preprocessing also improved the residuals of the model in311

terms of magnitude, homoscedasticity, and normality (�g. 6D). Compared312
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to the performance reported earlier with this dataset, optimization of the313

preprocessing step provided a modest improvement of approximately 12% in314

terms of R2 and 13% in terms of RMSEP.315

Table 1: Con�guration parameters for example 1.

Preprocessing

operation
Parameter Values

SNV snv type: snv, rnv

also skip: True

SAVGOL filter win: 11,21,51,101

deriv order: 0, 1, 2

poly order: 3

also skip: True

4. Discussion316

Preprocessing of NIR spectrum is a fundamental part of any NIRS ap-317

plication. An optimized preprocessing protocol can substantially improve318

the predictive capabilities of NIRS models. In this paper, we presented an319

open-source Python module for semi-automatic exploration and comparison320

of di�erent preprocessing strategies. Ideally, the tools introduced in this pa-321

per should cut down development time when researching or building new322

NIR-based analytical applications.323

While improving the prediction performance is the main use ofnippy , it324

also enhances understanding why some preprocessing improves the result by325

revealing additional details about the underlying phenomena. By comparing326
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Table 2: Con�guration parameters for example 2.

Preprocessing

operation
Parameter Values

MSC also skip: True

SNV also skip: True

RNV iqr: 75-25, 85-15, 65-35, 70-30

also skip: True

LSNV numwindows: 3, 5, 7, 9

also skip: True

SAVGOL filter win: 11,25,41,55,71,85,101,115,131,145,161,175

deriv order: 0, 1, 2

poly order: 3

also skip: True

SMOOTH filter win: 11,25,41,55,71,85,101,115,131,145,161,175

also skip: True

TRIM bins: 700 - 950, 850 - 1050

also skip: True

which methods work and which do not can yield more insight into what kind327

of instrumentation is needed by the application. For example, the substantial328

increase in accuracy as a result of derivation in the Ethiopian barley classi�-329

cation (section 3.1) most likely indicates that the di�erentiating factors are330

minute spectral peaks and not the baseline level of the signal.331

Software tools for chemometric analysis of NIRS data have existed for a332

long time and range from proprietary analysis solutions, such as The Un-333
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scrambler X (Camo Analytics, Oslo, Norway), OPUS (Bruker Corporation,334

Billerica, MA, USA), or Pirouette (Infometrix Inc., Bothell, WA, USA), to335

open-source libraries. While proprietary software can be useful in industrial336

applications, research of new NIRS analysis techniques is typically conducted337

with data science and programming oriented methods using tools, such as338

R, MATLAB, or Python. The main bene�ts of open-source tools are trans-339

parency, customizability, easier access, and lower cost. We have, therefore,340

limited our comparison of nippy to other comparable free or open-source341

tools, more speci�cally,prospectr [40] and ParLeS [41]342

The prospectr is one of the most popular R packages for analysing visible343

and NIR spectroscopic data. The package implements a set of preprocessing344

and sampling functions in the R language. Preprocessing methods included in345

prospectr are largely similar to those found innippy . The sampling meth-346

ods present di�erent techniques for selecting training, testing, and validation347

sets for constructing the calibration models (e.g., Kennard-Stone sampling,348

DUPLEX sampling, etc.). Variable selection and calibration methods are349

not included in the prospectr package. ParLes is a shareware software solu-350

tion for constructing NIRS calibration models. It implements the full chain351

of operations ranging from preprocessing and variable selection to training352

calibration models. Likeprospectr , various sampling methods for training353

the models are also provided.354

In comparison,nippy shares more features with theprospectr package355

than ParLeS, in the sense that they are both libraries containing functions356

for preprocessing NIRS data. Main di�erence between the two is that the357

prospectr package does not enable rapid iteration of multiple comparable358
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preprocessing pipelines. ParLes is more of a stand-alone tool for data ex-359

ploration that enables the user to perform multiple di�erent manipulations360

and analysis on the given data. Again, however, the ability to rapidly and361

programmatically test the e�ect of di�erent preprocessing pipelines is miss-362

ing. Furthermore, integration to other analysis platforms (e.g. Python or363

MATLAB) can not be done directly. As ParLeS is a shareware application,364

extending the analysis capabilities of the tool is impossible without the help365

of the original author.366

Several earlier chemometric studies have also indicated that preprocess-367

ing has a substantial impact on the performance spectroscopic models and368

depends on such factors as: the preprocessing operations, parameters used,369

and the order of operations [42, 17, 25, 22, 23, 24]. In addition, Engel et al.370

[22] pointed out that the sequential optimization of a preprocessing pipeline371

might not work, as the synergy between di�erent operations can be hard to372

predict in advance. These studies have also suggested di�erent approaches373

for �nding a suitable preprocessing strategy from multiple comparable alter-374

natives. For instance, Wold et al. [42] suggested utilizing orthogonal signal375

correction, where preprocessing methods aim to remove linearly uncorrelated376

spectral components with respect to the target property. Solution proposed377

by Xu et al. [17] used Monte Carlo sampling for selecting the best prepro-378

cessing pipeline from multiple alternatives. Other approaches have suggested379

genetic algorithms [25] or design of experiments approach [23] for selecting380

the preprocessing strategy. Combination of preprocessing and variable se-381

lection under the same optimization process has also been investigated [24].382

While exhaustive grid-search never fails to �nd the optimal preprocessing383
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combination for a given dataset (provided that the grid of operations and re-384

lated parameters is dense enough), the operation can be very time-consuming.385

The proposed hyperparameter tuning methods can converge faster and can386

enable larger search space for parameters. As a �nal step, generalization of387

the optimal solution outside the training data should be veri�ed in order to388

avoid over�tting.389

While the current implementation of nippy enables the user to rapidly sift390

through various combinations of preprocessing operations, it does not provide391

actual feedback on which of the combinations is the most e�ective. This392

feature was intentionally left out as metaheuristics (also known as automated393

machine learning or hyperparameter search), a relatively recent and very394

active �eld of research, can deal with higher level optimization of machine395

learning pipelines. Metaheuristics can be utilized to �nd the best solution396

to a problem by individually tuning the preprocessing, feature extraction,397

and classi�cation/regression. Several powerful tools, ranging from bayesian398

optimization [43] to genetic programming [44], already exist for solving this399

problem. Instead of competing with existing tools,nippy was built with focus400

on compatibility with modern metaheuristic tools. As machine learning tools401

are nowadays predominantly written in Python and usenumpy-based matrix402

structures as its base, the same approach was adopted here. The end goal was403

to combine decades worth of domain knowledge gained from various NIRS404

publications and combine it with powerful machine learning frameworks.405

In the future, nippy could potentially be extended to cover other spec-406

troscopic techniques as well. Raman and mid infrared spectroscopy are very407

similar to NIRS and, thus, bene�t from the same preprocessing operations.408
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However, as NIRS is often used in industrial and agricultural applications,409

the most crucial need for optimized preprocessing is with this technique.410

5. Conclusions411

To conclude, a lot is known about the di�erent ways to eliminate scatter-412

ing e�ects and external noise from NIR spectra. Due to the great diversity of413

di�erent NIRS applications, the best preprocessing strategy is often depen-414

dent on the intended use. Finding the correct combination of preprocessing,415

variable selection, and calibration has been the focus of much recent research.416

To facilitate the optimization of preprocessing for NIRS models, we have de-417

velopednippy , a tool that enables rapid iteration of di�erent preprocessing418

combinations. We feel that tools, such asnippy , are important to chemomet-419

rics because they provide researchers easy access to current state-of-art NIR420

preprocessing and thus enable them to focus on optimizing models instead421

of reinventing the wheel.422
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Figure 1: General operation principle of nippy . Several preprocessing options and pa-

rameter values can be combined into multiple competing preprocessing strategies (called

pipelines). Comparing the e�ect of di�erent preprocessors on the prediction performance

of the NIRS model will yield the most optimal solution for a given application.
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Figure 2: A: Overview of the Etiophian barley NIRS data set. Individual lines correspond

to the averaged unprocessed spectra of the 24 di�erent barley variants. B: The e�ect

of di�erent parameter combinations of scatter correction and smoothing to the per-class

average spectra of the dataset. Rows correspond to di�erent scatter correction treatment

while columns represent di�erent �lter window lengths used in Savitzky-Golay �ltering

(3rd polynomial order, no derivation).
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Figure 3: Overall training and testing accuracy with SVM classi�cation for barley cultivars

of example 1. Training accuracy was derived from cross-validation while testing accuracy

represents the performance of an independent hold-out set. Results have been divided

between �ltering window length (the e�ect of omitting �ltering was also investigated),

scatter correction method, and derivative.
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Figure 4: A comparison of confusion matrices between the un-preprocessed data and

the data preprocessed with the optimal preprocessing combination of the barley cultivar

classi�cation example.
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Figure 5: A: NIRS spectra was measured from the cartilage surface of the equine fetlock

joint. In total, �ve joints were measured from 44 di�erent areas of interest (AIs). Each

AI consisted between 6{25 measurement points (depending on the joint geometry and

cartilage condition) resulting in 861 measurement points. Local instantaneous modulus

was determined for each measurement site. B: Average of all the collected NIR spectra.

Shaded regions represent the standard deviation.
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Figure 6: A: All 1618 models generated to predict the instantaneous modulus of articular

cartilage presented in terms of model complexity (i.e., the number of latent variables)

and test set performance. Color of individual models indicates whether the data was

treated with scatter correction. Margin plots indicate the distribution of models in terms

of complexity and performance. B: True vs predicted values for the test set between no

preprocessing and the best performing pipeline. C: All preprocessing pipelines (scatter

correction vs no scatter correction) sorted according to the R2 values of the test set. D:

Residual plots and the distributions of residuals between no preprocessing and the best

performing pipeline.
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