
UNIVERSITY OF JOENSUU
COMPUTER SCIENCE
DISSERTATIONS 13

ISMO KÄRKKÄINEN

METHODS FOR FAST AND RELIABLE CLUSTERING

ACADEMIC DISSERTATION

To be presented, with the permission of the Faculty of Science of
the University of Joensuu, for public criticism in Louhela Audito-
rium of the Science Park, Länsikatu 15, Joensuu, on June 2nd,
2006, at 12 noon.

UNIVERSITY OF JOENSUU
2006

ii

Supervisor Professor Pasi Fränti
Department of Computer Science
University of Joensuu
Joensuu, Finland

Reviewers Professor Olli Nevalainen
Department of Computer Science
University of Turku
Turku, Finland

Professor Xiaowei Xu
Information Science Department
University of Arkansas at Little Rock
Arkansas, USA

Opponent Professor Laurence S. Dooley
Faculty of Information Technology
Monash University
Victoria, Australia

ISBN 952-458-815-3 (printed)
ISBN 952-458-816-1 (PDF)
ISSN 1238-6944 (printed)
ISSN 1795-7931 (PDF)

Computing Reviews (1998) Classification: H.3.3, I.5.1, I.5.3, G.1.6

Yliopistopaino
Joensuu 2006

iii

Methods For Fast And Reliable Clustering
Ismo Kärkkäinen
Department of Computer Science
University of Joensuu
P.O.Box 111, FIN-80101 Joensuu FINLAND
Ismo.Karkkainen@cs.joensuu.fi

University of Joensuu, Computer Science, Dissertations 13
Joensuu, 2006, 108 pages
ISBN 952-458-815-3 (printed)
ISBN 952-458-816-1 (PDF)
ISSN 1238-6944 (printed)
ISSN 1795-7931 (PDF)

Abstract
Clustering is used in many areas as a tool to inspect the data or to generate a repre-

sentation of the data that is better suited to the application.
In this work, different parts related to clustering are studied. Focus is mainly on

making the algorithms faster while preserving reliability. Attention is paid to the ability
of the algorithms to find the number of clusters. Binary data sets and large data sets pre-
sent problems for clustering algorithms. Some improvements for handling these cases
are proposed.

For a fixed number of clusters, the clustering problem can be solved in a fast and re-
liable manner, but the problem changes when the number of clusters is unknown. Per-
forming the clustering repeatedly is no longer fast. The proposed solutions to perform-
ing clustering rapidly involve reusing the results of previous work and focusing the
search to more promising model sizes. Using the previous results as a starting point im-
proves the speed of clustering when solving the clustering for the next model size. Per-
forming the search so that the model size is optimized along with the model produces
much greater speed-up. This is due to less work is done on the models of much larger or
smaller size than the number of clusters in the data.

Binary data causes problems for certain clustering algorithms. These problems are
addressed by changing the distance function. One proposed method is designed for a
specific clustering criterion. The distance function is used to decide how to best im-
prove the value of the criterion locally at each step of the algorithm. The second pro-
posed method changes the distance function gradually from L∞ to L1.

The proposed algorithm for large data sets converts the data into a model using only
one pass over the data. The data need not be stored in memory. In this way, the data can
be processed much faster, and without excessive memory consumption.

Keywords: clustering, number of clusters, binary data, distance function, large data
sets, centroid model, Gaussian mixture model, unsupervised learning.

iv

Acknowledgments
The work done for this thesis has been carried out at the Department of Computer

Science, University of Joensuu, Finland, during the years 2000-2006. During 2000-2002
I was an assistant at the department, and from 2003 on I held position funded by East
Finland Graduate School in Computer Science (ECSE).

I owe thanks to my supervisor, Professor Pasi Fränti, for criticism, ideas and support
during my studies. I thank the co-authors of some parts of this thesis, Dr Tomi Kin-
nunen and Dr Mantao Xu for their help.

I express my gratitude to Professor Olli Nevalainen and Professor Xiaowei Xu, the
reviewers of this thesis, for their helpful comments and recommendations. Finally, eve-
ryone else who has read the thesis in part or in full, deserves thanks for their comments.

Joensuu, 3rd of May, 2006
Ismo Kärkkäinen

v

List of original publications

P1. I. Kärkkäinen, P. Fränti: “Stepwise Algorithm for Finding Unknown Number of
Clusters,” in Proceedings of ACIVS 2002 (Advanced Concepts for Intelligent Vi-
sion Systems), Ghent, Belgium, September 9-11, 2002, pp 136–143.

P2. I. Kärkkäinen, P. Fränti: “Dynamic local search for clustering with unknown
number of clusters,” in Proceedings of the 16th International Conference on
Pattern Recognition, Québec City, QC, Canada, August 11-15, 2002, pp. 240–
243.

P3. I. Kärkkäinen, P. Fränti: "Minimization of the value of Davies-Bouldin index,”
in Proceedings of the IASTED International Conference on Signal Processing
and Communications (SPC'2000), Marbella, Spain, 2000, pp. 426–432.

P4. P. Fränti, M. Xu, I. Kärkkäinen: “Classification of binary vectors by using Del-
taSC-distance to minimize stochastic complexity,” Pattern Recognition Letters,
24 (1-3), 2003, pp. 65–73.

P5. I. Kärkkäinen, P. Fränti: “Variable Metric for Binary Vector Quantization,” in
Proceedings of IEEE International Conference on Image Processing (ICIP'04),
Singapore, vol. 3, October 2004, pp. 3499–3502.

P6. I. Kärkkäinen, P. Fränti: “Gradual Model Generator for Single-pass Clustering,”
in Proceedings of the Fifth IEEE International Conference on Data Mining,
Houston, Texas, November 2005, pp. 681–684.

P7. T. Kinnunen, I. Kärkkäinen, P. Fränti: "Is Speech Data Clustered? -Statistical
Analysis of Cepstral Features,” in Proceedings of 7th European Conference on
Speech Communication and Technology (EUROSPEECH 2001), vol. 4, Aalborg,
Denmark, Sept. 3-7, 2001, pp. 2627–2630.

vi

Contents

1 Introduction .. 1

2 Clustering problem... 3

2.1 Problem setup ... 3
2.2 Cluster representation ... 4

2.2.1 Centroid model .. 5
2.2.2 Gaussian mixture model .. 5

2.3 Clustering criteria ... 7
2.4 Preprocessing the data .. 10

3 Algorithms for a fixed number of clusters ... 12

3.1 Algorithms for the centroid model ... 12
3.2 Algorithms for the Gaussian mixture model .. 15
3.3 Fuzzy and possibilistic clustering algorithms... 16
3.4 Binary variables.. 17

4 Varying the number of clusters... 18

4.1 Hierarchic algorithms ... 18
4.2 Generating models within a range .. 21
4.3 Small changes to the model size... 23
4.4 Partitioning objects or components together to form clusters 24

5 Large data sets .. 27

5.1 Data reduction algorithms .. 28
5.2 Partition and representative object -based algorithms.................................. 29
5.3 Density-based algorithms ... 30
5.4 GMM-based algorithms.. 31

6 Summary of Publications... 33

7 Conclusions ... 35

References.. 36

1

1 Introduction

Clustering is a problem, where the user has a collection of objects and she wants to
place them into groups, or clusters, so that some condition is satisfied. Objects to be
clustered can belong to just one cluster, or to several [31]. If all objects belong to the
same cluster, we can conclude that the data is not clustered.

The number of clusters is usually unknown. We may have assumptions about what
the clusters might be like, for example, spherical or ellipsoidal. Clusters can also be of
arbitrary-shape, in which case the objects inside the same cluster share some property
with at least one other object in the cluster. Alternatively, we may enforce certain re-
strictions that arise from the application. Assumption such as spherical clusters may not
hold for the data, but it may not be important for the application. Testing the validity of
the assumptions can be part of the process.

Clustering is unsupervised learning [53], meaning that the user of the algorithm does
not affect the outcome of the algorithm during the clustering process. Clustering algo-
rithm should be able to obtain general information from the objects. With regard to the
information that is available as input, clustering is close to the classification problem,
with the significant difference that in classification we have explicit information about
the classes the objects belong to, whereas in clustering no a priori information is avail-
able. Hence, in classification the object classes have already been defined, and we wish
to be able to represent them in an efficient and accurate manner. In clustering the prob-
lem is to find the clusters, or observe the lack of any clusters, and usually to find a
proper representation for the clusters. The difference is illustrated Figure 1, three classes
of a classification problem are shown with different symbols in the left panel of the fig-
ure, and the corresponding clustering problem with no class information in the right
panel.

Quite often clustering algorithms are used to generate a model for the data, even
though the data is not clustered. Clustering algorithms have a tendency to find structure
from the data, despite the lack of any structure. For example when producing a model
for speaker recognition by using vector quantization (VQ), the qualitative differences
between the results of different algorithms are small [61]. This is explained by the lack
of clustering structure in the data computed from speech signal [P7].

The fields where clustering algorithms are used are quite diverse. For example, in
gene research expressed sequence tags are clustered [91, 111]. In image processing,
clustering is used widely in image segmentation [96], and detection of line segments
from an image [117]. An environment map can be clustered in order to find topological

2

features [75]. The features are connected sub-graphs found in the graph that describes
the entire terrain. The features are then intended to be used in path-planning of autono-
mous mobile systems on the clustered map. In astronomy, clustering is used to distin-
guish between stars and galaxies, and between galaxies of different type, such as spiral
and elliptical [18]. Remote-sensing data is clustered to produce a climatic classification
[101].

Figure 1: Classification problem (left) and a clustering problem (right).

3

2 Clustering problem

In this chapter, the clustering problem setup is first described followed by descrip-
tions of clustering and clustering criteria. Once the user decides what kind of represen-
tation will be used for the clustering, the problem becomes better defined. The potential
drawback is that the decision has been incorrect, and the results of clustering can then
be misleading.

2.1 Problem setup

The input for clustering is a data set X of N objects {x1, x2, …, xN}. In all of the fol-
lowing formulas, xi stands for a row of a matrix, or row vector, whenever the distinction
between row and column vectors is significant. The output of clustering is usually either
a division of the data set into K subsets, or a representation for each cluster. K is gener-
ally referred to as the number of clusters regardless of whether we want to find the
clusters, or to split the data set into subsets that satisfy the requirements of the applica-
tion.

A data object is an ordered set of attributes, or features, or variables. The attributes
need not be of same type. Attributes of nominal type have a set of unordered values.
Values of ordinal type have an order. Interval data consists of values that have an order
but it is not possible to say that some value is twice as much as some other value when
the attribute represents date, for example. Ratio data, such as distances or weights [100],
allows such statements. For objects consisting of the latter two types, the objects can be
described using a D-dimensional real-valued vector.

Clustering algorithms commonly require a measure of difference, in some cases a
measure of similarity or closeness. Three types of measures of difference or similarity
can occur. Between objects, between parts of the representation of clustering, and be-
tween objects and representation of clustering. Euclidean distance fulfills all three roles
for centroid model, and will be described in Chapter 2.2.1. For the Gaussian mixture
model, described in Chapter 2.2.2, the three measures are different. There exists a vide
variety of distance and similarity functions for various purposes [100, 58, 31]. Selection
of proper distance or similarity is one thing to which the user should pay attention.

We will refer to whatever measure of dissimilarity is in use as distance function or
distance. Measure of similarity is likewise referred to as similarity function or similar-
ity. Measure of closeness is appropriate when an object and a cluster representation are
compared. Cluster representation needs not be identical to the object representation.

4

Therefore, similarity is not appropriate. In this case, the measure quite often determines
the membership of an object in a cluster.

2.2 Cluster representation

A cluster is usually thought to have the property that objects belonging to it are more
similar to each other than to the other objects. This simple definition sounds reasonable
but it leaves a lot of room for interpretation.

Membership of an object in a cluster is usually expressed in relative terms. When the
membership is 1, the object belongs to exactly one cluster and has membership 0 in all
other clusters. We can express the memberships of N objects in K clusters with an N×K-
matrix M. Usually there is a restriction that each object’s memberships in clusters sum
to 1:

1=∑
k

nkm (1)

No membership values are negative: mnk ∈ [0, 1] for all n = 1, 2, … N, k = 1, 2, …,
K.

Representing the membership using a matrix is quite space-consuming for large N
and relatively large K. It is, however, quite general, since the relationships between ob-
jects do not affect how the objects can be divided between clusters. If we make some
assumptions about the clusters themselves, we can use more compact representations. A
common assumption is that each object belongs to only one cluster. Exactly one mnk is 1
for an index n and the rest of the row elements of M are 0. In that case we only need to
store for each object the index k of the matrix entry with value 1. Allowing membership
values of only 0 or 1 is called hard or crisp clustering.

In contrast, terms soft or fuzzy clustering are used if objects can belong to several
clusters. The term fuzzy clustering is used when algorithms utilizing fuzzy sets [118]
are used. In other cases the membership values are usually related to the probability that
an object belongs to the specific cluster. Numerically they may seem the same but there
is a theoretical difference in their definition.

Assumptions about the relationships between objects may allow us to use considera-
bly less space-consuming representations than listing membership values for each ob-
ject. If, for every data object, the nearby objects also belong to the same clusters with
very similar membership then we can represent a cluster with a collection of objects that
are surrounded by objects that have the similar membership values. This requires that
we can measure the distance between objects. If the objects reside in a vector space it is
possible to perform computations with them and compute parameters of distributions.
Then we can represent one cluster with a mixture of distributions. Commonly one clus-
ter is represented with just one component.

When each cluster can be represented by a model consisting of a collection of objects
or a mixture of distributions, then it is possible to state for any object what would be the
cluster it belongs to, by measuring the distances to the models. Hence the model pro-
vides independence of the data that was used to generate the model, allowing for a more
general statements about the clusters than just stating which object belongs to which

5

cluster. The model can also be used to classify objects that the user may have in the fu-
ture.

The membership matrix M is rarely used except as an intermediate representation
that allows for computation of a model. However, for the special case of each object
belonging to exactly one cluster, and a small number of objects, presenting the cluster
labels can be useful. Labels and information about the possible clusters can be repre-
sented in the form of a dendrogram, a tree that shows the order in which objects could
be joined together into clusters. The height at which two branches representing clusters
or individual objects are joined together indicates the cost of joining the clusters or ob-
jects, providing a visualization of the clustering.

In chapters 2.2.1 and 2.2.2 the centroid model and Gaussian mixture model are de-
scribed in more detail. Models can also consist of lines, planes or shells [34], for exam-
ple.

2.2.1 Centroid model

The centroid model is a simple model that can be used for data in vector space. The
assumption made about the data is that all clusters are spherical with the same variance.
The model is an ordered set C = { c1, c2, …, cK }of K centroid vectors. If needed, the
information about how many objects are mapped into each centroid, nk, can be stored.
Then we can consider the model as a histogram, in which the Voronoi cell around each
centroid vector represents one histogram bin. Each data object is mapped to the nearest
centroid. Let P be a mapping from data objects to centroids, or partitioning. Let pj indi-
cate the centroid vector to which object j is mapped. The centroid, or mean vector of all
objects with the same pj is:

∑
=

=
kp

j

k

k

j

x
n

c
1

. (2)

Centroid model is widely used in vector quantization, where it is called a codebook.
Euclidean distance is widely used measure of difference:

() ()()TE yxyxyxd −−=, .

Euclidean distance is usable when the objects lie in vector space. It can be used as a
distance between objects, between centroids and between an object and a centroid, since
the objects and centroids have same type.

The model consisting of representative objects is similar to the centroid model. There
is no requirement that the objects can be summed or scaled, and the objects of the model
are a subset of the data set.

Figure 2 shows an example of a centroid model of size 15. Gray dots are data vec-
tors.

2.2.2 Gaussian mixture model

Gaussian mixture model (GMM) is related to centroid model, but it is used to repre-
sent probability density distribution. It is also restricted to attributes with numeric val-

6

ues like the centroid model. The main difference is that data objects belong to all com-
ponents of the model with varying degree of membership. As a result of this, each com-
ponent has a weight, rather than the number of objects mapped to it. These weights are
normalized to sum to 1. An example of a GMM of size 15 is shown in Figure 3. One
component of a GMM consists of mean vector, covariance matrix and component
weight. Given memberships, or a posteriori probabilities, of jth vector to kth compo-
nent, mjk, the mixing weight, or a priori probability, of kth component, is:

∑∑

∑
=

k j

jk

j

jk

k
m

m

w (3)

When there are no noise clusters or similar things involved, the double sum in the di-
visor is N, due to the restriction of Equation (1). When all memberships are 0 or 1,
equation (3) then equals nk / N.

The mean vector of the component is:

∑

∑
=

j

jk

j

jjk

k
m

xm

c (4)

The above equation equals to (2) in case all memberships are either 0 or 1. A neces-
sary parameter of the GMM is also the covariance matrix, which can be computed as a
weighted sum of the outer products of differences of data and mean vectors:

() ()

∑

∑ −−

=

j

jk

j

kj

T

kjjk

k
m

cxcxm

v (5)

Figure 2: Example of a codebook. Figure 3: Example of a GMM.

7

We only need to compute the diagonal values of the outer product when we know
that the variables are independent, or we do not care about the covariances. If variances
of different variables are expected to be equal in practice, then we can compute the
squared mean of the standard deviations. The user may know that the variances can be
left out if she has prior experience with the data. Leaving out variance information
leaves essentially the centroid model.

The covariance matrix contains shape information about the distribution of objects
from which it was computed. Mahalanobis-distance is a distance function that takes the
shape information into account and here it is used to compute distance from a object to
the mean of the component of a GMM. Inverse of the covariance matrix is used to ne-
gate the effect of shape:

() () ()TkM yxvyxyxd −−= −1,

The above equation reduces to the Euclidean distance if the covariance matrix equals
identity matrix. With the Mahalanobis-distance it is possible to compute the probability
density of the distribution at location x with respect to kth component of the GMM.

()
()

() k

d

cxd

k
kkkk

v

ew
wvcxP

kM

π2
,,,

2

2
1 ,−

= (6)

The probability density at the location of an object with respect to the entire model is
the sum of the densities of the individual components.

2.3 Clustering criteria

There are numerous functions that measure the quality of clustering. When the cen-
troid model is used, a valid criterion for the error is mean squared error (MSE), which
is calculated as:

() ()∑=
j

pj j
cxd

N
CXMSE

2,
1

,

A related criterion is the mean absolute error (MAE), in which the distance is not
squared.

While MSE indicates how well the centroid model represents the data, it is mono-
tonically decreasing as the model size increases, see Figures 4 and 5. The data set used
in Figure 4 is shown in Figure 2. Figure 3 shows the data set used in Figure 5. There is
more or less a visible bend or “knee” in the graph of Figure 4 at model size 15, which
would be the most suitable model size for this data set. In this data set the clusters are
fairly well separated but in the data set used in Figure 5, the clusters overlap and there is
no visible bend in the graph. Hence, finding such a bend cannot always be used as a
criterion for finding the most suitable model size.

Research has been done in identifying the location of the knee in the graph. In [21]
the ratio of subsequent distances between joined clusters is used alongside the values of
the clustering criterion to determine the best model size. In [93] only the values of the

8

clustering criterion are used. The values of the clustering criterion are needed for all
model sizes in the desired range.

0

20

30

40

50

60

1 10 20 30 40 50

Model size

M
S
E
/1
0
9

0

1

2

3

4

10 15 20

10

Knee point

0

5

10

15

20

25

30

1 10 20 30 40 50

Model size

M
S
E
/1
0
9

0

1

2

3

4

10 15 20

Figure 4: Plot of MSE with bend. Figure 5: Plot of MSE without bend.

Likelihood is a measure similar to MSE for probability density distributions. Product
of the probability densities at individual objects is computed instead of distances to
components. For reasons of numerical precision, it is easier to compute logarithm of the
likelihood. It can be divided by N, which corresponds to the logarithm of the Nth root of
the likelihood and makes the log-likelihoods of different size data sets comparable. The
equation of log-likelihood for GMM is:

() ()∑ ∑=
j k

kkkjk wvcxP
N

WVCXLL ,,,log
1

,,, (7)

Likelihood increases monotonically as the model size increases. Therefore the model
size with maximum value does not indicate the proper model size.

Several criteria have been developed for the explicit purpose of finding the best
model size, or the number of clusters. A common goal is maximizing the difference
between groups and minimizing the difference within groups. Several criteria are listed
in [80], but see also [58, 31, 89, 13, 12, 17, 42]. For GMMs, [79] contains a comparison
of several criteria. Here we describe two criteria in detail since they have been utilized
in publications [P1, P2, P3, P6, P7].

Davies-Bouldin index (DBI) [26] is designed to use a dispersion measure, such as
MSE or MAE, and distance between clusters, which can simply be the distance between
centroids or representative objects. Denoting the dispersion measure for cluster i with Si
and distance between clusters i and j with Mij, the cluster separation measure Rij is

ij

ji

ij
M

SS
R

+
=

9

The index to be minimized is the average of the maximum Rij values for each i:

∑=
i

ijR
K

DBI max
1

Hence, the basic idea is to measure the separation of each cluster from its nearest
neighbor so that dispersion inside clusters in minimized and distance to nearest centroid
is maximized. Davies and Bouldin present a set of requirements that the dispersion
measure and the cluster separation measure should have in order to be usable in DBI.
Figure 6 shows graphs of DBI values for the data sets in Figures 2 (data set A) and 3
(data set B). For data set A, the index can clearly find the optimal number of clusters,
but for data set B the index indicates that the proper model size is 14, not 15. Hence the
number of clusters has been under-estimated.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

2 10 20 30 40 50

Model size

D
B
I

Data set A

Data set B

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

2 20 30 40

Model size

F
-r
a
ti
o
 ×× ××
 1
0
0
0

Data set A

Data set B

10 50

Figure 6: Example graphs of DBI. Figure 7: Example graphs of F-ratio.

There are several tests for clustering based on the scatter matrices computed from
the data [31]. These originate from statistical analysis of variance. The within scatter
matrix represents the scatter of objects inside cluster. Between scatter matrix represents
the scatter of clusters. The within scatter matrix is the sum of outer products of differ-
ences of data objects and centroids:

() ()∑ −−=
n

pn

T

pn nn
cxcxW (8)

In case of GMM, we can compute a scatter matrix using the covariance matrices of
the components. Therefore, the original data is not necessarily needed. The matrices
will not be identical since covariance matrices have been computed using membership
probabilities instead of partitioning. The formula is:

∑=
k

kkvwNW

10

The between scatter matrix is computed using component means and the mean vector
of the data. Using wk = nk/N for centroid model gives:

() ()∑ −−=
k

k

T

kk xcxcNwB . (9)

Using the Equations (8) and (9) it is possible to compute f-ratio [52] with traces
(sums of diagonal elements) of the matrices:

() ()
() ()BtrKN

WtrK
f

−
−

=
1

. (10)

By rearranging the terms of trace, one can see that the trace of W is the same as the
sum of squared Euclidean distances from data vectors to nearest centroids. Likewise, the
trace of B is the sum of squared Euclidean distances from cluster centroids to the mean
vector of data. Thus, we can rewrite the formula as:

() ()
() ()XCMSEKNK

CXMSEKN
F

,

,1

−
−

= .

Figure 7 shows a graph of F-ratio values for the data sets in Figures 2 and 3. The
criterion indicates that there are 15 clusters for both data sets.

2.4 Preprocessing the data

The data can be processed before clustering. The need for this varies. Some features
may have ranges that are orders of magnitude larger than those of other features, hence
the contribution of the other features may be negligible without normalization. This can
be usually done by subtracting the mean of the feature, and then dividing the result by
standard deviation of that feature.

Dimensionality reduction can be done to the data by using principal component
analysis (PCA) [55, 109] or independent component analysis (ICA) [51] for data that is
not Gaussian. Dimensionality reduction using PCA might decrease the number of fea-
tures significantly but it can also make interpretation of the results harder since the new
features have no clear relation to the original ones. It has been observed [116] that the
effect of PCA varies depending on which principal components the user chooses and
which distance function is used. There is no single preprocessing technique that can be
applied in every case, or a technique that is unquestionably suitable. Therefore, the deci-
sion to preprocess has to be made by the user. In clustering algorithms it is not pre-
sumed that any specific preprocessing is done, so preprocessing can be omitted.

An example of PCA and normalization is shown in Figure 8. The image on the left is
a grayscale presentation of the original color image. In middle and left are the RGB tri-
ples from the image. Right of it is the same data reduced to two dimensions using PCA.
On the right is the data after the standard deviations of both variables have been nor-
malized to 1.

Objects that are far away from all other objects are called outliers, and they can de-
crease the quality of the clustering. Hence, the removal of outliers, or rather, detection if

11

there are any outliers, may need to be done. However, this topic is quite wide and what
is considered to be an outlier varies [76]. Outliers will also have an effect on normaliza-
tion and dimensionality reduction. Therefore, the normalization may need to be re-done
if normalization is a required step in the outlier detection process. Noise and outliers
have been considered in clustering algorithms, for example in so-called noise clustering
[23]. In noise clustering, the idea is that all objects are equally far from the noise cluster.
Therefore, due to the restriction of Equation (1) in fuzzy or in probabilistic clustering,
the objects that are far away from the model have smaller effect on the model since the
objects are closest to the noise cluster. Another approach is to consider the farthest ob-
jects to be noise [83].

Figure 8: Example of data normalization. Original image (left), RGB color values
(middle left), two principal components (middle right), and the normalized data (right).

12

3 Algorithms for a fixed number of clusters

After the decision about representation of clustering has been made there remains the
question about the number of clusters. Fixing the number beforehand is a valid choice in
cases where the clustering algorithm is used to obtain a representation that consumes
less space but still represents the data well enough.

3.1 Algorithms for the centroid model

The most widely known algorithm for the centroid model is k-means [74]. The itera-
tive algorithm alternates between making a partitioning from a centroid model and vice
versa. Partitioning is made by mapping each object to the nearest centroid. The algo-
rithm converges to a (locally) optimal solution. The algorithm is also known as Gener-
alized Lloyd algorithm (GLA), hard c-means or Linde, Buzo, Grey (LBG) algorithm
[72]. The simplest way to generate the initial model is to select objects randomly. More
organized approach is splitting the data recursively and taking the means of the resulting
partitions as the initial centroids [72].

The tendency of k-means to get stuck on local optima has been dealt with in various
ways. Repeating the algorithm using different initial solution is a common method.
Fritzke [35] proposed an LBG-U algorithm with deterministic swap operation. The
swap operation moves the least useful centroid to a location near the centroid that con-
tributes most to the total squared error. To find the least useful centroid, each centroid is
removed in turn, MSE is computed, and the model with lowest MSE indicates the least
useful centroid. Then k-means is iterated until convergence. In Figure 9 are seen the
initial model, the models with one centroid removed in turn on the bottom row, the
model after swap on middle of top row and the final model on top right corner. The
whole procedure is iterated until the error after the swap and k-means has not decreased
any more. The LBG-U algorithm is less sensitive to the initial model, but the determi-
nistic swap can still get stuck on a local optimum.

A proposed solution to this is to use random swap to move a centroid to a location of
an object in a local search algorithm [37], denoted RLS. Major improvement happens
during the first few iterations of k-means. If there is no improvement, compared to the
best model found so far, the new model is discarded and a new swap is performed
starting from the currently best model. Pseudocode for the algorithm is presented in
Figure 10.

13

Experimentally only two iterations of k-means was found to be sufficient. Result of
random swap and two k-means iterations are shown in Figure 11. On the left is the ini-
tial model, in the middle the model after swap and on the right the model after the k-
means iterations.

Figure 9: Example of LBG-U iteration. Initial model (top left), models used in deter-
mining utility (bottom row), after swap (top middle) and after k-means (top right).

C, P := RLS(X, C, P)
Repeat

Cnew, Pnew := C, P
Cnew := Swap(X, Cnew)
Cnew, Pnew := k-means(X, Cnew, Pnew)
If Error(Cnew, Pnew) < Error(C, P) Then

C, P := Cnew, Pnew

Until stopping criterion is true
Return C, P

Figure 10: Pseudocode of the RLS algorithm.

There is no way to detect if the algorithm has converged to an optimal solution. The
user must specify either a fixed number of iterations or otherwise determine when the
algorithm has advanced close enough to the optimal solution so that further iterations
would give no significant improvement.

An alternative to moving centroids is to add and remove them. Iterative split-and-
merge algorithm [59] performs a number of split and merge operations on the clusters
so that after splits and merges, the model size is the same as before the operations. For

14

the leftmost data and model in Figure 11, the algorithm can split the lower cluster and
then merge the two upper centroids into one. The final model is obtained after iterating
k-means.

Figure 11: One iteration of RLS: initial model (left), after swap (middle) and after k-
means (right).

Changes to the partitioning are proposed in [48]. Model is changed by first moving a
number of objects to randomly selected partitions and then updating the model. After
the update, an algorithm similar to RLS, but without k-means iterations, is used to fine-
tune the model.

Approaches that change the entire model include stochastic relaxation [119], where
noise is added to the centroid vectors. The amount of noise decreases as the algorithm is
iterated. The noise is meant to allow the model to move from one optimum to another so
that the global optimum will be reached. Deterministic annealing [92] starts with objects
belonging to all groups with nearly equal membership values. The groups are gradually
allowed to become non-overlapping by restricting the memberships to 0 and 1 in the
end.

Changes to k-means to make it less sensitive to initial model tend to make the algo-
rithm more complex, and increase the processing time. However, in cases where finding
a good clustering is difficult, the additions reduce the need to repeat the algorithm with
different initializations and thus decrease the required processing time. If it is easy to
find a good clustering for particular kind of data then using a more advanced algorithm
may not be necessary [61].

Clustering algorithms based on genetic algorithm (GA) [43] have also been pro-
posed. Some utilize binary representation of the model [47]. Representation specific to
the application is used in [77]. Combination of GA and k-means [87, 97] uses GA to
search for global optimum and k-means to speed up the search by converging each
member of the population to nearest local optimum.

There are cases where there is no possibility to add the vectors together and scale
them. In place of centroids, we select the object that has the smallest sum of distances to
other objects in the partition. This requires going through all pairs of objects inside each
partition. This is done in an algorithm analogous to k-means called partitioning around
medoids (PAM) [58], or k-medoids. It should be simple to convert an algorithm for

15

centroid model to use representative objects if the algorithm relies on properties of
vector space only in the centroid computations.

It is possible to operate on the matrix of distances between objects, if the objects
themselves are used only in distance computations and selection of cluster representa-
tives. A variant of using representative objects is to use only the values for each feature
that the set of objects contains. For each variable, the allowed values are the values that
occur within the set, and the representative object is constructed by selecting the most
appropriate value for each feature. The value can be the most common value inside the
partition, for example.

An variant of k-means algorithm for the case where the number of objects in each
cluster must not exceed a predefined limit is given in [84]. Partitioning step is replaced
by solving the transportation problem [3, 60]. As a result, only specified number of ob-
jects is mapped to each centroid. Prior knowledge about which objects belong to the
same cluster and which do not is the constraint discussed in [108].

If DBI is used as the clustering criterion, the mean vector is not an optimal cluster
representative, as noted in [P3]. Moving the centroid slightly away from the mean will
improve the value of DBI, at the cost of increasing MSE. Furthermore, after the centroid
has been moved, it is possible that the partitioning could change as well. Therefore no
changes in partitioning were made after the model alterations.

3.2 Algorithms for the Gaussian mixture model

When GMM is used, the basic algorithm for obtaining a model from the data is the
Expectation Maximization (EM) algorithm [24, 78]. The algorithm maximizes likeli-
hood of the data with respect to the model, see equation (7). As in k-means, EM algo-
rithm works by alternatively updating the model considering which object belongs to
each component and with what probability, and mapping the objects to components.
This is repeated until the model converges to a (local) optimum. A variant that updated
the model several times per one pass over the data is presented in [86].

Membership of an object to a component is computed using Equation (6). Sum of
densities over all components is normalized to 1, and the normalized values are the
membership values mjk used in Equations (3, 4, 5) when the component weights, means
and covariances are computed.

GMM is more complex than the centroid model and initializing GMM is therefore
more demanding. A common practice in EM is to first iterate k-means and then use the
partitions to initialize component weights and covariance matrices. This has the advan-
tage that the user does not need to make educated guesses about the initial covariance
matrices or use a scaled version of the initial covariance matrix of the entire data set. A
potential drawback is that k-means is affected by the scaling of the variables in the data,
which may affect the final solution of the EM algorithm. Technically one can use the
Mahalanobis-distance with the covariance matrix of all of the data which would make
the data appear normalized to k-means.

The GMM obtained directly from partitioning of the data may be usable, as noted in
[74]. Such model has been used for speaker recognition [64].

16

A deterministic annealing variant of EM algorithm has been proposed in [62]. The
component weights and covariance matrices are constrained to be close to each other
during the annealing process until the constraints are removed at the end. A similar al-
gorithm is given in [106], where only the component weights are constrained.
Figueiredo and Jain point out in [32] that EM algorithm exhibits annealing behavior
when component weights are initialized to 1/K, where K is the model size.

There is a variant of the EM algorithm that merges nearby components and splits
large components. The SMEM algorithm [105] uses the sum of products of member-
ships between two components to determine suitability of the pair for merge:

() ∑=
n

nknjmerge mmkjJ ,

Selecting a component for splitting relies on finding a component which describes
the data poorly. The authors define local Kullback divergence as:

() () ()
()∫

= dx

wvcxP

kxf
kxfwvcJ

kkk

kkksplit
,,,

,
log,,, . (11)

Function f in Equation (11) measures local data density around the component and is
defined as:

()
()

∑

∑ −
=

n

nk

n

nkn

m

mxx

kxf

δ
,

Function δ is an estimate of the local data density around location x. The larger the
value of Equation (11) is, the worse the component represents the data locally. Such
component is a good candidate for split.

In the SMEM algorithm one split and one merge operation is performed for each it-
eration of the algorithm, keeping the model size constant. After the operations, the
changed components are first optimized locally, so that only their parameters are al-
lowed to change. After that, the EM algorithm is run until the model converges. The
entire process is iterated for an user-specified number of times.

3.3 Fuzzy and possibilistic clustering algorithms

Object memberships can be assigned in fuzzy [118] or possibilistic manner. A fuzzy
variant of k-means is called fuzzy c-means (FCM) algorithm [25]. The algorithm uses
fuzzy membership values in the same way as the EM algorithm uses a posteriori prob-
abilities in computing the update weight of each object. The process is iterated until
convergence. Since fuzzy sets leave room for the designer to decide how the fuzzy
memberships are computed [69], fuzzy algorithms can be, to some extent, tuned for the
application in question.

Possibilistic approach [68] relaxes the restriction of Equation (1) that the sum of
memberships of any object should be 1. It is replaced by the requirement that the maxi-

17

mum membership of an object in some cluster should be greater than 0. This variant of
k-means is called possibilistic c-means (PCM). The clusters become uncoupled and the
algorithm becomes more immune to noise than FCM. The noise immunity is achieved
because the memberships of outliers remain small and the outliers have only small ef-
fect on the centroid computations. A consequence of the uncoupled clusters is that PCM
can produce clusters that contain the same objects with nearly same memberships [8].

In the FCM algorithm the model is centroid model. The centroids can be closer to
each other than when a hard partitioning is used. This is because the membership values
are commonly computed using squared inverse distances, so objects attract the centroids
of neighboring clusters. Techniques such as deterministic annealing can be used with
fuzzy logic as well [92].

There are several fuzzy, or soft, clustering algorithms, many of which have their
counterparts in hard clustering algorithms. This work is restricted mainly to hard clus-
tering and soft clustering with GMM.

3.4 Binary variables

When the data set consists of binary vectors there are some special conditions to be
considered [40]. Due to binary-valued attributes, the mean vector is not usually a binary
vector and hence, cannot be used in the centroid model. When mean vectors are used in
intermediate steps of an algorithm they have to be rounded in the end, see Figure 12.
Using binary vectors as a model, on the other hand, prevents gradual changes as the
value can only change from one 0 to 1, and vice versa.

Stochastic relaxation and annealing algorithms are usable, as they do not rely on
gradual changes alone. Random changes made to the model cause changes in the parti-
tions, and consequently, the model vectors are able to move around.

0.0 1.00.5

0

1

0

1

1

0.4

0.2

0.5

0.7

0.6

Figure 12: Converting centroid vector (0.5 0.7 0.4 0.6 0.2) to a binary vector.

18

4 Varying the number of clusters

When the number of clusters is unknown, the basic approach is to vary the model
size in a given range and then keep the model that is the most suitable for the needs of
the user. There are several approaches to changing the model size depending on the
range of model sizes, and whether we need to store all models for later inspection. If we
want to have all models from the specific range, then we must generate them all and the
main problem is how to generate them efficiently.

4.1 Hierarchic algorithms

A basic feature of hierarchic algorithms [100, 58, 31] is that they initially consider all
objects either to belong to the same cluster, or each object to belong to its own cluster.
Divisive algorithms proceed by splitting the clusters. Agglomerative algorithms join the
clusters. The process continues until the desired model size or number of partitions has
been reached. Therefore, hierarchic algorithms can produce models of all sizes. Clus-
tering criteria can be used to select the most suitable model among all generated models
of different sizes. The algorithms perform irreversible decisions. If two objects are sepa-
rated at some level, then they remain separated.

Certain hierarchic algorithms do not use the data objects. Instead, they operate on a
matrix of distances between the objects [31]. Similarities can be used as well. Objects
are needed only to compute the matrix. Therefore, the algorithms are applicable to any
kind of data. In single linkage algorithm, for example, joining is done between the two
clusters with the smallest distance between objects between clusters, see Figure 13. Av-
erage linkage uses average distance between all pairs of objects in two different clusters
as the cost of joining the clusters. In complete linkage, joining is done based on the
maximum distance between all pairs of objects between the clusters, see Figure 14.

Ward’s method [110] is an agglomerative algorithm that joins the pair that results in
the best value of the user-chosen criterion function among all candidates. In vector
quantization, the algorithm is generally known as pairwise nearest neighbor (PNN) al-
gorithm [28]. Equitz gives an equation for the increase of error as the result of joining
two clusters:

() ()2,, kjE

kj

kj
ccd

nn

nn
kjI

+
= .

19

Figure 13: Joining in single linkage. Figure 14: Joining in complete linkage.

Performing a division of a cluster into two new clusters is not as simple as joining
two clusters. A straightforward way is to select two objects farthest from each other in-
side a partition, and then divide the remaining objects according to these objects [100].
For data in vector space, the largest principal component of the objects in the partition
can be used in finding a hyper-plane that is used to split the cluster [114].

If hierarchic algorithm is run to the end, the result is a dendrogram that can be used
in trying to decide how many clusters there are, and which objects belong to which
cluster. In Figure 15 there is a data set with two clusters. Dendrogram produced by av-
erage linkage is shown in Figure 16. Each subtree represents a subset of the data. Verti-
cal distance between horizontal lines joining the subsets is directly proportional to the
average distance between all pairs of objects between the two clusters.

Figure 15: Data set with two clusters. Figure 16: Dendrogram produced using
average linkage agglomerative clustering.

As a by-product, models of all sizes from 1 to N are obtained. The extreme case of
one object per cluster is not likely to be useful, and neither are the other large models.
One can assume that the interesting models are the smaller ones, hence a divisive ap-
proach is expected to give the result faster than an agglomerative approach.

Modification of the distance matrix is a basic operation when speeding up the algo-
rithm or changing the clustering produced by hierarchic algorithms. For example in

20

[112], all distances except the ones where one object is in the kth nearest neighborhood
of the other are set to ∞. Similar approach has been used to speed up the pairwise near-
est neighbor algorithm [38] to achieve O(NlogN) time complexity. Likewise for the sin-
gle linkage algorithm [27], the time complexity decreases to O(kN2). In Chameleon
[56], a kth nearest neighbor (kNN) graph is used as a starting point. The graph is parti-
tioned to get the initial clusters. Clusters are joined by using interconnectedness and
closeness information from the graph. Only the distances in the kNN-graph are used by
the algorithm. The authors demonstrate that the algorithm is capable of finding arbi-
trary-shaped clusters.

One need not use distance function to compute the values in the matrix. Similarity
matrix can be constructed by running k-means repeatedly and then assigning similarity
between object pairs depending on how many times the objects ended up in the same
partition [33]. This relies on the tendency of k-means algorithm to move the centroids to
positions where the density of objects is high when the model size is high. In such case,
centroids do not end up in areas of low density between clusters.

There are variants of hierarchic algorithms that perform local optimization using, for
example, k-means after each split or merge to obtain better intermediate codebooks [22,
90, 107]. These variants are not strictly speaking hierarchic as they do not produce den-
drograms, but they still provide the user with multiple codebooks. The variants usually
require that the objects lie in a vector space. Abandoning the strictly hierarchic nesting
of clusters inside larger clusters produces better results in terms of lower error, because
the partitions can be adjusted to the current model. Figure 17 illustrates the difference.

Figure 17: Original partitions (left) and alternative partitions (right) with joined parti-
tions (dashed line) or partitioning to closest centroid (solid line).

Instead of joining the nearest neighbors in agglomerative clustering, an alternative
inspired by gravitation has been proposed in [113, 70]. Every object is moved to the di-
rection determined by gravity caused by the other objects. The aim is that nearby ob-
jects clump together first. The formed groups gradually move closer and form larger
groups that attract their neighbors more strongly. These two algorithms are iterative and
at each iteration, objects that are close enough to each other are joined together. These
algorithms provide a dendrogram, but since the objects and clusters move towards the

21

center of gravity of the data set during the process, the joined objects cannot be used
directly as centroids.

Model size can be changed by more than one. Competitive Agglomeration [34] is a
fuzzy algorithm, which discards all clusters that have too few objects. The limit is given
by the user. The algorithm does not produce models of all sizes and it stops automati-
cally when the model size does not change and the algorithm has converged.

Another approach that resembles hierarchic methods is X-means [90]. The idea is to
split each partition if two centroids describe the partition better than one centroid. Let Xj

be the set of objects that belong to cluster j and let p be the number of parameters
needed to represent the component. The method uses Schwarz criterion or Bayesian in-
formation criterion [57]:

() ()
j

p

jjjjjjjj nwvcXLLwvcXBIC log,,,,,, 2−= (12)

The criterion is computed inside each partition separately. LL is log-likelihood given
by Equation (7), when computed using one component only. Each split is performed
independently of each other, so several splits can occur at once. Value of Equation (12)
is to be maximized.

GAs have been used to find hierarchic clustering [73]. The algorithm is based on the
existence of a mapping from dendrogram to distance matrix. Individuals of the popula-
tion represent the order of objects and the tree structure. The squared error between the
distance matrix and initial distance matrix is minimized. The optimal order and tree
structure should yield minimal difference between the two distance matrices.

It is not possible to start with one component formed of just one object, when the se-
lected model is a GMM. This is because the covariance matrix is singular until the
number of objects that contribute to a component is at least one greater than the dimen-
sionality of the data. Using agglomerative clustering until the groups are large enough
to be handled with GMM is proposed in [39]. Different criteria to be optimized in ag-
glomerative clustering algorithm for different types of covariance matrices have also
been presented there. The starting point can be an existing GMM, which is reduced to
model size 1 in a hierarchic manner [44]. The algorithm proceeds by clustering the
components and joining them together. Joining several components during one step is
also possible. In [32], those components are removed, for which the sum of object
memberships multiplied by two is lower than the number of parameters required to rep-
resent the component.

4.2 Generating models within a range

A simple method to obtain all models from a given minimum size to a given maxi-
mum size is to generate them one by one. When the models are generated independently
of each other, we can use any algorithm described in Chapter 3. Another approach is to
utilize the best solution for the preceding model size, and change it by adding or re-
moving a component. In this way, the changed model may be close to optimal and the
algorithm may converge faster or find a better solution within a given time constraint.

22

Removal of a component is simpler of the two alternatives, since the number of re-
moval positions is much smaller than the places where one can add a new component.
Adding new components offers a natural starting point if we start with model of size 1.
Algorithms that change the previous model size by one and generate several candidates
generally can be considered as hierarchic algorithms when the number of candidate
models depends on the previous model size [90]. That is, when each component is re-
moved in turn or each cluster is split in turn.

Using k-means as a starting point, global k-means [71] starts with a model of size 1
and keeps adding new centroids until the given model size has been reached. The new
centroids are selected from internal nodes of a kd-tree [11] to find good positions and to
cover the entire area where there is data with the candidate vectors. Each candidate so-
lution is fine-tuned with k-means and the best one is used as the initial solution for the
next round. Using kd-tree provides a sufficient number of candidates so that the quality
of the solutions is identical to that of using all data vectors as the set of candidates. Us-
ing the smaller candidate set requires much less time.

Generating a model for all model sizes in the search range may not be necessary.
Skipping some model sizes is a viable approach if the clustering criterion has reasona-
bly smooth graph, see Figure 19. The fewer local optima the graph has, the better for the
algorithm. The values surrounding the optimum value should also differ enough from
each other so that the optimum value is clearly distinguishable. Figure 18 shows a range
in the graph of DBI where it is potentially possible to find the optimum value by
changing the model size by simple descending approach. If the search can be focused to
this range, the optimal model size is expected to be found quickly compared to search-
ing the entire range. Finding the narrow range, however, is harder than finding a wider
range, as in Figure 19. There small changes to model size are, in theory, sufficient to
find the optimal model size.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

2 10 20 30 40 50

Model size

D
B
I

Search range

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

2 20 30 40

Model size

F
-r
a
ti
o
 ×× ××
 1
0
0
0

10 50

Search range

Figure 18: Narrow range around optimum
value of DBI.

Figure 19: Wide range around optimum
value of F-ratio.

23

Two GA-based approaches [102, 103], related to single linkage, use a two-stage pro-
cess. The first stage divides the data into subsets which are then clustered together in the
second stage. Average distance to nearest neighbor is used to find the subsets. The aver-
age distance is computed over the entire data set. The subsets are the connected compo-
nents formed by linking objects to their neighbors whenever the distance is less than the
average distance to nearest neighbor. Clusters are formed in the second stage by joining
the subsets together. Each individual in the population of the GA is a single cluster, so
the algorithms need to find a set of most fit individuals. Distances between subsets in
same cluster should be minimized and distances between different clusters maximized
[102]. In [103], after the subsets have been formed, their mean vectors are computed.
Distances between mean vectors are used instead of distances between objects in the
subsets. The authors present a heuristic strategy for determining the number of clusters,
based on minimum distances between centroids and the spread of the clusters.

Davies-Bouldin index is used in the fitness function of a GA in [7]. The algorithm
allows for the model size to vary within a pre-specified range. This is accomplished
with a value that indicates that the centroid is not used. Hence, different number of val-
ues that indicate missing cluster in the individual produce models of different size. In
[41], F-ratio is used inside the cross-over operator to select the model returned by the
operator.

4.3 Small changes to the model size

When the proper model size is known approximately, a suitable way to alter the
model size is to change it in small steps. An early example is ISODATA [5] where the
user gives a lower and upper limit to the partition diameter. Two neighboring compo-
nents are joined if the diameter stays within limits. Any partition that is too large is
split. Consequently the model size changes, and if the initial clusters were much larger
or smaller than the given constraints, the change in the model size can be quite large.

A competitive EM algorithm [120] uses the same split and merge criteria as the
SMEM algorithm [105]. The algorithm chooses either a split or a merge operation
whenever the model has converged during the EM iterations. Components with small
mixing weight are annihilated as in [32].

Adding new components to areas where distribution of data does not match the dis-
tribution indicated by a GMM is done in [99]. The area covered by each component is
divided into equally probable areas. Each area should have an equal number of objects,
provided that the model represents the distribution properly. For each area, objects are
counted. There is a parameter that indicates the allowed deviation from the expected
value. If the deviation is exceeded, the area is considered to have too many or too few
objects. Another parameter controls how many deviating areas the component is al-
lowed to have. New components are added to areas with too many objects if there are
too many areas that deviate from the expectation.

A similar idea is used in an iterative algorithm in [94]. The maximum difference
between the density estimate computed from data objects and the density computed
from the model is used to determine where the new component should be added. Com-
ponents with small weight are candidates for removal. Adding new components and re-

24

moving components with small weight is random to some extent. Regions with higher
difference of the density estimates have higher probability of being selected as locations
for new components. Likewise, inverse component weight is used to compute the prob-
ability of removal.

Only one component is added or removed per iteration of the algorithm in [94]. EM
algorithm is iterated a few times during each iteration of the main algorithm. Probability
of component removal or addition is initially 1, and it linearly decreases to 0. Likewise,
number of EM iterations is initially 1 and it linearly increases to 10. When the model
size changes, the component removal is chosen to be performed if the removal im-
proved the model during the previous iteration, or if addition did not improve the
model. Same logic is used for adding a new component. If the score of the model did
not improve after the EM iterations, the new model is discarded and the previous one is
used as the starting point.

4.4 Partitioning objects or components together to form clusters

When only a partitioning of the data is used, there are some alternatives besides the
basic hierarchic algorithms, such as single and complete linkage. Even if a model is
used, each component of the model can be thought of as an object, and linked together
with other components to form arbitrary-shaped clusters. Hence, joining components
together is not a new idea. The main feature of the algorithms presented in this Chapter
is the capability to produce arbitrary-shaped clusters. The result of the clustering is ei-
ther a partitioning of data objects or a partitioning of the components of the model. In
cases where a model produced from the data is used as the starting point, the model
should be sufficiently detailed so that the actual shape of the clusters can be still found
by linking the components.

An algorithm based on forming trees [67] assigns a parent to each object whenever
possible. Parents are chosen from the neighborhood of each object. Objects that are
close and have much higher estimated density are likely to be chosen as the parent. Each
object has only one parent, and the algorithm restricts the links so that only trees are
formed. The number of trees corresponds to the number of clusters. An object that has
no objects of higher density close to it will become a root of a tree. The results indicate
that the algorithm tends to split clusters into several trees but the largest trees tend to
hold most of the objects.

Refining an existing partitioning can be done using majority-vote inside a given
neighborhood of an object [65, 66]. For each object, the algorithm finds the partition
with most objects in the neighborhood. An example is shown in Figure 20. The object at
the center will move to partition consisting of square objects. The process is iterated
until no object changes partition. The algorithm resembles k-means, except that there is
no centroid model.

Boosting-based clustering [36] relies on sampling the data set repeatedly. A model is
generated for each random sample, for example using k-means or fuzzy c-means. A new
partitioning for the data set is computed using the model. The new partitioning is com-
bined with an aggregate partitioning using a voting scheme. When the actual clusters are
divided in a partitioning, the borders of partitions end up in arbitrary places inside clus-

25

ters, but remain mostly in the same places between the clusters. As a result, objects at
different sides of cluster borders are voted into different clusters even if they end up in
the same partition occasionally.

Figure 20: Voting to partition objects. Figure 21: Clustering by joining grid cells.

CLIQUE [2], ENCLUS [20] and MAFIA [82] all attempt to find clusters in sub-
spaces. Dense areas are joined together. CLIQUE uses a fixed-size grid. Two grid cells
that have sufficiently high density are joined together to form clusters provided the grid
cells share a side. ENCLUS uses entropy of the grid cell instead of density. Low en-
tropy indicates clusters. MAFIA uses an adaptive grid and density information. Figure
21 shows an example of the clusters produced on a fixed-size grid.

An algorithm that links centroids is presented in [104]. After initial clustering by k-
means using a large model size, a distance matrix between the centroids is constructed.
The distance between two centroids is inversely proportional to number of objects in a
hyper-cylinder that has its end-points at the centroids. The number of objects corre-
sponds to density of objects between the centroids. Two centroids with lots of data ob-
jects between them are more likely to lie inside the same cluster than two with just few
objects between them. Distances are computed only between neighboring centroids. The
linking is done with an agglomerative clustering algorithm. After linking and deciding a
cut-off point for the dendrogram, the centroids have been divided into clusters. It is pos-
sible to construct a piecewise linear model consisting of the line segments between cen-
troids in the same cluster. In this model, the distance of an object to a cluster is the dis-
tance to the nearest line segment.

The same idea can be used for GMM. The advantage is that the probability density
can be computed anywhere directly from the model. Therefore, if the density estimate
computed using the objects correlates with the probability density computed using the
model, it is possible to compute the values of the distance matrix without using the
original data. Since the objects are not counted, the hyper-cylinder can be replaced with
straight line between the component means. The minimum probability density along the
line is taken as the density between the components, since it corresponds to the separa-
tion between the components.

Technically, one should use minimum probability density along a path between the
two components, with the path chosen so that all other possible paths have lower mini-
mum probability density. For nearby components, the straight line between component
means is likely to be a reasonable approximation. Since there can be a path which goes

26

from one mean to the other mean entirely along area of higher probability density, the
straight line provides a lower limit to the true value.

A difference between relative and absolute densities can be made when constructing
the density matrix. If there are clusters that have quite low density compared to some
other cluster, but which still have higher density than the surrounding area, then using
absolute densities will result in no components being joined inside these clusters. If the
density is relative to, for example, maximum density of the end-point components at
their means, then the components in clusters with lower overall density can be joined
together earlier. Using relative densities favors linking in areas where the density be-
tween two components remains roughly the same as near the component means. The
difference is shown in Figure 22. Density distribution of the data is shown on the left. In
the middle is the result of linking using absolute densities, on the right the result of
linking using relative densities. Dark lines between components are stronger links than
thin, gray lines.

Figure 22: Density contours of data distribution (left), result of linking using absolute
densities (middle), and result of linking using relative densities (right).

27

5 Large data sets

The algorithms presented in the previous chapters make the implicit assumption that
all data can be kept in memory at once, and the explicit assumption that multiple passes
are acceptable. This is not always the case. If all data does not fit into memory, the data
needs to be read from mass storage once per every pass. For example, every partitioning
step in k-means requires one pass. This may be prohibitively slow. In this chapter, algo-
rithms for large data sets are considered.

Need for processing large data sets has been around for a long time, but the notion of
what is large has changed during the years. Even though computers get faster and have
more memory than before, an efficient algorithm that finds good solutions for large data
sets can most likely be used for smaller data sets as well.

There are different requirements for algorithms that deal with large data sets. Data
stream algorithms [45] are allowed to store some data objects, but each object is read
only once. Data stream algorithms are not required to take action after an object arrives,
so they can store a set of objects that are not modeled yet. These algorithms should be
able to accept the data in arbitrary order as there is no guarantee that the data is stored
anywhere. On-line algorithms should be capable of updating the model after new data
has arrived. Some algorithms allow removal of data objects as well [1]. On-line algo-
rithms model the previously seen data so that the model is available at all times.

Some algorithms concentrate only on using less memory. They may read all data, or
just take random samples. In cases where the algorithm uses only a small part of the
data, the whole set can be partitioned afterwards, once the model has been created.
Some algorithms rely on suitable data structures so that the required objects and their
nearest neighbors are found efficiently. Without such structure, these algorithms may
have Ω(N2) time complexity due to the neighborhood search [4]. Only the objects in the
neighborhood need to be stored in memory at once.

Several of the algorithms for large data sets take outliers into consideration. Even if
the probability that an object is an outlier is low, in a large data set there will be some
outliers. In the algorithms described in this chapter, objects that remain alone after some
clustering steps or objects that have low estimated density are usually considered to be
outliers.

Even when the entire data set fits into the memory, Ω(N2) time complexity may be
too high in practice. This may exclude agglomerative algorithms, which typically have
at least quadratic time complexity. Fast agglomerative algorithms [38] rely on fast kNN

28

search so that the overall time complexity is less than Ω(N2). Performing a thorough
search over some range of model sizes may also become too expensive. A clustering
algorithm for fixed model size has usually at least linear time complexity, because it has
to go through all objects at least once. Performing the search for different model sizes,
possibly several times for each model size may have too high time complexity for prac-
tical purposes. If the lower bound for the time complexity of a clustering algorithm for
fixed model size is Ω(N) and the number of model sizes that are used is proportional to
N, the total time complexity will be Ω(N2). The clustering algorithms presented in this
chapter either determine the model size or the number of partitions automatically, or
they keep the model size fixed.

5.1 Data reduction algorithms

A way to cope with large amounts of data is to reduce it before generating the model.
Data reduction algorithms try to represent denser areas with fewer objects while main-
taining some accuracy in areas where the objects are sparsely distributed. The simplest
approach is to take a random sample and use it instead of the entire data set. The sample
must be large enough to capture the distribution of the data with sufficient detail. This
becomes harder when the dimensionality of the data increases, as the tails of the distri-
butions contain larger part of the probability density [98].

BIRCH [121] is an algorithm designed to reduce a large data set into clustering fea-
tures, which contain position and distribution information. The user can set the maxi-
mum amount of memory the algorithm may use. As data is read, the algorithm com-
bines objects into larger and larger clustering features to stay below the memory limit.
These clustering features consist of the number of objects stored into the feature, their
sum and sum of squares. Thus, it is possible to compute the mean and variance.

Outliers are dealt with as an optional special case. During the joining of clustering
features, if the algorithm encounters a clustering feature that has far fewer objects than
the other clustering features, that clustering feature can be considered to be an outlier.
They are stored externally and read in afterwards at which point the final decision is
made about whether the clustering features represent outliers or not.

After the data set has been processed, the clustering features can be clustered using
any algorithm that has been modified to use the clustering features instead of the data
objects. Basically the clustering features contain the same information as a GMM, so in
some sense the modified algorithm operates on a GMM. However, the major difference
is that due to limited radius of the clustering features, the algorithms only need to con-
sider the distances between the features. The spread of objects within the clustering
features can be ignored since the features do not overlap and are mostly of the same
shape. Data reduction using BIRCH before the actual clustering has also been used in
[21, 54].

In a way, BIRCH produces a very detailed centroid model with extra information.
Therefore, it might be possible to produce a model directly with BIRCH by limiting the
available memory. Then BIRCH would be suitable for incremental updates of the model
as well. However, the data compression stage in BIRCH does not keep the number of
clustering features constant. Also, it is argued in [19] that BIRCH depends on the order

29

of the data so that the clustering features may end up containing objects from neigh-
boring clusters.

Whether a random sample or the clustering features are used, it is suggested in [16]
that both the objects in the sample and clustering features should be weighted according
to how many objects they represent. For representative objects, this requires finding the
nearest neighbor among the representative objects for all data objects. The authors in-
troduce the data bubble, which contains the location, weight, radius information, and
the average kNN-distance of all objects represented by the data bubble. The radius and
average kNN-distance indicate the wideness of the area over which the original objects
were spread. This information along with a specific distance functions for data bubbles
helps to decrease the loss of information due to random sampling, or compression as
used in BIRCH.

Figure 23 shows a data set of 10000 objects before and after data reduction. The
number of objects has been reduced to 1081. The size of the dot is proportional to how
many objects are represented.

Figure 23: Data set of 10000 objects (left), and after reduction to 1081 objects (right).

Equations (8, 9) can be computed from the clustering features as well as from the
original data. One must only take into account the weighting of the features. The result
of the Equation (9) is accurate. The Equation (8) gives an estimate unless one stores the
entire covariance matrix in each clustering feature. However, Equation (10) can still be
computed accurately from the clustering features. In practice, clustering features force a
slightly different partitioning than the original data would allow.

5.2 Partition and representative object -based algorithms

Having the information about clusters stored in a partition has the drawback that
there are as many partition indices as there are data objects. Therefore, partitioning may
be impractical for huge data sets. In some cases, producing a partitioning is an optional
final step, as in [121].

30

Leader [49] is an algorithm that constructs a model of the input data by picking rep-
resentative objects from the input data. Any object further than the user-specified limit
is added to the model. Objects are mapped to the first representative in the model that is
close enough. The algorithm requires only one pass, but the limit must be set to a suit-
able value. A large limit will produce a small model that does not describe the model in
any detail, and too small limit can result in a model of excessive size.

CLARA [58] uses random sampling and PAM [58] to find the representative objects.
PAM is run until convergence, and the random sample is then replaced with another
one. The previous model is used as the initial model for PAM with new random sample.
CLARANS [85] is an improved version of CLARA [58]. In CLARANS the random
sample is drawn at each step of PAM. Hence, there is a greater possibility that good rep-
resentative objects would be selected, but at the cost of increased need to access the
data. Once the final representative objects have been found, the entire data set can be
partitioned.

The main idea of CURE [46] is to cluster a random sample using a hierarchical algo-
rithm, remove outliers, and then use several objects from each cluster as representatives
of the cluster. Outlier removal is done during the agglomerative clustering. At some
user-specified point, clusters consisting of one or two objects are removed. Then, at the
time when the number of clusters is slightly above the desired number, smallest clusters
are removed as outlier clusters. After that the whole data set can be partitioned using the
representatives. Objects are mapped to the cluster with the closest representative. The
initial random sample must be large enough so that small clusters are not missed during
the clustering phase.

The approach used in [45] reads the data set in blocks. For each block, a model is
produced. The models are combined, and they are then treated as data and clustered. To
keep the amount of memory limited, there are intermediate models in several levels.
Each intermediate model has a fixed maximum size and if it is exceeded, a smaller,
higher level model is generated. At the end, the final model is generated.

5.3 Density-based algorithms

Algorithms that rely on using density estimates usually require a fast method of ob-
taining density estimates for data objects and possibly the nearest neighbors, or neigh-
bors inside a specified range, usually by using a suitable indexing structure, such as R*-
tree [10]. Therefore, the user will have to create the structure unless it already exists.
These algorithms usually produce a partitioning since the clusters can be of arbitrary
shape.

DBSCAN [30] is based on the idea that the object density around each object in a
cluster should exceed some user-given limit. In DBSCAN, a fixed radius is used. The
number of objects inside the radius, or neighborhood, is the density estimate. Objects
for which the user-given density limit is exceeded are called core objects. Any object
that can be reached from a core object by moving through any chain of core object
neighborhoods belongs to the same cluster. Hence clusters can be arbitrary-shaped. All
objects which are not reachable from any core object have lower density than the user-
given limit and are regarded as noise.

31

An incremental version of DBSCAN is presented in [29]. The main observation be-
hind the algorithm is that insertions and deletions of objects affect only small neighbor-
hood around them. Since core objects define the clusters, it is only necessary to consider
the core objects close to an object that has changed core status due to insertion or re-
moval. An object becomes a core object if the density estimate exceeds the user-given
limit, and likewise, a core object becomes a common object when the density estimate
falls below the limit. Objects can become noise if enough objects are removed from
their vicinity, and vice versa. Consequently for relatively small number of updates the
algorithm is much faster than re-running DBSCAN.

OPTICS [4] sorts the objects into a decreasing order according to the distances that
DBSCAN uses when performing clustering. Using the ordering and stored distance in-
formation, the data set can be clustered in the same way as DBSCAN would cluster the
data using any user-given radius that is smaller than the radius used in generating the
ordering. As in DBSCAN, an efficient region-query is required. An online version is
introduced in [1].

DBCLASD [115] relies on identifying clusters based on the distribution of distances
to nearest neighbors inside cluster. Candidates are selected from the neighborhoods of
the objects that already belong to the cluster. A candidate object is added to the cluster
if the distribution of distances to nearest neighbors inside the cluster still matches the
expected distribution according to χ2 test with given confidence level. The neighbor-
hood radius depends on the area the cluster covers and inversely on the number of ob-
jects already in the cluster.

DENCLUE [50] is a gradient-ascent algorithm. Basically, a Parzen window [88] is
used as a density estimator and the gradient search is done to find a mode of the distri-
bution. Algorithm uses Gaussian window function with tail of the distribution cut off.
Modes of the distribution are used to identify clusters. Several modes can form one
cluster if the probability density between modes does not decrease below a limit speci-
fied by the user. Any mode with probability density below the limit is discarded as
noise. To speed up the search, DENCLUE divides the data using a grid. All grid cells
with too few objects, determined using an optional limit given by the user, are not used
to start searches. Cells are stored in B+-tree [9] for faster access during the gradient
search. For further speed-up, all objects that end up inside the density estimation win-
dow during the search are mapped to the same cluster as the object where the search
started.

5.4 GMM-based algorithms

There are at least three online-EM algorithms [6, 95, 122]. The algorithm in [6] is a
competitive learning [63] algorithm designed to use GMM. The one by Sato and Ishii
[95] can create new components if the new object is far away from the model. The co-
variance matrix of the new component is a scaled identity matrix. The scaling factor is a
product of an user-specified scaling factor and minimum squared distance from the ob-
ject to component means, divided by data dimensionality. A component is removed if
the component weight becomes too small. In [95], the user must give the probability
density limit for determining when the object is too far, and the weight limit for re-

32

moving a component. In [122], component is removed if the weight becomes zero or
less.

All three algorithms forget old data gradually. Forgetting old data might not seem
appropriate if the intention is to model the entire data set. However, forgetting old data
might allow for the components to move more freely so that they are not tied to the
original positions, should the initialization match the actual distribution of the data
poorly. When the data is ordered in some manner, forgetting old data may move the en-
tire model away from a region where the model was initially [95].

Scalable EM [14] takes the approach of converting the data into compressed object
sets. Some data is read in, then model is updated. After update the data is compressed to
make room for more data. For compressed object sets the same statistics are stored as in
BIRCH. The algorithm contains EM algorithm that has been modified to use the suffi-
cient statistics as well as individual objects, and the compression of the data is done us-
ing agglomerative clustering algorithm. In it, compressed object sets are joined together
as long as the set radius does not exceed a limit. This limit will increase as the algorithm
proceeds so that later on, more objects can be compressed together. The algorithm also
contains another method of compression. All objects that are close enough to a compo-
nent are compressed together. In practice this compresses together all objects in an area
centered around a component mean, with the same shape as the component. This might
compress together objects from different clusters if a component covers two or more
clusters. The authors have also presented similar variant of k-means [15]. The main
feature is the detection of small, compact subsets that can be turned into compressed
objects using k-means, and the agglomeration, when necessary, of the compressed ob-
ject sets. Technically, the agglomerative algorithm could handle both compressed object
sets and the uncompressed data.

An EM algorithm that utilizes a multi-resolution kd-tree is presented in [81]. Each
node of the tree contains information that summarizes the sub-tree. Namely, the number
of objects, their mean, covariance and bounding hyper-rectangle. In order to avoid
storing all data, a set of objects in a sub-tree is left together once their bounding hyper-
rectangle becomes smaller than a user-given limit. The error that arises during model
update of the components of the GMM is expected to be small. Also, when estimated
minimum and maximum memberships of an internal node are very close to each other
for all components, the node is treated as a leaf node. A component with very small es-
timated membership value for a sub-tree can be omitted from further computations in
that sub-tree.

33

6 Summary of Publications

In Publication P1 we present the use of previous models as the initial model when
performing a search for the optimal model size systematically inside a range of model
sizes. Since the algorithm for models of fixed size does not improve the model during
each iteration, some stopping criteria to indicate a sufficient number of iterations are
also proposed. A few dozen initial iterations are required before we can start to use the
stopping criteria. The results indicate that the stopping criteria that assume the best
clustering criterion value should follow a smooth curve, are reasonably good. A simpler
criterion based on whether the model has improved or not, worked poorly. Using the
previous solution decreases the required number of iterations to 33–43 %.

In Publication P2 we propose a generalization of the RLS algorithm that optimizes
also the size of the model during the process in order to find the number of clusters
faster. Instead of performing just random swaps, centroids can also be removed or
added. Comparison shows that the proposed approach spends only 3 % of the number of
iterations used by a simple brute force approach of going through the given range of
model sizes systematically. For data sets with overlapping clusters, much better chance
of finding the proper number of clusters is achieved by using only 5.5 % of iterations
required by the brute force approach.

In Publication P3 we propose a method for improving the values of Davies-Bouldin
index [26] by altering the centroid model. The main goal of the research was to improve
the ability to find the intended number of clusters. DBI is calculated using MSE of each
cluster and distances between all pairs of centroids. The greater the distances between
the centroids are, the better the clustering is. For DBI, the optimal position for centroids
is not the mean vector. Moving the centroids slightly away from each other so that the
increase in errors within clusters is offset by the increase in distances between the cen-
troids results in lower values of DBI. The decrease of the values of DBI is too small to
have a practical effect on the clustering. It was not possible to determine the number of
clusters any better than without the changes to the model.

In Publication P4 we cluster binary data. Some distance functions used with binary
data do not work properly when a cluster has only one object. We propose a distance
function to be used with stochastic complexity. The distance function indicates how
much the criterion value changes when an object is moved from one partition to an-
other. The results of the clustering are used to perform classification. The classification
error for the proposed distance function is 1.13 % while for the other distance functions
it is 3–7 %.

34

In Publication P5 we cluster binary data using gradient-descent type algorithms.
These algorithms rely on small, gradual changes of the model. With binary data only
abrupt changes are possible. We use a variable metric, and therefore variable criterion
function and non-binary model, to improve performance. The exponent of a Minkowski
metric is changed from ∞ to 1, and in the process, the model gradually becomes a set of
binary vectors. Initially the differences between optimal values in different partitions for
single variable are very close regardless of how many ones and zeroes there are in a
partition, thus allowing for small changes to occur in the model. The final solution be-
comes a set of pure binary vectors in a natural manner. Test results indicate that gradi-
ent-descent algorithms perform clearly better with variable metric. The average de-
crease in error is 11 %.

In Publication P6 we propose a one pass algorithm for generating a mixture model
from large data set. It is useful in cases where only a small part of the data fits into the
main memory at once. The algorithm identifies suitable subsets of the data, generates
and adds new components into the model, and updates the existing model with data ob-
jects as they are read in. Updating the model is always the primary choice. The resulting
model can be processed afterwards without the original data. During the execution of
the algorithm, only a small user-specified amount of the data is kept in memory at once.
The results indicate that the model conforms reasonably well to the distribution of the
data. The order in which the data objects are given to the algorithm does not have major
effect on the results. The whole process requires 0.5–10 % of the time taken by the EM
algorithm to generate the same amount of models.

In Publication P7 we attempt to discover clusters from speech data by systemati-
cally searching through a wide range of model sizes. Three different features are com-
puted from the speech signal. F-ratio is used as the clustering criterion. The monotonic
behavior of the criterion values indicates that there are no clusters. Visual inspection of
the data does not indicate the presence of clusters either. Using different window func-
tions or normalizing the data has no effect. As a consequence, to create a model from
speech data, the clustering algorithm has to model the distribution of the data. Algo-
rithms that automatically attempt to find the number of clusters are not usable.

The contributions of the author of the thesis to the publications can be summarized
as follows. In publications P1, P2, P3, P5 and P6 the author is responsible for imple-
menting the algorithms, performing the tests, and most of the writing. Ideas have been
developed jointly with the co-author. In publication P4, the author implemented the al-
gorithms that were used and helped with the data sets. In publication P7, the author im-
plemented the algorithms, performed the data conversions and experiments.

35

7 Conclusions

In this work, algorithms for speeding up the search of both a good clustering and the
number of clusters are proposed. The approach is guided by a clustering criterion, which
is capable of indicating the number of clusters even when the clusters overlap. The pro-
posed algorithm is 5 times faster than an alternative approach of utilizing previous re-
sults, and 18 times faster than a simple approach of generating each model from scratch.

Algorithms to modify the centroids in order to obtain better values of Davies-
Bouldin index are also proposed. The proposed algorithms improves the optimization of
the criterion values but the ability of the criterion to indicate the number of clusters for
data sets with overlapping cluster is not improved.

Algorithms that rely on gradual changes can be applied for binary data better by
changing the representation of the clustering slowly from non-binary to pure binary
vectors. In most cases, the results are considerably better than when the model consists
of binary vectors, or when the model consists of mean vectors that are rounded as the
last step.

A model can be generated from a large data set by first generating it from the data set
in one pass and then reducing the model size in a separate post-processing step, without
the need of the original data. The model size reduction is fast compared to processing
the entire data set. Therefore, several models can be generated with low cost compared
to the initial generation of the model from data.

A future extension to this work would be to develop a better method of selecting the
objects from the buffer for the algorithm presented in [P6]. Ideally, the algorithm should
quickly identify a set of objects that is distributed according to a multivariate Gaussian
distribution. This would allow the algorithm to identify potential clusters.

It may also be possible to generalize the approach of [P5] to attributes with few ordi-
nal values, such as 3-5 different values. Whether gradient descent algorithms have
problems with such attributes should be verified first.

36

References

[1] E. Achtert, C. Bohm, H-P. Kriegel, P. Kröger: “Online Hierarchical Clustering
in a Data Warehouse Environment Data Mining,” in Proceedings of the Fifth
IEEE International Conference on Data Mining, 2005, pp.10–17.

[2] R. Agrawal, J. Gehrke, D. Gunopulos, P. Raghavan: “Automatic subspace clus-
tering of high dimensional data for data mining applications,” in Proceedings of
1998 ACM-SIGMOD International Conference on Management of Data, 1998,
pp. 94–105.

[3] R. Ahuja, T. Magnanti, J. Orlin: “Network Flows: Theory, Algorithms, and Ap-
plications,” Englewood Cliffs, Prentice-Hall, NJ, 1993.

[4] M. Ankerst, M. Breunig, H-P. Kriegel, J. Sander: “OPTICS: Ordering Points to
Identify the Clustering Structure,” in Proceedings of the 1999 ACM SIGMOD

International Conference on Management of Data, 1999, pp. 49–60.

[5] G. Ball, D. Hall: “A clustering technique for summarizing multivariate data,”
Behavioral Science, 12, 1967, pp. 153–155.

[6] S. De Backer, P. Scheunders: “A competitive elliptical clustering algorithm,”
Pattern Recognition Letters, 20, 1999, pp. 1141–1147.

[7] S. Bandyopadhyay, U. Maulik: “Genetic clustering for automatic evolution of
clusters and application to image classification,” Pattern Recognition, 35, 2002,
pp. 1197–1208.

[8] M. Barni, V. Cappellini, A. Mecocci: “Comments on ‘A Possibilistic Approach
to Clustering’,” IEEE Transactions on Fuzzy Systems, 4(3), 1996, pp. 393–396.

[9] R. Bayer, E.M. McCreight: “Organization and Maintenance of Large Ordered
Indices,” Acta Informatica, 1, 1972, pp. 173–189.

[10] N. Beckmann, H.-P. Kriegel, R. Schneider, B. Seeger: “The R*-tree: an efficient
and robust access method for points and rectangles,” in Proceedings of the 1990
ACM SIGMOD International Conference on Management of Data, 1990, pp.
322–331.

[11] J.L. Bentley: “Multidimensional binary search trees used for associative search-
ing,” Communications of the ACM, 18(9), 1975, pp. 509–517.

[12] J.C. Bezdek, N.R. Pal: “Some New Indexes of Cluster Validity,” IEEE Transac-
tions On Systems, Man, and Cybernetics - Part B: Cybernetics, 28(3), 1998, pp.
301–315.

[13] H. Bischof, A. Leonardis, A. Selb: “MDL Principle for Robust Vector Quanti-
zation,” Pattern Analysis and Applications, 1999, pp. 59–72.

[14] P. Bradley, U. Fayyad, C. Reina: “Clustering Very Large Databases Using EM
Mixture Models,” in Proceedings of the 15th International Conference on Pat-
tern Recognition, vol. 2, 2000, pp. 76–80.

37

[15] P. Bradley, U. Fayyad, C. Reina: “Scaling Clustering Algorithms to Large Data-
bases,” in Proceedings. of the 4th International Conference on Knowledge Dis-
covery and Data Mining, 1998, pp. 9–15.

[16] M.M. Breunig, H.-P. Kriegel, P. Kröger, J. Sander: “Data Bubbles: Quality Pre-
serving Performance Boosting for Hierarchical Clustering,” in Proceedings of
ACM SIGMOD International Conference on Management of Data, 2001, pp.
79–90.

[17] J. Buhmann, H. Kuhnel: “Vector quantization with complexity costs,” IEEE
Transactions on Information Theory, 39(4), 1993, pp. 1133–1145.

[18] R. R. de Carvalho, S. G. Djorgovski, N. Weir, U. Fayyad, K. Cherkauer, J. Ro-
den, A. Gray: “Clustering Analysis Algorithms and Their Applications to Digital
POSS-II Catalogs,” in Astronomical Data Analysis Software and Systems IV,
ASP Conference Series, vol. 77, 1995.

[19] C.-Y. Chen, S.-C. Hwang, Y.-J. Oyang: “An Incremental Hierarchical Data
Clustering Algorithm Based on Gravity Theory,” in Proceeding of Advances in
Knowledge Discovery and Data Mining, 6th Pacific-Asia Conference, PAKDD
2002, LNCS 2336, 2002, pp. 237–250.

[20] C. Cheng, A.W. Fu, Y. Zhang: “Entropy-based Subspace Clustering for Mining
Numerical Data,” in Proceedings of the Fifth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, 1999, pp. 84–93.

[21] T. Chiu, D. Fang, J. Chen, Y. Wang, C. Jeris: “A Robust and Scalable Clustering
Algorithm for Mixed Type Attributes in Large Database Environment,” in Pro-
ceedings of the Seventh ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, 2001, pp. 263–268.

[22] D. Cutting, D. Karger, J. Pedersen, J. Tukey: "Scatter-gather: A cluster-based
approach to browsing large document collections,” in Proceedings of SIGIR'92,
1992, pp. 318-329.

[23] R.N. Dave: “Characterization and Detection of Noise In Clustering,” Pattern
Recognition Letters, 12(11), 1991, pp. 657–664.

[24] A. Dempster, N. Laird, D. Rubin: “Maximum likelihood from incomplete data
via the EM algorithm,” Journal of the Royal Statistical Society B, 39, 1977, pp.
1–38.

[25] J.C. Dunn: “A Fuzzy Relative of the ISODATA Process and Its Use in Detecting
Compact Well-Separated Clusters,” Journal of Cybernetics, 3(3), 1974, pp. 32–
57.

[26] D.L. Davies, D.W. Bouldin: “A cluster separation measure,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, 1(2), 1979, pp. 224–227.

[27] Y. El-Sombaty, M.A. Ismail: “On-line Hierarchical Clustering,” Pattern Recog-
nition Letters, 19, 1998, pp. 1285–1291.

38

[28] W.H. Equitz: “A New vector Quantization Clustering Algorithm,” IEEE Trans-
actions on Acoustics, Speech, and Signal Processing, 37(19), 1989, pp. 1568–
1575.

[29] M. Ester, H.-P. Kriegel, J. Sander, M. Wimmer, X. Xu: “Incremental Clustering
for Mining in a Data Warehousing Environment,” in Proceedings of the 24rd
International Conference on Very Large Data Bases, 1998, pp. 323–333

[30] M. Ester, H-P. Kriegel, J. Sander, X. Xu: “A Density-Based Algorithm for Dis-
covering Clusters in Large Spatial Databases with Noise,” in Proceedings of 2nd
International Conference on Knowledge Discovery and Data Mining, 1996, pp.
226–231.

[31] B.S. Everitt: “Cluster Analysis,” 3rd Edition. Edward Arnold / Halsted Press,
London, 1992.

[32] M.A.F. Figueiredo, A.K. Jain: “Unsupervised learning of finite mixture mod-
els,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(3),
2002, pp. 381–396.

[33] A. Fred, A.K. Jain: “Robust data clustering,” in Proceedings of IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, vol. 2, 2003,
pp. 128–133.

[34] H. Frigui, R. Krishnapuram: “Clustering by competitive agglomeration,” Pattern
Recognition, 30(7), 1997, pp. 1109–1119.

[35] B. Fritzke: "The LBG-U method for vector quantization - An improvement over
LBG inspired from neural networks,” Neural Processing Letters, 5(1), 1997, pp.
35–45.

[36] D. Frossyniotis, A. Likas, A. Stafylopatis: “A clustering method based on
boosting,” Pattern Recognition Letters, 25, 2004, pp. 641–654.

[37] P. Fränti, J. Kivijärvi: “Randomized local search algorithm for the clustering
problem,” Pattern Analysis and Applications, 3(4), 2000, pp. 358–369.

[38] P. Fränti, O. Virmajoki, V. Hautamäki: "Fast PNN-based clustering using k-
nearest neighbor graph,” in Proceedings of IEEE International Conference on
Data Mining (ICDM 2003), 2003, pp. 525–528.

[39] C. Fraley: “Algorithms for Model Based Gaussian Hierarchical Clustering,”
SIAM Journal of Scientific Computing, 20(1), 1998, pp. 270–281.

[40] P. Fränti, T. Kaukoranta: “Binary vector quantizer design using soft centroids,”
Signal Processing: Image Communication, 14(9), 1999, pp. 677–681.

[41] P. Fränti, O. Virmajoki: “Iterative shrinking method for clustering problems,”
Pattern Recognition, 39(5), 2006, pp. 761-765.

[42] A.B. Geva, Y. Steinberg, S. Bruckmair, G. Nahum: “A comparison of cluster
validity criteria for a mixture of normal distributed data,” Pattern Recognition
Letters, 21, 2000, pp. 511–529.

[43] D.E. Goldberg: “Genetic Algorithms in Search, Optimization and Machine
Learning,” Addison-Wesley, Reading, MA., 1989.

39

[44] J. Goldberger, S. Roweis: “Hierarchical Clustering of a Mixture Model,” Neural
Information Processing Systems 17 (NIPS'04), 2004, pp. 505–512.

[45] S. Guha, A. Meyerson, N. Mishra, R. Motwani, L. O'Callaghan: “Clustering data
streams: Theory and practice,” IEEE Transactions on Knowledge and Data En-
gineering, 15(3), 2003, pp. 515–528.

[46] S. Guha, R. Rastogi, K. Shim: “CURE: An Efficient Clustering Algorithm for
Large Databases,” in Proceedings of the 1998 ACM SIGMOD International

Conference on Management of Data, 1998, pp. 73–84.

[47] L.O. Hall, I.B. Özyurt, J.C. Bezdek: “Clustering with a Genetically Optimized
Approach,” IEEE Transactions On Evolutionary Computation, 3(2), 1999, pp.
103–112.

[48] P. Hansen, N. Mladenovic: “J-MEANS: a new local search heuristic for mini-
mum sum of squares clustering,” Pattern Recognition, 34(2), 2001, pp. 187–
529.

[49] J.A. Hartigan: “Clustering Algorithms”. Wiley Series in probability and mathe-
matical statistics. John Wiley and Sons, Inc., 1975.

[50] A. Hinneburg, D.A. Keim: “An Efficient Approach to Clustering in Large Mul-
timedia Databases with Noise,” in Proceedings of the 4th International Confer-
ence on Knowledge Discovery and Data Mining, (KDD), 1998, pp. 58–65.

[51] A. Hyvärinen, J. Karhunen, E. Oja: “Independent Component Analysis,” John
Wiley & Sons, 2001.

[52] P.K. Ito: “Robustness of ANOVA and MANOVA Test Procedures,” in P.R.
Krishnaiah (ed). Handbook of Statistics 1: Analysis of Variance. North-Holland
Publishing Company, 1980, pp. 199–236.

[53] A.K. Jain, M.N. Murty, P.J. Flynn: “Data Clustering: A Review,” ACM Com-

puting Surveys, 31(3), 1999, pp. 264–323.

[54] H. Jin, K.-S. Leung, M.-L. Wong, Z.-B. Xu: “Scalable model-based cluster
analysis using clustering features,” Pattern Recognition, 38(5), 2005, pp. 637–
649.

[55] I.T. Joliffe: “Principal Component Analysis,” Springer, New York, 1986.

[56] G. Karypis, E.-H. Han, V. Kumar: “Chameleon: hierarchical clustering using
dynamic modeling,” Computer, 32(8), 1999, pp. 68–75.

[57] R. Kass, L. Wasserman: “A reference Bayesian test for nested hypotheses and its
relationship to the Schwarz criterion,” Journal of the American Statistical Asso-
ciation, 90, 1994, pp. 773–795.

[58] L. Kaufman, P.J. Rousseeuw: “Finding Groups in Data: An Introduction to
Cluster Analysis”. John Wiley Sons, New York, 1990.

[59] T. Kaukoranta, P. Fränti, O. Nevalainen: “Iterative split-and-merge algorithm
for VQ codebook generation,” Optical Engineering, 37(10), 1998, pp. 2726–
2732.

40

[60] J. Kennington, R. Helgason: “Algorithms for Network Programming,” Wiley,
New York, 1980.

[61] T. Kinnunen, T. Kilpeläinen, P. Fränti: "Comparison of clustering algorithms in
speaker identification,” in Proceedings of IASTED International Conference on
Signal Processing and Communications (SPC'2000), 2000, pp. 222–227.

[62] M. Kloppenburg, P. Tavan: “Deterministic Annealing for Density Estimation by
Multivariate Normal Mixtures,” Physical Review Letters E, 55(3), 1997, pp.
R2089–R2092.

[63] T. Kohonen: “Self-organizing Maps,” Springer, New York, 1995.

[64] G. Kolano, P. Regel-Brietzmann: “Combination of Vector Quantization and
Gaussian Mixture Models for Speaker Verification,” in Proceedings of EURO-
SPEECH-1999, 1999, pp. 1203–1206.

[65] W.L.G. Koontz, K. Fukunaga: “A Nonparametric Valley-Seeking Technique for
Cluster Analysis,” IEEE Transactions on Computers, C-21(2), 1972, pp. 171–
178.

[66] W.L.G. Koontz, K. Fukunaga: “Asymptotic Analysis of a Nonparametric Clus-
tering Technique,” IEEE Transactions on Computers, C-21(9), 1972, pp. 967–
974.

[67] W.L.G. Koontz, P.M. Narendra, K. Fukunaga: “A Graph-Theoretic Approach to
Nonparametric Cluster Analysis,” IEEE Transactions on Computers, C-25 (9),
1976, pp. 936–944.

[68] R. Krishnapuram, J.M. Keller: “A Possibilistic Approach to Clustering,” IEEE
Transactions on Fuzzy Systems, 1(2), 1993, pp. 98–110.

[69] L.I. Kuncheva: “Fuzzy Classifier Design,” Physica-Verlag, Heidelberg, 2000.

[70] S. Kundu: “Gravitational Clustering: a new approach based on the spatial distri-
bution of the points,” Pattern Recognition, 32, 1999, pp. 1149–1160.

[71] A. Likas, N. Vlassis, J. J. Verbeek: "The global k-means clustering algorithm,”
Pattern Recognition, 36(2), 2003, pp. 451–461.

[72] Y. Linde, A. Buzo, R.M. Gray: “An algorithm for vector quantizer design,”
IEEE Transactions on Communications, 28(1), 1980, pp. 84–95.

[73] J.A. Lozano, P. Larrañaga: “Applying genetic algorithms to search for the best
hierarchical clustering of a dataset,” Pattern Recognition Letters, 20, 1999, pp.
911–918.

[74] J. MacQueen: “Some Methods for Classification and Analysis of Multivariate
Observations,” in Proceedings of the Fifth Berkeley Symposium on Mathemati-

cal Statistics and Probability, vol. I, 1967, pp. 281–297.

[75] D. Maio, D. Maltoni, S. Rizzi: “Dynamic clustering of maps in autonomous
agents,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
18(11), 1996, pp. 1080–1091.

[76] M. Markou, S. Singh: “Novelty detection: a review—part 1: statistical ap-
proaches,” Signal Processing, 83(12), 2003, pp. 2481–2497.

41

[77] U. Maulik, S. Bandyopadhyay: “Genetic algorithm-based clustering technique,”
Pattern Recognition, 33, 2000, pp. 1455–1465.

[78] G. McLachlan, T. Krishnan: “The EM Algorithm and Extensions,” John Wiley
& Sons, New York, 1997.

[79] G. McLachlan, D. Peel: “Finite Mixture Models,” John Wiley & Sons, New
York, 2001.

[80] G.W. Milligan: “A Monte Carlo Study of Thirty Internal Criterion Measures for
Cluster Analysis,” Psychometrika, 46(2), 1981, pp. 187–199

[81] A. Moore: “Very Fast EM-based Mixture Model Clustering Using Multiresolu-
tion kd-trees,” in M. Kearns and D. Cohn (eds.) Advances in Neural Information
Processing Systems, Morgan Kaufman, 1999, pp. 543–549.

[82] H. Nagesh, S. Goil, A. Choudhary: “Adaptive Grids for Clustering Massive Data
Sets,” in Proceedings of the SIAM Conference on Data Mining, 2001, pp. 506–
517.

[83] O. Nasraoui, R. Krishnapuram: “A Robust Estimator Based on Density And
Scale Optimization and it’s Application to Clustering,” in Proceedings of the
Fifth IEEE International Conference on Fuzzy Systems, vol. 2, 1996, pp.1031–
1035.

[84] M.K. Ng: “A note on constrained k-means algorithms,” Pattern Recognition, 33,
2000, pp. 515–519.

[85] R. Ng, J. Han: “CLARANS: A Method for Clustering Objects for Spatial Data
Mining,” IEEE Transactions on Knowledge and Data Engineering, 14(5), 2002,
pp. 1003–1016.

[86] C. Ordonez, E. Omiecinski: “FREM: Fast and Robust EM Clustering for Large
Data Sets,” in Proceedings of the 11th International conference on Information
and Knowledge Management, 2002, pp. 590–599.

[87] J.S. Pan, F.R. McInnes, M.A. Jack: “VQ codebook design using genetic algo-
rithms,” Electronics Letters, 31 (17), 1995, pp. 1418–1419.

[88] E. Parzen: ” On estimation of a probability density function and mode,” Annals
of Mathematical Statistics, 33, 1962, pp. 1065–1076.

[89] R. Peck, L. Fisher, J. van Ness: “Approximate Confidence Intervals for the
Number of Clusters,” Journal of the American Statistical Association, 84(405),
1989, pp. 184–191.

[90] D. Pelleg, A. Moore: “X-means: Extending K-means with Efficient Estimation
of the Number of Clusters,” in Proceedings of the Seventeenth International
Conference on Machine Learning, 2000, pp. 727–734.

[91] A. Ptitsyn, W. Hide: “CLU: A new algorithm for EST clustering,” BMC Bioin-

formatics, 6(Suppl 2):S3, 2005.

[92] K. Rose: "Deterministic annealing for clustering, compression, classification,
regression, and related optimization problems,” Proceedings of IEEE, 86(11),
1998, pp. 2210–2239.

42

[93] S. Salvador, P. Chan: “Determining the Number of Clusters/Segments in Hierar-
chical Clustering/Segmentation Algorithms,” in Proceedings of the 16th IEEE
International Conference on Tools with Artificial Intelligence, 2004, pp. 576–
584.

[94] P. Sand, A.W. Moore: “Repairing Faulty Mixture Models using Density Esti-
mation,” in Proceedings of the Eighteenth International Conference on Machine

Learning, 2001, pp. 457–464.

[95] M. Sato, S. Ishii: “On-line EM Algorithm for the Normalized Gaussian Net-
work,” Neural Computation, 12(2), 2000, pp. 407–432.

[96] B.J. Schachter, L.S. Davis, A. Rosenfeld: “Some experiments in image segmen-
tation by clustering of local feature values,” Pattern Recognition, 11, 1979, pp.
19–28.

[97] P. Scheunders: “A genetic c-means clustering algorithm applied to color image
quantization,” Pattern Recognition, 30(6), 1997, pp. 859–866.

[98] D.W. Scott: “Multivariate density estimation: theory, practice, and visualiza-
tion,” John Wiley & Sons, New York, 1992.

[99] J. Shanmugasundaram, U. Fayyad, P. S. Bradley: “Compressed data cubes for
OLAP aggregate query approximation on continuous dimensions,” in Proceed-
ings of the Fifth ACM SIGKDD International Conference on Knowledge Dis-

covery and Data Mining, 1999, pp. 223–232.

[100] H. Späth: “Cluster Analysis Algorithms for Data Reduction and Classification of
Objects,” Ellis Horwood Limited, West Sussex, UK, 1980.

[101] L.M. Talbot, B.G. Talbot, R.E. Peterson, H.D. Tolley, H.D. Mecham: “Applica-
tion of Fuzzy Grade-of-Membership Clustering to Analysis of Remote Sensing
Data,” Journal of Climate, 12(1), 1999, pp. 200–219.

[102] L.Y. Tseng, S.B. Yang: “A genetic clustering algorithm for data with non-
spherical-shape clusters,” Pattern Recognition, 33, 2000, pp. 1251–1259.

[103] L.Y. Tseng, S.B. Yang: “A genetic approach to the automatic clustering prob-
lem,” Pattern Recognition, 34, 2001, pp. 415–424.

[104] E.W. Tyree, J.A. Long: “The use of linked line segments for cluster representa-
tion and data reduction,” Pattern Recognition Letters, 20, 1999, pp. 21–29.

[105] N. Ueda, R. Nakano, Z. Ghahramani, G.E. Hinton: “SMEM Algorithm for
Mixture Models,” Neural Computation, 12(9), 2000, pp. 2109-2128.

[106] N. Ueda, R. Nakano: “Deterministic annealing EM algorithm,” Neural Net-
works, 11(2), 1998, pp. 189–376.

[107] O. Virmajoki, P. Fränti, T. Kaukoranta: "Iterative shrinking method for gener-
ating clustering,” in Proceedings of IEEE International Conference on Image
Processing (ICIP'02), vol. 2, 2002, pp. 685–688.

[108] K. Wagstaff, C. Cardie, S. Rogers, S. Schroedl: “Constrained K-means Cluster-
ing with Background Knowledge,” in Proceedings of the International Confer-
ence on Machine Learning (ICML), 2001, pp. 577–584.

43

[109] M.E. Wall, A. Rechtsteiner, L.M. Rocha: "Singular value decomposition and
principal component analysis". in D.P. Berrar, W. Dubitzky, M. Granzow, (eds.)
A Practical Approach to Microarray Data Analysis, Kluwer, Norwell, MA,
2003, pp. 91–109.

[110] J.H. Ward: “Hierarchical grouping to optimize an objective function,” Journal of
American Statistical Association, 58(301), 1963, pp. 236–244.

[111] N. Wicker, D. Dembele, W. Raffelsberger, O. Poch: “Density of points cluster-
ing, application to transcriptomic data analysis,” Nucleic Acids Research,
30(18), 2002, pp. 3992–4000.

[112] M.A. Wong, T. Lane: “A kth Nearest Neighbour Clustering Procedure,” Journal
of the Royal Statistical Society B, 45(3), 1983, pp. 362–368.

[113] W.E. Wright: “Gravitational Clustering,” Pattern Recognition, 9, 1977, pp. 151–
166.

[114] X. Wu, K. Zhang: “A Better Tree-Structured Vector Quantizer,” in Proceedings
of the Data Compression Conference, 1991, pp. 392–401.

[115] X. Xu, M. Ester, H.-P. Kriegel, J. Sander: “A Distribution-Based Clustering Al-
gorithm for Mining in Large Spatial Databases,” in Proceedings of the 14th In-
ternational Conference on Data Engineering (ICDE'98), 1998, pp. 324–331.

[116] K.Y. Yeung, W.L. Ruzzo: “Principal component analysis for clustering gene
expression data,” Bioinformatics, 17, 2001, pp. 763–74.

[117] W.P. Yu, G.W. Chu, M.J. Chung: “A robust line extraction method by unsuper-
vised line clustering,” Pattern Recognition, 32, 1999, pp. 529–546.

[118] L.A. Zadeh: “Fuzzy sets,” Information and Control, 8, 1965, pp. 338–353.

[119] K. Zeger, A. Gersho: “Stochastic Relaxation Algorithm for Improved Vector
Quantizer Design,” Electronics Letters, 25(14), 1989, pp. 896–898.

[120] B. Zhang, C. Zhang, X. Yi: “Competitive EM algorithm for finite mixture mod-
els,” Pattern Recognition, 37, 2004, pp. 131–144.

[121] T. Zhang, R. Ramakrishnan, M. Livny: “BIRCH: A New Data Clustering Algo-
rithm and Its Applications,” Data Mining and Knowledge Discovery, 1(2), 1997,
pp. 141–182.

[122] Z. Zivkovic, F. van der Heijden: “Recursive unsupervised learning of finite
mixture models,” IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 26(5), 2004, pp. 651–656.

