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Abstract. Following the Kyoto protocol and the European Union climate policies 
larger than 20 MW energy plants are part of the EU’s emissions-trading scheme 
(ETS). This greenhouse gas emission mitigation strategy, tradable carbon quota 
system, started in 2005. The scheme is not mandatory for the firms with size less than 
20MW. Also the firms using renewable fuels will not pay for allowances. Advanced 
energy production technologies enable power and heating plants to use both non-
renewable fossil fuels and renewable wood fuels in energy production. Wood fuel 
demand may constitute a substitute for fossil fuel demand if the price of tradable 
carbon allowances is relatively high. In this context plant level panel data from years 
2003 – 2007 in Finland is analyzed with panel and mixed models. Econometric 
demand equations are specified for the ratio of wood and fossil fuel. The results show 
that high allowance prices in the years 2005 and 2006 compared to the years 2003 and 
2004 decreased the use of fossil fuels and the demand for wood fuels increased. This 
increase was the larger the smaller proportional user of wood-fuel a plant was.   
However the downturn of allowance prices in year 2007 ended this process. The 
heterogeneity of energy plants in size, industry and location determines the intensity 
and extension of fuel use but their role is limited in the fuel substitution.           
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1. Introduction 
The European Union emissions trading scheme (EU ETS) started in 2005. The first 

phase ended in 2007 and the second one began in 2008 and will last until 2012. The 

scheme encompasses the whole EU region and it is designed to be the main 

instrument to reduce  emissions requested by the Kyoto Protocol. Energy plants 

with larger thermal input capacity than 20 MW are included within the scheme, as 

well as iron, steel, mineral, pulp and paper industries and oil refineries. In total, the 

first phase of the system covered approximately 12,000 installations, which 

correspond about 45% of EU´s aggregated CO2 emissions. These installations are 

issued  emission permits. The emission allowances are each equivalent to a ton 

of  and they are provided from the initial allocation or purchased within the EU 

area. Power sector is the biggest and most active actor in EU's emission trading. 

(Point Carbon 2008; EC 2008.)  

2CO

2CO

2CO

 

In a cap and trade system such as EU-ETS a target amount of emission 

reductions set by policymakers can be reached in a cost efficient way (Menanteau et 

al. 2003). In particular, the system does not define a method or a place how the 

emission reductions should be made. To reach reductions in emissions, energy plants 

can (i) reduce their production, (ii) improve their energy efficiency by investments, 

(iii) invest in the carbon capture and storage (CCS) technology, or (iv) substitute low-

carbon fuels, such as renewable fuels, for high-carbon fuels. Because of the nature of 

energy plants, (they serve municipalities or industries), the first option is not 

commonly available. As to the option of investments, Bailey and Ditty (2008) noticed 

that UK emissions trading scheme had only a minor impact on investment decisions 

of energy plants, which could be the case in EU ETS in short run. Also Kara et al. 

(2008) confirm the same finding in their study looking at the conditions of the Nordic 

electricity markets. Note that on the general level emission quotas and allowance 

markets set the firms in a complex and dynamic context wherein short and long run 

behaviour may be in conflict (e.g. see Harstad and Eskeland 2007, Boucekkine et al 

2008, Zhang 2007 and references therein). 

2CO

 

The fourth choice to reduce  emissions, substituting low-carbon fuels for high-

carbon fuels, can be carried out without substantial risks or expenses in many 

2CO
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circumstances. In this study we focus on this option, by investigating the substitution 

of wood fuels for fossil ones using Finnish firm-level data. Because renewable fuels 

such as wood fuels are considered as carbon neutral in the EU ETS, fuel input 

substitution between bio-fuels and fossil fuels may be favourable for energy 

producers. Even though emissions trading enhance the competitive advantage of 

renewable fuels in energy production in theory, empirical studies to confirm this are 

rare. Particularly, firm-level data on the fuel-mixes of energy plants that could be used 

in econometric analyses, are not commonly available. Tauchmann (2006) studied 

possible consequences of emissions trading by estimating the fuel price sensitivity of 

energy plants with German data. The analysis was based on a panel data set of major 

German electricity producers from 1968 until 1998. He concluded that German 

energy utilities have a low price sensitivity, which indicates that prices of  

emission allowances may have only minor impact on the fuel mixes of energy plants. 

However some results (e.g. Arimura 2002) indicate that uncertainty concerning the 

trading rules and prices under allowance markets distort the firms’ fuel input 

decisions.   

2CO

 

Even though the fuel price sensitivity of energy plants may be low in German, it is not 

necessarily so in the Nordic countries, which is indicated by Brännlund and Lundgren 

(2004). They studied the fuel input substitution of Swedish heating plants under two 

different policy changes by using a cost share linear Logit model. In their simulations, 

the both policy instruments, a  taxation and a subsidy for wood fuel production, 

increased the demand for wood fuels substantially. The heterogeneity of energy plants 

affects the demand for wood fuels also within frontiers. Brännlund and Kriström 

(2001) found out that price elastisities for different fuels vary with plant size, while 

they studied the impacts of changes in Swedish energy taxation. 

2CO

 

German and Finnish production structures in energy production differ from each other 

by their fuel-mix and also by their combustion technology. As noted in Tauchmann 

(2006) hard coal and lignite are dominant fuels in German, while bio-fuels, coal, 

natural gas and peat are the most significant fuels in Finland. In terms of combustion 

technology, pulverized fuel and fluidized bed combustion are the two main 

technologies for solid fuel utilization. The former is essentially a coal burning 
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technology, while fluidized bed combustion is more suitable for multi-fuel utilization 

(Kangas et al. 2009). It is this latter combustion technology which is dominant in 

Finland, thus making the circumstances for fuel input substitution under the EU-ETS 

perhaps better in Finland as compared to Germany. Furthermore, peat is a relatively 

important fuel in energy production in Finland. Fuel properties of peat and wood are 

relatively similar, whereupon peat can be often substituted for wood also in 

unsophisticated boilers. 

 

Finland is committed to increase its share of renewable energy source (RES) from 

28,5% to 38% by 2020, which has led to the interest to promote wood fuel utilisation 

in the country. Currently, in the Finnish energy policy, the EU-ETS is the most 

important energy policy instrument to promote RES in the emissions trading sector, 

even though many other EU countries apply also either feed-in tariff systems or 

tradable green certificate systems to support RES. Thus, it is worthwhile to study how 

this EU wide climate policy tool affects the substitution between wood and the fossil 

fuels in Finland. This study focuses on wood fuel utilization excluding black liquor. 

Biomass is the most important RES in Finland, with the share of over 80%. 

 

The aim of the paper is to study the impacts of the EU-ETS on the fuel substitution by 

using an econometric approach. We do this by taking into account the heterogeneity 

of energy plants with respect to their size, industry type and location. For example, 

the supply of wood fuels restricts the demand for wood fuels differently in different 

regions of the country. Furthermore, large energy plants are not often able to purchase 

extensive amount of wood fuels because of transportation costs combined with 

relatively low energy content of wood. Also, the type of energy plant is a determining 

factor in terms of the fuel substitution: an energy plant relating to the forest industry 

use naturally more wood fuels than e.g. a municipal energy plant. Additionally, the 

mechanism of emissions trading causes variation in wood fuel utilisation among 

different size categories of energy plants.  

 

The rest of this paper is structured as follows. We first derive fuel input demand 

properties from a simple static model to motivate the econometric approach used in 

the empirical part of the study. In the following section the plant-level energy input 

and emission trading price data are presented. After this, the econometric 
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specifications and estimation strategies are described together with the results. We 

end with conclusions and discussion. 

 

2. Deriving fuel input demands with allowance permits  
Consider a firm that is forced to internalize its greenhouse gas emission as a by-

product of the production process. This happens with government issuing a limited 

number of pollution permits or allowances to the firms. Firms whose marginal 

abatement costs are larger than the allowance price can obtain extra allowances from 

less polluting firms.  Typically the firm buys these allowances from tradable 

permission markets. An alternative way to control emissions is to use a less polluting 

technology or use low emitting inputs in the production process. Decreasing supply of 

the total number of polluting permits increases the allowance price making these 

alternative emission reduction methods more feasible. Over all, efficiently working 

emission permit market is seen as the least cost system to reduce greenhouse gases 

(Tietenberg 2006).  

 

Assume that the firm i has two fuel inputs: one with high emission rate (H), and one 

with low emission rate (L) H Le e> . Only the former is controlled with tradable 

permissions.  Let  H ie H m=  be the number of allowances that the firm i obtains from 

the state in the first place. The emissions e from the input usage is  

 

                                                      ( , ) H Le H L e H e L= + .  

 

The government issues the fixed number of allowances for the firms, i.e.                              

1

N
ii

M m
=

= ∑ . Thus M  is the total number of permissions for the firms that can be 

redistributed within the permission trade. Firm i can buy a number of permits to 

increase its emissions, [ ] [ ]X X iP eH eH P m m− = − > 0i  with tradable market price .  XP

 

Now the firm’s profit maximization problem is following  

 

                                    
,

{ ( , ) ( , ) [ ]X H HH L
MAX pf H L c H L P e H e H− − − ,  

 4



  

where p is the fixed price of output and  is the convex cost function of fuel 

inputs. The first order conditions with a linear production function 

( ,c H L)

H Lf H f L+  1) are 

 

                                                       
H H X H

L L

pf c P e

cpf

= +

=
. 

 
The marginal products of inputs equal their marginal costs including the marginal 

costs of allowance rights. As  is positive the firm uses less H input compared to 

a firm that is not forced to internalize its emissions. Note also that if 

X HP e

H Lf f>  and 

H Lc c< the reduction in H is not necessarily large if the allowance trading price PX  is 

low. Some relevant comparative statics results are obtained by total differentiating the 

first order conditions with respect to H, L, and PX :    

 

                                               
0

HH HL H X

LH LL

c c dH e dP
c c dL

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − ⎣ ⎦ ⎣ ⎦⎣ ⎦

. 

 

Solving with Cramer’s rule for   gives  /   and  /X XdL dP dH dP

 

                                         

2

2

/ 0     | 0,

/ 0       | 0.

H LL
X L

HH LL HL

H LH
X L

HH LL HL

e cdH dP c
c c c

e cdL dP c
c c c

L

H

−
= < >

−

−
= > <

−

 

 

The increase of allowance price  leads to decrease in high emission fuel H 

usage .  However the demand for low emission input L increase in response 

to an increase in the allowance price  if the raw material inputs are 

substitutes to each other in energy production,  i.e.  

( 0)XdP >

dL

( 0)dH <

/ 0XdP >

LH 0HLc c= < . 

 

                                                 
1 )   and  H Lf f  stand for partial derivates of  f(H,L) with respect to H and L. These marginal products 
are measured as the constant unit efficiencies of the fuel inputs in power and heat production. 
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3. Data 
 
The econometric analysis in this study relies on a regional firm-level data collected by 

Finnish Forest Research Institute (METLA). The data-set used compiles statistics on 

the solid wood fuel utilization between 2003-2007. The annual data consist of 

approximately 800 energy utilities with their nominal efficiencies, plant 

characteristics like regional location and industry type, and amounts of utilized wood 

fuels in energy content.  

 

Since the firm-level data about fossil fuel consumption was not available, it was 

estimated through a representative energy plants approach. Energy plants were 

classified into four different groups, as the yearly utilization rates of different types of 

plants differ significantly. These four industry groups are: small community plants, 

large community plants, energy plants related to sawmills and energy plants related to 

pulp or paper industries. The annual observations of fuel-mixes were based on 

observations from 4 to 30 representative energy plants, depending on the industry 

group. The fossil fuel consumptions were estimated through a compiled statistics on 

utilised wood-based fuels and nominal efficiencies assuming that the annual 

utilization rates of energy plants are equal among different groups.  

 

Allowance price level was estimated to be €5-20 per tonne in most predictions before 

the beginning of the EU-ETS (POMAR 2007). However, the volatility of allowance 

price was high during the first phase. In the beginning of the phase, the price level 

rose from €8 to over €30 per tonne by summer 2005. During autumn 2005 to spring 

2006 the price settled on the level of €20-25. The information about realized CO2 

emissions in 2005 led to the collapse of allowance prices in late spring 2006 and 

decreased the price level from almost €30 to below €10. The price recovered slowly 

to the level of €15-20, before it started to sink again towards the end of 2006. The 

price depreciated steadily and went below €1 in spring 2007 and stood close to zero 

until the end of the first phase. Note that we don’t have data on fuel input prices at 

firm level. However we know that aggregate price ratio of wood and fossil fuel inputs 

have been stable during the period analyzed. Thus the role of price ratio variable in 

the model is of second order importance.   
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4. Econometric Models and Results 
In the following we specify three models to study the substitution between wood and 

fossil fuels. We estimate the response of ratio between wood and fossil based raw 

material inputs to changes in the CO2 allowance prices. The models are augmented 

with energy production scale, industry, and regional specific effects.   

 

Random and Fixed Effect Models 

Consider the following Random Effect (RE) panel data model that estimates the 

response of ratio between wood and fossil based raw material inputs to 

changes in the CO2 emission trading prices   

(ln( / ))W FE E

(ln )tEMISP

 
 

0 0 1 2

3 4

5 1 2

ln( / ) ln 20 ln

                               20 ln 05 20 ln 06

                               20 ln 07 1

         

W F it t i t

i t i t

i t i i

E E TREND D MW EMISP

D MW EMISP D MW EMISP

D EMISP c DSAWMILL c DINDUSTRY

α β β β

β β

β

= + + +

+ × + ×

+ × + +

14
3 1 1

                      2 ln ( )i it j ijj
c DINDUSTRY d CAPACITY g REGION i itα ε

=
+ + + +∑ +

 
 
Trading is obligatory for plants larger than 20MW  using fossil based fuels in energy 

production. (Kara et al. (2008) estimated that 62% of Finnish installations that are 

producing CO2 emissions are included into the scheme.)  As all plants in the sample 

use wood-fossil fuel input mix in energy production, the ratio  is a natural 

fuel input adjustment measure when the emission trade prices vary. The trading 

system started in the year 2005. The annual differences of price responses for plants 

representing different industry types are modeled with the following variables  

/W FE E
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   0,  year 2003                  
  0, year 2004                  

ln emission trading price: ln(28 / ),  year 2005
ln(23 / ),  year 2006
ln(9.5 / ),  year 2007

0,  pla
20  = 

t

i

EMISP Euro ton
Euro ton
Euro ton

D MW

⎧
⎪
⎪⎪= ⎨
⎪
⎪
⎪⎩

nt  is smaller or equal to 20MW
  1,  plant  is larger than 20MW              

20 ln 05 emmision trading price for plants 20MW in year  2005
20 ln 06 emmision trading price for p

i t

i t

i
i

D MW EMISP
D MW EMISP

⎧
⎨
⎩

× = >
× = lants  20MW in year  2006

20 ln 07 emmision trading price for plants 20MW in year  2007i tD MW EMISP
>

× = >

 

The first variable measures the general emission price effect on fuel usage. The small 

plants may adjust toward greener fuel mix albeit they are not forced to pay emissions. 

The dummy variable  gives the size category effect on the fuel ratio. The 

last three variables give the year specific emission price effects for large plants, i.e. 

the plants which have to pay for CO2 emissions if they use fossil based fuels.   

20 iD MW

 

The sample includes small plants that are connected closely to wood-processing 

industry. The dummy variable  receives the value 1, if the plant is part of 

a sawmill, otherwise it receives the value 0. The dummy variable  

categorizes the plants between process industry and non-process industry classes. 

Similarly, the variable  categorizes the plants between community 

energy utilities and other industry classes.  

iDSAWMILL

2iUSTRY

1iDINDUSTRY

DIND

 

The scale of energy production determines the extension of fuel use. We use in this 

context  as the size variable. It measures the average level (in %) of 

used nominal output capacity of the plant per year. Note that both  are 

measured also in MWh. Thus the ratio  is without units. However as we use 

the logarithmic transformation, 

ln itCAPACITY

 and w FE E

/WE E

) lnW FE E

F

ln( / lnw FE E= − , we can argue that its  
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response to a change in some explanatory variable still has the MWh interpretation 

besides the typical elasticity interpretation connected to logarithmic variables.     

 

Finally ln 0,1,2,3,4tTREND =  measures the general business condition in the energy 

sector during the years 2003-2007. The last fourteen dummy variables,  

 select for each plant the region (measured as forest districts) where the 

plant is located. We argue that the different regions have different fuel supply 

profiles, especially concerning the wood based fuels. The reference region is 

the , the Åland archipelago in South-West Finland, where small wood based 

plants are common. 0

,ijREGION

  1,j =

REGI

2,....,14

0iON

α  is the general intercept of the model, 'i sα  are the random 

firm-specific effects, and itε  is the normally distributed error term.  

 

Note that the RE-specification requires that 'i sα  are uncorrelated with itε ’s and with 

the explanatory variables (for more details, see Baltagi 2008). The Hausman test 

reported in Table 1 rejected this uncorrelation. The fixed effects (FE) panel data 

model can be estimated without this requirement but this alternative is not feasible in 

this context since the specified model includes several time-invariant variables. 

Instead we propose a 2-step or hierarchical FE2-model:  we first estimate the fixed 

effects with a panel model that excludes any other time-invariant variables than the 

cross-sectional dummies, i.e. idiosyncratic constants for the plants. The LSDV-

estimates for these are regressed then in second step on all other time-invariant 

variables. Table 1 reports the results from RE and FE2.  Figure 1 gives the estimated 

fixed firm-level effects.   

 

The negative sign for the variable  indicates that large plants use relatively 

more fossils fuels compared to small plants. On the average the effect is 

 in the RE estimation and 

20D MW

/ exp( 8.34)W FE E = − / exp( 17.17)W FE E = −  in the FE2 

estimation. The coefficient estimates of the emission price variables indicate that the 

use of wood based fuels has increased. The price effect is the largest in 2005 on the 

large fossil fuel using plants. In total the emission trading during 2005  - 2007 has 

increased the demand for wood fuel (on average, measured in MWh) with effect of   
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Table 1. RE and FE2 estimation results.  T = 5, N = 722,    
              Total panel (unbalanced) =  2841.  
              Dependent variable  ln  ( / )W FE E
__________________________________________________ 
 
                                                        RE MODEL                    2-level FE MODEL 
___________________________________________________________________ 

    Coefficient tHCSE-value 
          

Coefficent tHCSE  value 
     

C -14.85 -11.141 -18.41* -10.79 
lnTREND 0.089 0.78 0.044* 0.365 
lnEMISP 0.167 4.16 0.104* 2.30 
D20MW -8.348 -19.52 -17.173 -18.52 

D20MWxlnP05 0.429 3.60 0.312* 4.18 
D20MWxlnP06 0.294 2.48 0.261* 3.59 
D20MWxlnP07 -0.025 -0.21 0.007* 0.01 

DSAWMILL -1.649 -3.23 -5.078 -6.28 
DINIDUSTRY1 -0.894 -3.71 7.382 2.77 
DINDUSTRY2 -4.090 -6.56 9.012 3.32 
lnCAPACITY 6.372 22.12 2.555* 13.02 

REGION1 -1.812 -1.72 -0.574 -0.21 
REGION2 -1.978 -2.09 1.265 0.73 
REGION3 -2.563 -2.73 0.367 0.29 
REGION4 -2.356 -2.36 0.035 .01 
REGION5 -0.567 -2.99 -0.782 -0.55 
REGION6 -1.946 -2.06 -1.565 -1.21 
REGION7 -3.397 -3.64 0.386 0.32 
REGION8 -2.751 -2.92 -0.529 -0.44 
REGION9 -2.795 -2.87 -0.807 -0.62 

REGION10 -2.013 -2.07 -1.640 -1.27 
REGION11 -1.439 -1.42 -0.312 -0.23 
REGION12 -1.840 -1.90 0.997 0.67 
REGION13 -3.846 -3.93 -0.630 -0.50 
REGION14 -35.650 -2.48 -2.744 -2.01 

              R2                                    0.367                                      0.837*/0.404 
             DW                                    1.61                                       2.01*/1.51        
             JB-Normality                      4.53                                    130.11*/4.23 
             Hausman RE/FE-test        104.48  

               F-test for fixed effects  14.36*  
     ______________________________________________________________________ 
             *)  refers to the 1st step of  FE2 estimation      
 
 
 

/ exp(0.17 0.43 0.29)W FE E = + + = 2.43 and / exp(0.10 0.31 0.26) 1.97W FE E = + + = . 

The negative sign of  is unexpected.  DSAWMILL
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                Figure 1.  The firm specific effects of ln(EW/EF) 
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The results for industry dummies are opposite in the RE and FE2 estimations. Note 

that the results are not comparable since the FE2 estimation includes only a subset of 

the variables of RE-estimation in the first stage, and the second stage estimation (OLS 

on estimated firm specific  fixed effects) also differs from the RE-estimation.   The 

results from RE-estimation are as expected as the most of process industry and 

community energy plants are large units using relatively more fossil based fuels 

compared to small plants. Also the region dummies are negative. The plants are larger 

on the mainland regions compared to the Åland plants. Finally ln  

variable has a positive coefficient in both estimations indicating that the higher is the 

level of capacity the more wood fuel is used. Note that typically the large units have 

higher capacity level than the small ones. As our estimations include the variable 

 to capture the plant size effect we argue that the positive capacity effect on 

the fuel ratio stems from plants close to, but below, the size of 20MW.  

CAPACITY

20D MW
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The model fits are in statistical terms adequate. The residuals are normal in RE 

eatimation, the model explains close to 36% of the variation in , the 

random plant components explain 38% of  the error variance, and  the DW-value 

indicates that no residual autocorrelation is present. However the Hausman test rejects 

the RE-specification making the estimates inconsistent. This means that we have to 

emphasize the FE2 results or use some other, a more general estimation approach, 

which would allow for controlling the evident random heterogeneity in  

observations.  

ln( / )W FE E

ln( /WE E )F it

t

i

i

 

While the FE2 results above are adequate, the 2-step FE-model can be considered to 

be a fairly restrictive and awkward approach to model and estimate both the plant-

within and plant-between variability in the plants’ fuel ratio . Therefore we 

next introduce a model alternative, the Random Coefficient, or mixed 2-level model, 

which incorporates into one single model both aspects of the individual plant 

variability. This mixed model alternative is a general model approach that enables one 

to efficiently control and estimate the observed and unobserved heterogeneity among 

the plants. In addition we obtain some interesting estimates describing the evolution 

of the stochastic structure of the data and model coefficients that are not obtained 

from the RE- and FE-models.  

( / )W F iE E

 

Random Coefficient Model       

In this model we used the following specifications in the two stages:    
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2

,2
2

,

0
(0, )  and  , .

0
i

it
i

N Nα α αβ
ε

β βα β

ξ σ σ
ε σ

ξ σ σ

⎡ ⎤⎛ ⎞⎡ ⎤ ⎛ ⎞
⎢ ⎥⎜ ⎟⎢ ⎥ ⎜ ⎟ ⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦

∼ ∼  

 

The mixed model assumes that some of the first stage model parameters are random 

in the cross-sectional dimension. The iα  parameter measures the plant-between 

variability of l  and n( / )W F iE E t iβ  measures how this variability changes in time.  

However the plant-within variability is also modeled because we explain the first 

stage (random) coefficients with plant specific time-invariant controls. Finally we 

allow also for idiosyncratic randomness or unobserved heterogeneity for plant 

responses iα  and iβ ,  i.e. i,  and  i ,α βζ ζ . Note also that iα  and iβ  can correlate with 

each other.  

 

The composite form of the above model is called the conditional model that nicely 

shows the versatility of the mixed model approach that includes all the 2-way 

interaction terms with the l  variable n tTREND
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i
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∑

 

 

The model consists of 48 fixed effects parameters and of 4 random (covariance) 

parameters ( 2 2 2, , ,ε α β βσ σ σ σ a

20D M

) that all can be estimated consistently with Maximum 

Likelihood (ML) or RESTRICTED Maximum Likelihood (REML) methods. Note 

that we cannot use  ln 05iW EMISP t×  -type year specific variables in the 

model as they lack the needed cross-sectional variability in this context. However, 
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augmenting the model with a more general interaction variable  

we receive all relevant information from the model concerning the emission price 

effects on l . Table 2 presents relevant results after some preliminary 

estimations and model reductions.  

20 lni tD MW EMISP×

n( / )W F iE E t

  
                        Table 2.  Mixed model estimation   
 

Variable  
Coefficient 
estimate t-value 

Intercept -15.202 -10.88
lnTrend 0.783 4.27
D20MW -7.827 -12.92
lnEMISP 0.622 5.09

lnTrend * D20MW -0.994 -2.14
lnTrend * lnEMISP -0.460 -3.89
D20MW * lnEMISP 0.543 3.66

DSAWMILL -0.532 -1.02 
DINDUSTRY1 -0.631 -1.82 
DINDUSTRY2 -4.520 -2.60

lnTrend * DSAWMILL -1.156 -3.77
lnTrend * INDUSTRY1 -0.226 -1.09 
lnTrend * INDUSTRY2 0.494 0.44 

lnCAPACITY 6.337 34.98
REGION1 -1.810 -1.24 
REGION2 -1.954 -1.51 
REGION3 -2.535 -1.95 
REGION4 -2.331 -1.73 
REGION5 -0.568 -2.17
REGION6 -1.902 -1.46 
REGION7 -3.375 -2.62
REGION8 -2.714 -2.07
REGION9 -2.816 -2.15

REGION10 -1.971 -1.49 
REGION11 -1.423 -1.05 
REGION12 -1.842 -1.42 
REGION13 -3.812 -2.86
REGION14 -35.342 -1.83 

 
 
The results are interesting and close to the ones received earlier. Most interestingly 

 variable is now statistically significant with positive value of 0.78 and 

 has many times larger value than earlier (0.62 compared to 0.16 and 0.104 

in Table 1). Both are positive indicating that in the sample there has been a strong 

shift towards using more wood based fuels during the years 2003 - 2007. Note that the  

ln tTREND

ln tEMISP
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interaction variables ln 20t iTREND D MW×  and ln lntTREND EMISPt×  are negative. 

The former has a natural interpretation: the large plants use relatively more fossil 

fuels compared to small plants during the study period. We argue that the trend effects 

dominate in the latter interaction variable since we control separately for emission 

prices with variables l  and ln tEMISP n EM 20t iD MWISP × .  Since these both are 

positive the emission prices have reduced the use of fossil fuels especially for large 

plants.  
 
 
Table 3 shows that the random part of the model is statistically significant. There 

exists random variability among the plants’ fuel ratio  both in the cross 

section and in time dimension. The variance in the growth of change of the initial 

state  is much smaller than the variance in the initial state  itself. The 

time dependent growth variation (the slope variation) between plants is more than five 

times less than the state (or intercept) level variation (1.814 and 8.622). Naturally firm 

size and technology conditions restrict its growth possibilities. Note also that the 

period between the years 2003 and 2007 in Finland was a period of steady economic 

growth. In spite of this the covariance between the intercept and time slope 

coefficients is negative and their correlation 

/W FE E

/WE EF F/WE E

, 2 2a b
αβσ

ρ
α βσ σ

=   is  -0.447.  This means 

that there exists a convergence among the random plant specific components ,iαζ  in 

time, i.e. the smaller the plant level  initially was the faster it grew in time. 

This offers additional support to the result that substitution from fossil fuels to wood 

fuels has taken place among the sample plants during the period of 2003 – 2007.    

/W FE E

 
                      Table 3.  Estimates of Covariance Parameters 

 
Parameter Estimate Std. Error Wald Z P-value 

    Residual                    2
εσ  3.148 0.114 27.484 0.000 

Intercept 
 

2
ασ  8.622 0.704 12.245 0.000 

lnTrend 2
βσ  1.814 0.269 6.719 0.000 

  
αβσ  -1.766 0.358 -4.932 0.000 

 

 15



  

A related and more precise information concerning the firm specific l  

evolution is obtained from the time dependent variance of the composite error, i.e. the 

time dependent cross-sectional variance  

n( / )W FE E it

 

                 

2
, , ,

2 2 2 2

[  + ln ]

     ln 2 ln     ( 1, 2,..., ).  

t i i t i t

t a t

VAR TREND

TREND TREND t T

α β

α β ε β

σ ζ ζ ε

σ σ σ σ

= +

= + + + =

 

Note that 2
tσ  is quadratic in time and it has a minimum value if 0αβσ < . i.e. 

2exp( / ).MIN
tTREND αβ βσ σ= −  The estimate for this time point is 2.65. i.e. the 

convergence stops after mid year 2005. The result is obvious as the emission trading 

started in year 2005 and the plants have to adjust their fuel mix under the new policy. 

In fact the cross-section error variance evolves in years 2003 – 2007 with the 

following values (11.77. 10.19. 10.08. 10.36. 10.78). Clearly the minimum is in year 

2005.   Thus the plot of the cross section variances is hump-shaped indicating that the 

plants have responded to introduction of emission trading homogenously. However 

after the year 2005 this tendency of unobserved heterogeneity among the firms has 

changed.    

 
5. Conclusions and Discussion 
 
Econometric studies on the impacts of the EU tradable CO2 permit system on the fuel 

demand have remained scarce. In this study we provided new results concerning the 

impacts of the EU-ETS cap and trade system on the fuel mix of energy plants. We 

used data from Finland, where the industrial and policy contexts suggest that the 

tradable CO2 permit system might have had larger impacts than perhaps in other 

European countries. The results indicate that the EU-ETS system has increased the 

wood energy consumption of the plants, and that wood fuels have been substituted for 

fossil fuels. However, over the period of 2005-2007 these impacts seemed to have 

decline. 

  

There are a lot of energy-intensive industries. e.g. the forest and steel industries in 

Finland, which have driven the Finnish energy sector towards centralized units. Also 
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the cold climate has affected that local district heating systems have penetrated 

considerably in the country (Ericsson et al 2004). The large units imply that the EU-

ETS covers an exceptionally large share of the total CO2 emissions in Finland, which 

increases the importance of the system in the Finnish conditions, and which may have 

contributed to the results received in this study.  

 

Emission trading and possible high price level of the emission allowance in the future 

do not automatically guarantee an increased use of wood fuels in Finland. or in other 

countries with similar conditions. Because the energy contents of unprocessed wood 

fuels, e.g. forest chips, are relatively low, long transportation distances are not 

profitable. This means that wood-fuel markets remain regional. Another issue relates 

to the marketing position of energy producers. A district heat producer has usually a 

monopoly position on regional markets, which enables transferring the cost of 

purchasing  permits to the heat prices (Brännlund et al. 2004). This may reduce 

the substitution impact of emissions trading. 

2CO
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