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ABSTRACT

Electroencephalogram (EEG) provides a high-temporal resolution imaging modal-
ity for relating brain activity to cognitive function. However, individual EEG channels
measure superimposed activity generated simultaneously from various brain and extra-
brain sources. Therefore, signal processing methods are required in order to enhance and
categorize brain related activity.

Evoked potentials (EPs) reflect changes in the brain’s electrical activity due to stimu-
lation. A significant advantage of EP research is that cortical reactivity and function can
be assessed with high-temporal resolution. Therefore, EPs are used to observe changes
of brain function, and to explain cognitive processes. Evoked potentials are tradition-
ally separated from ongoing brain activity and noise by forming averages of time-locked
EEG epochs. This signal enhancement leads to significant loss off information about the
physiological mechanism.

Single-trial estimation methods can be used to provide information about trial-to-
trial phenomena. Of special interest is the case where some parameters of the potentials
change dynamically from stimulus to stimulus. This could be a trend-like change in
amplitude or latency of some component of the EPs.

In this thesis, novel methods for EP denoising and enhancement are presented. The
proposed methods involve state-space modeling and identification techniques. These are
developed within the framework of Bayesian mean square estimation and regularization
theory. Estimates of the EPs are obtained with Kalman filter and smoother algorithms.
The methods are able to track dynamic variability from trial-to-trial. This is demon-
strated with simulated and real EP measurements. The estimates could, for example,
be used to detect changes in cognitive state such as habituation effects, or to monitor
cerebral activity during anesthesia.
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Abbreviations

AEP Auditory evoked potential
BSS Blind source separation
cdf Cumulative distribution function
EEG Electroencephalogram, electroencephalography
EP Evoked potential
ERP Event-related potential
EWA Exponentially weighted average
GM Gauss-Markov
IC Independent component
ICA Independent component analysis
KF Kalman filter
KKT Karush-Kuhn-Tucker
KS Kalman smoother
LMS Least mean square
LMS Linear mean square
LS Least squares
MA Moving average
MAP Maximum a posteriori
MEG Magnetoencephalogram
ML Maximum likelihood
MS Mean square
MWA Moving window average
NLMS Normalized least mean square
PC Principal component
PCA Principal component analysis
pdf Probability density function
RLS Recursive least squares
RMSE Root mean square error
SNR Signal-to-noise ratio
STD Standard deviation
SVD Singular value decomposition
TR Tikhonov regularization
UC Uniform cost

Notations

R Real numbers
C Convex set
R

n n-dimensional space
(·)T Transpose
| · | Absolute value
‖ · ‖ Euclidean norm



‖ · ‖. Unspecified, general norm

‖ · ‖P Quadratic norm, such as ‖x ‖2
P = xTPx

I Identity matrix
A−1 Matrix inverse
det A Determinant of matrix A
trace (A) Trace of matrix A, sum of diagonal elements
diag (a1, a2, . . . , an) Diagonal matrix
inf{·} Infimum, e.g. inf {x ∈ R : 0 < x < 1} = 0
� Matrix inequality, e.g. A ≻ 0 denotes a symmetric positive definite matrix
∇xf Gradient vector
∇Xf Gradient matrix
∇2

xf Hessian matrix
d,D Direction, for example for a vector iteration xi+1 = xi + aid

i

f i(x; d) i-th directional derivative of f at x in the direction d
Jf Jacobian of function f
Ji, J

i Jacobian of a function at the i-th iteration
λ, ν Lagrange multipliers
L(x, λ, ν) Lagrangian function
P (·) Probability of an event
p(x) Probability density function of x
p(x, y) Joint probability density of x and y
p(x|y) Conditional probability density of x given y
p(x; y) Probability density of x that depends on parameters y
E{·} Mathematical expectation
Ex{·} Mathematical expectation over x
Ē{·} Empirical expectation, sample mean
ηx Expected value of x, i.e. ηx = E{x}
ηx|y Conditional mean of x given y
σ2

x Variance of x, or if x is vector then Cx = σ2
xI

γx(t1, t2) Auto-covariance of the stochastic process xt

Cx Covariance matrix of x
Cxy Cross-covariance matrix of x and y
Cx|y Conditional covariance of x and y
Rx Correlation matrix of x
Rxy Cross-correlation matrix of x and y
µk k-th central moment
κk k-th cumulant
Φ(ω) Characteristic function, Fourier transform
Φ(z) Moment generating function
H(x) Differential entropy
H(x|y) Conditional entropy
I(x) Mutual information
J(x) Negentropy
δ(px, py) Kullback Leibler divergence
z Measurement vector



υ Observation noise vector
θ, φ Parameter vector

θ̂ Parameter estimate

θ̃ Parameter estimation error
α Regularization parameter

B(θ̂) Bayes cost or risk function

C(θ, θ̂) Cost function

R(θ, θ̂) Risk function
Dd Difference matrix of order d
H Observation matrix
W Weighting matrix
L,R Regularization matrix, W = LTL
E Related to least squares criteria
l Functional related to likelihoods or posterior densities
ω State noise vector
Ft State transition matrix
Kt Kalman gain matrix
U Matrix of eigenvectors or left singular vectors
Σ Matrix of singular values
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Chapter I

Introduction

A great challenge in biomedical engineering is to non-invasively gather informa-
tion about the function of different parts of the human body. Various physiological
systems which cannot be observed directly are subject to variation. However, a
limited view of their behavior can be accessed by means of biosignals. The term
biosignal can be used for any time-varying quantity that can be measured from
the human body. A well known electrical biosignal is the electroencephalogram
(EEG), which reflects activity in the central nervous system. EEG is broadly used
for the study of different neurophysiological states and disorders. However, indi-
vidual channel recordings represent superimposed signals generated by different
neural or non-neural sources. Therefore, advanced signal processing methods are
required in order to enhance brain related activity and to analyze complicated
mental processes.

In the study of biosignals, three different approaches can be distinguished:
analysis of transient events related to some physical stimulation, analysis of spon-
taneous effects describing the general activity and function of the physical mech-
anism, and correlation analysis of two or more biosignals of different nature and
origin. The main benefit of an event-related analysis is that the system can be
investigated under specific experimental conditions in an action-reaction scheme.
The study of evoked potentials (EPs) is one such example. The aim is to analyze
those parts of the EEG signal that are related to some stimulation of the central
nervous system.

EPs are voltage changes of the brain’s electrical activity due to stimulation.
The measured signals are observed relative to an event, the timing of which can
be reliably assessed. These are often considered as the combination of electric
activity generated by different brain areas, which are active in association with
the eliciting event. In addition, significant contributions exist from ongoing brain
activity, and non-neural sources, such as eye blinks and other artifacts. In that
sense, EP analysis focuses on estimating, enhancing, and categorizing stimulus
evoked brain activity. In practice, EP measurements are usually performed with
multiple electrodes. This means that spatial information is also included in the
measurements, which can be used for the study of EPs.

Of special interest is the development of methods that enable access to in-
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16 1. Introduction

formation about single events, and thus, overcome traditional analysis involving
simple averaging of stimulus-locked EEG data epochs. Traditional averaging aims
primarily to detect a common pattern in the EP waveform which is hidden into
random noise. In many situations, EPs have time-varying characteristics. Thus
averaging implies a great loss of information about the hidden physiological mech-
anism. Therefore, EP research focuses on methods that can provide additional
information about stimulus to stimulus characteristics. Trial-to-trial variability
can, for example, be used to study the ability of the brain to sense, recognize,
and store information. The applicability and performance of different estimation
methods relate to successful mathematical modeling, identification of realistic as-
sumptions, and more effective use of prior information.

The uncertainty of event-related phenomena allows probabilistic arguments
for their description. In the simplest case, the EEG epochs can be considered as
random vectors sampled from the same joint probability density function. Then,
all the measurements can be used to access statistical information. The EPs can
also be considered to have individual stimulus characteristics. Then information
obtained from the ensemble can still be used for the enhancement of single-trials.
Of special interest is the situation when some parameters of the potentials change
dynamically form stimulus to stimulus. This kind of situation can be a trend-
like change in amplitude or latency of some specific component of the EPs. Such
a dynamic behavior can be modeled in a state-space mathematical formulation.
Bayesian recursive mean square estimation methods, i.e. Kalman filtering and
smoothing, can then be applied to investigate dynamic features.

EEG signals are incomplete observations of hidden mental processes. They can
be used for the study of different brain dynamics. Processing this vast amount
of data calls for efficient and reliable mathematical methods to extract features
of interest, while suppressing different disturbances. The problem of separating
and estimating source waveforms from sensor signals, without knowing the mixing
system and the exact nature of the sources, can be addressed by several related
methods. These include Independent Component Analysis (ICA) and Blind Source
Separation (BSS), which over the last decade have been extensively used for EEG
analysis [85, 39].

The aims and contents of the thesis

The aim of the thesis is to present novel methods for estimating dynamic features
present in EP measurements by means of state-space modeling, signal subspace
identification, and Bayesian methodology. Optimal estimates in the mean square
sense are obtained with Kalman filter and smoother algorithms.

State-space modeling for EP estimation was originally proposed in [117, 116].
In these studies, a Kalman filter algorithm was used. The method was further
developed in [64], and its applicability was systematically demonstrated and dis-
cussed. A Kalman smoother algorithm for trial-to-trial estimation of EPs was
briefly introduced in [63].

In this thesis, the applicability of Kalman filtering and smoothing for dynam-
ical estimation of EPs is described, and related assumptions and limitations are
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further clarified. Emphasis is given to a signal subspace based method for dynamic
EP estimation. The applicability of this method is demonstrated with simulated
and real EP measurements under different noise conditions. The performance of
Kalman filter and smoother algorithms for EP estimation is compared with dif-
ferent computer simulations. Different parametrizations of the problem are also
considered and presented. A method for including prior information in the state-
space model for dynamic estimation of EPs is also introduced. A state-space
identification method for the improvement of the tracking capabilities is hereby
developed and demonstrated. Since EP measurements are highly contaminated
by different artifacts, BSS methods are also considered. ICA for BSS of EEG is
used for artifact correction. Great effort is given to the presentation of the theo-
retical base of the related methods, by considering probabilistic and deterministic
mathematical arguments for the problem.

The main issues covered in the thesis are summarized chapter by chapter as
follows:

• Gradients and optimization methods (Chapter 2). Different estimation
methods used in the thesis lead to the minimization of a specific multivariate
objective function. Therefore, mathematical optimization based on vector
and matrix gradients is considered. This include different iterative methods
for nonlinear problems. Since prior information often constraints the solution
of an estimation problem, constrained optimization is also considered.

• Probability theory (Chapter 3). ICA is related to the concept of indepen-
dence. This is a theoretical concept understood by terms of probability
theory. Different properties of independence are presented. Formally, statis-
tical independence can be defined through the use of conditional probabili-
ties. These are the foundation of Bayesian estimation. Different properties
of Gaussian random vectors are also considered.

• Estimation theory (Chapter 4). The description of the theoretical properties
of some estimation methods that are able to take into account in a mean-
ingful and computationally feasible way prior knowledge about the nature
of the parameters is considered. These include Bayesian and regularization
methods in connection to least squares problems.

• Recursive estimation and Kalman filtering (Chapter 5). Kalman filter and
smoother algorithms are presented from a Bayesian mean square estimation
point of view. The smoothing problem is also treated as a constrained least
squares problem, and the connection with smoothness priors regularization
is emphasized. A method for including prior information in the state-space
model is presented. A state-space identification method is also presented.

• Independent component analysis (Chapter 6). Different estimation principles
exist for the problem of BSS, and in fact, some minimal prior knowledge is
required or assumed for a specific method to be applied. Thus, the quality
of source estimates and their statistical properties are naturally dependent
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on the method and the assumptions used in the estimation procedure. ICA
is presented from a Bayesian point of view.

• Estimation of EPs (Chapter 7). Different characteristics of EP signals are
discussed, focusing on cognitive auditory potentials. The applicability of
ICA for BSS of EEG is discussed and an artifact removal example is demon-
strated. The artifact corrected EEG is also used in Chapter 8. Some meth-
ods for single-trial estimation of EPs are briefly discussed. The connection of
Kalman filtering and smoothing with other dynamical estimation methods
for EPs is discussed.

• Tracking dynamic changes (Chapter 8). The applicability of the proposed
methods for tracking dynamic features in EPs is demonstrated and discussed.
For demonstration an auditory experiment is considered (the auditory odd-
ball paradigm). In that respect, different simulations are made to resemble
the P300 peak, though the methods can also be applied to other EPs. The
benefits of the smoothing algorithm versus the filtering algorithm are un-
derlined. Different parametrizations of the problem are also considered, in
relation to prior information about the smoothness of EPs, and other es-
timation needs. The developed state-space identification method for the
improvement of the tracking performance is demonstrated.

• Chapter 9 contains an overall discussion and conclusions of the thesis.



Chapter II

Gradients and Optimization Methods

In this chapter, an overview of mathematical optimization, focusing on gradient
based methods, is given. The concepts presented here are useful for obtaining
linear and nonlinear optimization procedures for specific problems treated in later
chapters of the thesis. Therefore, gradients of multivariate vector and matrix scalar
valued functions and the related Taylor approximations are considered. Another
useful concept discussed in this chapter is convexity that enables relatively easy
solutions for different classes of optimization problems. Finally, focus is given
on gradient based iterative procedures for nonlinear optimization like steepest
descent and Newton’s method. The chapter is primarily based on [23], though
other classical references on optimization theory include [178, 51, 21, 18].

2.1 Basic concepts and definitions

A mathematical optimization problem has the form [23]

minimizex f0(x)
subject to fi(x) ≤ ci, i = 1, . . . , k.

(2.1)

The vector x = (x1, x2, . . . , xn)T , where (·)T denotes transpose, is the optimization
variable of the problem. The function f0 : R

n → R is the objective function or
the cost function, the functions fi : R

n → R define the (inequality) constraints,
and the scalar constants ci are the limits or bounds for the constraints. If exact
equality holds for some constraint, then we have an equality constraint. If there
are no constraints, the problem is called unconstrained. The set of points for which
the objective function and all the constraints are defined is the domain D ⊆ R

n

of the optimization problem, i.e. D =
⋂k

i=1{x ∈ R
n : fi(x) ≤ ci} = {x ∈ R

n :
fi(x) ≤ ci, i = 1, . . . , k}. A point is feasible if it satisfies the constraints.

The optimization problem (2.1) is an abstraction of the problem of making
possible choice of a vector from a set of candidates. The constraints represent
firm requirements, specifications, assumptions, or prior information for the nature
of the optimal choice that limit the possible choices. They might even represent
necessary compromises to be made so that the problem can have optimal or ap-
proximated optimal solution. The objective function can represent the cost of

19



20 2. Gradients and Optimization Methods

choosing a particular solution. If the problem is a maximization problem, which
can be considered as a minimization problem for the function −f0(x) subject to
the constraints, then f0(x) can be considered to represent a gain or profit.

A vector xopt is called optimal, or a solution for the problem (2.1), if it has the
smallest objective value among all vectors that satisfy the constraints. Thus, for
any x for which fi(x) ≤ ci, i = 1, . . . , k, it holds f0(x) ≥ f0(x

opt). The optimal
value of the problem f∗ is defined as

f∗ = inf{f0(x) : fi(x) ≤ ci, i = 1, . . . , k}, (2.2)

where f∗ is allowed to take the extended values ±∞ [23]. If the problem is infea-
sible we have f∗ = ∞, and if f∗ = −∞ the problem is unbounded below. A point
xopt is an optimal point if it is feasible and f0(x

opt) = f∗. If there exist such an
optimal point, then the problem is solvable. Note also, that there may exist more
than one optimal points. A feasible point y is locally optimal if there is an r > 0
such that

f0(y) = inf{f0(x) : fi(x) ≤ ci, i = 1, . . . , k, ‖x− y‖ ≤ r}, (2.3)

meaning that y minimizes f0 over nearby points in the feasible set. The i-th
inequality constraint is said to be active at x, if x is feasible and fi(x)− ci = 0. If
fi(x) − ci < 0 then the constraint is said to be inactive. Equality constraints are
active at all feasible points. Finally, an inequality constraint of the form fi(x) ≥ 0
can be expressed in standard form as −fi(x) ≤ 0 .

A solution method for a class of optimization problems is a procedure that
computes an exact solution of the problem, i.e. an analytical formula, or more often
an algorithm that gives an approximation up to some measured accuracy. The
effectiveness of different procedures varies, and depends on the formulation and
nature of the problem, as well as on compromises related to reduced computation
time in the expense of the possibility of not reaching a satisfactory solution. In
local optimization, the compromise is to give up seeking the optimal x, which
minimizes the objective over all feasible points (global optimization). Instead, a
locally optimal point is searched, which minimizes the objective function among
all feasible points that are near to it, but it is not guaranteed to have a lower
objective value over all the feasible points.

2.2 Optimality conditions for unconstrained optimization

Derivatives of the objective function and constraints are usually needed for the
derivation of local optimality conditions for optimization problems, and for the
derivation of gradient based solution methods.

Let f : R
n → R be a differentiable real scalar valued function of n variables. We

have the notation f(x) = f(x1, x2. . . . , xn) ∈ R, where x = (x1, x2, . . . , xn)T ∈ R
n.

The gradient of f with respect to its vector domain is the n-dimensional column
vector of partial derivatives

∇xf(x) = ∇f(x) =
∂f(x)

∂x
=

(
∂f(x)

∂x1
, . . . ,

∂f(x)

∂xn

)T

. (2.4)
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While, the second-order gradient of a twice differentiable function with respect to
its vector domain is an n× n symmetric matrix (the Hessian of f at x)

∇2
xf(x) = ∇2f(x) =

∂2f(x)

∂x2
=







∂2f(x)
∂x2

1

. . . ∂2f(x)
∂x1xn

...
. . .

...
∂2f

∂xnx1
. . . ∂2f(x)

∂x2
n






. (2.5)

A differentiable function is said to be continuously differentiable at x, if there is a
neighborhood of x such that the partial derivatives in (2.4) are continuous functions
over the neighborhood. If the partial derivatives in (2.5) are also continuous, then
f is twice continuously differentiable.

Let f : X → R, where X ⊂ R
n is open. Assuming f has continuous first-,

second-, and third-order gradients over the open set X, then for x ∈ X and any
d ∈ R

n the function can be expanded on some open interval of τ ∈ R as

f(x+ τd) = f(x) + τf1(x; d) +
1

2!
τ2f2(x; d) + o(τ3), (2.6)

or for any x̄ ∈ R
n on some open interval of ‖x̄‖

f(x̄) = f(x) + f1(x; x̄− x) +
1

2!
f2(x; x̄− x) + o(‖x̄‖3). (2.7)

The reminder terms o(·) approach to zero when the approximation is close to x.
The mean value theorem is what ensures the finite order of the expansion (see
for example [180], Chap. 5). For some functions, one can show that the reminder
o(‖x̄‖i) approaches zero as i approaches infinity. Those functions can be expressed
as Taylor series in a neighborhood of the point x, and are called analytic having
derivatives of any order. The function f i(x; d) ∈ R is the i-th directional derivative
of f at x in the direction d defined for i = 1, 2 by

f1(x; d) = lim
∆τ→0

f(x+ ∆τd) − f(x)

∆τ
(2.8)

=
∂f(x+ τd)

∂τ

∣
∣
∣
τ=0

(2.9)

= ∇f(x)T d, (2.10)

f2(x; d) =
∂2f(x+ τd)

∂τ2

∣
∣
∣
τ=0

(2.11)

= ∇xf
1(x; d)T d = ∇x(∇xf(x)T d)T d = dT∇2f(x)d, (2.12)

where τ ∈ R. The first directional derivative may be understood as the change in
f at x when change in x is equal in magnitude and direction to d. The second
directional derivative describes the local curvature of f .

A direction d defines a descent direction of f at x if

f(x+ τd) < f(x) for all τ > 0 and sufficiently small. (2.13)
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Consider a first order approximation of a differentiable function f at x. It holds
f(x+ τd) − f(x) = τ∇f(x)T d+ o(τ2), with o(τ2) → 0 as τ → 0. If

∇f(x)T d < 0, (2.14)

then for all τ > 0 and sufficiently small, f(x+τd) < f(x), and hence d is a descent
direction of f at x. If x is a local minimum of f , then x must satisfy ∇f(x) = 0.
If it was ∇f(x) 6= 0, then d = −∇f(x) would be a descent direction, whereby x
would not be a local minimum. Thus a necessary condition for local optimality is

∇f(x) = 0, (2.15)

which defines the stationary points of the function f . Similarly, one can show that
for a twice differentiable function at x a necessary condition for local optimality
is ∇f(x) = 0 and

dT∇2f(x)d ≥ 0, (2.16)

for every direction d or, in other words, the Hessian at x to be positive semidefinite.
Finally, it can be shown that a sufficient condition for local optimality states that
if ∇f(x) = 0 and the Hessian is positive definite, then x is a strict local minimum.
Equivalently, if ∇f(x) = 0 and the Hessian is negative definite, then x is a local
maximum. When ∇f(x) = 0 and the Hessian is positive semidefinite we cannot
be sure if x is a local minimum. It could be a stationary point of inflection (saddle
point), where the curvature of f changes sign (concavity). As an example consider
the function f : R → R given by f(x) = x3 at x = 0. For a thorough treatment of
the optimality conditions see for example [19].

The concepts generalize to vector-valued functions f : R
n → R

m, i.e. m-
dimensional vectors of the form f(x) = (f1(x), . . . , fm(x))T , whose elements fi(x)
are scalar functions of x ∈ R

n. The Jacobian of f with respect to x is the matrix

Jf (x) =
∂f(x)

∂x
=







∂f1(x)
∂x1

. . . ∂f1(x)
∂xn

...
. . .

...
∂fm(x)

∂x1
. . . ∂fm(x)

∂xn






. (2.17)

Thus is the m × n matrix with rows the gradient vectors of the scalar functions
fi(x). The best linear approximation of f near the point x is given by

f(x̄) ≈ f(x) + Jf (x)(x̄− x). (2.18)

2.3 Convexity

Important concept in mathematical optimization is convexity, since it allows the
derivation of efficient solution methods for global optimization. A convex opti-
mization problem is one of the form (2.1), where all the functions f0 and fi are
convex. Nonlinear optimization is the term used to describe an optimization prob-
lem when the objective and constraint functions are not linear, and in general not
known to be convex. In general, there are no effective methods for solving every
non linear problem.



2.3 Convexity 23

2.3.1 Convex sets

A set C ⊆ R
n is affine if the line through any two distinct points in C lies in

C, i.e., if for any x1, x2 ∈ C and a ∈ R, it holds ax1 + (1 − a)x2 ∈ C. In other
words, C contains the linear combinations of any two points in C, provided the
coefficients in the linear combination sum to one. A set C is convex if the line
segment between any two points in C lies in C, i.e., if for any x1, x2 ∈ C and any
a with 0 ≤ a ≤ 1, we have

ax1 + (1 − a)x2 ∈ C. (2.19)

Clearly, every affine set is also convex. The empty set ∅, any single point x0,
and the whole space R

n are affine, hence convex sets of R
n. Any line is convex

and affine, but a line segment is only convex. Also convexity is preserved under
intersection, i.e. if C1,C2 are convex then C1 ∩ C2 is convex, and extends to the
intersection of an infinite number of sets (see for example [23], section 2.3.1).

A vector of the form a1x1 + . . . + akxk, where a1 + . . . + ak = 1, and ai ≥
0, i = 1, . . . k, is a convex combination of the vectors x1, . . . , xk. A set then
is convex, if it contains every convex combination of its points. The concept of
convex combination can be generalized to include infinite sums and integrals (e.g.
[23], section 2.1.4). Let f : R

n → R that satisfies f(x) ≥ 0 for all x ∈ C , where
C ⊆ R

n is convex, and
∫

C
f(x)dx = 1, then, if the integral exists, it holds

∫

C

f(x)xdx ∈ C. (2.20)

An (Euclidean) ball in R
n has the form

S(xc, r) = {x ∈ R
n : ‖x− xc‖ ≤ r} (2.21)

= {x ∈ R
n : (x− xc)

T (x− xc) ≤ r2} (2.22)

= {xc + ru : ‖u‖ ≤ 1}, (2.23)

where, r > 0 and ‖ · ‖ denotes the Euclidean norm, i.e., ‖u‖ = (uTu)1/2. The
vector xc is the center and the scalar r is its radius, and S(xc, r) consists off all
the points within a distance r from the center xc. S(xc, r) is convex, since if
‖x1 − xc‖ ≤ r, ‖x2 − xc‖ ≤ r, and 0 ≤ a ≤ 1, then ‖ax1 + (1 − a)x2 − xc‖ =
‖a(x1 − xc) + (1 − a)(x2 − xc)‖ ≤ a‖x1 − xc‖ + (1 − a)‖x2 − xc‖ ≤ r. This
is due the homogeneity property and triangle inequality for the Euclidean norm.
Equivalently, the set {x ∈ R

n : ‖x − xc‖· ≤ r}, where ‖ · ‖· is any norm on R
n

is convex. Additionally, the set {(x, r) : ‖x‖· ≤ r} ⊆ R
n+1 is convex set called a

norm cone.
A related family of convex sets are the ellipsoids, which have the form

{x ∈ R
n : (x− xc)

TP−1(x− xc) ≤ 1}, (2.24)

where P = PT ≻ 0, i.e. the matrix P is symmetric and positive definite. The
vector xc ∈ R

n is the center of the ellipsoid and the matrix P determines how far
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the ellipsoid extends in every direction from the center; the lengths of the semi-
axes are given by

√
λi, where λi are the eigenvalues of P . A ball is an ellipsoid with

P = r2I. Another representation of an ellipsoid is given by {xc + Au : ‖u‖ ≤ 1},
where A is square and non-singular. In this representation, we can assume without
loss of generality that A is symmetric and positive definite. By taking A = P 1/2

this representation gives the ellipsoid (2.24). When the matrix A is symmetric
positive semidefinite but singular, the set is called a degenerate ellipsoid and its
affine dimension is equal to the rank of A. Degenerate ellipsoids are also convex
([23], section 2.2.2).

2.3.2 Convex functions and optimality conditions

A function f : R
n → R is convex if its domain C is a convex set, and if for all

x, y ∈ C and for 0 ≤ a ≤ 1 it holds (Jensen’s inequality)

f(ax+ (1 − a)y) ≤ af(x) + (1 − a)f(y). (2.25)

Geometrically, this inequality means that the line segment between (x, f(x)) and
(y, f(y)), which is the chord from x to y, lies above the graph of f . A function
is strictly convex if strict inequality holds whenever x 6= y and 0 < a < 1. A
function f is called concave if −f is convex. Inequality (2.25) is extended to
convex combinations of more than two points. If f is convex, x1, . . . , xk ∈ C, and
a1, . . . , ak ≥ 0 with a1 + . . .+ ak = 1, then

f(a1x1 + . . .+ akxk) ≤ a1f(x1) + . . .+ akf(xk). (2.26)

Additionally, the inequality extends to infinite sums and integrals (e.g. [23] section
3.1.8). For example, if g(x) ≥ 0 and S ⊆ C,

∫

S
g(x)dx = 1, then, if the integrals

exist

f

(∫

S

g(x)xdx

)

≤
∫

S

f(x)g(x)dx. (2.27)

A function is convex if and only if it is convex when restricted to any line
that intersects its domain, i.e. for all d the function g(t) = f(x + td) is convex
for every t for which x + td ∈ C ([23], section 3.1.1). This property is useful for
investigating the convexity of some function. In fact, it can be used to derive the
following important property for convex functions ([23], section 3.1.3) . If f is
differentiable, then f is convex if and only if C is convex and

f(y) ≥ f(x) + ∇f(x)T (y − x) (2.28)

holds for every x, y ∈ C. The linear function of y given by f(x) + ∇f(x)T (y − x)
is the first order Taylor approximation of f near x. Thus, for a convex function
the first order approximation is a global under-estimator of the function. As a
consequence if ∇f(x) = 0, then for all y ∈ C it holds f(y) ≥ f(x), i.e. x is
a global minimizer of the function. With x 6= y and strict inequality in (2.28)
we have strict convexity. Equivalently, for a concave function it holds f(y) ≤
f(x) + ∇f(x)T (y − x).
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If now we assume that f is twice differentiable, that is, the Hessian ∇2f exists
at each point in its domain C, which is open, then f is convex if and only if C is
convex and its Hessian is positive semidefinite for all x ∈ C ([23], section 3.1.4)

∇2f(x) � 0. (2.29)

This condition can be interpreted geometrically as the requirement that the graph
of the function has positive (upward) curvature at x. Similarly, f is concave if C

is convex and ∇2f � 0 for all x ∈ C. If ∇2f(x) ≻ 0 for all x ∈ C then f is strictly
convex, but the converse is not true; for example the function f : R → R given by
f(x) = x4 is strictly convex, but has zero second derivative at x = 0.

2.4 Constrained optimization and optimality conditions

Consider the constrained, not necessary convex, optimization problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . , k

gi(x) = 0, i = 1, . . . , l.
(2.30)

Because of the constraints, stationary points of f0(x) alone may not be solutions to
the constrained problem, since they may not satisfy the constraints. An approach
to study constrained problems relates to the theory of Lagrange multipliers.

The Lagrangian function L : R
n × R

k × R
l → R associated with the problem

is defined as ([23], p. 215)

L(x, λ, ν) = f0(x) +
k∑

i=1

λifi(x) +
l∑

i=1

νigi(x) (2.31)

where λi, νi are called Lagrange multipliers associated with the inequality and
equality constraints respectively. The vectors λ, ν are also called the dual variables
associated with the problem (2.30). The Lagrange dual function g : R

k × R
l → R

is defined as the minimum value of the Lagrangian over x ∈ D, where D is the
domain of the optimization problem, thus

g(λ, ν) = infx∈DL(x, λ, ν). (2.32)

When the Lagrangian is unbounded below in x the dual function takes on the
value −∞. Let x̄ be a (primal) feasible point, i.e. fi(x̄) ≤ 0 and gi(x̄) = 0, and let
λi ≥ 0 (dual feasible). Then from (2.30, 2.31) we have L(x̄, λ, ν) ≤ f0(x̄), and thus
g(λ, ν) ≤ L(x̄, λ, ν) ≤ f0(x̄). Since the inequality holds for every feasible point,
then it holds also for the optimal value of the primal problem, i.e. g(λ, ν) ≤ f∗.
The dual function gives a nontrivial lower bound on f∗ only when λi ≥ 0 and
νi such as g(λ, ν) > −∞ ([23], section 5.1.3). Thus, we have a lower bound that
depends on some parameters λ, ν.

Instead of deriving strict proofs related to the Lagrange multipliers and dual
problem theory, we give an intuitively easier interpretation of the lower bound
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property as a linear approximation of penalty functions approach. The original
problem can be rewritten as an unconstrained problem ([23], p. 218)

minimize f0(x) +

k∑

i=1

I−(fi(x)) +

l∑

i=1

I0(gi(x)), (2.33)

where I− is an indicator function I−(u) =

{
0 u ≤ 0
∞ u > 0

, and similarly I0 is the

indicator function for 0. Thus they express our displeasure associated with a vi-
olation of a constraint. For example, for a inequality constraint our displeasure
rises sharply from zero to infinity, as fi(x) moves from non positive to positive.
Now, if in the formulation (2.33) we replace the sharp transitions with soft linear
ones, i.e. I−(u) with λiu, where λi ≥ 0, and I0(u) with νiu, the objective be-
comes the Lagrangian . Thus in this formulation for the inequality constraints our
displeasure is zero when fi(x) = 0, and it is positive when fi(x) > 0 (assuming
λi > 0). So the displeasure grows as the constraint gets more violated. Unlike the
original formulation, in which any non-positive value of fi(x) is acceptable, in the
soft formulation we actually derive pleasure from constraints that have margin,
i.e. fi(x) < 0 ([23], p. 218). Clearly, the approximation of the indicator function
I−(u) with a linear one λiu is rather poor. But the linear function is at least
an under-estimator of the indicator function, since λiu ≤ I−(u) for λi ≥ 0, and
νiu ≤ I0(u) for all u. Thus, we see that the dual function yields a lower bound of
the optimal value of the original problem.

The best lower bound that can be obtained from the Lagrange dual function
is the solution of the optimization problem

maximize g(λ, ν)
subject to λi ≥ 0, i = 1, . . . , k.

(2.34)

This problem is called the Lagrange dual problem associated with the problem
(2.30) which is always convex since the objective is concave and the constraint
is convex ([23] p. 223). If g∗ is the optimal value of the dual problem then we
have g∗ ≤ f∗ (weak duality). If the equality holds, then strong duality holds with
zero duality gap, and the best bound that can be obtained from the Lagrange
dual functions is tight. Strong duality does not in general hold. There are extra
conditions (constraint qualifications) that establish strong duality. One such is
Slater’s condition ([23], p. 226) that states that for a convex problem, i.e. f0, fi

are convex and gi are linear (Ax = b), strong duality is guaranteed if it exists
at least one strictly feasible point x̄, i.e. it holds fi(x̄) < 0, i = 1, . . . , k, and
Ax̄ = b.

Suppose that strong duality holds for a general optimization problem. Let x̄ be
a primal optimal and λ̄, ν̄, dual optimal points, then from the definition of strong
duality and the definition of the dual function it holds ([23], p. 242)

f0(x̄) = g(λ̄, ν̄) = infx(f0(x) +
k∑

i=1

λ̄ifi(x) +
l∑

i=1

ν̄igi(x)) (2.35)
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Now since the infimum of the Lagrangian over x is less than or equal its value at
x = x̄, we have

f0(x̄) ≤ f0(x̄) +

k∑

i=1

λ̄ifi(x̄) +

l∑

i=1

ν̄igi(x̄) ≤ f0(x̄). (2.36)

The last inequality follows from λ̄i ≥ 0, fi(x̄) ≤ 0 and gi(x̄) = 0. Thus the
inequalities in the chain hold with equality. So x̄ is a minimizer (not necessary

unique) of the Lagrangian L(x, λ̄, ν̄) over x and it holds
∑k

i=1 λ̄ifi(x̄) = 0, which
implies λifi(x̄) = 0, since every element in the sum is non-positive.

Optimality conditions for any optimization problem with differentiable objec-
tive and constraint functions are given by the Karush-Kuhn-Tucker (KKT) con-
ditions. They state that if strong duality can be obtained for any pair of primal x̄
and dual λ̄, ν̄ optimal points with zero duality gap, the following conditions must
be satisfied ([23], p. 243)

fi(x̄) ≤ 0, i = 1, . . . , k (2.37)

gi(x̄) = 0, i = 1, . . . , l (2.38)

λ̄i ≥ 0, i = 1, . . . , k (2.39)

λ̄ifi(x̄) = 0, i = 1, . . . , k (2.40)

∇f0(x̄) +
k∑

i=1

λ̄i∇fi(x̄) +
l∑

i=1

ν̄i∇gi(x̄) = 0. (2.41)

The first two conditions state that x̄ is primal feasible point and the third that
is dual feasible point. The third condition is known as complementary slackness.
This condition can be written as λ̄i > 0 ⇒ fi(x̄) = 0, and additionally fi(x̄) <
0 ⇒ λi = 0. Roughly speaking, this means that the optimal Lagrange multiplier
associated with an inequality constraint is zero unless the constraint is active at
the optimum. The last condition states that since x̄ minimizes L(x, λ̄, ν̄), it follows
that its gradient must vanish at x̄. Finally, if a convex optimization problem has a
strictly feasible point, then the KKT conditions are also sufficient for the points to
be primal and dual optimal with zero duality gap. In other words, x is the optimal
solution of the convex problem if and only if there are λ, ν that all together satisfy
the KKT conditions ([23], p. 244).

2.5 Descent methods for unconstrained optimization

Let f be a scalar valued multivariate differentiable function the minimum of which
is searched. If f is convex, a necessary and sufficient condition for a point xopt to
be optimal is

∇f(xopt) = 0. (2.42)

Thus, solving the unconstrained problem is the same as finding a solution for
(2.42). In a few special cases, an analytic solution can be found by solving the
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optimality equation. Usually, the problem must be solved by an iterative algo-
rithm. Thus, starting from a given vector x0 ∈ D, where D is the domain of
f , an numerical method is searched that computes a sequence of points xi ∈ D

with f(xi) → f(xopt) as i → ∞. The algorithm should be terminated when
f(xi) − f(xopt) ≤ ǫ, where ǫ > 0 is some specified tolerance.

If f is strictly convex (∇2f(x) ≻ 0) it can be shown that there are constants
m,M > 0 such that for every {x : f(x) ≤ f(x0)} ([23], p. 461)

mI � ∇2f(x) �MI. (2.43)

The ratio k = M/m is an upper bound for the condition number of the Hessian
matrix, i.e. the ratio of its largest eigenvalue to its smallest eigenvalue, which in
general influences the speed of convergence of different algorithms (see for example
[23], section 9.5.3). By considering second order Taylor approximation and con-
vexity properties it can be shown ([23], section 9.1.2) that for the optimal value of
the problem it holds

f(x) − 1

2m
‖∇f(x)‖2 ≤ f(xopt) ≤ f(x) − 1

2M
‖∇f(x)‖2. (2.44)

Thus, when the gradient is sufficiently small at a point then that point is nearly
optimal, verifying intuition.

A general iterative procedure that updates the current point with a new one
has the form

xi+1 = xi + aid
i, (2.45)

for i = 0, 1, . . ., where the scalar parameter ai > 0 gives the length of the step in
the direction defined by the vector di. The step and the direction must guarantee,
since we have a minimization problem, that (descent methods)

f(xi+1) = f(xi + aid
i) < f(xi), (2.46)

except when xi is optimal (see also definition (2.13)). The procedure should con-
verge to a vector that approximately minimizes f in a finite number of steps
with good accuracy. Therefore, the success of a so-called line search optimization
method depends on effective choices for the directions and steps.

A descent direction of f at xi, for all ai > 0 and sufficiently small, must satisfy
(see eq. (2.14))

∇f(xi)T di < 0, (2.47)

i.e., it must make an acute angle with the negative gradient. So the first part of
an optimization algorithm involves the sequential selection of descent directions.
The second part involves the selection of the step length ai. It should formally be
(exact line search)

ai = arg min
a>0

f(xi + adi), (2.48)

i.e. ai is chosen to minimize f along the ray {xi + adi : a > 0}. An exact line
search is used when the computational cost of the minimization problem with
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one variable is low compared to the cost of computing the search direction itself.
Other line search methods are inexact. The step length is used to approximately
minimize f along the ray, or to just reduce f “enough”. Different inexact line
search methods have been proposed as well as conditions, for example Armijo’s
condition, that effective methods should fulfill so that enough reduction to the
value of f can be achieved and therefore to obtain convergence to the solution.
One inexact line search method that is simple and effective (see for example [23],
p. 464) is called backtracking line search, and it depends on two constants α, β
with 0 < α < 0.5, and 0 < β < 1. It starts with the selection of a descent direction
di and a0

i = 1. Then the step size is reduced by the factor β, i.e. ai = ak
i = βak−1

i ,
until

f(xi + aid
i) ≤ f(xi) + aiα∇f(xi)

T di. (2.49)

2.5.1 Gradient descent and steepest descent

Let xi be a given point of the iteration and let the step size be constant. Without
loss of generality let a = 1, and a direction d is searched such that f(xi+d) < f(xi).
We search for the direction that the rate of change of f is maximized. The rate
of change of f at point xi in the direction of the unit vector d̄ = d/‖d‖ is given
by the directional derivative ∇f(xi)T d̄ at point xi (see also eq. 2.9) for which it
holds

|∇f(xi)T d̄| = ‖∇f(xi)‖‖d̄‖| cosϕ| ≤ ‖∇f(xi)‖. (2.50)

Thus, the maximum rate of change of the function f is given by ‖∇f‖, and will
occur in the direction ∇f for ϕ = 0, with maximum rate of increment ‖∇f(x)‖,
or −∇f for ϕ = π, with maximum rate of decrement −‖∇f(x)‖. Since by keeping
the step constant we search for an optimal direction for the minimization problem,
the unnormalized direction

di
gd = −∇f(xi) (2.51)

points in a downhill direction where the function f gets decreased, and
∇f(xi)T di = −∇f(xi)T∇f(xi) < 0 as long as ∇f(xi) 6= 0. This is called the
direction of the steepest descent (unnormalized, for euclidean norm) or gradient
descent at the point xi. The directions giving zero rate of change ϕ = π/2 are those
orthogonal to ∇f(xi). Thus, in a direction perpendicular to the gradient at point
xi, f(x) remains unchanged. This is because the gradient vector is perpendicular
to the level sets or equipotential surfaces of the function.

Finally, the gradient descent method can be formulated as

xi+1 = xi − ai∇f(xi). (2.52)

By equating the partial derivative of f(xi+1) with respect to a to zero we have

∂f(xi+1)

∂a
=
∂f(xi − a∇f(xi))

∂a
= ∇f(xi+1)T ∂(xi − a∇f(xi))

∂a
(2.53)

= −∇f(xi+1)T∇f(xi) = 0. (2.54)
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So the gradient descent method with exact line search moves in directions orthog-
onal to previous steps. This provides in general a slow rate of convergence to the
optimum (see for example [85], section 3.2.1).

The steepest descent direction can be defined in a more general way. The
directional derivative ∇f(x)T d gives the approximate change of f for a small d
and it must be negative (2.14). Being linear in d it can be made as negative as
possible, assuming d is descent, by taking d large (the magnitude measured by a
suitable norm). The search for a steepest direction must be, therefore, reduced
among descent directions (making acute angle with the negative gradient) that for
example obey ‖d‖. ≤ ǫ, where ‖‖. is a suitable norm. For appropriate ǫ > 0, a
normalized steepest descent direction (not necessarily unique) can be defined from
the following optimization problem ([23], section 9.4)

d̄sd = arg min{∇f(x)T d : ‖d‖. ≤ ǫ}. (2.55)

i.e., as the direction that extends furthest in the ball defined by ‖‖. and ǫ by making
acute angle with the negative gradient. From the first-order approximation of f

f(x+ d) ≈ f̄(x+ d) = f(x) + ∇f(x)T d, (2.56)

we can also see that d̄sd is the step that gives the largest decrease in the linear
approximation of f under the constraints.

If the norm is selected to be the Euclidean norm, then the steepest descent
direction is simply the negative gradient, i.e. dsd = −∇f . For example, lets
select a quadratic norm ‖d‖P = (dTPd)1/2 = ‖P 1/2d‖, where P is symmetric and
positive definite matrix. Thus from the KKT conditions we have that λ > 0 and

∇dL(d, λ) = ∇d(∇f(x)T d) + λ∇d(d
TPd− ǫ2)) = 0 (2.57)

yielding

d̄ = − 1

2λ
P−1∇f(x), (2.58)

where λ is defined by the constraint. Thus the unnormalized direction

d = −P−1∇f(x) (2.59)

points to the steepest direction (gives the largest degree of decrement in f) in the
ellipsoid. Note, that for P = I we have the Euclidean norm. This has an interesting
geometrical interpretation. Define x′ = P 1/2x, so that ‖x‖P = ‖x′‖. Using this
change of coordinates, the original problem of minimizing f can be solved by
solving the equivalent problem of minimizing the function g(x′) = f(P−1/2x′) =
f(x). By applying the gradient descent method to g, the search direction at point
x′, which corresponds to the point x = P−1/2x′ for the original, is given by

d′ = −∇x′g(x′) = −P−1/2∇xf(P−1/2x′) = −P−1/2∇xf(x). (2.60)

This gradient search direction corresponds to the direction d = P−1/2d′ =
−P−1∇f(x), for the original problem. In simpler words, the steepest descent
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method in the quadratic norm defined by P can be thought as the gradient method
applied to the problem after the change of coordinates ([23], p 477). More general,
instead of defining a global change of coordinates for the problem, it can be defined
a local change, meaning that the choice of norm can be different in every step.
This generalizes (2.59) to

d = −P (x)−1∇f(x). (2.61)

The concept can be generalized even more, i.e. when the change of coordi-
nates cannot exist, in terms of differential geometry [1]. Let S = {x ∈ R

n} the
parameter space where f is defined. When S is an Euclidean space with an or-
thonormal coordinate system for the vectors x, then the length of a change ∆x
can be measured by ‖∆x‖2 =

∑n
i=1(∆xi)

2 and for a non-orthonormal coordinate
system by ‖∆x‖2

. =
∑

i,j gij∆xi∆xj . But S can be a curved manifold with no
orthonormal coordinate system. Such a space is a Riemannian space. Then, the
matrix G = {gij} is called the Riemannian metric tensor and in general depends on
∆x. The steepest descent direction in that space is given by the natural gradient
named by Amari [1], i.e.

dnat = −G(x)−1∇f(x), (2.62)

The positive definitiveness of G(x)−1 implies

−∇f(x)T (G(x)−1∇f(x)) < 0. (2.63)

Thus dnat is a descent direction, except of when x is optimal. The Riemannian
structure of the parameter space is not trivially defined for every problem and a
metric is chosen having some proper invariance [1].

2.5.2 Newton’s method

Let now consider a second order approximation for the objective function f

f(x+ d) ≈ f̄(x+ d) = f(x) + ∇f(x)T d+
1

2
dT∇2f(x)d, (2.64)

which is a convex quadratic function of d (assuming the Hessian is positive defi-
nite). The Newton direction can be defined from the following optimization prob-
lem ([23], section 9.5.1)

dNt = arg min{f̄(x+ d)}, (2.65)

i.e., the Newton vector dNt is what should be added to the point x to minimize the
second-order approximation of f at x. It can also be defined as the steepest descent
direction in the ball defined by P (x) = ∇2f(x). By differentiating (2.64) with
respect to d and setting the result equal to zero, we have the following expression
for the Newton direction

dNt = −∇2f(x)−1∇f(x), (2.66)

where positive definitiveness of the Hessian implies that is a descent direction,
unless x is optimal. If we linearize the optimality condition ∇f(xopt) = 0 near x
we obtain

∇f(x+ d) ≈ ∇f(x) + ∇2f(x)d = 0, (2.67)
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which is a linear equation of d, with solution d = dNt. So the Newton vector
is what must be added to x so that the linearized optimality condition holds.
This suggests that when x is near xopt the Newton update should be a very good
approximation of xopt ([23], p. 485).

2.5.3 Gauss-Newton method

Let us consider the case where the objective function has a specific form, i.e.

f(x) =
1

2

m∑

i=1

hi(x)
2, (2.68)

where hi are twice differentiable functions. The gradient and Hessian are given by

∇f(x) =

m∑

i=1

hi(x)∇hi(x) (2.69)

∇2f(x) =
m∑

i=1

(∇hi(x)∇hi(x)
T + hi(x)∇2hi(x)). (2.70)

The resulting minimization procedure based on the Newton’s direction is called
Newton-Raphson method. The Gauss-Newton method uses the direction

dGN = −(

m∑

i=1

∇hi(x)∇hi(x)
T )−1(

m∑

i=1

hi(x)∇hi(x)) (2.71)

= −(JT
h Jh)−1JT

h h(x), (2.72)

where h(x) = (h1(x), h2(x), . . . , hm(x))T . This direction can be considered as an
approximate Newton direction obtained by dropping the second derivative terms
from the Hessian of f . There is another interpretation, or derivation, for the
Gauss-Newton direction. Using the first order approximation hi(x+ d) ≈ hi(x) +
∇hi(x)

T d we obtain the approximation

f(x+ d) ≈ 1

2

m∑

i=1

(hi(x) + ∇hi(x)
T d)2. (2.73)

The Gauss-Newton direction is the minimizer of the approximation (see for exam-
ple [23], p. 520). The algorithm has the benefit of not requiring the computation
of second derivatives. Its performance might be different than that of Newton-
Raphson method because it utilizes an approximation for the Hessian.

2.6 Gradient descent methods for functions with matrix ar-

gument

2.6.1 Matrix gradient and optimality conditions

Let X = {xij} be a m× n matrix, and let f be a scalar function of X, i.e

f = f(X) = f(x11, . . . , xij , . . . , xmn). (2.74)
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A typical such a function is the determinant of X. As with the vector gradient, the
matrix gradient is a matrix of the same size as X whose elements are the partial
derivatives of f with respect to xij . Thus it is

∇Xf(X) =
∂f(X)

∂X
=







∂f(X)
∂x11

. . . ∂f(X)
∂x1n

...
. . .

...
∂f(X)
∂xm1

. . . ∂f(X)
∂xmn






. (2.75)

The second-order gradient has representation in Rm×n×m×n. Note, that any ma-
trix can be represented as a vector by stacking together its elements. However, if
the matrix X is known to have some specific structure (for example orthogonal)
then this can be preserved in the gradient, see for example [20, 55, 33, 39].

In Chapter VI, the gradient of the determinant of an invertible m×m square
matrix X is needed. A well known result for the inverse of a matrix states that

X−1 =
1

detX
adj(X) =

1

detX






χ11 . . . χm1

...
. . .

...
χ1m . . . χmm




 , (2.76)

where adj(X) is the so-called adjoint matrix of X and the scalars χij are called
cofactors. There are obtained by first taking the (m− 1) × (m− 1) sub-matrices
of X that remain when the ith row and jth column are excluded, then comput-
ing the determinant of the sub matrix, and finally multiplying by (−1)i+j . The
determinant of X can be expressed in terms of the cofactors as

detX =

m∑

j=1

xijχij , (2.77)

where the selected row i can be any row. Note, that in the determination of the
cofactors χij the elements of the ith row do not get involved. Thus, taking partial
derivatives with respect to xij gives

∂ detX

∂xij
= χij . (2.78)

Thus from (2.76) and (2.78) it holds

∂ detX

∂X
= adj(X)T = (XT )−1 detX. (2.79)

Now, for the matrix gradient of function f(X) = log |detX|, where X is invertible,
it is ([85], p. 61)

∂ log |detX|
∂X

=
1

|detX|
∂|detX|
∂X

= (XT )−1. (2.80)
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Let f : X → R, where X ⊂ R
m×n is open. Assuming f has continuous first-,

second-, and third-order gradients over the open set X, then for X ∈ X and any
D ∈ R

m×n the function can be expanded on some open interval of τ ∈ R as

f(X + τD) = f(X) + τf1(X;D) +
1

2!
τ2f2(X;D) + o(τ3), (2.81)

where the directional derivatives are in R and

f1(X;D) =
∂f(X + τD)

∂τ

∣
∣
∣
τ=0

(2.82)

= trace[∇f(X)TD] (2.83)

f2(X;D) =
∂2f(X + τD)

∂τ2

∣
∣
∣
τ=0

(2.84)

= trace[∇Xf
1(X;D)TD] (2.85)

= trace[∇X(trace[∇Xf(X)TD])TD] (2.86)

where τ ∈ R. The optimality criteria are the same as in the vector case, for
example for a stationary point we have ∇f(X) = 0, but the second directional
derivative does not have a general representation as in the vector case (2.12), so
we can only write f2(X;D) ≥ 0.

2.6.2 Natural gradient

As for a function with vector argument the steepest descent in the Euclidean
norm for the minimization procedure of the function f(X) is given by the negative
gradient ([41], p. 253)

Dgd = −∇Xf(X). (2.87)

The Newton’s method cannot be easily defined, since it depends on the second
directional derivative. Let us then only consider the first order approximation

f(X +D) ≈ f(X) + trace[∇f(X)TD]. (2.88)

Thus by keeping the length constant an optimal direction (descent) can be searched
that is steepest for some appropriate norm.

Here we restrict the problem to the parameter space of non-singular square
matrices, which is a Lie group, also called general linear group. In order to define
the natural gradient (2.62) Amari introduced a Riemannien metric to the space of
those matrices ([1], see also [39], p. 235, and [85], p. 67) in the following way.

An inner product at X is defined by the squared norm of a deviation D = ∆X

< D,D >X= ‖D‖2
. =

∑

i,j,k,l

gijkl(X)dijdkl, (2.89)

where dij are the elements of D. Additionally, a matrix X, by right multiplication
with X−1, is mapped to the unit matrix, i.e. XX−1 = I. With the same mapping
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X +D is mapped to (X +D)X−1 = I +DX−1. This shows that a deviation D
from X is equivalent to a deviation DX−1 from I by the correspondence given by
multiplication with X−1. According to [1] the Lie group invariance requires that
the metric is kept invariant under this correspondence, that is the inner product
of D at X is equal to the inner product of DY at XY for any Y . Therefore it
must hold

< D,D >X=< DY,DY >XY . (2.90)

This must also hold for Y = X−1 (XY = I), i.e with A = {aij} = DX−1

< DX−1,DX−1 >I=
∑

i,j

a2
ij . (2.91)

Thus Amari defined the Riemannian metric structure at point X as

< D,D >X= trace[(DX−1)TDX−1] = trace[DX−1(DX−1)T ]. (2.92)

As in (2.55), we can now consider the following optimization problem for ǫ > 0

D̄ = arg min{trace[∇f(X)TD] : trace[DX−1(XT )−1DT ] ≤ ǫ2}. (2.93)

The Lagrangian with λ > 0 is given by

L(D,λ) = trace[∇f(X)TD] + λ(trace[D(XTX)−1DT ] − ǫ2), (2.94)

By differentiating with respect to D (note that ∇Dtrace(DBDT ) = D(B + BT ),
for example see [39], p. 541) we have the condition

∇f(X) + 2λD(XTX)−1 = 0, (2.95)

and the natural gradient descent direction (unnormalized) in the standard form is
given by ([39], p. 235)

Dnat = −∇f(X)XTX. (2.96)

For extensions see ([39], section 6.2).
A related result was derived in [33] (see also [85], p. 68). From the first order

approximation again a direction D of the form D = AX, i.e. is proportional to
X, was considered. Then (2.88) can be written as

f(X+AX) ≈ f(X)+trace[∇f(X)TAX] = f(X)+trace[(∇f(X)XT )TA]. (2.97)

The multiplier of A in the trace is called relative gradient by Cardoso. Therefore
the largest decrement in the value of f(X+D)−f(X) is happening at the direction
A = −∇f(X)XT or at the direction D = AX = −∇f(X)XTX, i.e. the natural
gradient.



Chapter III

Probability Theory

In this chapter, different concepts of probability theory are discussed. Probabilistic
models, making explicit reference to the nature and effects of chance phenomena,
are the foundation upon which different statistical methods are based; for example
for estimation and prediction. Of special interest are conditional densities and
higher order statistical properties. Some issues of information theory are also
treated. Special attention is given to the notion of independence. Significant
are also different properties of Gaussian densities. Finally, some properties of
stochastic processes are briefly discussed. Most of the concepts presented here
can be found from standard probability theory books, for example [161]. For a
thorough treatment see for example [59, 60, 11].

3.1 Basic concepts and definitions

An experiment can be intuitively described as a procedure that can be repeated
under the same well defined conditions an unlimited number of times. After the
completion of an experiment some outcome is observed. Experiments can be dis-
tinguished to deterministic and random. In deterministic experiments the selection
of the conditions defines completely the outcome. On the other hand, for a random
experiment the knowledge of the conditions just specify a set of possible outcomes.
The set of all the possible outcomes of a random experiment is called sample space.
Outcomes of a random experiment can be described in different ways, so that for
a given experiment there can exist more than one sample spaces.

A random experiment is well defined if we know the set S of all possible
outcomes ς, and if we know for “enough” subsets S of S the probability P (S) that
the outcome of the experiment belongs to S. It is not, for example, enough to
know only the probabilities of the outcomes. The sample space S provides a model
of an ideal experiment in the sense that, by definition, every thinkable outcome
of the experiment is completely described by one and only one sample point ([59],
p. 14). Although not precise, this definition of experiment is considered broad
enough to encompass the usual scientific experiments and other actions that are
regarded simply as observations.

Mathematically, a random experiment is completely described by a sample

36
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space S, a probability measure P , i.e. a rule for assigning probabilities, and a class
S of admissible subsets of S forming the domain set of the probability measure.
The triad (S,S, P ) is called a probabilistic model or probability space. The class
S is a completely additive family of subsets of S, i.e. a σ-algebra of events, with
the properties: i) S ⊂ S, ii) if Sk ⊂ S for k = 1, 2, . . ., then ∪n

k=1Sk ⊂ S for
n = 1, 2, . . ., and iii) if S ⊂ S, then S̄ ⊂ S, where S̄ is the complement of S
relative to S. An event S, i.e. a subset of the sample space belonging to S, is said
to have occurred if the experiment results in an outcome ς that is an element of
S, i.e ς ∈ S ∈ S. Equivalently the union of events ∪i∈ISi occurs if at least one of
the events Si, i ∈ I occurs, and the event ∩i∈ISi occurs if all events occur.

The probability of an event S, denoted P (S) is a number assigned to this
event. In order to have a mathematically well defined theory of probability, that
does not depend on the rule used for assigning probabilities to events, Kolmogorov
established a definition of probability measure based on axioms (e.g. [161], p. 5).
According to this definition, a probability measure or simply probability is a set
function P : S → R with the properties: i) P (S) = 1, i.e. the event S is certain,
ii) is no negative, i.e. P (S) ≥ 0 for every S ⊂ S, iii) is σ-additive, i.e. if Si∩Sj = ∅
for i 6= j, then P (∪n

k=1Sk) =
∑n

k=1 P (Sk), with n = 1, 2, . . . and ∅ is the empty or
null set with P (∅) = 0.

In many cases, the probability of occurrence of an event Si may depend on
the occurrence of a related event Sj . The probability of the event Si given that
the Sj is known to have occurred is called conditional probability P (Si|Sj). The
probability of an event ∩i∈ISi is called joint probability of the events Si, i ∈ I.
Then in terms of joint probability, if P (Sj) 6= 0, the conditional probability of Si

given Sj is defined by

P (Si|Sj) =
P (Si ∩ Sj)

P (Sj)
. (3.1)

If we also require that P (Si) 6= 0 then

P (Sj |Si) =
P (Sj ∩ Si)

P (Si)
, (3.2)

and we have (Bayes’ rule)

P (Si|Sj)P (Sj) = P (Sj |Si)P (Si). (3.3)

It can be shown that the set function P (·|Sj) forms a probability measure (e.g.
[161], p. 28, and [59], chapter V). Let (S,S, P ) be a probability space and Sj a
simple member of S. Then the information that an event occurred is equivalent to
consider that the original probability space is replaced by (Sj ,Sj , P (·|Sj)). Clearly,
it holds P (Sj |Sj) = 1. In that sense, the concept of conditional probability allows
the identification of the probability of events based on the occurrence of other
evens. If we now consider that the events Si, i ∈ I ⊆ (1, 2, . . .) form a partition
of the sample space S, i.e. Si ∩ Sj , i 6= j and ∪i∈ISi = S, with P (Si) 6= 0, i ∈ I,
then for every event S it holds (Theorem of total probability)

P (S) = P (S ∪ S) =
∑

i∈I

P (S ∪ Si) =
∑

i∈I

P (S|Si)P (Si). (3.4)
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This form for the probability P (S) is often called marginal probability. If we also
require that P (S) 6= 0 then we have for every i (Bayes Theorem)

P (Si|S) =
P (S|Si)P (Si)

∑

i∈I P (S|Si)P (Si)
. (3.5)

An important concept of probability theory is that of independence. The events
Si, i = 1, . . . , n are called independent if for every events Si1 , . . . , Sik

with 1 < k ≤
n it holds

P (Si1 ∩ . . . ∩ Sik
) = P (Si1) · · ·P (Sik

). (3.6)

Therefore, there are 2n−n−1 conditions which must be satisfied ([59], p. 128). The
events Si, i = 1, . . . , n are called pairwise independent if P (Si ∩Sj) = P (Si)P (Sj)
for every i 6= j. Clearly, if Si, Sj are independent, from (3.1) we have that

P (Si|Sj) = P (Si). (3.7)

Thus, two events are independent if the occurrence of one does not permit any
inference about the occurrence of the other. Note, that although presented oppo-
sitely, the basic definition of independence is equation (3.7) ([59], p.125), and (3.6)
is a rather technical equivalent definition or direct consequence. Definition (3.6) is
usually preferred since it allows P (Sj) = 0, in which case P (Si|Sj) is not defined.
It must be noted that the concept of independence, and the related concept of
conditional probability, are considered fundamental. In the sense that they justify
the mathematical development of probability, not merely as a topic in measure
theory, but as a separate discipline ([161], p. 35, and [59], Chapter V).

It is often useful to describe the outcome of a random experiment by a real
number. A function defined on a sample space is called a random variable ([59],
p. 212). Thus a random variable x is a function whose domain is the set of
outcomes ς ∈ S and whose range is R. This function must guarantee that for
every S ⊂ S there is a corresponding set B ⊂ R called the image under x of S.
Another requirement is that the inverse mapping exists and for every well defined
set (Borel set) B ⊂ R there exists the inverse image x−1(B) that belongs to S.
Thus, by considering a probability space (S,S, P ) and a random variable x, it
can be defined for every Borel set B ∈ B the set function Px(B) = P (x−1(B)) =
P (ς ∈ S : x(ς) ∈ B), which is a valid probability measure. This probability
measure is called probability distribution function or simply distribution of the
random variable x. Formally, a random variable x is every real function x(ς) that
for every x̄ ∈ R the set {ς : x(ς) ≤ x̄} is an event belonging to S. The concept of
random variable is analogous extended to define n-dimensional random variables,
or simpler random vectors, as vectors whose components are random variables.

3.2 Distribution and density of a random vector

Let x = (x1, x2, . . . , xn)T be a random vector with values in R
n. The cumulative

distribution function (cdf) of x is defined by Px(x̄) = P (x ≤ x̄), where x̄ is
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some constant value of the random vector x. The cdf is a non negative, non-
decreasing (often monotonically increasing) continuous function whose values lie
in the interval 0 ≤ Px(x) ≤ 1. The multivariate probability density function (pdf)
px(x) = px1,x2,...,xn

(x1, x2, . . . , xn) is defined as the derivative of the distribution
function with respect to all the components of the random vector

px(x̄) =
∂

x1

∂

x2
. . .

∂

xn
Px(x)|x=x̄, (3.8)

hence Px(x̄) =
∫ x̄

−∞ px(x)dx. The probability density functions of each random
variable xi, i = 1, . . . , n, named the marginal density functions of the random
vector x, are obtained by integration

pxi
(xi) =

∫ ∞

−∞
· · ·
∫ ∞

−∞
px(x1, x2, . . . , xn)dx1 · · · dxi−1dxi+1 · · · dxn. (3.9)

In the same way the joint probability function px,y(x, y) of the random vectors
x and y is defined as the multivariate probability density function of the stacked
vector z = (xT , yT )T . The conditional density of x given y is defined as

px|y(x|y) =
px,y(x, y)

py(y)
, (3.10)

whenever py(y) > 0 and 0 otherwise. Clearly, we can also write

py|x(y|x) =
px,y(x, y)

px(x)
, (3.11)

and we have the Bayes’ rule for probability densities

px|y(x|y)py(y) = py|x(y|x)px(x). (3.12)

Useful is also the following expression for the random vectors x, y, z

p(x, y|z) = p(x|y, z)p(y|z). (3.13)

Assuming that the two n-dimensional random vectors x and y are related by
the vector mapping y = g(x) for which the inverse mapping exists and is unique,
it can be shown that the probability density function py(y) of the transformation
y is obtained from the density px(x) of x as follows ([161], p. 244)

py(y) =
1

|det Jg(g−1(y))|px(g−1(y)), (3.14)

where Jg is the Jacobian matrix (2.17) of g(x) = (g1(x), g2(x), . . . , gn(x))T . In the
special case where the transformation is linear and non-singular, so that y = Ax,
it holds

py(y) =
1

|detA|px(A−1y). (3.15)
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3.3 Expectation operator and covariance matrices

Let g(x) denote any quantity (scalar, vector or matrix) derived from the random
vector x, then the expectation of g(x) is defined by ([85], p. 20)

E{g(x)} =

∫ ∞

−∞
g(x)px(x)dx, (3.16)

if the integral exists. For a n-dimensional random vector x its mean or expected
value ηx ∈ R

n is by definition the integral

ηx = E{x} =

∫ ∞

−∞
xpx(x)dx, (3.17)

where the integral is computed over all the components of x, and each component
of the vector ηx is given by E{xi} =

∫∞
−∞ xipxi

(xi)dxi. Let y = g(x) be a vector-
valued function of x, then the expected value of the random vector y is

E{y} =

∫ ∞

−∞
ypy(y)dy =

∫ ∞

−∞
g(x)px(x)dx = E{g(x)}. (3.18)

Thus the expectations are equal even though the integrations are carried out over
different probability density functions. Based on this theorem it appears that for
the determination of the mean of y it is not necessary to find its density py. For
the random vectors xi, i = 1, . . . ,m, for the nonrandom matrices Ai, i = 1, . . . ,m
and for the functions gi we have for the expectation of the weighted sum

E{
m∑

i=1

Aigi(xi)} =

m∑

i=1

AiE{gi(xi)}. (3.19)

The conditional mean of the random vector x given y is a function of y and is
defined as

ηx|y = E{x|y} =

∫ ∞

−∞
xp(x|y)dx. (3.20)

The expectation operation can be extended for functions g(x, y) of two or more
different random vectors as follows

E{g(x, y)} =

∫ ∞

−∞

∫ ∞

−∞
g(x, y)px,y(x, y)dxdy. (3.21)

With the subscript notation

Ex{g(x, y)} =

∫ ∞

−∞
g(x, y)px(x)dx (3.22)

is defined the expectation that is taken only over the random vector x. We also
have from (3.21) and (3.10) that

E{g(x, y)} =

∫ ∞

−∞

∫ ∞

−∞
g(x, y)px|y(x|y)p(y)dxdy (3.23)

= Ey{E{g(x, y)|y}}. (3.24)
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The non-normalized correlation matrix of a random vector x is defined as

Rx = E{xxT } =








E{x1x1} E{x1x2} · · · E{x1xn}
E{x2x1} E{x2x2} · · · E{x2xn}

...
...

. . .
...

E{xnx1} E{xnx2} · · · E{xnxn}







, (3.25)

that is the component-wise expectation of the outer product of x with itself. The
correlation matrix is symmetric (Rx = RT

x ), positive semidefinite, i.e. (aTRxa ≥ 0
for all the n-dimensional vectors a), and all its eigenvalues are real and non-
negative. Covariance is the correlation of the random vector x− ηx

Cx = E{(x− ηx)(x− ηx)T } = E{xxT } − ηxη
T
x , (3.26)

and the conditional covariance of x given y is

Cx|y = E{(x− ηx|y)(x− ηx|y)T |y} = E{xxT |y} − ηx|yη
T
x|y. (3.27)

The cross-correlation of random vectors x and y is defined as

Rxy = E{xyT }, (3.28)

and the cross-covariance of x and y is defined as

Cxy = E{(x− ηx)(y − ηy)T } = E{xyT } − ηxη
T
y . (3.29)

By definition, cross-covariance and cross-correlation measure the relation between
the random vectors x and y.

For the cross-covariance using equation (3.24) we also have

Cxy = Ey{E{xyT |y}} − ηxη
T
y = Ey{E{x|y}yT } − ηxη

T
y , (3.30)

since when y is given it is not any more random. Since ηx = E{x} = Ey{ηx|y} we
also have the following expressions

Cxy = Ey{ηx|yy
T } − ηxη

T
y = Ey{ηx|yy

T } − Ey{ηx|y}ηT
y . (3.31)

Clearly, it also holds Rxy = Ey{ηx|yy
T }. The conditional mean ηx|y is in general

a nonlinear function of y. If we assume that it is a linear function, i.e E{x|y} =
Ay + a, where A, a are constant matrix and vector respectively, then we have

Cxy = Ey{(Ay + a)yT } − Ey{(Ay + a)}ηT
y = ACy. (3.32)

It can be easily seen that then ηx = Aηy + a, A = CxyC
−1
y , and

ηx|y = CxyC
−1
y y + a = ηx + CxyC

−1
y (y − ηy). (3.33)

For the conditional covariance we first observe that

E{(x− ηx)(x− ηx)T |y} = E{xxT |y} − ηxη
T
x|y − ηx|yη

T
x + ηxη

T
x . (3.34)
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Then from (3.27) we have

Cx|y = E{(x− ηx)(x− ηx)T |y} − (ηx|y − ηx)(ηx|y − ηx)T , (3.35)

and by inserting (3.33) we have after some simple calculations that the conditional
covariance is

Cx|y = E{(x− ηx)(x− ηx)T |y} −A(y − ηy)(y − ηy)TAT , (3.36)

that is a nonlinear function of y. Finally, if we consider expectation over y, by
using (3.24), A = CxyC

−1
y , and that CT

xy = Cyx we have

Ey{Cx|y} = E{(x− ηx|y)(x− ηx|y)T } = Cx − CxyC
−1
y Cyx. (3.37)

It must be noted that if the conditional mean is not linear then it cannot anymore
be easily identified and it requires the computation of the posterior density px|y.

3.4 Characteristic functions and higher-order statistics

For a random variable x with probability density function px(x) the k-th moment
mk, k = 1, 2, . . ., is defined by the expectation ([161], p. 146)

mk = E{xk} =

∫ ∞

−∞
xkpx(x)dx, (3.38)

and the k-th central moment µk by the expectation

µk = E{(x−m1)
k} =

∫ ∞

−∞
(x− ηx)kpx(x)dx. (3.39)

The first moment m1 is the mean ηx of x, and the second central moment µ2 is
the variance σ2

x of x. Mean and variance give only a limited characterization of
px. Knowledge of other moments provides additional information, that can, for
example, be used to distinguish between two densities with the same η and σ2.
The third central moment

µ3 = E{(x− ηx)3} = E{x3} − 3E{x2}ηx + 2η3
x (3.40)

is called skewness and it is a measure of the asymmetry of the density function,
being zero for probability densities that are symmetric around their mean.

The moments can be determined through the characteristic function Φ(ω),
which is defined as the continuous Fourier transform of the density px(x) of x

Φ(ω) = E{eiωx} =

∫ ∞

−∞
eiωxpx(x)dx, (3.41)

where i2 = −1 and |Φ(ω)| ≤ Φ(0) = 1. Every distribution function is uniquely
determined by its characteristic function and the inversion of the Fourier transform
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gives px(x) = 1
2π

∫∞
−∞ Φ(ω)e−iωxdω ([161], p. 153). If iω is changed with z,

the function Φ(z) is called the moment generating function of x. Clearly, by
differentiating k times we obtain

dkΦ(z)

dzk
= E{xkezx}. (3.42)

The derivatives at zero equal the moments of x ([161], p. 154)

E{xk} = mk =
dkΦ(z)

dzk
|z=0. (3.43)

By expanding the moment generating function into Taylor series we have

Φ(z) =

∞∑

k=0

mk
zk

k!
. (3.44)

This is valid only if all the moments are finite and the series converges absolutely
near zero. So since the characteristic function defines px, the density of a random
variable is uniquely determined if all its moments are known. The second charac-
teristic function ϕ(ω) of x or cumulant generating function is given by the natural
logarithm of the first characteristic function. Then for the cumulant generating
function we have ([161], p. 154)

ϕ(z) = ln(Φ(z)) =

∞∑

k=0

κk
zk

k!
, (3.45)

where κk is by definition the k-th cumulant of x and is obtained as the derivative

κk =
dkϕ(z)

dzk
|z=0. (3.46)

The first four cumulants are the most commonly used, and it holds ([85], p. 41)

κ1 = E{x} = m1 = ηx, (3.47)

κ2 = E{x2} − η2
x = µ2 = σ2

x, (3.48)

κ3 = E{x3} − 3E{x2}ηx + 2η3
x = µ3, (3.49)

κ4 = E{x4} − 3(E{x2})2 − 4E{x3}ηx + 12E{x2}η2
x − 6η4

x. (3.50)

The forth cumulant κ4 is called kurtosis. A distribution having zero kurtosis is
called mesokurtic. A typical mesokurtic distribution is the Gaussian distribution.
Distributions having a negative kurtosis are said to be platykurtic (or subgaussian),
and if the kurtosis is positive they are said to be leptokurtic (or supergaussian).

The definition of moments can be extended in the multivariate case to define
joint moments for random vectors. The joint characteristic function of a random
vector x is again the Fourier transform of the joint density ([85], p. 42)

Φ(ω) = E{eiωT x} =

∫ ∞

−∞
eiωT xpx(x)dx, (3.51)
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where i2 = −1 and ω is now a column vector with the same dimension as x.
Moments and cumulants (cross-cumulants) of x are the coefficients of the Taylor
series expansion of the first and second joint characteristic function respectively,
defined by the appropriate partial derivatives. It can be shown that for a zero mean
random vector x = (x1, x2, . . . , xn)T the second, third and fourth order cumulants
are for every i, j, k, l = 1, . . . , n ([85], p. 42)

cum(xi, xj) = E{xixj}, (3.52)

cum(xi, xj , xk) = E{xixjxk}, (3.53)

cum(xi, xj , xk, xl) = E{xixjxkxl} − E{xixj}E{xkxl}
−E{xixk}E{xjxl} − E{xixl}E{xjxk}. (3.54)

Therefore, the covariance matrix of a random vector contains all the cumulants of
order two, and thus all second order properties of the joint density.

3.5 Uncorrelatedness and independence

Mathematically, independence is defined in terms of probabilities (3.6) or condi-
tional probabilities (3.7). Therefore, the random variables x, y are called inde-
pendent if the events {x ≤ x̄} and {y ≤ ȳ} are independent. Similar definitions
can be applied for the joint distributions, densities and conditional densities. The
random vector x has mutually independent components or the random variables
xi are statistically independent if and only if equivalently ([161], p. 244)

Px(x) =
∏

i

Pxi
(xi), (3.55)

px(x) =
∏

i

pxi
(xi). (3.56)

For the expectation of the product of independent variables x1, x2, . . . , xn it holds

E{x1x2 · · ·xn} =

∫ ∞

−∞

∫ ∞

−∞
· · ·
∫ ∞

−∞
x1x2 · · ·xnpx(x1, x2, . . . , xn)dx1dx2 · · · dxn

=

∫ ∞

−∞

∫ ∞

−∞
· · ·
∫ ∞

−∞
x1x2 · · ·xnpx1

(x1)px2
(x2) · · · pxn

(xn)dx1dx2 . . . dxn.

Thus we have the following property for independent variables

E{x1x2 . . . xn} = E{x1}E{x2} . . . E{xn}. (3.57)

If the random variables x1, x2, . . . , xn are independent, then it can be shown that
the random variables g1(x1), g2(x2), · · · , gn(xn) are also independent ([161], p.
245) and the previous property of independence is generalized for any absolutely
integrable functions g1, g2, . . . , gn ([85], p. 27). Note, that the random variables
x1, x2, . . . , xn are independent if and only if

E{g1(x1)g2(x2) . . . gn(xn)} = E{g1(x1)}E{g2(x2)} · · ·E{gn(xn)}, (3.58)
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for all functions g1, g2, . . . , gn that the integrals exist. For specific functions equa-
tion (3.58) is just a consequence of independence. Based on this alternative defi-
nition of independence (3.58) we have that for the function eiωjxj it holds

E{ei(ω1x1+...+ωnxn)} = E{eiω1x1} · · ·E{eiωnxn}. (3.59)

Hence, for the characteristic functions of independent random variables it holds

Φx(ω) =
∏

i

Φxi
(ωi) (3.60)

Conversely, from the inversion of the Fourier transform, if (3.60) holds then the
independence definition based on densities is obtained, and thus equation (3.60)
provides an alternative definition for independence through the characteristic func-
tions. From the definition of independence it is clear that every subset of a set
of independent variables is a set of independent variables as well. The opposite
is not true. For example, if the random variables xi, i = 1, . . . , n are pairwise
independent, i.e. pxixj

(xi, xj) = pxi
(xi)pxj

(xj), for every i 6= j, then they are not
necessarily mutually independent. The components of the random vector x are
mutually uncorrelated if

Cx = E{(x− ηx)(x− ηx)T } = D, (3.61)

where D is a diagonal matrix whose non-zero entries are the variances of the
components of x. Clearly, independent components of a random vector are also
uncorrelated, the opposite is not true since independence is a much stronger con-
dition. For a zero mean mutually uncorrelated random vector all the cumulants
of order two (3.52) vanish for every i 6= j. For a zero mean mutually independent
random vector all the cumulants (except the expectations of the powers of the
same component) vanish.

The independence between random vectors is defined in the same way. For
example, the random vectors x, y are independent if

p(x|y) = px(x). (3.62)

Let x, y, z, . . . independent random vectors then it holds

px,y,z,...(x, y, z, . . .) = px(x)py(y)pz(z) · · · (3.63)

E{gx(x)gy(y)gz(z) · · · } = E{gx(x)}E{gy(y)}E{gz(z)} · · · . (3.64)

Two random vectors x and y are uncorrelated if their cross-covariance matrix Cxy

is a zero matrix
Cxy = E{(x− ηx)(y − ηy)T } = 0, (3.65)

or equivalently if

Rxy = E{xyT } = E{x}E{yT } = ηxη
T
y . (3.66)
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3.6 Entropy and mutual information

An alternative approach for characterizing random variables is given by informa-
tion theory. Starting point of information theory is the concept of entropy. Al-
though, the functional of entropy was derived from a number of postulates based
on heuristic understanding of uncertainty, its properties are developed axiomati-
cally within the framework of probability theory [161, 133]. Intuitively, entropy
of a random variable can be interpreted as the degree of information that the ob-
servation of the variable gives. Since, entropy is a measure of uncertainty about
the random variable, the more random it is the larger its entropy. For discrete
random variables the entropy is positive and it is exactly used as a measure of
uncertainty about the random variable. However, this is not so for the continuous
case. Then the entropy can take any value from −∞ to ∞, and it is used to
measure changes in uncertainty. For a continuous random vector x the entropy or
differential entropy H(x) is defined by the expectation ([86], p. 108)

H(x) = −
∫

px(x) log px(x)dx = −E{log px(x)}. (3.67)

For the joint entropy of the random vectors x, y we have

H(x, y) = −E{log(p(x, y))} = −E{log(p(x|y)py(y))} = H(x|y) +H(y), (3.68)

where H(x|y) is the conditional entropy over all values of y ([161], p. 656), i.e.

H(x|y) = −Ey{E{log p(x|y)|y}}. (3.69)

Considering the invertible transformation y = g(x), the entropy of y is (3.14)

H(y) = −E{log py(y)} = −E{log
1

|det Jg(g−1(y))|px(g−1(y))}. (3.70)

Thus, we obtain the following relation between the entropies

H(y) = H(x) + E{log |det Jg(g
−1(y))|}. (3.71)

So the transformation increases the entropy. If the transformation does not have
unique inverse then H(y) ≤ H(x) +E{log |det Jg(x)|} ([161], p. 660). In the case
that the transform is linear y = Ax and invertible we have (3.15)

H(y) = H(x) + log |detA|. (3.72)

If the n-dimensional random vector has independent components then from
(3.67) and (3.56) it holds

H(x) =
n∑

i=1

H(xi). (3.73)

Based on entropy, mutual information of a random vector x is defined as follows

I(x) = I(x1, x2, . . . , xn) =
n∑

i=1

H(xi) −H(x) = Ex{log
px(x)

∏n
i=1 pxi

(xi)
}, (3.74)
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where px is the joint density and pxi
the marginal densities ([86], p. 110). Consider

two random vectors x and y with densities px(x) and py(y) respectively . The
Kullback-Leibler divergence [128] between two probability densities is defined by

δ(px, py) =

∫

px(x) log
px(x)

py(x)
dx = E{log

px(x)

py(x)
}. (3.75)

Kullback-Leibler divergence (or relative entropy) is not a proper distance measure
because it is not symmetric, but it satisfies

δ(px, py) ≥ 0, (3.76)

with equality if and only if px = py (see for example [85], p.110). This property
is due to the convexity of the logarithm and Jensen’s inequality. By the form of
Kullback-Leibler divergence we can obtain the mutual information of a random
vector x

I(x) = δ(px,
n∏

i=1

pxi
) =

∫

px(x) log
px(x)

∏n
i=1 pxi

(xi)
dx. (3.77)

From the properties of Kullback-Leibler divergence we have that mutual infor-
mation vanishes if and only if the variables xi are independent and it is strictly
positive otherwise. So mutual information is a measure of dependence between
the random variables xi ([85], p. 111, and [39], p. 234). Based on that we also
have that in general (3.74, 3.76)

H(x) ≤
n∑

i=1

H(xi), (3.78)

and ([161], p. 658)

H(x|y) ≤ H(x), (3.79)

with equality for the second equation when the vectors x, y are independent.

3.7 Gaussian probability density functions

3.7.1 Normal random variables

The function defined by p(x) = 1√
2π
e−x2/2 is called the (standard) normal or

Gaussian density function, and its integral
∫ x̄

−∞ p(x)dx is the standard normal
distribution function ([59], p. 174). Then x is said to have standard normalN(0, 1)
distribution with mean η = 0 and variance σ2 = 1. The N(η, σ2) distribution is
by definition that of η + σy where y ∼ N(0, 1), and it holds ([161], p. 162)

p(x) =
1

σ
√

2π
e−(x−η)2/2σ2

, (3.80)

Φ(ω0) = eiω0ηe−ω2
0σ2/2. (3.81)
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If x is zero mean then ([161], p. 148)

E{xn} =

{
0, n = 2k + 1

1 · 3 · · · (n− 1)σn, n = 2k
(3.82)

The odd moments of x are zero because p(−x) = p(x). For the kurtosis it holds

κ4 = E{x4} − 3(E{x2})2 = 0. (3.83)

Gaussian random variables have some properties that are not shared by every
other distribution. An important property is that: If x1 and x2 are independent
random variables and if two linear combinations a1x1 + a2x2 and b1x1 + b2x2 are
also independent, where a1, a2, b1, and b2 represent nonzero coefficients, then all
random variables are normally distributed. Thus if two nontrivial linear combi-
nations of two independent random variables are also independent, then all of
them represent normal random variables. This theorem is due to Darmois and
Skitovitch (see for example [161], p. 217, [45], [60]).

Another important property of the normal distribution is given by the central
limit theorem. If x1, x2, . . . are independent identically distributed random vari-
ables with finite mean E{xi} = η and finite variance E{(xi − η)2} = σ2 then the
limiting distribution of

y =
1√
n

n∑

i=1

xi − η

σ
(3.84)

is that of N(0, 1) (e.g. [59], p. 244). This type of convergence is called conver-
gence in distribution implying that for large n the distribution of y is close to
standard normal. Several different forms of the theorem exist, where requirements
on independence and identical distributions have been weakened [59, 60, 161].

3.7.2 Normal random vectors

An n-dimensional random vector x = (x1, x2, . . . , xn)T is said to be Gaussian or
normal if its probability density function has the form

px(x) =
1

(2π)n/2(detCx)1/2
exp(−1

2
(x− ηx)TC−1

x (x− ηx)). (3.85)

So the joint density is an exponential whose exponent is a negative quadratic.
Clearly, the mean ηx and the covariance matrix Cx (assumed positive definite)
are sufficient for defining the multivariate Gaussian density completely and this is
denoted by x ∼ N(ηx, Cx). Also, the contours of the multivariate Gaussian density,
i.e. p(x) = c where c is constant, are ellipses centered at ηx, i.e. (x−ηx)TC−1

x (x−
ηx) = c′. The principal axes of the ellipse are parallel to the eigenvectors of Cx

and the eigenvalues λi are the respective variances.
Let x, y be jointly Gaussian, then for the joint density, i.e the density of the

vector (xT , yT )T , if we omit the means it holds

p(x, y) =

exp

{

− 1
2 (xT , yT )

(
Cx Cxy

Cyx Cy

)−1(
x
y

)}

(2π)(n+m)/2(detC)1/2
, (3.86)
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where n,m the dimensions of x, y, and detC the determinant of joint covariance
block matrix which is

det

(
Cx Cxy

Cyx Cy

)

= det

((
I Cxy

0 Cy

)(
Cx − CxyC

−1
y Cyx 0

C−1
y Cyx I

))

= detCy det(Cx − CxyC
−1
y Cyx). (3.87)

The matrix inversion lemma [69] gives the inverse of the joint covariance of x, y

C−1 =

(
Cx Cxy

Cyx Cy

)−1

=

(
C11 C12

C21 C22

)

, (3.88)

where

C11 = (Cx − CxyC
−1
y Cyx)−1 = C−1

x + C−1
x CxyC22CyxC

−1
x (3.89)

C22 = (Cy − CyxC
−1
x Cxy)−1 = C−1

y + C−1
y CyxC11CxyC

−1
y (3.90)

C12 = CT
21 = −C11CxyC

−1
y = −C−1

x CxyC22. (3.91)

Based on this, the joint density can be written in the form

p(x, y) = q(y)h(x, y), (3.92)

where

q(y) =
exp(− 1

2y
TC−1

y y)

(2π)m/2(detCy)1/2
, (3.93)

h(x, y) =
exp(− 1

2 (x− CxyC
−1
y y)TC11(x− CxyC

−1
y y))

(2π)n/2(detC−1
11 )1/2

. (3.94)

Clearly, the function h(x, y) is for fixed y a Gaussian density. Now, the marginal
density of y is given by

py(y) =

∫

p(x, y)dx = q(y)

∫

h(x, y)dx = q(y). (3.95)

Thus, marginal densities of jointly Gaussian distributed vectors are also Gaussian.
The Gaussian conditional density of x given y is

p(x|y) =
p(x, y)

p(y)
= h(x, y), (3.96)

and is of the form

p(x|y) ∝ exp(−1

2
(x− ηx|y)TC−1

x|y(x− ηx|y)), (3.97)

where

ηx|y = CxyC
−1
y y (3.98)

Cx|y = Cx − CxyC
−1
x Cyx. (3.99)
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So the conditional mean is always linear. This is exactly, if we include the means,
the linear conditional mean derived in (3.33). This is an important property
related to mean square estimation methods. Consider that the random vector x
is Gaussian having uncorrelated components, thus Cx = D, where D is diagonal
matrix with the variances of the components σ2

xi
on the diagonal. The matrix C−1

x

is also diagonal with elements 1/σ2
xi

and the density is

px(x) =
1

(2π)n/2
(

n∏

i=1

1

σxi

) exp(−1

2

n∑

i=1

(xi − ηxi
)2

σ2
xi

) =
n∏

i=1

pxi
(xi). (3.100)

So uncorrelated jointly distributed Gaussian variables are also independent.
For the multivariate Gaussian density, the marginal densities are also Gaussian

xi ∼ N(ηxi
, σ2

xi
). So if x1, x2, . . . , xn are jointly normal distributed, then all xi

have normal distributions. There is an alternative definition that express the
normality of n random variables in terms of the normality of a single random
variable. This states that ([161], p. 257) the random variables xi are jointly
Gaussian if and only if the sum

n∑

i=1

ωixi = ωTx = y, (3.101)

is a Gaussian random variable for every constant column vector ω with the same
dimension as x. Based on that definition if x is a Gaussian vector then the ran-
dom variable y is Gaussian N(ωT ηx, ω

TCxω). From (3.81) and without loss of
generality by setting ω0 = 1 we have for the joint characteristic function of x

Φ(ω) = E{eiωT x} = eiωT ηxe−ωT Cxω/2. (3.102)

The inversion theorem gives (3.85). Based on the definition (3.102), the random
vector y defined by the linear invertible transform y = Ax, is also Gaussian with
mean ηy = Aηx and covariance matrix Cy = ACxA

T since ([169], p. 91)

Φy(ω) = E{eiωT y} = E{eiωT A−1x} = E{eω̄T x} = Φx(ω̄). (3.103)

Note, that with the definition (3.102), the covariance matrix is not required to be
positive definite ([108] p. 73). If A is an orthogonal matrix and x = AT y then y
is Gaussian with probability density independent of A, since

py(y) =
1

(2π)n/2(detCy)1/2
exp(−1

2
(y − ηy)TC−1

y (y − ηy))

=
1

(2π)n/2(detACxAT )1/2
exp(−1

2
(x− ηx)TAT (ACxA

T )−1A(x− ηx))

=
1

(2π)n/2(detCx)1/2
exp(−1

2
(x− ηx)TC−1

x (x− ηx)). (3.104)

Thus any orthogonal linear transform of independent or uncorrelated Gaussian
variables cannot be estimated because it does not influence the joint pdf (it does
not appear at the pdf).
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The entropy of a n-dimensional random vector x having a Gaussian distribution
can be evaluated as ([85], p. 113)

H(x) = −E{log
1

(2π)n/2|(detCx)1/2| exp(−1

2
(x− ηx)TC−1

x (x− ηx))}

= E{log((2π)n/2|(detCx)1/2|)} + E{1

2
(x− ηx)TC−1

x (x− ηx)}

=
n

2
log 2π +

1

2
log |detCx| + E{1

2
(x− ηx)TC−1

x (x− ηx)}

=
1

2
log |detCx| +

n

2
(1 + log 2π). (3.105)

It can be shown ([85], p. 112, [161], p. 669) that the Gaussian distribution
has maximum entropy among all distributions with a given mean and covariance
matrix. Negentropy J(x) of a random vector x is defined as ([85], p. 112)

J(x) = H(x′) −H(x), (3.106)

where x′ is a Gaussian vector with the same mean and covariance matrix as x.
Negentropy is always non-negative and it is zero if and only if x has a Gaussian
distribution [45, 85]. It is also invariant by any linear invertible change of coor-
dinates ([85], p. 113). Using negentropy there is another expression for mutual
information given by [45]

I(x) =

n∑

i=1

(H(x′i) − J(xi)) −H(x′) + J(x) (3.107)

= J(x) −
n∑

i=1

J(xi) +
1

2
log

∏n
i=1 σ

2
xi

detCx
. (3.108)

3.8 Stochastic processes

A random or stochastic process is a family {xt, t ∈ T} of random variables, all
defined on the same probability space (S,S, P ). The parameter t is usually referred
as time and the set T is the parameter set of the process, and can be continuous
or discrete defining respectively continuous or discrete stochastic processes. Here,
stochastic processes with discrete parameter set, where the random variables xt

take continuous values, are only considered. A random process is a function of
both time and outcomes ς, i.e xt = x(t, ς). Thus, for fixed time and outcome
x(to, ςo) is the state that the process is at that moment, for fixed time x(to, ς) is
just a random variable and for fixed outcome xt = x(t, ςo) is a function of time that
describes one evolution of the process that is called a realization of the process. A
collection of many realizations of the process is called an ensemble ([169], p. 101).

A k-th order distribution of a random process is the joint distribution function
Pt1,t2,...,tk

of the random variables xt1 , xt2 , . . . , xtk
. For the determination of all

the statistical properties of a stochastic process, knowledge is required of Pt1,t2,...,tk
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for every k = 1, 2, . . . and for every t1, t2, . . . , tk ([169], p. 104) . If the random
variables xt are independent and identically distributed (i.i.d) then the process
is just a sequence of i.i.d random variables. Note also that if the parameter set
is finite then the path of the process {xt, t = 1, 2, . . . , T} can be considered as a
random vector x = (x1, x2, . . . , xT )T . Additionally, we can define vector valued
random processes, where for fixed t, xt is a n-dimensional random vector

xt = (x1,t, x2,t, . . . , xn,t)
T . (3.109)

In many applications, only the second order properties, i.e. second order tem-
poral statistics, of a process are needed which in general are functions of time.
The mean and variance of a process are

ηxt
= E{xt}, σ2

xt
= E{(xt − ηxt

)2} = γx(t), (3.110)

and the autocovariance γx(t1, t2), i.e the covariance of the random variables xt1

and xt2 , is a function of t1, t2 and

γx(t1, t2) = E{(xt1 − ηxt1
)(xt2 − ηxt2

)}. (3.111)

If we use the time lag τ between t1 and t2 the autocovariance function becomes

γx(t, τ) = E{(xt − ηxt
)(xt+τ − ηxt+τ

)}. (3.112)

Analogously is defined the cross-covariance function γxy(t, τ) between two pro-
cesses xt and yt

γxy(t, τ) = E{(xt − ηxt
)(yt+τ − ηyt+τ

)}. (3.113)

3.8.1 Stationarity

A property that can characterize stochastic processes is that of stationarity. The
class of stationary processes contains processes that their statistical properties
depend only on the time difference, and are invariant to a shift of the origin.
Mathematically, a stochastic process is strict-sense stationary if for every k, τ and
for every t1, t2, . . . , tk it holds Pt1,t2,...,tk

= Pt1+τ,t2+τ,...,tk+τ . A more general class
is that of wide sense (or weakly, or second order) stationary processes containing
finite variance processes that ([169], p. 106)

ηx = E{xt}, γx(τ) = E{(xt − ηx)(xt+τ − ηx)} ∀t, (3.114)

where for the τ = 0, 1, . . . time lag autocovariances it can be shown that it holds
γ(−τ) = γ(τ) ≤ γ(0) ([169], p. 109). Analogously, the autocorrelation sequence
rx(τ) = E{xtxt+τ} is defined which coincides with the autocovariance sequence for
zero mean processes. Assuming that the autocovariances or the autocorrelations
are known up to a lag τ then they can be summarized in a matrix form

Γx =








γx(0) γx(1) · · · γx(τ)
γx(1) γx(0) · · · γx(τ − 1)

...
...

. . .
...

γx(τ) γx(τ − 1) · · · γx(0)







. (3.115)
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This matrix, namely autocovariance matrix, has all the properties of covariance
matrices defined earlier, furthermore it is Toeplitz having the same elements in the
main diagonal and each sub-diagonal. It can be also interpreted as the covariance
matrix of the (τ + 1)-dimensional random vector x = (xt, xt+1, . . . , xt+τ )T with
the additional properties (3.114). Higher order statistics of a stationary process
can be defined in an analogous manner. Applications of stationary process in time
series analysis or signal processing can be found, for example in [160, 169].

3.8.2 Markovian processes

An important class of stochastic processes is that of Markovian or Markov pro-
cesses, which are the simplest time dependent stochastic processes [59]. A Markov
process is a process {xt, t ∈ T} that given the present value of the process the
families of the random variables {xp : p < t} (past) and {xf : f > t} (future) are
statistically independent. Thus, they are used to describe stochastic systems that
their future development depends only on the present state, and not on the the
manner in which the present state was reached. This property is called Markovian
or memory less property. Mathematically, in terms of conditional probabilities,
the Markovian property, for ti−1 < ti, is expressed as ([161], p. 695)

P{xti
≤ xi|xt, t ≤ ti−1} = P{xti

≤ xi|xti−1
}. (3.116)

From this it follows that if t1 < t2 < · · · < tn then

P{xtn
≤ xn|xtn−1

, xtn−2
, . . . , xt1} = P{xtn

≤ xn|xtn−1
}. (3.117)

For discrete-time, continuous-state Markovian processes, in terms of conditional
density functions, there are many important properties. For an evolution
x1, x2, . . . , xt from (3.117) it is

p(xt|xt−1, . . . , x1) = p(xt|xt−1). (3.118)

For the joint density of x1, x2, . . . , xt we have by conditioning (chain rule) and
(3.118) that

p(xt, . . . , x1)=p(xt|xt−1, . . . , x1)p(xt−1|xt−2, . . . , x1) · · · p(x2|x1)p(x1)(3.119)

=p(xt|xt−1)p(xt−1|xt−2) · · · p(x2|x1)p(x1). (3.120)

For the conditional density p(xt|xt+1, . . . , xt+k) we have by applying the definition
of the conditional density, (3.120) and Bayes rule in line

p(xt|xt+1, . . . , xt+k) =
p(xt, xt+1, . . . , xt+k)

p(xt+1, . . . , xt+k)
=
p(xt+1|xt)p(xt)

p(xt+1)

= p(xt|xt+1). (3.121)

Thus a Markov process is also Markov if time is reversed. The same properties
given here hold also in the case of a Markov random vector process.



Chapter IV

Estimation Theory

The subject of statistical inference, traditionally divided between estimation the-
ory and hypothesis testing, is related to the process of deriving valuable conclusions
from observations. In estimation theory, key concept is to obtain plausible values
for parameters, called point estimates, or plausible ranges of values, called inter-
val estimates, that describe realities from the observations. The available finite
set of measurements may contain errors or noise and so the concept is then re-
lated to denoising, filtering and smoothing. In hypothesis testing, starting point
is an assumption that specifies values for parameters and then the determination
of whether the data are consistent with the hypothetical values is under consid-
eration. Both topics are highly related and it could be said that they belong to
the subject of decision theory. However, this thesis is only concentrated on the
point estimation side of inference, and especially on estimation methods related
to parametric models and mean square error criteria. The main references for this
chapter are [184, 145, 161, 169, 108, 23].

4.1 Basic concepts and definitions

If we denote the observations or measurements with z, then what is under concern
is the identification of an estimator θ̂ for some unknown parameters of interest,
i.e. for a parameter vector θ that takes values in some parametric space Θ. A
natural requirement is that the estimator is a function of the measurements, i.e.

θ̂ = θ̂(z). (4.1)

Every function of the measurements that does not contain the unknown parameters
is also called a statistical function. So under consideration is the identification of an
estimator, i.e a statistical function, with the desired property that for the observed
measurements its value is an estimate close enough to the unknown parameters.
Estimation error is then the difference of the actual and estimated values of the
parameters, i.e. θ̃ = θ − θ̂.

Different estimation theory concepts arise with the characterization of the pa-
rameters θ as random or not. If θ is treated as non-random, but still variable,
then the measurements, random variables or vectors, can be assumed to have a

54
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joint density function pz(z; θ), which depends on the unknown parameters. Since,
the unknown variables are assumed non-random this can be also treated as the
conditional density of the measurements given the parameters p(z|θ). The char-
acterization of a parameter as random, i.e. the so called Bayesian assumption,
leads to Bayesian estimation and inference. Then, the parameters are directly
assumed to have a joint density function with the measurements pz,θ(z, θ). What-
ever the characterization of the parameters is, the estimator being a statistical
function of random measurements is always random. Although, other methods
do not require the interpretation of neither the measurements nor the parame-
ters as random vectors. Well known such methods are different regression and
regularization methods. It must be noted that different approaches can lead to
identical estimators, but with different properties and interpretation of the related
assumptions.

In general, assessing the quality of an estimate is related to the estimation
error ([184], p. 87)

θ̃ = θ − θ̂ = θ − θ̂(z). (4.2)

Although this is a natural way to measure the quality of an estimate, it cannot
be used since θ̂(z) is a random variable and does not have any specific value, i.e.
it depends on the realization z. Also, it is preferable to have a scalar criterion
for choosing optimal estimators. For this reason, other estimation criteria can be
used. A widely used criterion is the mean square error MSE, i.e. the expected
value over z of the squared error norm (e.g. [169], p. 300)

RMS(θ, θ̂) = E{‖θ − θ̂‖2} = E{θ̃T θ̃} = E{CMS(θ, θ̂)}. (4.3)

More general, a cost (or loss) function

C(θ, θ̂) = C(θ̃) (4.4)

can be defined, that describes the cost (or loss) if we estimate θ with the value

θ̂. Typical properties required for the cost function are that it is symmetric, i.e.
C(θ̃) = C(−θ̃), convex, and, for convenience, that the cost corresponding to zero
error is zero ([184], p. 159). The convexity property, i.e. C(λθ̃1 + (1 − λ)θ̃2) ≤
λC(θ̃1) + (1 − λ)C(θ̃2), 0 ≤ λ ≤ 1, guarantees that the loss function increases
as the estimation error increases. These properties cover a wide range of cost
functions, for example, the quadratic error cost function CMS = θ̃T θ̃ and the
absolute error cost function CABS =

∑ |θ̃i|, see for example [184, 23, 145].
In order to obtain an error measure as a performance index or error criterion

the expectation of the respective cost function is defined. This is also called the
risk function of the estimator θ̂ ([184], p. 159)

R(θ, θ̂) = E{C(θ, θ̂)}, (4.5)

in relation to the respective cost function. Clearly, this is a function of the unknown
variable θ and takes into account all the possible realizations of z, at least through



56 4. Estimation Theory

some density of the form p(z; θ). An estimator θ̂1 is better than an estimator θ̂2,
respective to the risk function R, if

R(θ, θ̂1) ≤ R(θ, θ̂2), (4.6)

for every θ ∈ Θ, or R(θo, θ̂1) < R(θo, θ̂2), for some θo ∈ Θ. Ideally, an optimal
estimator should minimize a risk function for every value of θ. The identification
of such an estimator does not always have solution, except for the trivial case that
the parameter is constant. For example, consider the MS error criterion and let
θ1 6= θ2 both belonging to the parameter space Θ ⊂ R. Let us also assume that
exists an estimator θ∗ that is optimal for every θ. Then for every other estimator
θ̂ = θ̂(z) it holds E{(θ∗−θ)2} ≤ E{(θ̂−θ)2}. So, for θ̂ = θ1 it is E{(θ∗−θ1)2} ≤ 0

and yields θ∗ = θ1. Equivalently, starting with θ̂ = θ2, yields θ∗ = θ2, implying
that θ1 = θ2, which is different from the assumption.

Different methods exist for solving the problem of non-existence of optimal
estimator. One such a way is to restrict the search in a class of estimators that
satisfy some intuitively logical condition. One such a condition is the property of
unbiasedness. This implies that the expected value of the estimation error should
be zero for every value of the parameter θ and measurements z. If the parameters
are treated as non random then the condition leads to ([184], p. 88)

E{θ̂} =

∫

θ̂(z)p(z; θ)dz = θ, (4.7)

for every θ ∈ Θ, and for random parameters to

E{θ̂} =

∫ ∫

θ̂(z)p(z, θ)dzdθ = ηθ. (4.8)

Note, that an estimator satisfying (4.7) is also called absolutely unbiased ([184],
p. 88). If an estimator does not meet the unbiasedness conditions, it is said to
be biased, and the mean value of the error b = E{θ̃} is defined as the bias of the
estimator. If the bias approaches zero as the number of measurements grows in-
finitely large, the estimator is called asymptotically unbiased. Another reasonable
requirement for a good estimator is that it should converge (in probability) to the
true value of the parameter, when the number of measurements grows infinitely
large. Estimators satisfying this property are called consistent ([184], p. 92, [169],
p. 301).

For non-random parameters θ we have for the mean square error

E{(θ − θ̂)T (θ − θ̂)} = E{θT θ − θT θ̂ − θ̂T θ + θ̂T θ̂} (4.9)

= θT θ − θTE{θ̂} − E{θ̂}T θ + E{θ̂T θ̂}. (4.10)

Similarly, it also holds

E{‖θ̂ − E{θ̂}‖2} = E{θ̂T θ̂ − θ̂TE{θ̂} − E{θ̂}T θ̂ + E{θ̂}TE{θ̂}} (4.11)

= E{θ̂T θ̂} − E{θ̂}TE{θ̂}. (4.12)
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Thus, from (4.10) and (4.12) we have another expression for (4.3)

RMS(θ̃) = (θ − E{θ̂})T (θ − E{θ̂}) + E{(θ̂ − E{θ̂})T (θ̂ − E{θ̂})} (4.13)

= ‖E{θ̃}‖2 + trace[E{(θ̂ − E{θ̂})(θ̂ − E{θ̂})T }] (4.14)

= ‖b‖2 + trace[Cθ̂], (4.15)

where Cθ̂ is the covariance matrix of the estimator. Therefore, the mean square
error criterion or risk function both measures the bias, i.e. the systematic error
of the estimator, and a term related to the variance of the estimator, i.e. the
accuracy of the estimator. So, with the unbiasedness constraint the MS error
criterion searches the estimator with minimal sum of variance components.

Another closely related measure of the quality of an estimator is given by the
covariance matrix of the estimation error

Cθ̃ = E{(θ − θ̂)(θ − θ̂)T }, (4.16)

which measures the errors of individual parameter estimates, while the MS error

RMS(θ̃) = E{(θ − θ̂)T (θ − θ̂)} = trace[Cθ̃] (4.17)

is an overall scalar error measure for all the parameter estimates. An estimator that
provides the smallest error covariance matrix among all unbiased estimators is the
best one with respect to this quality criterion. Note, that a symmetric matrix A is
said to be smaller than another symmetric matrix, if the matrix B −A is positive
definite. When the parameters are treated as non-random, such an estimator is
called efficient, because it is considered to use optimally the information contained
in the measurements. An important theoretical result states that there exists a
lower bound for the error covariance of any unbiased estimator for deterministic
or random parameters based on available measurements. This is provided by
the Cramer-Rao lower bound [184]. A closely related concept for identifying MS
optimal estimators is sufficiency. Informally speaking, a statistical function is
sufficient if it retains all the information that the data contain. Precise definitions
of the concept as well as conditions such as Neyman-Fisher factorization theorem
can be found for example in [184]. Sufficiency can be used for the identification
from the class of unbiased estimators one that minimizes the MS error for all θ
(Rao-Blackwell and Lehmann-Scheffé theorems)[184].

Instead of searching for an estimator that minimizes a risk function R(θ, θ̂)
for every value θ ∈ Θ in some class of estimators, it is convenient to require that
R(θ, θ̂) does not become large for many values (areas) of θ ∈ Θ. This can be stated

as requiring minimization of the area (surface)
∫

Θ
R(θ, θ̂)dθ, or more general of

∫

Θ

R(θ, θ̂)w(θ)dθ, (4.18)

where w(θ) is a weighting function that represents the meaning that is assigned
to different values of θ. An estimator that minimizes (4.18) is called Bayesian
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estimator. By treating the parameter θ as random and selecting w(θ) = p(θ), i.e.
a prior density for θ, and the quadratic cost function, we have the Bayesian mean
square error criterion [184].

4.2 Estimation with observation model

In various situations, it might be available, or preselected, a model for the de-
pendencies between observations and parameters. The most common observation
model is the additive noise model

z = h(θ) + υ. (4.19)

Where θ is an n-dimensional parameter vector, z ∈ R
M is the measurement vector,

and υ ∈ R
M is a vector whose components are unknown observation errors or

measurement noise. The vector valued function h(·) is completely known, or at
least its values for different values of θ are known. In this section, the parameters
are treated as deterministic unknown quantities.

4.2.1 Ordinary and generalized linear least squares estimators

In the basic linear least squares method the data vector z is assumed to follow the
linear additive noise model ([184], p. 33)

z = Hθ + υ, (4.20)

where H is a deterministic observation matrix which contains the basis vectors
ψ1, ψ2, . . . , ψn of length M is its columns. The least squares criterion is defined as

ELS = ‖υ‖2 = ‖z −Hθ‖2 = (z −Hθ)T (z −Hθ). (4.21)

Minimization of the criterion with respect to θ gives the ordinary least squares
estimator. Indeed, the gradient of the quadratic function is

∂ELS

∂θ
= −2HT (z −Hθ). (4.22)

Then the least squares estimator satisfies

HT (z −Hθ̂LS) = 0 ⇐⇒ HTHθ̂LS = HT z. (4.23)

The equation in the right is called system of normal equations for determining the
least squares estimate θ̂LS of θ. The matrix HTH corresponds to ∂2ELS(θ)/∂θ2,
and if it is positive definite the quadratic function is strictly convex. Then the
solution is guaranteed to be unique given by

θ̂LS = (HTH)−1HT z. (4.24)

The matrix H+ = (HTH)−1HT is called left pseudo-inverse of H (assuming H
has maximal rank n and more rows than columns M > n). The estimated fit
(s = Hθ) is

ŝLS = Hθ̂LS = H(HTH)−1HT z. (4.25)
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TheM×M matrix P = H(HTH)−1HT is a projection matrix projecting measure-
ments onto the space spanned by the columns (the basis vectors) of the matrix
H, and it holds PT = P, P 2 = P , rank(P ) = trace[(HTH(HTH)−1] = n, and

PH = H. Equation (4.23) implies that the residual r = z−Hθ̂LS , or fitting error,
is orthogonal to all columns of the matrix H and

r = υ̂ = z − ŝ = (I −H(HTH)−1HT )z (4.26)

= (I −H(HTH)−1HT )(Hθ + υ) (4.27)

= (I −H(HTH)−1HT )υ (4.28)

= H(θ − θ̂) + υ. (4.29)

The least squares estimation problem can be generalized by adding a symmetric
and positive definite weighting matrix to the error criterion. The generalized least
squares error criterion becomes ([184], p. 40)

EGLS = (z −Hθ)TW (z −Hθ) (4.30)

= ||Lz − LHθ||2, (4.31)

where LTL=W. If W is diagonal the index is also called the weighted least squares
index. For the minimization of the generalized least squares error criterion, by
using equation (4.24) with z′ = Lz and H ′ = LH, it holds

θ̂GLS = (H ′TH ′)−1H ′T z′ = (HTLTLH)−1HTLTLz (4.32)

= (HTWH)−1HTWz. (4.33)

The least squares method can be regarded as a deterministic approach for the
estimation problem, where no assumptions on any probability distributions are
necessary. However, statistical arguments can be used to justify the use of the
method. For example, the observation error υ can be considered random ([184],
p. 37). Thus the model (4.20) can define a deterministic vector Hθ buried into
random noise. If the noise has known mean ηυ and covariance matrix Cυ then the
observations are necessarily random with mean ηz and covariance Cz given by

ηz = Hθ + ηυ, (4.34)

Cz = Cυ. (4.35)

Then from (4.33, 4.34) the mean of θ̂GLS is

ηθ̂GLS
= (HTWH)−1HTW (Hθ + ηυ) (4.36)

= θ + (HTWH)−1HTWηυ, (4.37)

thus, unless υ is zero mean, θ̂GLS is biased. For the unbiased estimator

θ̂U,GLS = (HTWH)−1HTW (z − ηυ) (4.38)
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the estimation error covariance, or the covariance of the estimator would be

Cθ̂U,GLS
= Cθ̃U,GLS

= (HTWH)−1HTWCυWH(HTWH)−1. (4.39)

It turns out, see following section, that an optimal choice for the matrix W is the
inverse of the covariance matrix of the measurements errors W = C−1

υ . Note also

that θ̂U,GLS minimizes the least squares index

EU,GLS = ||L(z − z∗ −Hθ)||2, (4.40)

where z∗ is known and was selected to be ηυ.

4.2.2 Minimum variance linear unbiased estimator or Gauss-Markov
estimator

Let us consider the linear observation model, that is

z = Hθ + υ, (4.41)

where υ is a random vector with known mean ηυ and covariance Cυ, assumed
positive definite. The unknown parameters are considered non random. A linear
unbiased estimator of θ is searched that minimizes the mean square error criterion
(4.3). Because of the unbiasedness requirement, from (4.15) this is equivalent to
the minimization of

RMS(θ̃) = trace[Cθ̂] (4.42)

Since a linear estimator is searched, this must be of the form

θ̂ = Kz + k. (4.43)

Then it holds

E{θ̂} = E{Kz+k} = KE{z}+k = KE{Hθ+υ}+k = KHθ+Kηυ +k. (4.44)

For θ̂ to be unbiased, i.e. E{θ̂} = θ for every θ, K and k must satisfy

KH = I, k = −Kηυ. (4.45)

For the variance of the estimator it is

Cθ̂ = E{(θ̂ − E{θ̂})(θ̂ − E{θ̂})T } (4.46)

= E{(θ̂ − θ)(θ̂ − θ)T } (4.47)

= E{(Kz −Kηυ − θ)(Kz −Kηυ − θ)T } (4.48)

= E{(KHθ +Kυ −Kηυ − θ)(KHθ +Kυ −Kηυ − θ)T } (4.49)

= KCυK
T . (4.50)

So with the linearity and unbiasedness constrains the covariance matrix of the
estimator, or the covariance of the estimation error, is given by (4.50). Now, what
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is under concideration is the identification of a matrix K so that the covariance is
minimized for every θ ∈ Θ. For the matrix

K ′ = (HTC−1
υ H)−1HTC−1

υ (4.51)

it holds
K ′H = I, and K ′CυK

′T = (HTC−1
υ H)−1. (4.52)

So with this selection the estimator θ̂ = K ′z is unbiased and the covariance does
not depend on parameters θ. It must now be shown that this is the best form for
K, that is based on the assumptions this is the minimum covariance matrix to be
achieved, meaning that the matrix

KCυK
T −K ′CυK

′T = KCυK
T − (HTC−1

υ H)−1 (4.53)

is positive semidefinite for every K. It also holds K ′H = I and KH = I, thus

K ′CυK
T = (HTC−1

υ H)−1, (4.54)

KCυK
′T = (HTC−1

υ H)−1. (4.55)

Thus it holds

KCυK
T −K ′CυK

′T = KCυK
T −K ′CυK

T (4.56)

−KCυK
′T +K ′CυK

′T (4.57)

= (K −K ′)Cυ(K −K ′)T , (4.58)

where the matrix at the right of the last expression is positive semidefinite ([184],
p. 157). Also, for the trace of the error covariance matrix it holds

trace[Cθ̃] = trace[(K −K ′)Cυ(K −K ′)T ] + trace[(HTC−1
υ H)−1], (4.59)

and can be minimized for K = K ′. The Gauss-Markov estimator can be written
in the form

θ̂GM = (HTC−1
υ H)−1HTC−1

υ (z − ηυ), (4.60)

with covariance matrix or error covariance

Cθ̂GM
= Cθ̃GM

= (HTC−1
υ H)−1, (4.61)

and mean square error value

RMS(θ̂GM ) = trace[(HTC−1
υ H)−1]. (4.62)

The estimator is often referred as best linear unbiased estimator (BLUE) [184]
for non random parameters. The vector υ is usually assumed zero mean. In that
case and if for the covariance of υ it holds Cυ = σ2I, i.e. υ(i) are zero mean
uncorrelated with common variance σ2, then clearly the estimator coincides with
the standard least squares estimator. Furthermore, the GM estimator is exactly
minimizing the generalized least squares index (4.30) with the selection W = C−1

υ .
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For the estimator of s = Hθ it holds

ŝGM = Hθ̂GM , (4.63)

and
Cŝ = H(HTC−1

υ H)−1HT . (4.64)

The estimator ŝGM = Hθ̂GM is the Gauss Markov estimator of s and its covariance
is minimal, among all the unbiased linear estimators of s of the form Hθ when θ
is restricted to be a linear function of the data.

4.2.3 Quadratic constraints and regularization

Least squares minimization with a quadratic inequality constraint is an estimation
method that can be used in cases that the least squares problem needs to be
regularized [23, 69]. Commonly such cases arise when attempting to fit a function
to noisy data. The constrained least squares method considered here searches
solution of the minimization problem

min
θ

‖L1(Hθ − z)‖2 subject to ‖L2(θ − θ∗)‖2 ≤ c2, (4.65)

where LT
1 L1 = W1, L

T
2 L2 = W2, and c > 0. The constraint defines an ellipsoid in

R
n centered around an initial (prior) guess for the solution, and is usually chosen

to damp out excessive oscillations of the fitting function. This can, for exampler,
be done if L2 is a discretized derivative operator. Another common selection is
L2 = I, that constrains the solution in a ball.

The Lagrangian of the problem is

L(θ, λ) = (Hθ − z)TW1(Hθ − z) + λ
(
(θ − θ∗)TW2(θ − θ∗) − c2

)
, (4.66)

where λ is the Lagrange multiplier associated with the constraint. By equating to
zero the gradient of L with respect to θ we obtain a linear system of equations

(HTW1H + λW2)θ = HTW1z + λW2θ
∗, (4.67)

with solution θ(λ) as a function of λ that must satisfy the constrain. From the rest
of the KKT optimality conditions (see section 2.4) we have that if the constraint is
satisfied at the optimal, i.e. ‖L2(θ(λ)− θ∗)‖)2 − c2 < 0, then it must be λ = 0 and
the solution of (4.67) is then the generalized least squares estimator (4.33). When,
λ > 0, then ‖L2(θ(λ)− θo)‖)2 − c2 = 0, i.e. the solution of the problem occurs on
the boundary of the feasible set. A more thorough treatment of the problem can
be found in [69].

Tikhonov regularization

Often there is not exact knowledge for the value of the side constraint c. Then the
problem can be defined from ([23], p. 306)

θ̂TR(α) = arg min
θ

{‖L1(Hθ−z)‖2+α2‖L2(θ−θ∗‖2} = arg min
θ

{ETR(θ, α)} (4.68)
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This is recognized to be the generalized Tikhonov regularization solution [197]. By
equating to zero the gradient of ETR(θ, α) with respect to θ we obtain the linear
system of equations (4.67), where λ is now replaced with α2. The regularization
parameter controls the weight given to the side constraint (i.e. keeping ‖L2(θ−θ∗‖2

small) relative to the minimization of the weighted least squares index. Thus α

controls the believe on the constraint and the estimator θ̂TR(α) is a function of α.
The problem can be also written in the form

θ̂TR(α) = arg min
θ

{∥
∥
∥
∥

(
L1H
αL2

)

θ −
(

L1z
αL2θ

∗

)∥
∥
∥
∥

2
}

(4.69)

= arg min
θ

{‖L′(H ′θ − z′)‖2} (4.70)

where

H ′ =

(
H
I

)

, z′ =

(
z
θ∗

)

, L′ =

(
L1 0
0 aL2

)

. (4.71)

Then the LS solution for the modified observation model is

θ̂TR(α) = (H ′TL′TL′H ′)−1H ′TL′TL′z′ (4.72)

= (HTW1H + α2W2)
−1(HTW1z + α2W2θ

∗). (4.73)

Equivalently, a regularized solution for the least squares problem with k inequality
constraints will be

θ̂TR(α1, α2, . . . , αk) = (HTWH +

k∑

i=1

α2
iWi)

−1(HTWz +

k∑

i=1

α2
iWiθ

∗
i ) (4.74)

The simplest form of regularization solution is given for W1 = I, W2 = I and
θ∗ = 0, then the estimator becomes

θ̂ = (HTH + α2I)−1HT z. (4.75)

The matrix HTH+α2I is positive definite for every α2 > 0 ([23], p. 306). This can
be seen from the singular value decomposition of H (e.g.[39], p. 58). Therefore,
the regularized solution requires no rank assumptions on H.

Regularization is used in several contexts. It must be must noted that the
quadratic norms used here is not the only case, see for example [23]. In an esti-
mation setting, the extra term penalizing large ‖θ‖ can be interpreted as our prior
knowledge requires ‖θ‖ not to be too large. In statistical literature, Tikhonov
regularization is also called ridge regression [69, 142], though there is also the
Bayesian interpretation [184, 108]. The constraint ‖θ‖ to be small can also reflect
a modeling issue. It might, for example, be that s = Hθ is only a good approxi-
mation of the true relationship s = h(θ) between s, θ. In order to have h(θ) ≈ z,
it must Hθ ≈ z, and also need θ small to ensure h(θ) ≈ Hθ ([23], p. 306). Fur-
thermore, regularization is also used in the case, for example, that the matrix H is
square, and the goal is to solve the linear equations Hθ = z. In cases where H is
poorly conditioned, or singular, regularization gives a compromise between solving
the equations and keeping θ of reasonable size. Therefore, it have gained great
popularity for the study of inverse and ill-conditioned problems [108, 74, 73, 149].
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Robust least-squares

We consider an approximation problem with basic objective ‖z −Hθ‖2, but now
for the matrix H there is some degree of uncertainty or variation. For more general
settings see for example [23, 69, 65]. More specific we consider the statistical robust
least square criterion ([23], p. 318)

E{‖z −H ′θ‖2}, (4.76)

where the parameters θ are still considered as non random. The only random term
is the matrix H ′, which is assumed to be of the form H ′ = H + U , where H is a
deterministic part and U is a random matrix with zero mean that describes the
statistical variation. Then (4.76) becomes

E{(z −Hθ − Uθ)T (z −Hθ − Uθ)} = (z −Hθ)T (z −Hθ) + θTE{UTU}θ. (4.77)

Therefore the statistical robust approximation problem has the form of a regular-
ized least squares problem with solution (by setting P = E{UTU})

θ̂r = (HTH + P )−1HT z. (4.78)

If the observation matrix is subject to uncertainty, the vector H ′θ will have more
variation the larger θ is. This can be controlled with regularization ([23], p. 319).

Smoothing regularization

The idea of regularization can be extended in several directions. A useful extension
is obtained when the regularization term is of the form ‖Ddθ‖2, where Dd is
a discrete approximation of the d-th order derivative. Methods using difference
approximations can in general be called smoothness priors methods [122, 108]. In
this case, L2 is a banded matrix with full row rank. The most commonly used
matrices are the 1st and 2nd difference matrices

D1 =










1 −1 0 · · · 0 0 0
0 1 −1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 1 −1 0
0 0 0 · · · 0 1 −1










∈ R
(n−1)×n, (4.79)

D2 =














1 −2 1 0 · · · 0 0 0 0
0 1 −2 1 · · · 0 0 0 0
0 0 1 −2 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · −2 1 0 0
0 0 0 0 · · · 1 −2 1 0
0 0 0 0 · · · 0 1 −2 1














∈ R
(n−2)×n.(4.80)

Then the problem becomes

min
θ

(‖Hθ − z‖2 + a2‖Ddθ‖2), (4.81)
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which represents a trade-off between the measure of fit and the regularization
term. For example, ‖D2θ‖2 is an approximation of the mean-square curvature
of the parameter. Thus the parameter α2 provides compromise between good fit
and smoothness ([23], p. 307). There are situations that the parametrization of
the problem does not give meaning to the smoothing problem (4.81). Instead,
prior knowledge about the smoothness of Hθ is to be enforced directly. Then the
problem becomes

min
θ

(‖Hθ − z‖2 + α2‖DdHθ‖2), (4.82)

with the modified side constraint ‖D2Hθ‖2 and with solution

θ̂(α) = (HTH + α2HTDT
d DdH)−1HT z. (4.83)

In the simplest case, when H = I, we have the model

z = s+ υ, (4.84)

which represents a deterministic signal buried in noise. The noise is simply as-
sumed to be unknown, small, and unlike the signal rapidly varying. The process
of recovering s from z is called signal reconstruction or denoising. Often the oper-
ation of recovering s is smoothing. A simple reconstruction can be performed by
using the quadratic smoothing penalty function ([23], p. 312)

‖D1s‖2 =

M∑

i=2

(si − si−1)
2. (4.85)

Which implies that the signal s is assumed slowly varying. The estimator of s is
given for different values of α2 by

ŝ = (I + a2DT
1 D1)

−1z = Gz. (4.86)

The operator G is consider as a basic smoothing operator in this thesis.

4.2.4 Nonlinear least squares

Let us consider now the nonlinear additive noise observation model

z = h(θ) + υ, (4.87)

where h(θ) = (h1(θ), h2(θ), . . . , hM (θ))T is a vector valued function of the pa-
rameters θ. The generalized non-linear least squares estimator with quadratic
inequality constraint for the parameters is the solution of the minimization of the
functional

E(θ) = ‖L1(h(θ) − z)‖2 + α2‖L2(θ − θ∗)‖2 (4.88)

= (z − h(θ))TW1(z − h(θ)) + α2(θ − θ∗)TW2(θ − θ∗). (4.89)
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For a non-linear function h(θ) the minimization has to be done iteratively, for
example with Gauss-Newton method. We consider here only the unconstrained
problem. The Gauss-Newton method (2.72) then becomes ([184], p. 247)

θ̂i+1 = θ̂i + ai(J
T
i WJi)

−1(JT
i W (z − h(θ̂i))), (4.90)

where Ji is the Jacobian matrix of h evaluated at θ̂i, and the step size ai >
0 can, for example, be found with backtracking line search (2.49). In order to
be a descent procedure JTWJ must be positive definite. The Gauss-Newton
method is approximating the Hessian by JTWJ , while the Levenberg-Marquardt
enhancement [132, 141] adds to the approximation a positive definite matrix, in
order to control ill conditioning. In the Levenberg-Marquardt algorithm, usually
the line search strategy is replaced with a trust region strategy (e.g. [21]).

4.3 Maximum likelihood estimation

The method of maximum likelihood constitutes a general way for deriving estima-
tors for an unknown parameter vector θ ([169], p. 305). The method is due to
Fisher and considers the unknown θ as non-random. Is is based upon a principle
stating that as soon as a realization of a random vector z is observed, then as an
estimate of θ is chosen the value θ̂ML that maximizes for every θ ∈ Θ the likelihood
function (maximum likelihood principle). If z has a probability density function
pz(z; θ), θ ∈ Θ, which is a parametric function of the parameters to be estimated,
then the likelihood function is defined as

L(θ) = p(z; θ), θ ∈ Θ, (4.91)

that is the density evaluated at the observed value of z and considered as a function
of θ. Thus, the maximum likelihood estimator is defined as

θ̂ML = arg max
θ∈Θ

p(z; θ). (4.92)

Since many density functions contain an exponential function, it is often more
convenient to deal with the log likelihood. The ML estimator is then found from
the solution of the log likelihood equation

∂

∂θ
ln p(z; θ) = 0, (4.93)

in the case that it is differentiable for θ ∈ Θ. The maximum might be obtained
for an unique value θ̂ML or for many or it might not exist.

Let us now consider the observation model

z = h(θ) + υ, (4.94)

where the random vector υ is considered zero mean with known density function
pυ. Thus from the model we have that the density of z is the same as that of υ
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except of the mean, i.e E{z} = h(θ) + E{υ} = h(θ). For the likelihood of the
observed z, given the model, we have

p(z; θ) = p(h(θ) + υ; θ) = pυ(z − h(θ); θ) (4.95)

If we assume that the density of the random noise vector υ is Gaussian then

p(z; θ) =
1

(2π)n/2(detCυ)1/2
exp(−1

2
(z − h(θ))TC−1

υ (z − h(θ))), (4.96)

and by taking logarithms

ln p(z; θ) = const − 1

2
(z − h(θ))TC−1

υ (z − h(θ)) (4.97)

Thus, because of the quadratic form of the density, maximization of the likelihood
is equivalent to the minimization of the functional

lML = (z − h(θ))TC−1
υ (z − h(θ)). (4.98)

This is identical to the generalized least squares index with the selection W = C−1
υ .

In the linear case the estimator is

θ̂ML = (HTC−1
υ H)−1HTC−1

υ z, (4.99)

which is exactly the Gauss Markov estimator (4.60), i.e. a minimum variance
unbiased estimator for the non random parameters θ.

4.4 Bayesian estimation

The starting point in Bayesian estimation is the consideration of the unknown
parameters θ as random ([108], p. 50). Then a joint density between parameters
and measurements is assumed p(z, θ). Estimation is then based on the posterior
density p(θ|z), which from the Bayes rule is given by

pθ|z(θ|z) =
pz|θ(z|θ)pθ(θ)

pz(z)
, (4.100)

where the denominator is computed based on the law of total probability by inte-
grating the numerator over all the possible values of θ ([108], p. 52)

pz(z) =

∫ ∞

−∞
pz|θ(z|θ)pθ(θ)dθ. (4.101)

The density p(z|θ) is recognized as the likelihood function defined earlier. The
prior distribution p(θ) is assumed known. Although the interpretation of the pa-
rameters as random in many applications is rather technical, in Bayesian inference
the probability functions for the parameters can be interpreted as degrees of belief
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related to the values that the parameters can take, and they are the result of prior
knowledge or consideration [22, 184, 108].

Note that in Bayesian methodology, if inference is required for the random
parameters θ with prior density p(θ), it is considered that after observing z the
knowledge that we have about θ has been naturally updated to the density p(θ|z).
This is an old observation related to the meaning of inverse probability of Laplace
and Bayes study on the doctrine of chances. Estimates for θ could then be searched
from the posterior density, which is a density for θ, with reduced uncertainty
because of the observations. In this thesis, we concentrate mainly to the Bayesian
cost methodology and discuss some useful properties of optimality of the derived
point estimators. However, a point estimator is not enough for a fully Bayesian
inference since the inference should be based on the whole posterior density [108].

4.4.1 Bayes cost method

In Bayesian estimation, the selection of point estimates can be done by defining a
cost function C(θ, θ̂), which assigns an unique real valued cost to each combination
of actual parameter value and estimate ([145], p. 182). The expected value of the
cost is called Bayes cost or Bayes risk function and is given by ([145], p. 183)

B(θ̂) = E{C(θ, θ̂(z))} =

∫ ∞

−∞

∫ ∞

−∞
C(θ, θ̂(z))p(θ, z)dzdθ (4.102)

=

∫ ∞

−∞

(∫ ∞

−∞
C(θ, θ̂(z))p(z|θ)dz

)

p(θ)dθ (4.103)

=

∫ ∞

−∞

(∫ ∞

−∞
C(θ, θ̂(z))p(θ|z)dθ

)

p(z)dz.(4.104)

Since from the Bayesian assumption it holds for the joint density p(θ, z) =
p(z|θ)p(θ) deriving (4.103), and p(θ, z) = p(θ|z)p(z) giving (4.104). According

to the Bayesian estimation criterion the optimal estimator θ̂B is the one that
minimizes the Bayes cost for a given cost function, i.e.

B(θ̂B) ≤ B(θ̂) (4.105)

for all θ̂. In general, the identification of the joint density is needed for deriving
Bayesian estimators.

The inner integral in (4.103) is the conditional expectation of the cost given θ.

B(θ̂|θ) =

∫ ∞

−∞
C(θ, θ̂(z))p(z|θ)dz = E{C(θ, θ̂)|θ}. (4.106)

This is called the conditional Bayes cost ([145], p. 183), which for non random

parameters is equal to the risk function R(θ, θ̂) defined in (4.5). For the Bayes
cost it holds

B(θ̂) =

∫ ∞

−∞
B(θ̂|θ)p(θ)dθ = Eθ{E{C(θ, θ̂)|θ}} = Eθ{B(θ̂|θ)}. (4.107)
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Similarly the conditional cost given z is

B(θ̂|z) =

∫ ∞

−∞
C(θ, θ̂(z))p(θ|z)dθ = E{C(θ, θ̂)|z}, (4.108)

and for the Bayes cost it holds

B(θ̂) = Ez{E{C(θ, θ̂)|z}} = Ez{B(θ̂|z)}. (4.109)

When this form is applied, the minimization of the Bayes cost is equivalent to
the minimization of the conditional cost given z since the outer integral does not
depend on θ and p(z) is a non-negative integrable function with

∫
p(z)dz = 1.

4.4.2 Bayesian mean square estimation

In mean square error based estimation, the cost function is the squared norm of
the estimation error CMS(θ, θ̂) = (θ − θ̂)T (θ − θ̂). Then the Bayes mean square
cost is defined as

BMS(θ̂) = E{(θ − θ̂)T (θ − θ̂)} (4.110)

= trace[E{(θ − θ̂)(θ − θ̂)T }] (4.111)

= trace[Rθ̃], (4.112)

and for the error correlation matrix it holds

Rθ̃ = E{(θ − θ̂)(θ − θ̂)T } (4.113)

= Ez{E{(θ − θ̂)(θ − θ̂)T |z}} (4.114)

= Ez{E{θθT − θθ̂T − θ̂θT + θ̂θ̂T |z}} (4.115)

= Ez{E{θθT |z} − E{θ|z}θ̂T − θ̂E{θ|z}T + θ̂θ̂T } (4.116)

= Ez{Cθ|z + ηθ|zη
T
θ|z − E{θ|z}θ̂T − θ̂E{θ|z}T + θ̂θ̂T } (4.117)

= Ez{Cθ|z + (θ̂ − ηθ|z)(θ̂ − ηθ|z)
T } (4.118)

= Ez{Cθ|z} + Ez{(θ̂ − ηθ|z)(θ̂ − ηθ|z)
T }. (4.119)

The Bayes cost can be written in the form

BMS(θ̂) = E{CMS(θ, θ̂)} = Ez{BMS(θ̂|z)}, (4.120)

where BMS(θ̂|z) is the conditional Bayes mean square cost ([184], p. 137)

BMS(θ̂|z) = E{(θ − θ̂)T (θ − θ̂)|z} (4.121)

= trace[Cθ|z + (θ̂ − ηθ|z)(θ̂ − ηθ|z)
T ] (4.122)

= trace[Cθ|z] + ‖θ̂ − ηθ|z‖2. (4.123)

The first term in (4.123) does not depend on θ̂(z) and is positive. The second term,

also positive, can be made zero by choosing θ̂ = ηθ|z. Therefore, the Bayesian
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minimum mean square estimator, that minimizes the conditional Bayes cost and
the Bayes cost is the function ηθ|z, is the conditional mean ([184], p. 137)

θ̂MS =

∫ ∞

−∞
θp(θ|z)dθ = E{θ|z} = ηθ|z. (4.124)

The result holds for all conditional densities p(θ|z) and θ̂MS is an uniquely defined
optimal estimator, which is also called conditional mean estimator ([145], p. 184).

Let θ̂ = θ̂(z) be an arbitrary estimator of the random parameter vector θ, then
for the expected value of the estimation error it holds

E{(θ − θ̂)} = Ez{E{(θ − θ̂)|z}} = Ez{(E{θ|z} − θ̂)} = Ez{(ηθ|z − θ̂)}. (4.125)

Clearly, the Bayesian mean square estimator θ̂MS = ηθ|z is unbiased and

E{θ̂MS} = ηθ or E{θ̃MS} = 0. For the estimation error covariance of any es-

timator θ̂ it holds from (4.119) and (4.125)

Cθ̃ = E{(θ − θ̂)(θ − θ̂)T } − E{(θ − θ̂)}E{(θ − θ̂)}T (4.126)

= Ez{Cθ|z} + Ez{(θ̂ − ηθ|z)(θ̂ − ηθ|z)
T } (4.127)

−Ez{(ηθ|z − θ̂)}Ez{(ηθ|z − θ̂)}T . (4.128)

The unbiased conditional mean estimator has estimation error covariance

Cθ̃MS
= E{(θ − ηθ|z)(θ − ηθ|z)

T } = Ez{Cθ|z}. (4.129)

Additionally, it holds

Cθ̃−Cθ̃MS
= Ez{[(θ̂−ηθ|z)−Ez{(ηθ|z− θ̂)}][(θ̂−ηθ|z)−Ez{(ηθ|z− θ̂)}]T }. (4.130)

Thus, by considering the unknown parameters θ as random and by searching an
estimator that has the smallest error covariance matrix, since the matrices in
(4.130) are positive semidefinite, then the optimal estimator is identical to the
Bayesian mean square estimator. So the Bayesian mean square estimator can be
defined either as the estimator that minimizes the conditional Bayes cost given z,
and therefore the Bayes cost, or as minimum error variance estimator for random
parameters ([145], p. 185, [184], p. 140).

The previous results can be applied to a generalized mean square cost function

CGMS(θ, θ̂) = θ̃TWθ̃, (4.131)

where W is a symmetric positive semidefinite weighting matrix. The conditional
Bayes cost for this cost function is then

BGMS(θ̂|z) = E{(θ − θ̂)TW (θ − θ̂)|z} (4.132)

= E{(θTWθ − θTWθ̂ − θ̂TWθ + θ̂TWθ̂)|z} (4.133)

= (θ̂ − ηθ|z)
TW (θ̂ − ηθ|z) + E{θTWθ|z} − ηT

θ|zWηθ|z. (4.134)
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This is minimized again by the conditional mean ([184], p. 137)

θ̂GMS = ηθ|z. (4.135)

Note, that the mean square cost function can be written as

CMS(θ, θ̂) = θ̃T θ̃ =
∑

i

θ̃TWiθ̃, (4.136)

Where Wi is chosen such as only its (i, i)-th diagonal element is nonzero and equal
to one. Thus the the conditional mean minimizes each squared error term θ̃2i
individually ([184], p. 138).

Another important property is the orthogonality principle. Let ξ = ξ(z) any
function of the data z only. Then for the cross correlation of the estimation error
and ξ we have

Ez{(θ − θ̂MS)ξT } = Ez{E{(θ − θ̂MS)ξT |z}} (4.137)

= Ez{E{θ − θ̂MS |z}ξT } (4.138)

= Ez{(E{θ|z} − E{θ̂MS |z})ξT } (4.139)

= Ez{(θ̂MS − θ̂MS)ξT } (4.140)

= 0. (4.141)

This indicates that the error in the minimum mean square estimator is orthogonal
to any function of the data ([184], p. 139).

The Bayesian mean square estimator is theoretically very significant because
of its conceptual simplicity and generality. However, actual computation of the
Bayesian minimum mean square estimator is often very difficult. This is because
in practice we only know or assume the prior density pθ(θ) and the conditional
density of the observations pz|θ(z|θ) given the parameters (the likelihood). In order
to obtain the conditional mean estimator the posterior density is required, which
is obtained from Bayes rule. The computation of the conditional expectation then
requires still another integration. These integrals are usually impossible to be
evaluated analytically. Nevertheless, Monte-Carlo methods are often applied for
the calculation of the mean square estimator [112, 108].

4.4.3 Linear Bayesian mean square estimators

The conditional mean ηθ|z is in general a nonlinear function of z and to be de-
termined it requires the computation of the integral (4.124). However, there are
special cases that it has a specific form. In the case that is linear, then from (3.33)
the (linear) mean square Bayesian estimator is given by

θ̂LMS = ηθ + CθzC
−1
z (z − ηz), (4.142)

with error covariance
Cθ̃LMS

= Cθ − CθzC
−1
z Czθ. (4.143)
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In a different way, we can restrict the search for optimal estimator for θ in
the class of linear estimators of the form θ̂ = Kz by requiring that the optimal
estimator should minimize the Bayes cost B{θ̂} = trace[Cθ̃]. Then for the error
covariance it holds (for simplicity z and θ are considered zero mean)

Cθ̃ = E{(θ − θ̂)(θ − θ̂)T } (4.144)

= E{(θ −Kz)(θ −Kz)T } (4.145)

= Cθ −KCzθ − CθzK
T +KCzK

T (4.146)

= Cθ + (K − CθzC
−1
z )Cz(K − CθzC

−1
z )T − CθzC

−1
z Czθ. (4.147)

Only the second term on the right of the last equation depends on the matrix K,
thus the trace and each term of the diagonal of the error covariance matrix can be
minimized by choosing K = CθzC

−1
z ( [184], p. 153).

Thus, we have two interpretations for the linear mean square estimator. It is
a minimum error variance (covariance) estimator for random parameters optimal
among other linear estimators and orthogonal to them. Additionally, it is overall
optimal under the same criteria for the densities p(θ, z) that the conditional mean
ηθ|z is a linear function of z. Such an example is the Gaussian conditional density.
In fact, if z and θ are jointly Gaussian distributed, then the conditional density of
θ given z is also Gaussian with the form (see section 3.7.2)

pθ|z(θ) =
1

(2π)n/2(detCθ|z)1/2
exp(−1

2
(θ − ηθ|z)

TC−1
θ|z (θ − ηθ|z)), (4.148)

where

ηθ|z = ηθ + CθzC
−1
z (z − ηz) (4.149)

Cθ|z = Cθ − CθzC
−1
z Czθ. (4.150)

This again underlines the fact that for the Gaussian distribution linear process-
ing and knowledge of the first and second order statistical properties are usually
sufficient to obtain optimal results (see for example [184], p. 149).

In many practical estimation problems, it is difficult to determine the cross
covariance Cθz. Let us now constrain the observations to be a specific linear form
of the parameters, i.e.

z = Hθ + υ, (4.151)

where H is a deterministic observation matrix and θ, υ are random vectors with
known means ηθ, ηυ and covariances Cθ, Cυ. Then, for the covariance matrix of
the measurements we have

Cz = E{(z − ηz)(z − ηz)
T } (4.152)

= E{(Hθ + υ)(Hθ + υ)T } − (Hηθ + ηυ)(Hηθ + ηυ)T (4.153)

= HCθH
T +HCθυ + CυθH

T + Cυ. (4.154)
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For the cross covariance Cθz it holds

Cθz = E{θ(Hθ + υ)T } − ηθ(Hηθ + ηυ)T (4.155)

= CθH
T + Cθυ. (4.156)

The mean square estimator with linear observation model then becomes

θ̂LMS = ηθ + (CθH
T + Cθυ)(HCθH

T +HCθυ + CυθH
T + Cυ)−1(z −Hηθ − ηυ),

(4.157)
with error covariance

Cθ̃LMS
= Cθ − (CθH

T + Cθυ)(HCθH
T +HCθυ + CυθH

T + Cυ)−1(HCθ + Cυθ).
(4.158)

A special case of interest is when θ and υ are uncorrelated, i.e. Cθυ = 0. Then
the previous equations become

Cz = HCθH
T + Cυ, Cθz = CθH

T , Czθ = HCθ. (4.159)

And the estimator is

θ̂LMS = ηθ + CθH
T (HCθH

T + Cυ)−1(z −Hηθ − ηυ), (4.160)

Cθ̃LMS
= Cθ − CθH

T (HCθH
T + Cυ)−1HCθ. (4.161)

Yet another useful form is obtained by applying the matrix inversion lemma (3.89-
3.91). First we have

C11 = (Cθ − CθH
T (HCθH

T + Cυ)−1HCθ)
−1 = C−1

θ +HTC22H, (4.162)

C22 = (HCθH
T + Cυ −HCθC

−1
θ CθH

T )−1 = C−1
υ . (4.163)

Thus it is

Cθ − CθH
T (HCθH

T + Cυ)−1HCθ = (C−1
θ +HTC−1

υ H)−1. (4.164)

Also we have

−C11CθH
T (HCθH

T + Cυ)−1 = −C−1
θ CθH

TC22 = −HTC−1
υ , (4.165)

thus

CθH
T (HCθH

T + Cυ)−1 = (C−1
θ +HTC−1

υ H)−1HTC−1
υ . (4.166)

For the estimator we have

θ̂LMS = CθH
T (HCθH

T + Cυ)−1(z − ηυ)

+ CθC
−1
θ ηθ − CθH

T (HCθH
T + Cυ)−1HCθC

−1
θ ηθ

yielding finally (see for example [184], p. 155)

θ̂LMS = (C−1
θ +HTC−1

υ H)−1(HTC−1
υ (z − ηυ) + C−1

θ ηθ) (4.167)

Cθ̃LMS
= (C−1

θ +HTC−1
υ H)−1. (4.168)
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This form can now be compared with the fully deterministic case of Tikhonov
regularization (4.73) , and gives a Bayesian justification for the method. Further-
more, it shows how the constraints should be chosen (if we assume randomness),
so that the variance of the estimation error is minimized. If we compare with the
Gauss-Markov estimator (4.60) (optimal estimator for deterministic parameters),
we can see that the prior density (first and second order statistics) serves as a base
for optimal regularization. The absolutely unbiased optimal estimator (GM) is
obtained by letting C−1

θ = 0, which is more convenient than assuming an infinite
covariance matrix. This corresponds to the case that no prior information about
θ is available ([184], p. 157).

Let us now consider the linear model

z = s+ υ. (4.169)

Then, the Bayesian LMS estimator for s is (4.160)

ŝLMS = ηs + Cs(Cs + Cυ)−1(z − ηs − ηυ). (4.170)

If we assume that s = Hθ then ηs = Hηθ, Cs = HCθH
T , and substitution gives

ŝLMS = Hθ̂LMS . (4.171)

4.4.4 Maximum a posteriori estimation

The maximum a posteriori estimator is defined through another cost function,
namely the uniform cost function ([145], p. 188)

CUC(θ, θ̂(z)) =

{

0 if |θ̃k| < ǫ, for every k
1 otherwise

, (4.172)

where ǫ is a small constant. Thus, this cost function assigns zero cost if all the
components of the n-dimensional estimation error vector θ̃ are small, and unit
penalty if any of the components is larger than ǫ; and this for every θ and mea-
surement vector z. If we denote with I = (−ǫ, ǫ) × . . .× (−ǫ, ǫ) ⊂ Θ the zero cost
region, Ī the unit cost (penalty) region, i.e. the complement of I, then the Bayes
conditional cost given z associated with the uniform cost function is

BUC(θ̂|z) =

∫

Θ

CUC(θ, θ̂)p(θ|z)dθ (4.173)

=

∫

θ̃∈Ī

1 · p(θ|z)dθ (4.174)

= 1 −
∫

θ̃∈I

p(θ|z)dθ (4.175)

= 1 −
∫ θ̂1+ǫ

θ̂1−ǫ

. . .

∫ θ̂n+ǫ

θ̂n−ǫ

p(θ1, . . . , θn|z)dθ1 . . . dθn. (4.176)
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Based on the mean value theorem for integrals, for the continuous function p(θ|z)
there is a value θ̇, such as θ̂k − ǫ ≤ θ̇k ≤ θ̂k + ǫ for every k, for which it holds

BUC(θ̂|z) = 1 − p(θ̇|z)
∫ θ̂1+ǫ

θ̂1−ǫ

. . .

∫ θ̂n+ǫ

θ̂n−ǫ

1 dθ1 . . . dθn (4.177)

= 1 − p(θ̇|z)
n∏

k=1

∫ θ̂k+ǫ

θ̂k−ǫ

1 dθk (4.178)

= 1 − p(θ̇|z)(2ǫ)n (4.179)

≈ 1 − p(θ̂|z)(2ǫ)n. (4.180)

So for small enough ǫ, it is θ̇ ≈ θ̂, and the above conditional Bayes cost can be
minimized by maximizing the posterior density p(θ̂|z). Thus, the optimal estimator

θ̂UC related to the uniform cost function is defined as ([145], p. 189)

p(θ̂UC |z) ≥ p(θ̂|z), ∀θ̂. (4.181)

So since θ̂UC maximizes the density function p(θ|z), i.e. is the mode of the density,

θ̂UC is also called the conditional mode estimator, or more commonly the maximum
a posteriori (MAP) estimator θ̂MAP [145], and directly

θ̂MAP = arg max
θ∈Θ

p(θ|z). (4.182)

In order to obtain the MAP estimator the posterior density is required and is
obtained from the Bayes’ formula

pθ|z(θ|z) =
pz|θ(z|θ)pθ(θ)

pz(z)
, (4.183)

where the denominator pz(z) does not depend on the parameter vector θ, and
merely normalizes the posterior density pθ|z(θ|z) [108]. Hence, in order to obtain
the MAP estimator of θ it suffices to find the value that maximizes the numerator,
which is the joint density

pθ,z(θ, z) = pz|θ(z|θ)pθ(θ). (4.184)

Like in the maximum likelihood method, the MAP estimator can usually be found
by considering the logarithm. This now has the form

ln p(θ, z) = ln p(z|θ) + ln p(θ). (4.185)

By comparing with the respective log-likelihood equation we see that the MAP
equation contains an additional term ln p(θ) that takes into account prior infor-
mation about the parameters θ. The solution is then regularized by that term. It
can be shown, that if the prior density of θ is uniform for parameter values which
include the ML estimator, then the MAP and ML estimators become the same.
In other words, if we have no a priori knowledge concerning θ other than it is in a
given region, then the ML and MAP estimates are equal ([145], p. 191). Clearly,

θ̂MAP = θ̂MS if the mode of the density p(θ|z) equals the mean ηθ|z. This is the
case that p(θ|z) is symmetric and unimodal, like in the Gaussian case.



Chapter V

Recursive Estimation and Kalman filtering

In this chapter, recursive mean square estimation methods are discussed. This
involves state-space modeling and Kalman filters and smoothers for state estima-
tion. The related concepts are approached through Bayesian estimation theory
and much less through adaptive Wiener filtering theory. Main references include
[145, 184, 185, 108] see also [7, 75, 71, 161, 160, 25].

5.1 Basic concepts and definitions

Consider that we observe T realizations of a random vector, for which we assume
the additive noise models

zt = Htθt + υt, t = 1, . . . , T, (5.1)

where Ht are known matrices. If we assume that the random parameters θt and
the noise vectors υt are uncorrelated for every t, estimates can be obtained by the
optimal linear mean square estimator as (4.167)

θ̂t = (HT
t C

−1
υt
Ht + C−1

θt
)−1(HT

t C
−1
υt
zt + C−1

θt
ηθt

), t = 1, . . . , T, (5.2)

where we have assumed that υt are zero mean for every t. Thus, the identification
of the first and second order properties of the prior densities p(θt) are needed. If
all the involved densities are Gaussian, then the estimator is overall optimal, not
only among linear estimators, and is also the MAP estimator. For the parameters
θt we can also assume a common prior density p(θt) = p(θ) for every t. Then
estimates for the T realizations of the random vector θ can be obtained by

θ̂t = (HT
t C

−1
υt
Ht + C−1

θ )−1(HT
t C

−1
υt
zt + C−1

θ ηθ), t = 1, . . . , T, (5.3)

Estimates for st = Htθt are obtained in both cases as

ŝt = Htθ̂t, t = 1, . . . , T. (5.4)

We can consider also the model

zt = Htθ + υt, t = 1, . . . , T, (5.5)

76
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i.e. all the measurements are about the same parameter θ. The parameter can
still be considered random. We can then form the model (or the posterior if we
consider Gaussianity)

z = Hθ + υ, (5.6)

where z = (zT
1 , . . . , z

T
T )T are the measurements, υ = (υT

1 , . . . , υ
T
T )T is the noise

and H = (HT
1 , . . . ,H

T
T )T is the observation model. If we also assume that the

noise vectors υt are mutually independent, then the estimator becomes

θ̂ = (HTC−1
υ H + C−1

θ )−1(HTC−1
υ zt + C−1

θ ηθ) (5.7)

= (

T∑

t=1

HT
t C

−1
υt
Ht + C−1

θ )−1(

T∑

t=1

HtC
−1
υt
zt + C−1

θ ηθ). (5.8)

Note, that the prior information becomes negligible when T grows, see also for
example ([184], p. 203). If now we drop the prior the estimator reduces to the
Gauss-Markov estimator (or maximum likelihood for Gaussian noise vectors). If
we also consider Ht = I and Cυt

= C for every t, i.e. the noise vectors are
independent identically distributed, then the estimator is the conventional average
of the measurements θ̂ = ŝ = 1

T

∑T
t=1 zt.

In the following we are interested in the first case (5.1), where the distribution of
the parameters has different characteristics in every realization, and especially for
the situation that the parameters θt have time correlations. Then the order of the
measurements is important and {zt}, {θt} can be considered as vector stochastic
processes. Estimates for the parameters can be obtained recursively in terms of
Kalman filtering [110, 111].

5.2 State-space modeling

5.2.1 State-space observation model

Consider that the time-varying parameters θt are indeed time instances of a vector
valued stochastic process {θt}. The simplest non-stationary process that can serve
as a model is the first order Markov process. Consider a process that satisfies the
recursion

θt = ft(θt−1, ωt), (5.9)

where ft is a time-varying vector valued function of θt−1 and ωt. The noise process
ωt is a sequence of independent random vectors with time-varying distributions.
The vector θt is determined in terms of θt−1 and ωt only, hence it is conditionally
independent of θk for k < t − 1, so the process is Markov having the memoryless
property

p(θt|θt−1, θt−2, . . . , θ0) = p(θt|θt−1). (5.10)

Where we considered a random starting point θ0 independent of ωt for every t.
From the independence of {ωt} and the model we have that θt−1 depends on all
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the past of the noise process, i.e. ωk for k = 1, . . . , t− 2, t− 1, and is independent
of ωk for k = t. For example, for the function ft(θt−1, ωt) = θt−1 + ωt we have

θt = θt−1 + ωt = . . . = θ0 + ω1 + ω2 + . . .+ ωt. (5.11)

Thus, the sum of independent random vectors or variables is a Markov sequence.
This process is called random walk and is non-stationary. Also, if ωt are zero mean
and a sample path is given up to θt−1, then from equations (5.10) and (5.11) it
holds

E{θt|θt−1, θt−2, . . . , θ0} = E{θt−1 + ωt|θt−1} = θt−1. (5.12)

In general, a random sequence with the previous property is called martingale [59].
Consider now a random process {zt} that relates to the process (5.11) through

the relation zt = θt + υt, where υt is a sequence of independent random vectors
independent of ωt and not necessarily identically distributed. We observe that the
process zt is not Markov, since

zt = θt + υt = θt−1 + ωt + υt = zt−1 − υt−1 + υt + ωt, (5.13)

and the vector ξt = −υt−1 + υt + ωt depends on ξt−1, because they have the
common term υt−1. After these observations we can now generalize.

A random process {zt} is observed and is assumed to relate to another process
{θt} through the model

θt = ft(θt−1, ωt) (5.14)

zt = ht(θt, υt) (5.15)

for every t = 1, 2, . . .. Equation (5.14) defines the state or time evolution for a not
directly observed Markov process {θt} and (5.15) the observation equation that
relates the hidden process to the measurements. This an example of a state-space
observation model ([108], p. 119). The assumptions of the model are summarized
as follows

• the functions ft, ht are well defined known vector valued functions for all t,

• {ωt} is a sequence of independent random vectors with different distributions
and defines the state noise process,

• {υt} is also a white random vector process that represents observation noise,

• the random vectors ωt and υt are mutually independent for every t,

• the distributions of ωt, υt are known (or preselected),

• there is an initial vector θ0 with known distribution independent of ωt and
υt for every t.

Obviously, the simplest state evolution is given by the random walk model. The
observation model can be linear or non-linear depending on the application. Fi-
nally, the estimation problem related to the state-space model is to make inference
about {θt} by observing {zt}.
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5.2.2 The evolution observation pair

The previous estimation problem can be described in a different way. Let {zt}
be an observable sequence of data that contain information about an unobserved
physical mechanism or system that has a stochastic behavior. For the description
of the system a vector of parameters θt, i.e. the process of parameters of interest, is
selected that naturally depends on the measurements. With natural dependency of
parameters and measurements we only assume that the likelihood densities p(zt|θt)
have meaning. The processes {θt}, {zt} form a (first order) evolution observation
pair if the following properties hold ([108], p. 118)

• the hidden state evolution process {θt} has the memoryless property

p(θt|θt−1, θt−1, . . . , θ0) = p(θt|θt−1) (5.16)

for some random starting point θ0 and some evolution up to t,

• the observed process {zt} has the memoryless property with respect to the
history of {θt}, that is

p(zt|θt, θt−1, . . . , θ0) = p(zt|θt), (5.17)

• the parameter process {θt} depends on the past only through its own history,
that is

p(θt|θt−1, zt−1, zt−2 . . . , z1) = p(θt|θt−1). (5.18)

Notice, that as soon as a state-space model is defined for an evolution observation
pair, then the assumptions of the model come in parallel with the above definitions.

Let {θk}, {zk}, k = 1, . . . , t a path of the evolution observation pair. Then we
can regroup the join density

p(zt, . . . , z1, θt, . . . , θ1) = p(zt, θt, . . . , z1, θ1) (5.19)

= p(z1, θ1)

t∏

k=2

p(zk, θk|zk−1, θk−1, . . . , z1, θ1).(5.20)

Where we applied the chain rule for conditioning over the pairs {zt, θt}. For the
conditional densities by applying (3.13) we have

p(zk, θk|zk−1, θk−1, . . . , z1, θ1) = p(zk|θk, θk−1, . . . , θ1, zk−1, . . . , z1)

·p(θk|θk−1, . . . , θ1, zk−1, . . . , z1) (5.21)

= p(zk|θk)p(θk|θk−1) (5.22)

= p(zk|θk, θk−1)p(θk|θk−1, zk−1) (5.23)

= p(zk, θk|zk−1, θk−1). (5.24)

Where we applied (3.13) again. Equation (5.22) holds because of (5.16-5.18). Also
from (5.15) and from the mutual independence of υt, if θt is given then zt is
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conditionally independent of the previous observations. From the last equation we
have that the stochastic process defined by the pairs {zt, θt} have the memoryless
property. Also by using equations (5.22), (5.20) and (5.17) it holds

p(zt, θt, . . . , z1, θ1, θ0) = p(zt|θt)p(θt|θt−1) . . . p(z1|θ1)p(θ1|θ0)p(θ0) (5.25)

= p(θ0)

t∏

k=1

p(zk|θk)p(θk|θk−1). (5.26)

Thus, for the evolution observation pair to be completely specified we need the
probability density of the initial state p(θ0), the transition conditional densities
p(θt|θt−1) and the likelihood functions p(zt|θt), for all t = 1, 2, . . . ([108], p. 119).

5.2.3 Bayesian formulation and related estimation problems

Let {θt}, {zt} be an evolution observation pair, then the following problems are
under concideration

• prediction, i.e. the determination of the predictive conditional densities
p(θt|z1, z2, . . . , zt−1) or more general p(θt|z1, . . . , zt−p) for p ≥ 1 (p-step),

• filtering, i.e. the determination of p(θt|z1, . . . , zt),

• fixed lag smoothing, i.e. the determination of p(θt|z1, . . . , zt+p) for p ≥ 1
(p-lag),

• fixed interval smoothing, i.e when a measurement sequence is obtained for
t = 1, . . . , T the determination of the conditional densities p(θt|z1, . . . , zT ).

Based on these conditional or posterior densities, estimators can be defined in a
Bayesian framework. It can be noticed, that all the above mentioned problems are
computationally related to the one step prediction problem as an intermediate step.
In general, prediction problems are important for estimating future evolutions
based on current information, thus forecasting. Filtering or (p-lag) smoothing
can be used, for example, in situations that on-line processing is important as in
optimal control problems. However, they can be used for batch processing as well,
but the fixed interval smoothing usually yields smaller estimation errors.

Filtering and prediction distributions

Let us now consider the posterior density for θt given past and present measure-
ments up to time instant t. Based on that conditional density, Bayesian MAP
or conditional mean estimators can be defined. If we denote Zt = {z1, z2, . . . , zt}
the compound measurements up to t, we have for the posterior in terms of the
likelihood and the prior density of θt that

p(θt|z1, z2, . . . , zt) = p(θt|Zt) =
p(Zt|θt)p(θt)

p(Zt)
. (5.27)
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For the likelihood by applying (3.13) we have

p(Zt|θt) = p(zt, Zt−1|θt) = p(zt|Zt−1, θt)p(Zt−1|θt) (5.28)

= p(zt|θt)p(Zt−1|θt), (5.29)

since if θt is given then zt is conditionally independent to its past. Furthermore,
(5.27) becomes [77]

p(θt|Zt) =
p(zt|θt)p(Zt−1|θt)p(θt)

p(zt, Zt−1)
(5.30)

=
p(zt|θt)p(θt|Zt−1)p(Zt−1)

p(zt|Zt−1)p(Zt−1)
(5.31)

=
p(zt|θt)p(θt|Zt−1)

p(zt|Zt−1)
, (5.32)

where we applied again the Bayes rule. Thus, the posterior density is proportional
to the product of the likelihood function p(zt|θt) based on current information for
the parameters and a compound prediction-prior density, which contains informa-
tion from the state evolution process and past measurements since

p(θt|Zt−1) =

∫

p(θt, θt−1|Zt−1)dθt−1 =

∫

p(θt|θt−1)p(θt−1|Zt−1)dθt−1. (5.33)

The last equation provides the base for the different estimation problems. Equa-
tions (5.32), (5.33), see also (5.26), suggest a recursive estimation procedure for
the determination of the density. For the denominator of (5.32) we can write

p(zt|Zt−1) =

∫

p(zt, θt|Zt−1)dθt =

∫

p(zt|θt)p(θt|Zt−1)dθt, (5.34)

which is the the integral of the nominator, i.e. a normalization constant, and it
holds

p(θt|Zt) =

∫
p(zt|θt)p(θt|θt−1)p(θt−1|Zt−1)dθt−1

∫ ∫
p(zt|θt)p(θt|θt−1)p(θt−1|Zt−1)dθtdθt−1

(5.35)

∝ p(zt|θt)p(θt|Zt−1). (5.36)
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Smoothing distribution

Let us now consider the smoothing problem p(θt|ZT ). For this posterior we have

p(θt|ZT ) =

∫

p(θt, θt+1|ZT )dθt+1 (5.37)

=

∫

p(θt|θt+1, ZT )p(θt+1|ZT )dθt+1 (5.38)

=

∫

p(θt|θt+1, Zt)p(θt+1|ZT )dθt+1 (5.39)

=

∫
p(θt+1, Zt|θt)p(θt)p(θt+1|ZT )

p(θt+1, Zt)
dθt+1 (5.40)

=

∫
p(θt+1|θt, Zt)p(Zt|θt)p(θt)p(θt+1|ZT )

p(θt+1|Zt)p(Zt)
dθt+1 (5.41)

= p(θt|Zt)

∫
p(θt+1|θt)p(θt+1|ZT )

p(θt+1|Zt)
dθt+1 (5.42)

Equation (5.39) is due to (3.121) and (5.18), and denotes a backward treatment
for the process. The last form suggests again a recursive estimation procedure for
the determination of the conditional density [10]. It is thus possible to compute
the filtering and prediction distributions in a forward (filtering) recursion, i.e cal-
culating p(θt|Zt) and p(θt+1|Zt) from (5.32), (5.33), and then execute a backward
recursion with each smoothed distribution p(θt|ZT ) relying upon the quantities
calculated in the forward run and the previous (in reverse time) smoothed distri-
butions p(θt+1|ZT ). This property enables the formulation of the forward-backward
method for the smoothing problem [174, 7], which gives the smoother estimates
as corrections of the filter estimates.

Let us now write the joint density p(θt, θt+1|ZT ) in a different form, i.e.

p(θt, θt+1|ZT )=
p(ZT |θt, θt+1)p(θt, θt+1)

p(ZT )
(5.43)

=
p(Zt, zt+1, . . . , zT |θt, θt+1)p(θt+1, θt)

p(ZT )
(5.44)

=
p(Zt|zt+1, . . . , zT , θt, θt+1)p(zt+1, . . . , zT |θt, θt+1)p(θt+1, θt)

p(ZT )
(5.45)

=
p(Zt|θt)p(zt+1, . . . , zT |θt+1)p(θt+1|θt)p(θt)

p(zt+1, . . . , zT |Zt)p(Zt)
(5.46)

=
p(θt|Zt)p(zt+1, . . . , zT |θt+1)p(θt+1|θt)

p(zt+1, . . . , zT |Zt)
. (5.47)

This form will be used for the derivation of the forward backward smoother as
in [174]. Furthermore, by applying twice the Bayes rule we have from the last
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expression

p(θt|ZT ) =

∫

p(θt, θt+1|ZT )dθt+1 (5.48)

∝ p(θt|Zt)

∫
p(θt+1|zt+1, . . . , zT )p(θt|θt+1)

p(θt)
dθt+1, (5.49)

where p(θt) = πt(θt) is an artificial prior distribution for θt. This form suggests
a two-filter smoothing procedure, such that the first filter recurs in the forward
direction computing p(θt|Zt) and the second filter recurs in the backward direction
computing p̄(θt|zt, . . . , zT ) (backward information filter). The smoothing distribu-
tion is then computed as an optimal combination of the two independent filters
[61, 144, 122, 71].

Finally, we have from (5.26)

p(θ1, . . . , θT |z1, . . . , zT ) =
p(θ1, z1, . . . , θT , zT )

p(ZT )
(5.50)

∝
T∏

t=1

p(zt|θt)ξ1(θ1)

T−1∏

t=2

p(θt|θt−1)ξT (θT ), (5.51)

where ξ1(θ1) = p(θ1) = p̄(θ1|θ0) = p̄(θ0|θ1)p̄(θ1), and ξT (θT ) = p(θT |θT−1) =
p(θT−1|θT )p(θT )/p(θT−1). This reflects the fact that there is not enough prior
information from the model about the distribution of θT [61], since no information
obtained after the end of the measurements is used for the terminal state. This
can also be understood by considering initialization for the backward recursions
for both the previous discussed cases. However, it must be noted that this is of
small practical interest when long measurements are available, since estimates for
initialization can be obtained by backward and forward filtering.

5.3 Recursive mean square estimation

5.3.1 The linear Gaussian case

Let us consider the case of the linear state-space model, i.e.

θt = Ftθt−1 +Gtωt, (5.52)

zt = Htθt + υt, (5.53)

where Ht, Ft and Gt are assumed to be known matrices. Without loss of gen-
erality, we can assume that the noise processes are zero mean. For determining
the posterior (5.32) we need an error distribution to define the likelihood p(zt|θt)
and a recursive procedure to define (5.33). Since the MAP estimator takes the
same form with the linear conditional mean estimator for Gaussian densities we
are going to derive it based on the Gaussianity assumption.
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A Gaussian density for θ0 and Gaussian densities for ωt directly give from the
state evolution that θt are Gaussian distributed for every t as linear combinations
of Gaussian vectors. Thus it is

θt ∼ N(Ftηθt−1
, FtCθt−1

FT
t +GtCωt

GT
t ) (5.54)

and θ0 ∼ N(ηθ0
, Cθ0

). Additionally for the conditional density of θt given θt−1 it
holds

θt|t−1 ∼ N(Ftθt−1, GtCωt
GT

t ). (5.55)

Also υt is assumed Gaussian, thus leading to a Gaussian likelihood model, and the
covariances Cωt

, Cυt
are assumed known.

5.3.2 Kalman filter

We search for the value that maximizes the density

p(θt|Zt) =
p(zt|θt)p(θt|Zt−1)

p(zt|Zt−1)
. (5.56)

Thus, we search for the estimator

θ̂ = E{θt|Zt}, (5.57)

based on the linear model and the Gaussian assumptions. For Gaussian densities
we only need to derive the means and covariances. For the mean and covariance
of the density p(zt|θt) we have

ηzt|θt
= E{zt|θt} = E{Htθt + υt|θt} = Htθt (5.58)

Czt|θt
= E{(Htθt + υt − ηzt|θt

)(Htθt + υt − ηzt|θt
)T |θt} = Cυt

. (5.59)

Thus, the Gaussian density p(zt|θt), or the likelihood function, is the density of υt

and is of the form

p(zt|θt) ∝ exp

(

−1

2
(zt −Htθt)

TC−1
υt

(zt −Htθt)

)

. (5.60)

For the density p(θt|Zt−1) we have

ηθt|Zt−1
= E{Ftθt−1 +Gtωt|Zt−1} (5.61)

= Ftθ̂t−1 = θ̂t|t−1, (5.62)

Cθt|Zt−1
= E{(θt − ηθt|Zt−1

)(θt − ηθt|Zt−1
)T |Zt−1} (5.63)

= E{(θt − Ftθ̂t−1)(θt − Ftθ̂t−1)
T |Zt−1} = Cθ̃t|t−1

, (5.64)

where θ̂t|t−1 is the estimate (or prediction) for the state θt given the past obser-
vations Zt−1, and Cθ̃t|t−1

is the error covariance of the prediction. The density

p(θt|Zt−1) is then of the form

p(θt|Zt−1) ∝ exp

(

−1

2
(θt − θ̂t|t−1)

TC−1

θ̃t|t−1

(θt − θ̂t|t−1)

)

. (5.65)
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Thus, the posterior has the Gaussian form

p(θt|Zt) ∝ exp

(

−1

2
‖zt −Htθt‖2

C−1
υt

− 1

2
‖θt − θ̂t|t−1‖2

C−1

θ̃t|t−1

)

. (5.66)

In order to obtain the MAP estimator first the logarithm of the posterior is con-
sidered. By setting to zero the gradient of the log posterior with respect to θt we
have

HT
t C

−1
υt

(zt −Htθ̂t) − C−1

θ̃t|t−1

(θ̂t − θ̂t|t−1) = 0, (5.67)

which gives the form (e.g. [145], p. 247)

θ̂t = (HT
t C

−1
υt
Ht + C−1

θ̃t|t−1

)−1(HT
t C

−1
υt
zt + C−1

θ̃t|t−1

θ̂t|t−1). (5.68)

This has exactly the same form as the Bayesian mean square estimator (4.167),
or the MAP estimator for Gaussian variables. Prior information is used in the
estimator sequentially in terms of the prediction prior density (5.65). Another
formulation of the estimator as in (4.160), by applying the matrix inversion lemma,
is given by

θ̂t = θ̂t|t−1 +Kt(zt −Htθ̂t|t−1) (5.69)

= Ftθ̂t−1 +Kt(zt −HtFtθ̂t−1), (5.70)

where the matrix Kt is called Kalman Gain matrix given by (e.g. [145], p. 247)

Kt = Cθ̃t|t−1
HT

t (HtCθ̃t|t−1
HT

t + Cυt
)−1. (5.71)

Thus, the estimate at time t is obtained by correcting the prediction Ftθ̂t−1,
based on the state model and past observations, with the one step prediction
error zt −HtFtθ̂t−1, or innovation vector, that represents the new information in
the observed data zt (e.g. [75] chapter 7). The estimation error can be written as

θ̃t = θt − θ̂t (5.72)

= θt − θ̂t|t−1 −Kt(zt −Htθ̂t|t−1) (5.73)

= θt − θ̂t|t−1 −Kt(Htθt + υt −Htθ̂t|t−1) (5.74)

= θ̃t|t−1 −Kt(Htθ̃t|t−1 + υt) (5.75)

= (I −KtHt)θ̃t|t−1 −Ktυt, (5.76)

and has covariance

Cθ̃t
= (I −KtHt)Cθ̃t|t−1

(I −KtHt)
T +KtCυt

KT
t (5.77)

= (I −KtHt)Cθ̃t|t−1
, (5.78)

where we could have also used directly equations (4.161) or (4.168). Thus, the
following expression is equivalent

Cθ̃t
= (C−1

θ̃t|t−1

+HT
t C

−1
υt
Ht)

−1. (5.79)
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In order to be complete, the Kalman filter algorithm requirs the recursive
computation of the error covariance Cθ̃t|t−1

. For the prediction error it holds

θ̃t|t−1 = θt − θ̂t|t−1 = Ftθt−1 +Gtωt − Ftθ̂t−1 = Ftθ̃t−1 +Gtωt (5.80)

Thus, Cθ̃t|t−1
can be written as

Cθ̃t|t−1
= E{(Ftθ̃t−1 +Gtωt)(Ftθ̃t−1 +Gtωt)

T } (5.81)

= FtCθ̃t−1
FT

t +GtCωt
GT

t , (5.82)

since, θ̂t−1 and ωt are uncorrelated. Thus, we have a recursive formula to update
the prediction error covariance and the derivation of Kalman filter is now complete.
It can take at least two different forms depending of the formulation for the mean
square estimator. We can summarize one of them as

Cθ̃t|t−1
= FtCθ̃t−1

FT
t +GtCωt

GT
t (5.83)

Kt = Cθ̃t|t−1
HT

t (HtCθ̃t|t−1
HT

t + Cυt
)−1 (5.84)

θ̂t = Ftθ̂t−1 +Kt(zt −HtFtθ̂t−1) (5.85)

Cθ̃t
= (I −KtHt)Cθ̃t|t−1

. (5.86)

In order to initialize the algorithm, prior knowledge for θ̂0 = E{θ0} and Cθ̃0
= Cθ0

is required.
If the state-space model contains known (input or control) deterministic vectors

xt, yt, so that it becomes

θt = Ftθt−1 +Gtωt + xt (5.87)

zt = Htθt + υt + yt, (5.88)

the recursive mean square estimator for the state becomes

θ̂t = Ftθ̂t−1 + xt +Kt(zt −HtFtθ̂t−1 −Htxt − yt). (5.89)

The covariance and gain equations remain the same ([145], p. 249). The same
form is obtained for the case that ωt and υt have non-zero means. Their time
varying means can, for example, be treated as known inputs. See also equation
(4.160) for the general form of the mean square estimator.

Finally, consider a different state-space model, where state and observation
noise are correlated. Thus there are extra known matrices for the cross correlations
Cωt,υt−1

= Ct 6= 0. The rest of the previous assumptions remain the same. We can
transform this model to the case that Kalman filter can be used ([145], p. 250).
We rewrite the state equation by adding a zero valued term, i.e.

θt = Ftθt−1 +Gtωt +At(zt−1 −Ht−1θt−1 − υt−1) (5.90)

= (Ft −AtHt−1)θt−1 + (Gtωt −Atυt−1) +Atzt−1 (5.91)

= F ′
tθt−1 + ω′

t + xt (5.92)
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We also have that

Cω′
t,υt−1

= E{(Gtωt −Atυt−1)υ
T
t−1} = FtCt −AtCυt−1

. (5.93)

Thus, with the selection At = FtCtC
−1
υt−1

, the cross correlation in (5.93) becomes
zero and the modified state space model has the necessary properties and Kalman
filter can be applied. Different transformations of an original state-space model
can be applied in order to bring the problem in the standard form for Kalman
filtering, for example, for the fixed-lag smoothing problem as well as for higher
order Markov models [108].

5.3.3 Fixed interval smoother

Similar to the filtering problem we search for the value that maximizes the density

p(θt|ZT ) = p(θt|z1, z2, . . . , zT ), (5.94)

where ZT = {z1, z2, . . . , zT } is a given measurement path. Thus, we search for the
estimator (smoother)

θ̂s
t = E{θt|ZT }, (5.95)

based on the linear state-space model and the Gaussian assumptions. From (5.47)
we have for the joint density p(θt, θt+1|ZT )

p(θt, θt+1|ZT ) ∝ p(θt|Zt)p(zt+1, . . . , zT |θt+1)p(θt+1|θt). (5.96)

Since first a forward filter recursion is considered, the densities p(θt|Zt) are esti-
mated to be Gaussian with means and variances

ηθt|Zt
= θ̂t, (5.97)

Cθt|Zt
= Cθ̃t

. (5.98)

For the Gaussian evolution density p(θt+1|θt) we have from the model

ηθt+1|θt
= Ft+1θt, (5.99)

Cθt+1|θt
= Gt+1Cωt+1

GT
t+1. (5.100)

Lets us denote θ̂s
t the (smooth) estimator or the value of θt that maximizes the

required density p(θt|ZT ). Then θ̂s
t , θ̂

s
t+1 are the values that maximize the joint

density p(θt, θt+1|ZT ). We search for the maximum with respect to θt, θt+1 of

log p(θt, θt+1|ZT ) ∝ −‖θt+1−Ft+1θt‖2
(Gt+1Cωt+1

GT
t+1

)−1−‖θt−θ̂t‖2
C−1

θ̃t

+C, (5.101)

where C represents terms arising from p(zt+1, . . . , ZT |θt+1) that do not depend
on θt. Now, since we try to define the backward sequential procedure, the esti-
mator θ̂s

t+1 = arg max p(θt+1|ZT ) is considered to be already obtained. It follows
immediately that θs

t is the one that minimizes the expression

l=(θ̂s
t+1 − Ft+1θt)

T (Gt+1Cωt+1
GT

t+1)
−1(θ̂s

t+1 − Ft+1θt) + (θt − θ̂t)
TC−1

θ̃t

(θt − θ̂t).

(5.102)
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By considering the gradient with respect to θt and equating to zero and then
applying the matrix inversion lemma the optimal estimator for the smoothing
problem can be written in the original form in a backward recursion [174]

θ̂s
t = θ̂t +At(θ̂

s
t+1 − Ft+1θ̂t) (5.103)

= θ̂t +At(θ̂
s
t+1 − θ̂t+1|t), (5.104)

where

At = Cθ̃t
FT

t+1C
−1

θ̃t+1|t
(5.105)

for t = T − 1, T − 2, . . . , 1, which relates the smoothing estimates with the stored
filter and predictive distributions as it was indicated from (5.42). For the initial-

ization of the backward steps the filter estimate θ̂T is used, i.e. θ̂s
T = θ̂T . For

the error covariances, similar recursive procedure can be derived by examining the
estimation error θ̃s

t of the smoothed estimates. This results in the recursion [174]

Cθ̃s
t

= Cθ̃t
+At(Cθ̃s

t+1

− Cθ̃t+1|t
)AT

t , (5.106)

which completes the solution of the fixed-interval smoothing problem. The com-
putation is initiated by specifying Cθ̃s

T
for example based on Cθ̃T

.

A Non-Recursive Formulation

In order to obtain a non-recursive formulation for the smoother, we consider the
posterior p(θ1, . . . , θT |ZT ) and equation (5.51). Based on the Gaussianity assump-
tions and the model the smoothing estimator can be obtained by minimizing the
functional (after considering the logarithm)

l(θ1, . . . , θT ) =

T∑

t=1

‖zt −Htθt‖2
C−1

υt

+

T∑

t=2

‖θt − Ftθt−1‖2
C−1

ωt

+ ‖θ1 − F1ηθ0
‖2

C−1

ω′
1

.

(5.107)
Where for simplified notation we considered Gt = I or ωnew

t = Gtωt. Also from
(5.54) we considered a gaussian density for θ0 and Cω′

1
= F1Cθ0

FT
1 + Cω1

. The
smoothing algorithm that we presented is a recursive estimation procedure for
the above problem and the connections are also discussed in the original work
[174]. Additionally, we can write the above problem in a more suggestive form as
a constrained least square problem

min
θ1,θ2,...,θT

T∑

t=1

‖zt −Htθt‖2
C−1

υt

(5.108)

subject to the constraints or prior information given by the state evolution model
and the initial Gaussian density. In order to find an alternative, non-recursive
solution, for the problem, we first write the augmented observation model for all
the measurements, that is
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θ
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υ1
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︸ ︷︷ ︸

υ

. (5.109)

The Gauss-Markov estimator or the ML estimator for the augmented model z =
Hθ + υ minimizes (5.108) and is given by (4.99), where Cυ is a block diagonal
matrix with elements Cυt

. In the spirit of equations (4.69)-(4.73) we form a new
model, that takes into account the constraints (see the state-space model), as
















0
z1
0
z2
...

zT−1

0
zT
















=
















−I
H1

F2 −I
H2

. . .
. . .

HT−1

FT −I
HT

























θ1
θ2
...

θT−1

θT










+
















ω′
1

υ1

ω2

υ2

...
υT−1

ωT

υT
















,

(5.110)
where for simplicity we considered ηθ0

= 0. The smoothing estimates are obtained
as ML estimates for the model H ′ and the extended measurement vector z′ from

θ̂s = (H ′TC−1
υ′ H

′)−1H ′TC−1
υ′ z

′, (5.111)

where

Cυ′ =












F1Cθ0
FT

1 + Cω1

Cυ1

Cω2

. . .

CωT

CυT












. (5.112)

By making the rearrangement

H ′ =

(
H
L

)

, Cυ′ =

(
Cυ

Cω

)

, z′ =








z
0
...
0







, (5.113)
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where

L =










−I
F2 −I

F3 −I
. . .

. . .

FT −I










, Cυ =






Cυ1

. . .

CυT




 , (5.114)

and Cω equivalently, we obtain a Bayesian MS estimator

θ̂s = (HTC−1
υ H + LTC−1

ω L)−1HTC−1
υ z. (5.115)

In this form, it can be perhaps easier seen that the prior information in the
estimation procedure is related to a smoothing density N(0, (LTC−1

ω L)−1) that
relates to the state evolution model. Note, that in the state space model L,Cω, Cυ

are assumed known and exactly of the form (5.114). However, this form for the
smoothing estimator is not so useful for practical applications with long mea-
surements. Actually, block Gaussian elimination (an operation that turns out to
be equivalent to the Kalman filter forward algorithm), followed by block back
substitution (equivalent to the backward smoothing operation) provides a compu-
tationally optimal solution for problem, i.e. the smoothing algorithm described
earlier [216]. Another issue that can be observed from this formulation is that
the initial condition constraint is not necessary for the problem to have solution.
We can assume no prior information, and thus remove the first blocks from the
matrices L and Cω.

If we now assume that Cυt
= σ2

υI for every t, i.e. time invariant and diagonal,
then the estimator becomes

θ̂s = (HTH + σ2
υL

TC−1
ω L)−1HT z, (5.116)

from which we can roughly see that the performance of the estimator is influenced
only by the ratio σ2

υC
−1
ω , and not by the exact values. Thus, by setting the

variance term σ2
υ = 1, the performance of the estimator can be controlled by, in

some sense, the modified state covariances. Another observation for (5.115) is that,
since the right term under the inverse comes clearly as a regularizer, the magnitude
of the observation model H influence the performance of the regularization. For
example, if we consider fixed the regulirizer and we change the observation model
with another of the form H ′ = cH.

Let us now consider a useful example. Starting with a random walk model, i.e.
Ft = I, Ht = I, and a scalar case, that is θt ∈ R, we have the state space model

θt = θt−1 + ωt (5.117)

zt = θt + υt. (5.118)

The smoothing estimator optimal in the mean square sense for the parameter
vector is given by

θ̂s = (I + σ2
υL

TC−1
ω L)−1z, (5.119)



5.4 Priors for the state evolution and a state-space identification scheme91

where now

L =








−1
1 −1

. . .
. . .

1 −1







, (5.120)

and Cω = diag(σ2
ω′

1

, . . . , σ2
ωT

), by the uncorrelatedness conditions of the model,

and σ2
ω′

1

= σ2
ω1

+ σ2
θ0

. Thus we can write

θ̂ = (I + LT ΦL)−1z, (5.121)

where

Φ = diag(φ2
1, φ

2
2, . . . , φ

2
T ), (5.122)

and

φ2
t =

σ2
υ

σ2
ωt

. (5.123)

This underlines that the smoothing density involves the determination of T pa-
rameters. Furthermore, if we set Φ = α2I and if we assume no prior information
for the initialization, then we have the smoothing priors regularization method
(4.86). The first order difference operator comes in accordance to the first order
Markov model (random walk) and the smoothing problem can also be treated
deterministically.

5.4 Priors for the state evolution and a state-space identi-

fication scheme

We have seen that the state evolution model in Bayesian filtering forms the prior
information for estimation in filtering and smoothing problems. The order of the
Markov model characterize the predictive densities and the strength of the prior
relates to the selection of the state noise and observation noise covariance matrices.
Significant is also the role of the state evolution matrices Ft that relate directly
to the parametrization of the problem and to other properties of the parameters
θt. Especially, in estimation problems that there is not a clear and unique a priori
parametrization , i.e. the observation model, the choices for Ht and Ft can come
in parallel.

For example, there might be prior information outside the context of the time
evolution. Indeed, if we were to estimate θt based purely on measurements zt

we might have (or want to enforce) prior knowledge in terms of a prior density.
The parametrization can, for example, allow to use extra smoothing criteria. This
prior information can be embedded in the state evolution model by adding spatial
regularization in the observation model [13, 109, 127], that is

[
zt

0

]

=

[
Ht

R

]

θt +

[
υt

0

]

. (5.124)
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Let us assume that we already have a state-space model for an estimation
problem and we want to enforce some extra prior knowledge in terms of a prior
density ppr(θt). In terms of the extra prior, for the transition density we have from
Bayes’ rule ([108], p. 134) that

p(θt|θt−1) =
p(θt−1|θt)ppr(θt)

p(θt−1)
, (5.125)

where

p(θt−1) =

∫

p(θt−1|θt)ppr(θt)dθt. (5.126)

The density p(θt−1|θt) is a back transition density. Let

ppr(θt) ∝ exp(−1

2
θT

t C
−1
t θt) (5.127)

be the prior density and let

θt = θt−1 + ωt, ωt ∼ N(0, Cωt
) (5.128)

be the random walk model (Ft = I) that we want to enforce. For this model we
have

p(θt−1|θt) ∝ exp(−1

2
‖θt−1 − θt‖2

C−1
ωt

). (5.129)

The forward transition density (5.125) becomes

p(θt|θt−1) ∝
1

p(θt−1)
exp(−1

2
(θt − θt−1)

TC−1
ωt

(θt − θt−1) −
1

2
θT

t C
−1
t θt), (5.130)

the denominator being the integral of the numerator. From the equation

(θt − (C−1
t + C−1

ωt
)−1C−1

ωt
θt−1)

T (C−1
t + C−1

ωt
)(θt − (C−1

t + C−1
ωt

)−1C−1
ωt
θt−1) −

θT
t−1C

−1
ωt

(C−1
t + C−1

ωt
)−1C−1

ωt
θt−1 + θT

t−1C
−1
ωt
θt−1 =

(θt − θt−1)
TC−1

ωt
(θt − θt−1) + θT

t C
−1
t θt

we have that (5.130) by considering (5.127-5.129) can be written as

p(θt|θt−1) ∝ exp(−1

2
(θt −AtC

−1
ωt
θt−1)

TA−1
t (θt −AtC

−1
ωt
θt−1)), (5.131)

where

At = (C−1
t + C−1

ωt
)−1. (5.132)

This transition density corresponds to the modified state evolution model, see
(5.55), given by (see also [108] p. 135)

θt = AtC
−1
ωt
θt−1 + ωt, ωt ∼ N(0, At) (5.133)
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or

θt = (I + Cωt
C−1

t )−1θt−1 + ωt, ωt ∼ N(0, (I + Cωt
C−1

t )−1Cωt
). (5.134)

Note, that the observation model is the same. For example, if we consider a
random walk model Ft = I with Cωt

= σ2
t I and prior density with covariance

(DT
d Dd)

−1, then we obtain the model ([108] p. 135)

θt = (I + σ2
tD

T
d Dd)

−1θt−1 + ωt, ωt ∼ N(0, σ2
t (I + σ2

tD
T
d Dd)

−1). (5.135)

The operator G = (I + σ2DT
d Dd)

−1 is a smoothing operator, thus removing non
smoothness of θt, while the noise ωt is distributed according to a Gaussian smooth-
ness density. Of interest is also the prior

θt ∼ N(0, (DT
1 ΦtD1)

−1), where Φt = diag(φ2
1,t, φ

2
2,t, . . . , φ

2
n,t). (5.136)

This has the extra interpretation of an embedded random walk model based
smoother that connects individual parameters within a time instant t (section
5.3.3).

We can consider that the prior covariances Ct depend on some unknown pa-
rameter vectors φt. Then we can reformulate the smoothing problem (5.107, 5.110)
as

min
θ,φ

‖z′ −H ′(φ)θ‖2
C−1

υ′ (φ)
, (5.137)

where z′,H ′, C ′
υ are as in (5.110), and θ = (θT

1 , . . . , θ
T
T )T , φ = (φT

1 , . . . , φ
T
T )T . Or

from (5.108, 5.109)
min
θ,φ

‖z −Hθ‖2
C−1

υ
, (5.138)

subject to the constraints. For a fixed value of φ the value of θ that satisfies the
constraints and minimizes (5.138) is given by (5.115)

θ̂s(φ) = (HTC−1
υ H + L(φ)TCω(φ)−1L(φ))−1HTC−1

υ z (5.139)

= A(φ)−1HTC−1
υ z. (5.140)

Then (5.138) becomes

min
φ

‖(I −HA(φ)−1HTC−1
υ )z‖2

C−1
υ

= min
φ

‖z − ŝ(φ)‖2
C−1

υ
, (5.141)

which is a nonlinear minimization problem of φ only and could be solved for
example with Gauss-Newton method, see also [68, 21]. The optimal value for φ
can then be used to find θ.

Solution for the problem (5.138) subject to the constraints can be searched by
using a minimization procedure by alternating between minimization of the two
sets of variables. Kalman smoother estimates θ̂s = θ̂s(φ) can be obtained by the
forward-backward smoothing algorithm and locally optimal values for φ from the
numerical solution of the nonlinear problem in the right of (5.141). By determining
an initial estimate for φ = φ0, for example the one that gives a random walk model
(no prior information), we have the algorithm
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• φ = φi (initialize for some φ = φ0)

• compute θ̂s = θ̂s(φi), i.e. the smoother estimates with the forward-backward

smoother algorithm and obtain ŝ = Hθ̂s

• estimate the Jacobians J i
s (numerically) as follows:

for every parameter φj (j = 1, . . . , number of parameters) introduce a
small perturbation δ. Then for every j compute Kalman smoother esti-
mates θ̂s(φi + δej), where ej = (0, . . . , 0, 1, 0, . . . , 0)T , i.e a vector whose j-th
component is only non zero and is equal to 1. Approximate the j-th column
of J i

s with
J i

s(j) = δ−1
(
ŝ(φi + δej) − ŝ(φi)

)
(5.142)

• compute Gauss-Newton direction (or some other gradient based direction)

di = (J iT
s WJ i

s)
−1J iT

s W (z − ŝ(φi)) (5.143)

• compute optimal step size ai, for example, with backtracking line search
(2.49) by computing new Kalman smoother estimates until improvement
with (φ = φi + adi)

• update
φi+1 = φi + aid

i (5.144)

• repeat until convergence to obtain φ̂ and for the estimated state-space model
optimal mean square parameters θ̂s.



Chapter VI

Independent Component Analysis

A significant problem in statistics and related areas is the identification of a suit-
able representation or transformation of a multivariate data set. The aim is that
its essential structure is made more visible and more accessible for further investi-
gation and analysis. Independent component analysis (ICA) is a class of decompo-
sition methods in which the desired representation is the one that minimizes the
statistical dependencies of higher order between the components of the represen-
tation. The concept of ICA may be seen as an extension of principal component
analysis (PCA), which impose independence up to the second order by using the
information contained in the covariance matrix of the data. ICA is related with the
problem of blind signal separation (BSS). BSS consists in recovering unobserved
signals or sources from several observed mixtures of them by using minimal prior
information about the mixing system and by taking advantage of different statis-
tical properties of the sources. Main references of the chapter are [85, 39, 103].

6.1 Basic concepts and definitions

Consider T realizations of the random vector x = (x1, x2, . . . , xn)T . These can be
summarized in a matrix notation as

X =








x1(1) x1(2) · · · x1(T )
x2(1) x2(2) · · · x2(T )

...
...

. . .
...

xn(1) xn(2) · · · xn(T )







. (6.1)

The matrix X can be considered to represent a cluster of T points in the vector
space R

n. If these points are represented by the use of the common orthonormal
base e = {e1, e2, . . . , en} of R

n, then the values of the data are the coordinates of
the points, i.e. x(t) = e1x1(t)+e2x2(t)+· · ·+enxn(t), where ei = (0, . . . , 1, . . . , 0)T .
The data points could be represented through another base u = {u1, u2, . . . , un}
(coordinate system) not necessary orthogonal, as

x(t) = u1y1(t) + u2y2(t) + · · · + unyn(t), (6.2)

95
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Figure 6.1: An example of a different representation of two dimensional data.

Under the representation u1, u2 the new variables (right) are independent.

where yi(t) are the new coordinates. So, what is under consideration, is the iden-
tification of a better representation or transformation y = Bx that reveals some
information that is hidden into the data set. The representation could be based
on the statistical properties of the resulted components, see Fig. 6.1.

A suitable representation of multivariate data can be searched through the con-
cept of independence [85]. Thus, given a set of T realizations of a random vector x,
ICA consists of estimating a new coordinate system (6.2) to decompose x, so that
the resulting components y are as statistically independent as possible. If there
is an accurate measure of independence, other considerations are not necessary
for the identification of a new representation for every random vector. In that
spirit, ICA can be understood as as extension of PCA, in which the independence
condition is imposed up to uncorrelatedness.

The problem of finding a suitable representation of a set of observations could
also be seen from a different point of view. Consider that some physical sources
generate a set of continuous signals sj(t). These source signals can not be observed
directly, but we observe an instantaneous mixture of them. Thus, at each time
point t we observe several signals xi(t) such us

xi(t) =
∑

j

aijsj(t). (6.3)

In general, the problem of BSS consists of recovering the unobserved source signals
sj(t) by observing only the signals xi(t), i.e. without information about the mixing
system [39]. In other words, if the mixing matrix A is assumed square and non-
singular, then we are looking for a matrix B = A−1 to recover s(t) = Bx(t). In
practice, the mixed signals are observed at different time instances t = 1, . . . , T . If
we assume that the signals xi(t) are the realizations of a random vector x, then the
problem of blind source separation is related to the problem of defining a suitable
transformation to the observations. Formally, what is under consideration is the
estimation of both the matrix B and the source signals si(t). It turns out that
such a problem is not in general uniquely defined and the problem can be reduced
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Figure 6.2: An illustration of source separation: (a) the original source signals,

(b) the observed linear mixtures, (c)the separated signal, where the separation

could be achieved up to permutation and scale change.

up to the estimation of a matrix B′ = SPB, where P is a permutation matrix and
S a scale matrix (non-singular diagonal matrix), see Fig. 6.2.

The lack of a priori knowledge for signal separation can be compensated by
a statistically strong, but often plausible, assumption of independence between
the source signals [29, 85, 39]. In this case, given a set of T realizations of a
random vector x = (x1, x2, . . . , xn)T , such as x = As is a mixture of independent
sources, where the mixing matrix A is assumed non-singular and the sources s =
(s1, s2, . . . , sn)T are unknown, ICA-BSS consists of estimating a matrix B such
as y = Bx, where y1, y2, . . . , yn are as independent as possible and y = SPs. It
turns out that the identification of a non-orthogonal transformation so that the
transformed variables are as independent as possible can solve the problem of BSS,
under some weak conditions and up to permutation and scale change, when the
sources are independent and at most one source is Gaussian distributed [45]. For
an intuitive illustration of the ICA-BSS problem see also Fig. 6.3. Some extensions
related to identifiability and separability for ICA-BSS problems can be found in
[27, 56, 195, 196].

6.2 Principal component analysis

PCA is a linear transformation that transforms the data to a new orthogonal coor-
dinate system such that the greatest variance by any projection of the data comes
to lie on the first coordinate (called the first principal component), the second
greatest on the second coordinate and so on. PCA can be used for dimension-
ality reduction in a dataset by retaining those characteristics in the dataset that
contribute most to its variance.
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Figure 6.3: Examples of sample distributions of two random variables (four

pairs) for five different transformation matrices. From left to right: the identity

transform, a permutation, sign change, a rotation, and a generic linear transform.

6.2.1 Principal components

Consider T independent realizations of a random vector x = (x1, x2, . . . , xn)T ,
summarized in a matrix X. Every column of X represents a point of R

n. Without
loss of generality we can assume that the vector is zero mean, because the vector
x′ = x − ηx is a zero mean random vector and the mean can be estimated from
the data. Let y1 be a linear combination of the elements of x, i.e.

y1 = uTx, (6.4)

for which we search a vector u, such that the variance the variance of y1 is max-
imized. It is clear that the maximum will not be achieved for finite u unless
a normalization constraint is imposed. A convenient constraint is ‖u‖ = 1 or
uTu = 1. Thus, we have the optimization problem

u1 = arg maxE{(uTx)2} = arg max(uTE{xxT }u), (6.5)

subject to the constraint uTu− 1 = 0. By considering the Lagrangian and taking
the gradient with respect to u and setting to zero we have for the optimality
condition

(Cx − λI)u1 = 0, (6.6)

where λ is the Lagrange multiplier. Equation (6.6) suggests that u1 is an eigen-
vector of the matrix Cx and that the optimal Lagrange multiplier is the cor-
responding eigenvalue. For that selection, we have that the variance becomes
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E{y2
1} = uT

1 Cxu1 = λ, and since it should be as large as possible we have that
λ = λ1 is the largest eigenvalue of Cx and u1 is the corresponding eigenvector. The
second principal component is defined by the maximization uTCxu subject to being
uncorrelated to uT

1 x and uTu = 1. The solution is the eigenvector corresponding
to the second largest eigenvalue and accordingly the m-th principal component is
given by selecting um to be the m-th dominant eigenvector [103]. Note, that from
the eigenvalue decomposition of Cx = UnDU

T
n , where Un = (u1, u2, . . . , un) we

have that
y = UT

n x (6.7)

is a vector with uncorrelated components.

6.2.2 Mean square error compression

Principal component analysis can be seen in connection to the mean square error.
We search for a set of m n-dimensional orthonormal basis vectors u1, u2, . . . , um,
spanning a m dimensional subspace, such that the mean square error between
the random vector x and its projection on the subspace is minimal. Thus for the
projection

x̂ = Um(UT
mUm)−1UT

mx = UmU
T
mx, (6.8)

and for the mean square error

E{‖x− x̂‖2} = E{‖x‖2} − E{‖x̂‖2} (6.9)

= trace(Cx) −
m∑

i=1

uT
i Cxui, (6.10)

it can be shown that the minimum of (6.9) is given by any orthonormal basis
of the PCA subspace spanned by the first m eigenvectors [53]. However, the
criterion does not specify the basis of this subspace at all. Any orthonormal basis
of the subspace will give the same optimal compression. More general, consider in
equation (6.8) the matrix AT

m = TUT
m, where T is not necessarily orthogonal but

invertible.
In practice, principal component analysis can be done by using the eigenvalue

decomposition of the data covariance matrix. The data correlation matrix can
also be used to extract eigenvectors [153]. Then the eigenvectors will also reflect
the mean. This approach is analogous to the one using covariance matrix with
the exception that the quadratic E{y2

k} is maximized to define PCs instead of the
variance.

6.2.3 Whitening

A random vector z = (z1, z2, . . . , zn)T is said to be white if its elements are un-
correlated and have unit variances ([39], p. 130). Since the eigenvalues of the
matrix Cx contained in the diagonal matrix D correspond to the variances of the
transformed variables y = UTx, clearly the transformation

z = D−1/2UTx = V x, (6.11)
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where D−1/2 = diag(λ
−1/2
1 , . . . , λ

−1/2
n ) transforms x to a white vector, i.e.

E{zzT } = D−1/2UTE{xxT }UD−1/2 = D−1/2UTUDUTUD−1/2 = I. (6.12)

If z is a white random vector, then the vector z′ = Az, where A is an orthogonal
matrix, is also white since

E{z′z′T } = AE{zzT }AT = AIAT = I. (6.13)

So whiteness or uncorrelatedness cannot solve the BSS problem because we cannot
say if the independent components are given from z or z′.

Whitening can transform the original mixing problem x = Ay into a new one

z = V x = V Ay = Āy. (6.14)

Since, as we have discussed, the exact variances of the sources cannot be identified
without prior information for example about the mixing system, we can consider
that y is white as well (having independent components with unit variances) and
then we have

I = E{zzT } = ĀE{yyT }ĀT = ĀĀT . (6.15)

So the matrix Ā is an orthogonal matrix. This means that the search for the
mixing matrix can be restricted to the space of orthogonal matrices and

y = Ā−1z = Ā−1V x (6.16)

or
A−1 = Ā−1V. (6.17)

Note that the definitions of ICA given up to now imply no ordering of the indepen-
dent components which is in contrast to PCA. However, it is possible to introduce
some ordering between the independent components.

Blind source separation can be based on independence, but independence can
not be reduced to the simple decorrelation condition. However, second order in-
formation (correlations between the variables and decorrelation) can be used to
reduce the ICA problem to a simpler form [85]. In the first column of Fig. 6.4 three
different sample distributions from two subgaussian, two supergaussian and two
Gaussian independent random variables are plotted. The second column shows
the sample distributions after a linear mixture of them. The third column shows
the PCA representation of the mixed variables and the last a whitening transform.
The arrows show the directions where the kurtosis of every component is maxi-
mized. Clearly, in the first two cases after the whitening transform the recovering
of the original shape of the sample distribution is simplified to a simple rotation.
Though, information about the nature of sources, i.e. sub-/super-Gaussian is re-
quired for separation. After whitening, for the Gaussian variables it is not possible
any further rotation due two the total symmetry of the distribution. This is be-
cause uncorrelated Gaussian variables are also independent. Considering that any
orthogonal linear transform of uncorrelated Gaussian variables does not influence
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Figure 6.4: Different two dimensional sample distributions.

the joint probability density function it is clear that ICA for jointly distributed
Gaussian variables reduces to a whitening procedure. Considering now the prob-
lem of blind source separation it is clear that ICA for BSS requires the assumption
about non-Gaussian source variables (at most one is allowed [45]).

6.3 ICA by maximum likelihood identification

ICA relates to the identification of a matrix that creates independence between
the transformed components. Independence is a theoretical concept, and thus the
identification of a suitable measure of independence or an objective function that
leads to independence up to some level is common to all different approaches for
ICA [45, 29, 83, 88, 130, 37]. Optimization of such an objective is then required.
So an ICA estimation method can be seen as a two stage procedure. First, the
identification of the suitable objective and then the implementation of a suitable
algorithm that optimizes it. Most of the ICA-BSS methodological directions can
be found in [39, 85, 129, 67], but see also [89, 90, 91, 92, 93, 94] for different
applications. Different algorithms for use can be found in [95, 96, 97, 98].

6.3.1 Bayesian formulation of the problem

In order to investigate the assumptions related to the basic ICA model, we shall
start with a more general model and define the solution in a Bayesian framework.
Therefore, let us consider the additive noise model for ICA

x = As+ υ, (6.18)

where s is a vector with independent components. For the matrix A we do not
have to assume anything yet, for example, about its rank. We search estimates
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for both s and A. Then from Bayes rule the posterior density is

p(A, s|x) =
p(x|A, s)p(A, s)

p(x)
. (6.19)

The source signals must be independent of the mixing system so we can write

p(A, s|x) ∝ p(x|A, s)p(A)p(s). (6.20)

From the model (6.18) we can also write for the likelihood of the observed x

p(x|A, s) = pυ(x−As|A, s) (6.21)

for some noise distribution. The sources are assumed independent so we have the
following general form for estimation

p(A, s|x) ∝ pυ(x−As|A, s)p(A)p(s) (6.22)

∝ pυ(x−As|A, s)p(A)p1(s1), · · · , pm(sm), (6.23)

where pi(si) are prior densities for the random variables si. We can try to reduce
the number of parameters for the estimation problem (6.22). In the sense that,
if we knew some value for A, we could use it to estimate s. This can be done by
marginalizing over all possible values of s

p(A|x) =

∫

p(A, s|x)ds (6.24)

∝
∫

p(x|A, s)p(A)p(s)ds (6.25)

∝ p(A)

∫

p(x|A, s)p(s)ds. (6.26)

Correspondingly for s it is

p(s|x) =

∫

p(A, s|x)dA = p(s)

∫

p(x|A, s)p(A)dA, (6.27)

with the assumption of independence (6.20) and the model (6.21). Alternatively,
if we had an Â from the model (6.18) it is

p(s|x) ∝ pυ(x− Âs|s)p(s). (6.28)

Furthermore, we observe T realizations of a random vector x = (x1, x2, . . . , xn)T ,
summarized in the matrix X. Therefore, we have the model

X = AS + Υ. (6.29)

If we assume υ(t) independent and identically distributed, the likelihood becomes

p(X|A,S) =

T∏

t=1

pυ(x(t) −As(t)|A, s(t)). (6.30)
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6.3.2 The likelihood of the ICA model

Until now, we have a general description of the estimation problem of ICA with
minimum amount of assumptions. Now we reduce the problem to the basic ICA
model

x = As, (6.31)

where A is further considered to be an invertible square matrix. For no noise in
the model, we can model the likelihood densities (6.21) with a δ function, i.e.

pυ(x−As|A, s) = δ(x−As) (6.32)

which is one when the model holds and zero otherwise. Then, (6.26) becomes

p(A|x) ∝ p(A)

∫

δ(x−As)p(s)ds. (6.33)

By introducing a change of variables ξ = x−As or by considering the model and
(3.15) this becomes [125] (see also [85], p. 203)

p(A|x) ∝ p(A)
1

|detA|ps(A
−1x). (6.34)

Clearly, if we have a value for Â, then we can obtain estimate for s as

y = Â−1x = Bx. (6.35)

Furthermore, we can consider the source distributions time invariant. So the
vectors s(t), t = 1, . . . , T are assumed identically distributed and have independent
components. Then the prior joint density of S becomes

p(S) = ps(s(1)) . . . ps(s(T )) =
T∏

t=1

n∏

i=1

pi(si(t)). (6.36)

Substituting the result to (6.34) and considering the logarithm we have

log p(A|X) = C + log p(A) − T log |detA| +
T∑

t=1

n∑

i=1

log pi(b
T
i x(t)), (6.37)

where A−1 = B = (b1, . . . , bn)T . By using that posterior, the optimal mixing
matrix A can be searched by considering the gradient with respect to A. Note
that the posterior p(A−1|x) is not the same with the posterior p(A|x) [125]. We
can assign a uniform prior distribution for A = (aij), for example p(A) = c, if
amin ≤ aij ≤ amax and zero elsewhere to denote lack of prior information.

The maximum likelihood method for ICA defines an estimator for the mixing
matrix B = A−1 from the following functional ([85], p. 204)

logL(B) = log p(X;B) = T log |detB| +
T∑

t=1

n∑

i=1

log pi(b
T
i x(t)) (6.38)
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or from

lT (B) =
1

T
logL(B) = log |detB| + Ē{

n∑

i=1

log pi(b
T
i x(t))}, (6.39)

where Ē denotes average. We can also write that

lT (B) −−−−→
T→∞

E{
n∑

i=1

log pi(b
T
i x)} + log |detB| (6.40)

Considering the densities of the independent components as exactly known and B
as nonrandom, maximization of (6.39) gives the maximum likelihood estimator for
B. Though in many real data applications the densities pi are unknown. It is then
preferable to consider them as prior model densities as in the Bayesian formulation.
Note, that with Gaussian prior densities and orthogonality constraints we obtain
the PCA criterion.

6.3.3 Gradient optimization methods

The gradient of lT (B) with respect to B is given by ([85], p. 207)

∂lT (B)

∂B
= (BT )−1 + Ē{g(Bx)xT } (6.41)

and defines a gradient ascent direction for optimization. The function g(y) =
(g1(y1), g2(y2), . . . , gn(yn))T is given from

gi(yi) =
∂

∂yi
log pi(yi) =

p′i(yi)

pi(yi)
, (6.42)

and it is based on the prior densities gi. For the gradient of log |detB| see section
2.6.1 and (2.80). From (2.82) we have

∂

∂τ
Ē{

n∑

i=1

log pi(b
T
i x+ τdT

i x)}|τ=0 = Ē{
n∑

i=1

gi(b
T
i x)d

T
i x} (6.43)

= Ē{trace(x

n∑

i=1

gi(b
T
i x)d

T
i )} (6.44)

= trace((Ē{g(Bx)xT })TD) (6.45)

From (2.83) we have the gradient. At every iteration estimates for the independent
components are obtained from the current value of B as y = Bx. This algorithm
is also referred as infomax derived through information theory criteria [15].

An algorithm that avoids matrix inversions and has better properties is ob-
tained by the natural gradient, which becomes (2.95)

Dnat = ((BT )−1 + Ē{g(Bx)xT })BTB = (I + Ē{g(y)yT })B. (6.46)
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See section 2.6, and [6, 4, 5, 1]. The algorithm has been independently proposed
also in [33], though a similar algorithm was also derived in [43]. In order to resolve
the indeterminacy of scales, the basic natural gradient algorithms impose some
constraints on the magnitudes of the recovered signals, for example E{gi(yi)yi} =
1. A least in terms of better stability the following direction is proposed ([39], p.
238)

D =
(
Ē{g(y)yT } − diag(Ē{gi(yi)yi})

)
B, (6.47)

where diag(Ē{gi(yi)yi}) is a diagonal matrix with elements Ē{gi(yi)yi} for i =
1, . . . , n in the main diagonal, see also [3]. For prewhitened data, the gradient of
the functional (6.39) is not any more given by (6.41) since the matrix B is restricted
to be orthogonal. Then it can be shown that the natural gradient direction that
takes approximately into account the orthogonality constraint (up to first order
Taylor approximation) is given by ([1, 33], see also [39], p. 239)

D =
(
Ē{g(y)yT } − Ē{yg(y)T }

)
B. (6.48)

Yet another algorithm, derived as a fixed point iteration and having characteristics
of Newton’s method uses the direction [82, 88]

D = diag(
1

Ē{gi(yi)yi} − E{g′(yi)}
)
(
Ē{g(y)yT } − diag(Ē{gi(yi)yi})

)
B, (6.49)

where at every step the matrix B is projected on the set of whitening matrices by

B′ = (BCxB
T )−

1
2B. (6.50)

The algorithm is referred as FastICA for ML estimation ([85], p. 210).
The prior densities pi(si) are unknown for different real data applications.

Therefore, they could be also parametrized, i.e. pi = pi(si;φi). We could have
included extra parameters for the total posterior in the Bayesian methodology.
Though, instead of optimizing over these parameters they can be replaced with
some estimates φ̂. Many ICA methods use such estimates, usually, obtained by
the method of moments. If the prior densities are assumed smooth, unimodal
and symmetric, a characterization of the density is obtained from the kurtosis, to
differentiate between super and sub-Gaussian densities [66, 40, 131]. More general,
a parametric density family is considered and estimates for the parameters are
obtained in every iteration [57, 36, 215, 119, 120, 121]. In the following it is
sketched a general algorithm for the basic ICA model

• center the data to make its mean zero (it also possible to consider prewhiten-
ing possibly combined with PCA dimension reduction)

• set B = Bj (for some B = B0)

• compute new estimates Y = BjX

• find new estimates for the parametrization of the prior densities φ̂i = φ̂i(Yi)

and gi = gi(yi; φ̂i) from (6.42) (note, that only the nonlinear functions (6.42)
are needed and not the exact densities, and the variances are unknown)
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• compute new direction Dj = Dj(Bj , Y, φ̂)

• update
Bj+1 = Bj + ajD

j (6.51)

• repeat until convergence to obtain B and Y = BX.

A simple parametric density model related to the hyperbolic-Cauchy distribu-
tion for distinguishing between supergaussian and subgaussian sources respectively
is given by [85, 39]

gi(yi) = −2 tanh(yi) (6.52)

gi(yi) = tanh(yi) − yi. (6.53)

Another possibility is −y3
i for subgaussian components. The selection between

the two densities can be made based on the sign of the kurtosis of the estimated
transformed variables. The choice between (6.52) and (6.53) can be also made
based on the sign of the non polynomial moment [85]

E{− tanh(yi)yi + (1 − tanh(yi)
2)}. (6.54)

When the algorithm (6.49), (6.50) is used, then the nonlinear function gi(yi) =
tanh(yi) can be selected for all the components. This is possible because in the
algorithm there is embedded information about the nature (sub- or supergaussian)
of the components ([85], p. 211).

6.4 Connection with other estimation principles

Source separation methods have emerged from the field of neural networks and they
were related to the concept of nonlinear decorrelation, which leads to independence
up to some level [76, 107, 46, 186, 42, 44, 43], see also equation (3.58). Note
that any nonlinear function introduces, through its Taylor series expansion, higher
order statistical properties of the underlined variables, see also equations (3.60)
and (3.44). Other related methods and generalizations are given by the estimating
functions approach [4, 39], see also [33, 155, 5, 2]. Some related concepts are also
given by nonlinear PCA methods [113, 114, 154, 115, 155, 159]. The interpretation
of nonlinear PCA criteria as maximum likelihood estimation has been presented
in [115], see also [85].

Early approaches based on maximum likelihood include [62, 167, 164]. An
estimation principle for ICA that is very closely related to maximum likelihood
formalism is the infomax principle [15]. This approach is based on maximizing the
output entropy, or information flow, of a neural network with nonlinear outputs.
If the related nonlinear functions are chosen to be of the form (6.42), then the
criterion becomes equivalent to maximum likelihood method [163, 28, 152]. Then
Bayesian interpretations and generalizations followed [123, 176, 124, 146, 179], see
also [12, 58, 35, 203, 79, 177]. For modeling prior information about the mixing
matrix see [86, 125, 201]. A distinct advantage of the Bayesian formulation is that
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it breaks the problem into three parts, i.e. the signal model, the cost function and
the optimization algorithm.

Besides entropy maximization other information theoretic concepts have been
applied for ICA-BSS. Mutual information is a measure of independence (see sec-
tion 3.6). Therefore, minimization of mutual information gives independent com-
ponents, see [45] where an approximation based on cumulants was considered to-
gether with the definition of ICA through an appropriate function that measures
independence. Another measure of independence is given by negentropy (3.106)
[45]. It turns out that independent components yi are those that their marginal
negentropy is maximized or those that are maximally far from being Gaussian [85].
Approximations of negentropy and other measures of nongaussianity (for example
kurtosis) enable a deflationary approach, i.e. one-by-one estimation of the inde-
pendent components, by searching maxima of nongaussianity of a single projection
bTx [87, 80, 81, 82, 88], see also [39] for other related algorithms. The connec-
tions between all the information theory criteria for ICA-BSS as well as maximum
likelihood identification are established through the definition of Kullback-Leibler
divergence (3.75) [45, 28, 29, 152, 36, 37]. In fact the relevant assumptions are
better understood and generalized as with the Bayesian formulation.

The source separation methods described until now exploit primarily spatial
heterogeneity and homogeneity, i.e. investigating structure across the sensors and
not across time. The consequence of ignoring any time structure is that infor-
mation contained in the data is represented solely by the sample distributions of
the observations. In many applications, this is enough to separate sources from
mixtures even for non stationary source signals. However, signals with Gaussian
or elliptical contoured joint sample distributions, for example Gaussian autore-
gressive stochastic processes, can not be separated by those methods. Also mix-
tures of sinusoidal signals, that have bimodal amplitude histograms, are better
separated by other BSS methods that exploit time structure. These limitations
hold also for some algebraic methods for ICA [32], which impose some level of
independence by approximately canceling higher order correlations estimated by
cross-cumulants (3.51-3.54), see also [30, 212, 39] for related methods. From the
methods using time structure of the signals, some assume stationarity and use
time delayed cross-correlation matrices for separation, see also equations (3.25),
(3.113) and (3.114). By canceling time correlations between signals source separa-
tion can be achieved [198, 147, 17, 217], see also [39]. Note that those algorithms
are not strictly speaking ICA methods since they exploit second order information
for stochastic processes. However, they can separate, for example, time correlated
Gaussian processes when they have distinct normalized autocorrelations (3.115)
[166]. Finally, some approaches can take into account the non-stationarity of the
signals for separation, for example [143, 16, 165], see also [67, 31, 39, 162, 79, 84].



Chapter VII

Estimation of EPs

In this chapter, different characteristics of electric brain signals are briefly de-
scribed and difficulties arising from the complexity of EEG measurements and
evoked potentials are discussed. The applicability of ICA-BSS methods for EEG
separation and analysis is also considered. An application of ICA for BSS of EEG
is presented, aiming to underline different characteristics of EEG signals. The ar-
tifact corrected EEG measurements are used in chapter VIII, aiming to show how
the EP signal subspace is affected by strong disturbances. Some single-channel EP
estimation methods are also discussed, in relation to chapters IV and V. Finally,
dynamical estimation methods, and some noise considerations for EP modeling
are presented. More about the origin of brain potentials, research methods, and
applications can be found, for example, in [151, 168, 26, 8, 52, 209, 140].

7.1 Basic concepts and definitions

Many anatomical and functional brain imaging methods have been developed to
study the brain noninvasively, and is now possible to collect vast amounts of data
from the living human brain. Structural information can be reached by means of
static pictures of living tissues through, for example, computer-assisted x-ray to-
mography (CT) and magnetic resonance imaging (MRI). Another class of methods
provides information about the function of the brain with limited time resolution.
This includes single-photon-emission computed tomography (SPECT), positron-
emission tomography (PET), and functional MRI (fMRI). Noninvasive methods
that provide information about the neural dynamics on a millisecond scale are
EEG and magnetoencephalography (MEG). They measure effects of brain electri-
cal activity. Disadvantage of these methods is that spatial resolution is usually
poor, due to noise contamination, instrumentation, and modeling issues. EEG
is measured using electrodes on the scalp. For MEG recordings superconducting
quantum interference devices (SQUIDs) are used. The MEG measurements need
to be carried out inside a magnetically shielded room. Therefore, instrumentation
needed for MEG is more sophisticated [72].

The electric activity of the brain consists of ionic currents generated by bio-
chemical reactions at the cellular level. The human brain consists of about 1010

108
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neurons in the outermost layer, i.e. the cerebral cortex. The neurons are the basic
information processing units. EEG mainly represents the summation of synchro-
nized activity of different groups of cortical neurons, though, sub-cortical areas,
such as thalamus, may also contribute [8]. For the estimated levels of conduc-
tivity of brain and surrounding tissues the propagation velocity is very high, so
that, practically, changes in activity may be detected simultaneously on the scalp.
Additionally, this important statement leads to the conclusion that no charge is ac-
cumulated at any time in the brain and the potentials recorded at a given point on
the scalp are the summation of potentials induced by several generators [151, 140].

Both in EEG and MEG, the measured signals are generated by changes of
synchronized neural activity in the brain. The detection of temporal and spatial
changes in active cortical areas gives the means to investigate higher mental func-
tions. Of importance are also the geometry and conductivity of different parts
of the head. It can be discussed that EEG is more sensitive to the morphology
of the head. However, the use of realistic geometries based on MRI seems to be
necessary for both methods for accurate modeling [156, 211].

A significant problem in EEG and MEG analysis is related to the fact that
brain signals are seriously contaminated by noise. Strong electro-physiological sig-
nals are generated by the heart and by different skeletal muscles, and they may
contaminate the measurements. Eye blinks and movements are also creating signif-
icant artifacts. Additionally, different brain areas are under continuous activation
at any given time by handling many body or mental functions, and by processing
information from the environment. In that sense, MEG and EEG analysis aims
to investigate some meaningful signals buried into artifacts, ongoing brain activ-
ity, and other disturbances. Separation, estimation and denoising methods are
necessary for the investigation of complex mental processes.

7.2 Electroencephalography

It is well know that the characteristics of EEG change in many situations, for ex-
ample, with the level of vigilance (alertness, drowsiness, rest, sleep and dreaming),
anxiety, and emotional tension. EEG is also used for the detection of abnor-
malities, such us epileptic spikes (spike wave complexes of 3Hz), different brain
diseases, injuries and damages, and to monitor surgery recovery. Particular men-
tal tasks also alter the pattern of the waves. Finally, EEG has been used to study
psychiatric disorders (dementia, schizophrenia, mood and personality disorders).
More about EEG research methods and applications can be found in [151].

7.2.1 EEG measurements

EEG recordings are usually taken by placing electrodes on the scalp, and the
electrode skin interface is filled with conductive gel. Brain potentials can be also
recorded through depth electrodes implanted in the brain. The electrode place-
ment should conform the international 10-20 system [52] shown in Fig. 7.1. Usu-
ally, as a first preprocessing step, EEG signals are bandpass filtered in the interval
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Figure 7.1: International 10-20 EEG electrode system (redrawn from [140]). A

= ear lobe, C = central, Pg = nasopharyngal, P = parietal, F = frontal, Fp =

frontal polar, and O = occipital.

around 0.05Hz to 70Hz, which is the band where significant brain activity could
be observed. Though, narrower bands are often used for analysis.

The amplitude of EEG signals is of a few microvolts and changes stochastically.
Different frequency bands of EEG have been empirically labeled with names such
as alpha (8-13 Hz), beta (13-30 Hz), theta (4-8 Hz), and delta (0.5-4 Hz). Activity
in a given frequency band may have time-varying characteristics (e.g. [190]), and
different physiological origin depending on the particular situation (e.g. [150]).

7.2.2 Evoked potentials

Evoked potentials reflect changes of brain electric activity due to external (physical
world), or internal (triggering mental process) stimulation of the central nervous
system. EPs are observed as EEG epochs, time locked to a stimulus or event, the
timing of which can be reliably assessed [52] (see Fig. 7.2). Significant advantage
of EP research is the fact that cortical reactivity and function can be assessed
with high temporal resolution. Therefore, they are used to study changes of brain
function, for example levels of sedation [213], and to explain cognitive processes
such as memory [151].

EPs can be divided into two categories: exogenous and endogenous. Exogenous
potentials are determined by the type of stimulation (e.g. auditory, somatosensory,
visual), the neurological path, and by physical characteristics of the stimulus (for
example frequency, intensity, duration for auditory stimulation). In the acoustic
modality exogenous components comprise the acoustic brain stem evoked poten-
tials and the mid-latency components. So exogenous potentials depend on the
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Stim. no. 1 Stim. no. 2 Stim. no. 3 Stim. no. 4

Figure 7.2: EPs during auditory stimulation. Upper part EEG measurements,

lower part EEG epochs of 700ms length, crosses indicate stimulation time.

sensory system and general brain condition on receiving and decoding stimulus
information. In contrast, endogenous EPs reflect higher mental procedures and
are generated as a function of the mental processing allocated to the stimulus.
Endogenous potentials are longer in latency (e.g. >100 ms after auditory stimula-
tion). Late potentials can relate to recognition of novel stimulus, task requirements
and difficulty, instructions, memory, or preparation for some upcoming motor ac-
tion. Sometimes, it is difficult to separate purely sensory potentials from cognitive
ones and they might overlap in time. The term event-related potentials (ERPs) is
mainly used for evoked potentials that are elicited by cognitive activities [52].

The measured potentials are often considered as voltage changes resulted by
multiple brain generators active in association with the eliciting event, and back-
ground noise, which is brain activity not related to the event. Additionally, there
are contributions from non-neural sources, such as ocular artifacts (for an illus-
tration see Fig. 7.3). In relation to the ongoing EEG, EPs exhibit very small
amplitudes starting from few µV , and thus it is difficult to detect them straight
from EEG. Therefore, traditional research and analysis of EPs requires an improve-
ment of the signal-to-noise ratio by repeating stimulation, considering unchanged
experimental conditions, and finally, averaging time locked EEG epochs. For ex-
ample, in EEG source localization studies it is common to use averaged signals in
order to identify cortex locations that are responsible to a specific mental task.

Evoked potentials are assumed to be generated either separately of ongoing
brain activity, or through stimulus-induced reorganization of ongoing activity. For
example, it might be possible that during the performance of an auditory oddball
discrimination task, the brain activity is being restructured as attention is focused
on the target stimulus [99]. Phase synchronization of ongoing brain activity is one
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Figure 7.3: Noise sources in event related measurements.

possible mechanism for the generation of EPs. That is, following the onset of a
sensory stimulus the phase distribution of ongoing activity changes from uniform
to one which is centered around a specific phase [135]. Moreover, several studies
have concluded that averaged EPs are not separate from ongoing cortical processes,
but rather, are generated by phase synchronization and partial phase-resetting of
ongoing activity [138, 102]. Though, phase coherence over trials observed with
common signal decomposition methods (e.g. wavelets) can result both from a
phase-coherent state of ongoing rhythms and from the presence of a phase-coherent
EP which is additive to ongoing EEG [139, 135]. Furthermore, stochastic changes
in amplitude and latency of different components of the EPs are able to explain
the inter trial variability of the measurements [139, 200, 126]. Perhaps both type
of variability may be present in EP signals.

A generally accepted EP terminology denotes the polarity of a detected com-
ponent by the letters “N” for negative and “P” for positive, with a number indi-
cating the typical latency. For example, for auditory evoked potentials (AEPs),
N100 indicates a negative wave occurring with peak amplitude around 100ms af-
ter stimulation. It is usually followed by a positive deflection P200. However, the
psychophysiological significance of the N100 depends on the context of its elicita-
tion. When EPs are recorded during two different conditions, like in the oddball
auditory paradigm where standard tones occurring in random times of about 1-2
Hz are interrupted by infrequent deviant tones, then other potentials arise (see
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Figure 7.4: Average responses from an oddball paradigm.

Fig. 7.4).
Among all endogenous potentials, the P300 has attracted the widest interest in

cognitive research. Even though there are still considerable controversies concern-
ing its functional significance and generator structures, it is used in various areas of
applied research and even in clinical examination. The difficulties in interpreting
P300 “effects” in different paradigms have led to an enormous literature. Perhaps
an explanation is that an unique P300 effect does not exist and with different
experimental settings different subcomponents of it are involved. An important
consideration of a P300 generation stems from the observation that intrusive or
novel stimuli can produce an earlier positive peak P300a. This is to separate it
from a later peak, the canonical P300 or P300b that is generated when the subject
is required to respond to a designated stimuli. More information about the study
of P300 potential can be found in [151].

Mental processes are sometimes considered as hierarchical steps and EPs are
manifestations related to an elementary level in this hierarchy. For example, the
auditory N100/P200 complex is believed to be associated with early discrimination
of incoming stimulus and attention. N200 is believed to reflect manifestation of a
memory retrieval system that stores physical characteristics of the regular stimuli.
P300 amplitude could reflect attention to incoming stimulus information when
memory representations are updated, and the latency is considered as a metric of
stimulus classification speed and task difficulty.

EP research has to deal with several inherent difficulties. Firstly, the genera-
tion mechanisms of many components are not precisely known. Secondly, the sep-
aration in subcomponents is rather artificial, and a wide overlap of components
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generated by different mechanisms might occur. Thirdly, traditional analysis is
based on averaged data often by forming extra grand averages of different pop-
ulations. Thus, trial-to-trial variability and individual subject characteristics are
ignored. Therefore, the study of isolated components retrieved by averages might
be misleading, or at least it is a simplification of the reality. For example, habit-
uation may occur and the responses might be different from the beginning to the
end of the recording session.

7.3 ICA for BSS of EEG

Individual EEG channels measure superimposed activity generated simultaneously
from various brain sources. The behavior of the sources can be argued to be
stochastic and generally non-stationary. In addition, artifact sources, such as eye
blinks, can distort statistical properties of the signals. Therefore, the applicability
of BSS and ICA methods relates to many EEG analysis fields.

The application of ICA to the analysis of EEG signals assumes that several
conditions are verified, at least approximately. Although these restrictions of the
basic ICA model could be argued to be more or less critical, the applicability of
ICA and the gained separating results are considered useful for brain research.
ICA for EEG analysis was first proposed in [134] and for MEG in [204]. Different
applications of ICA and other BSS methods for EEG and different biosignals can
be found in [89, 90, 91, 92, 93, 94], see also [85, 39]. In many studies on EEG
and MEG signals it is shown that BSS methods can estimate noisy sources and
potentially brain generated signals.

In this section, the applicability of ICA for BSS of EEG is discussed and an
artifact removal example is demonstrated. The artifact corrected measurements
are also used in chapter VIII.

7.3.1 Assumptions and applicability

For the problem of blind source separation of the multichannel EEG measurements,
target is to recover the unobserved initial source signals of the brain by using only
the available sensor data and some statistical properties assumed for the sources.
Therefore, no physical model is usually used. For the same reason BSS and ICA
methods do not aim and are not able to solve the EEG inverse problem and point
out active locations within the brain. For example, the goal of ICA is to recover
independent signals given only sensor observations (see chapter VI). Therefore,
BSS and ICA methods for the analysis of EEG signals aim [101, 38]:

• to separate a set of measurements into their constituent components or source
signals, and to provide information about the number of distinct sources
producing the measurements,

• to provide the spatial distribution (on the sensors) of each estimated source
along with the time varying characteristics of the source itself,
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• to isolate components describing artifact signals and to identify signals re-
flecting distinct mental processes, and

• ultimately to track changes in the number, spatial distribution and morphol-
ogy of sources over time.

The basic problem that BSS attempts to solve assumes a set of nmeasured data
points at time instant t, i.e. x(t) = (x1(t), . . . , xn(t))T to be a combination of m
unknown sources s(t) = (s1(t), . . . , sm(t))T . For EEG n is the number of channels,
and X is the matrix having the vectors x as its columns and different channel
recordings as its rows (see (6.1)). A general formulation, without any assumptions
about the nature of the data, will leave the problem of EEG separation intractable.
Therefore, some basic assumptions are needed.

A first assumption for ICA and other BSS methods for EEG is the assumption
of linear, time invariant, and without time delays mixing, i.e.

x(t) = As(t) + υ(t), (7.1)

where υt represents sensor noise. This is based on the plausible treatment of
EEG recordings as linear sums of sources arising from spatially fixed, distinct,
but overlapping brain or extra-brain areas, while the mixing mechanism is not
changing. This may not be the case in all situations. For example, when elec-
trocardiogram (ECG) is recorded on chest electrodes, the electrodes move over
time due to breathing. An additional consideration stems from the fact that in
biomedical recordings electrical impedance and therefore channel gain can change
due to sweat production of the skin and pressure of electrode contact.

In order to use the basic ICA model for estimation, some other assumptions
must be made, that is the noise free model

x(t) = As(t), (7.2)

where the number of sensors is bigger or equal than the number of sources, i.e. n ≥
m. This allows different algorithms to be applied, but the estimated components
may remain contaminated by measurement noise. Reduction in noise for EEG
signals can be done with high-pass, low-pass or band-pass linear filtering without
altering the basic model ([85], p. 264). For example, if we assume the model (7.2)
with m = n, low-pass filtering can be done by multiplying with a matrix M from
right as

X ′ = XM = ASM + ΥM = AS′ + Υ′, (7.3)

that can reduce the noise. Similarly high-pass filtering can remove slow trends
that in general can distort statistical properties of the measurements. Thus, ap-
propriate band-pass filtering aims to enhance the properties of the measurements
(e.g. spatial dependencies) without destroying useful information for estimation.

If it is further assumed that n > m and that the sensor random noise vectors
are identically distributed having relatively small variances, then PCA dimension
reduction can be used to reduce the noise and make the mixing system square.
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Note that filtering and dimension reduction has as a consequence the loss of some
measured source signals. This is the basic criticism for PCA dimension reduction,
as well as that the number of retained dimensions is usually selected subjectively
[101]. Though PCA will not eliminate relatively strong sources (at the sensors),
especially for high-density measurement systems (see section 6.2). Additionally,
when short data segments are analyzed with ICA, reducing dimensions prevents
overlearning ([85], p. 268). This means that if the number of parameters in a
statistical model is too large compared to the number of data points, then the
estimated parameters depends less on the observed data and much more on the
model assumptions. In addition, with band-pass filtered data a much stronger
dimension reduction is necessary to prevent overlearning [85]. Though a very
strong dimension reduction will not allow separation. Finally, if the sources have
strong time-dependencies the sample size must be larger to avoid overlearning [85].

By far the most important assumption for ICA for BSS of EEG is that of inde-
pendence of the sources. This assumption can be physiologically plausible in some
situations, for example, between brain signals and ocular artifacts. But in general
it could be argued that there is not enough evidence to support independence of
brain generated signals in every situation. Furthermore, the ICA model considers
the data as independent and identically distributed and requires non Gaussian
sources. Thus, by ignoring time structure, the estimation is based solely on in-
vestigating structure across the sensors as estimated by the sample distribution
of the measurements and the embedded density parametrization. Therefore, the
model might not be able to separate every kind of source (e.g. stationary Gaussian
random processes, bimodal sources etc.). However, in many situations predomi-
nant artifacts, for example blinks, show a highly kurtotic sample distribution that
enables estimation. Therefore, ICA has found applicability in identifying and re-
moving artifacts associated with blinks, eye-movements and muscle noise, see for
example [207, 104, 105, 100]. For some other ocular correction methods see for
example [47], and in comparison with ICA see also [208].

It must be noted that in contrast to other Factor Analysis methods ICA concen-
trates on finding the matrix B based on assumed properties of the components and
not of the mixing system (e.g. sparseness). Though in many applications on EEG
the mixing matrix A has proved to be sparse for distinct estimated source signals.
In addition, some independent components tend to have clearer time/frequency
characteristics than the original signals. Source localization methods applied to
ICA components often suggest physiological plausible locations within the brain.
These observations have encouraged the use of ICA for the analysis of brain gen-
erated signals. Therefore, ICA has been proposed for the study of brain signals
in event related studies [182, 199, 137, 138, 136, 135, 106, 50, 49, 157, 48], where
it is discussed the possible physiological origin of different estimated components.
For related assumptions and considerations see also [14, 206, 205, 70]. For other
BSS methods that take advantage of the time or frequency structure of EEG see
for example [188, 189, 148, 9, 101, 38].
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7.3.2 An artifact removal example

ICA methods carry ambiguities about the ordering, the overall amplitude, and sign
of the estimated sources. The rows of the data matrix X are the EEG channel
recordings. The estimated separating matrix B and the independent components
matrix Y are given by Y = BX. Y describes time-varying characteristics of the
sources. The matrix A = B−1 mixes the estimated independent components,
which have variance one, back to the sensors

X = AY. (7.4)

The columns of A give the relative projection strengths of the respective com-
ponents at each of the scalp sensors. An artifact source can be removed from
the measurements by replacing the respective row of Y with zeros and using the
previous equation to obtain denoised measurements at the sensors. Note that the
dimension of the data is then reduced. The columns of A can be used to produce
scalp maps that can help, together with the time, frequency, and time-frequency
morphology, the characterization of components as artifacts. Eye movements and
eye blinks project mainly to frontal sites (near electrodes FP1 and FP2), temporal
muscle activity to the temporal sites (near T3 and T4), and occipital (rear head)
movements to the back (near O1 and O2). The interpretation of scalp maps in
any EEG analysis must be done with caution, since the location of maxima and
minima on these maps does not locate the areas of maximal and minimal activity
on the underlying cortex. If we denote A = {aij}, with j = 1, . . . ,m being the
column index, an ordering of the components can be based on the quantity [101]

pj =

√
√
√
√

1

n

n∑

i=1

a2
ij , (7.5)

which describes the power of the contribution of a unit variance component. An-
other possibility is to order the components according to their estimated kurtosis.

EEG measurements were obtained from a standard odd-ball paradigm with au-
ditory stimulation (1 subject, 60 EEG channels, reference: ears). In the recording,
569 auditory stimuli were presented with an inter-stimulus interval of 1 second,
85% of the stimuli at 800Hz and randomly presented 15% deviant tones at 560
Hz. The subject was sitting in a chair and was asked to press a button every time
he heard the deviant target tone. The sampling rate of the measurements was 500
Hz. Averaged EPs from the experiment (after artifact correction, channel CZ) can
be seen in Fig. 7.4.

For the analysis, the data were digitally filtered in the range (1-40Hz). All the
measurement length (about 10 minutes) was used for the estimation of the sepa-
rating matrix. The dimension of the data was reduced with PCA to 31, m = 31, by
keeping eigenvectors associated with eigenvalues larger than 1, λi ≥ 1, resulting in
more than 99.9% of explained variance,

∑m
i λi/

∑n
i λi. After whitening the data,

the FastICA algorithm in parallel form (see 6.49, 6.50) was used for the estimation
of independent components, which were shorted according to (7.5).
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Figure 7.5: Strong blink related artifact.

For the evaluation and categorization of ICs time and time-frequency plots,
histograms, and scalp maps were computed. For example, IC1 (Fig. 7.5) clearly
represents a strong artifact associated with eye activity (blinks). From that compo-
nent, estimates for the blink occurrence time were obtained. For every component
epochs relative to blinks were sampled. Epochs were also sampled relative to the
two stimulus types for every component. The epochs represent activity as it is
observed from channel CZ (backprojection of the component). The epochs are
also presented as image plots for the facilitation of ICs categorization.

IC1 is a clear blink artifact, easily detectable and highly kurtotic, giving confi-
dence for a good separation result from brain related activity or other noise. IC19
(Fig. 7.6) is also an ocular related signal, but weaker and more noisy (having
prominent activity between 20-30 Hz). Though it does not seem to be any stimuli
related activity within and it correlates perfectly with blink occurrences. Both
IC1 and IC19 represent most of the noise subspace related with blinks though it is
difficult to characterize them as separate source signals since first order difference
operation and rescaling of IC1 produce a signal similar (cleaner) to IC19. Those
two signals were removed from further analysis.

Some other components representing artifacts are presented in the Appendix.
Another distinct group of signals is given by IC7 (Fig. A.1) and IC26 (Fig. A.2)
that maximally project on left and right temporal channels. They decrease in
amplitude during the recording period and are active in the same frequency band.
They probably represent artifacts (muscle or head phone related noise). IC25
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Figure 7.6: Second blink component.

(Fig. A.3) must be a rear head related artifact without any visible correlation to
stimulation, or blinks, or the previous two characteristic signals. So these three
signals were also removed from the measurements, as well as IC29 (Fig. A.4).
Here, it must be noted that from the rejected signals primarily IC1 influences the
quality of the estimates presented in chapter VIII.

In the Appendix, some interesting components originating from the brain are
also presented. The characterization of brain signals is much more difficult. IC2
(Fig. A.5), IC4 (Fig. A.7), and IC5 (Fig. A.8) represent components of stimuli
related activity, and seem to originate from different brain areas. IC3 (Fig. A.6)
represents ongoing brain activity having large spectrum bandwidth. IC6 (Fig.
A.9) has prominent alpha activity. It can be noticed that IC6 has some degree of
correlation with stimulation and blinking.

When placed in physiological analysis the utility and assumptions of ICA and
other BSS methods for the study of mental processes, individual application char-
acteristics should be taken into account [158]. Then it is beneficial to use avail-
able physiological information for the selection of appropriate modeling method
and for possibly embed prior information in the estimation. For a discussion see
[101]. For this thesis, it is enough to conclude that EP signals can be the results
of multiple overlapping event related activations and ongoing brain activity (al-
pha rhythms and others). Also it exists significant contamination from artifacts.
Those observations can not be easily made straight from EEG, and especially from
a single-channel.
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7.4 Single-channel EP estimation

Several techniques have been proposed in order to denoise and estimate EPs.
In general, the performance of the estimator or the filter is naturally dependent
on the prior information imposed for the statistical properties of the EPs and
the background noise. For an extensive discussion about different EP estimation
methods see also [116]. Of special interest is the case when some parameter of the
EP changes dynamically from stimulus to stimulus. This kind of situation can be,
for example, a trend like change of amplitude or latency of some specific peak of
the EPs. A method in which preceding or following measurements are used in the
estimation procedure can give additional information about the EPs and improve
single-trial estimation.

7.4.1 Single-trial estimation

The simplest model for EP estimation considers the EEG epochs to be the sum of
an invariant signal (from trial-to-trial) and random noise. Then estimators of the
form (5.8) can be used for selective or weighted averaging of EP epochs (see also
[116]) . This model implies a loss of information about trial-to-trial variability, and
time-varying features of event related phenomena [78, 213, 200]. In that sense, the
investigation of the variability of EP parameters could reveal interesting hidden
mental processes.

Digital filtering is sometimes used for single responses [181]. The main problem
in linear time invariant filtering is that usually the spectra of EPs and background
noise overlap heavily. Wiener filtering is also possible for single measurements,
with some specific structure of the filter (e.g. [34]). Other approaches involve time-
varying filtering of single-trials based on Wiener formalism [214]. A crucial problem
in time-varying mean square error filtering is to obtain a good model for the cross
covariances between the EPs and the measurements. This is a difficult estimation
task, especially when there exists a significant level of correlation between the EPs
and the noise. Later methods include, for example, time-frequency decomposition
of the signal based on wavelet transform [171] and regularization based methods
[118]. Some estimation methods also exist for the case that multiple channels are
used in the analysis (e.g. [172]).

Different methods for single-trial EP analysis aim to decompose the measure-
ments into relevant components or to explain the data through some parameters.
The parametrization gives the means to investigate, for example, the changes that
the stimuli caused to the ongoing EEG signal or that the repetition of the test
caused to the responses. Most of the methods are based on some explicit model or
on some assumptions for the EPs. Every decomposition then involves at least two
main considerations. On the one hand, if the resulting estimates follow too closely
the measurements, it is probable that some features are still going to be hidden by
phenomena not related to the stimulation. On the other hand, if the estimates are
not following closely the measurements, some features may have been lost or some
extra features may have been created by the model itself. A balance between these
considerations is necessary for the correct interpretation of a parametrization that
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is able to reveal some specific features of the experiment.

7.4.2 Time-varying estimation with linear observation model

A sampled potential relative to the t-th stimulus from a single channel can be
denoted with a column vector of length M , i.e. zt = (zt(1), zt(2), . . . , zt(M))T .
Using these measurements, a vector of random parameters θt is to be estimated.
The linear estimator that minimizes the mean square Bayes cost is (4.142)

θ̂t = ηθt
+ Cθt,zt

C−1
zt

(zt − ηzt
), (7.6)

where ηzt
is the mean and Czt

the covariance of the measurement vector zt, ηθt

is the mean of the parameter vector, and Cθt,zt
is the cross-covariance of the

measurements and the parameters to be estimated. The estimator is optimal
among all possible estimators, not only linear, if θt and zt are jointly Gaussian.
The mean square optimality among linear estimators holds for every joint density
of the form p(zt, θt).

The selection or estimation of Cθt,zt
is in general difficult without some prior

knowledge about the EPs. For the linear additive noise model we have

zt = st + υt. (7.7)

The vector st corresponds to the part of the activity that is related to the stimulus
and the rest of the activity υt can be considered to be independent of the stimulus
and the EP. With this model, the EP st equals the parameter vector θt and
equation (7.6) is the time-varying (within a trial) Wiener filter used, e.g., in [214].
The EPs can be further modeled as a linear combination of some pre-selected basis
vectors. Then, the observation model takes the form

zt = Htθt + υt, (7.8)

where Ht is a deterministic observation matrix, which contains the basis vectors
ψt,1, . . . , ψt,n of length M in its columns, and θt is a parameter vector of length n.

The estimated EP ŝt can be obtained from the estimated parameters θ̂t as

ŝt = Htθ̂t. (7.9)

The linear mean square estimator with observation model Ht, in the special case
that θt and υt are uncorrelated, i.e. Cθt,υt

= 0, is given by (4.167)

θ̂t = (HT
t C

−1
υt
Ht + C−1

θt
)−1(HT

t C
−1
υt
zt + C−1

θt
ηθt

), (7.10)

where Cθt
and ηθt

are the covariance and the mean of θt (prior density), and
Cυt

is the covariance of the zero mean measurement noise. Again this estimator
is optimal among all possible estimators, not only linear, if θt and zt are jointly
Gaussian, but with the requirement of uncorrelated parameters and noise.
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Based on the Bayesian formalism, a simple estimation method for EP denoising
that assumes only the smoothness of the EP signals is given by smoothness priors
method (4.86)

ŝt = (I + α2
tD

T
1 D1)

−1zt (7.11)

See also section 5.3.3. Of importance is the selection of the smoothing parameters
αt, t = 1, . . . , T .

7.4.3 Signal and noise subspaces

Several parametrizations have been used for single-trial estimation of EPs in dif-
ferent studies. Common ones are based on different types of Gaussian shaped
components and exponentially damped sinusoidal functions [210]. Other choices
are Fourier basis or several possibilities of wavelet basis. While these choices are
not based on the measurements, it is possible to form decompositions based on
the data. Singular value decomposition (SVD) has many theoretical and practical
applications in signal processing and identification problems [69]. In relatively
high signal-to-noise ratio conditions SVD of a data matrix can divide measure-
ments into signal and noise subspaces. Alternatively it can also be understood in
terms of principal component regression (PCR) as a combined method for signal
enhancement and optimal model dimension reduction [103], see also section 6.2.
The subspace method has been used to enhance stimulus phase-locked activity in
different studies (e.g. [118, 41]).

The available data matrix Z = [z1, . . . , zT ] ∈ R
M×T having as columns the

EEG sampled epochs relative to the stimulation can be decomposed as

Z = UΣV T , (7.12)

where U ∈ R
M×M satisfies UTU = I, V ∈ R

T×T satisfies V TV = I, and Σ ∈
R

M×T is a pseudo-diagonal matrix with non-negative diagonal elements σi such
that σ1 ≥ σ2 ≥ . . . ≥ σmin(M,T ) ≥ 0. If M ≤ T then Σ has the form Σ = [Σ1, 0],
where Σ1 = diag(σ1, . . . , σM ) and 0 is a zero matrix. If M > T then Σ has the

form Σ =

[
Σ1

0

]

, where Σ1 = diag(σ1, . . . , σT ). Only r singular values are non

zero, where r = rank(Z). For the additive noise model and relatively small noise
the following decomposition can be considered

Z = [Us, Uυ]

[
Σs 0
0 Συ

]

[Vs, Vυ]T . (7.13)

The matrix Σs contains the k largest singular values and Us the respective left sin-
gular vectors associated mainly with the signals st. Thus the matrices (Us,Σs, Vs)
represent a signal subspace and (Uυ,Συ, Vυ) represent primarily the noise subspace
([39], p. 118).

From the SVD of the matrix Z = UΣV T we also have

ZZT = UΣ2
1U

T . (7.14)
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This means that the left singular vectors of Z are the eigenvectors of ZZT or of
the data correlation matrix

R̂ =
1

M
ZZT . (7.15)

If we denote with Hs the matrix with columns the k dominant eigenvectors, then
the ordinary least squares estimator for the parameters θt becomes

θ̂t = (HT
s Hs)

−1HT
s zt = HT

s zt. (7.16)

Estimates for the EPs can be obtained from (7.9). Quantitatively, the first basis
vector is the best mean-square fit of a single waveform to the entire set of epochs.
Thus, the first eigenvector is similar to the mean of the epochs and the corre-
sponding parameters or principal component θ̂t(1) (t = 1, 2, . . . , T ) reveal the con-
tribution of the eigenvector to each epoch. The rest of the dominant eigenvectors
model primarily amplitude differences between individual EP peak components
and latency variations from trial-to-trial.

The estimator can be combined (preprocessing) with smoothness prior method.
Estimates can then be obtained from

ŝ′t = HsH
T
s zt, (7.17)

where now the signal subspace (dominant eigenvectors) is estimated from the
smoothed vectors (7.11) S′=[ŝ1, . . . , ŝT ], rather than the raw measurements. A
related approach was proposed in [41], see also [187]. The effect of strong artifacts
on the EP signal subspace is discussed in Chapter VIII.

7.4.4 Dynamical estimation

In this thesis, focus in given on the case that dynamic changes exist from stim-
ulus to stimulus. Although some of the methods that are briefly mentioned here
and in chapter IV, could be used to estimate dynamically changing features, the
possibility that previous trials and estimates may contain relevant information to
next trials and estimates, is not taken explicitly into account in the estimation
procedure. State-space modeling (chapter V) can give a good theoretical base and
estimation performance for tracking time-varying features of the EPs.

The most obvious way to handle time variations between single-trial measure-
ments is sub-averaging of the measurements in groups. Sub-averaging is used, e.g.,
in [24] to demonstrate the decrease of amplitude in visual EPs. Sub-averaging
could give optimal estimators if the EPs are assumed to be invariant within the
sub-averaged groups. Another method for the dynamical estimation of EPs is the
windowed averaging of the measurement vectors. This can also be called sliding
window averaging. The estimator then takes the form of a moving average filter.
In vector form the moving window average filter for dynamical estimation is

ŝMWA
t =

k−1∑

i=0

wizt−i, (7.18)
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where t denotes the t-th stimulus. In [194], this filter average was used with equal
weights wi = 1/k. Another method which was used in [194, 54] is exponentially

weighted average (EWA) in which the weights are of the form wi = γi/
∑k−1

j=0 γ
j ,

for some 0 < γ < 1. It can be shown that an equivalent form is given by

ŝEWA
t = γzt + (1 − γ)ŝEWA

t−1 , (7.19)

The common disadvantage of these moving averages is that they cannot be
adaptively tuned based on the data. Another disadvantage is that neither their
statistical properties nor the assumptions imposed to the EPs and background
EEG can be directly defined. However, their statistical properties can be investi-
gated through the Kalman filter equations.

A more natural way to handle time variations is given by state-space modeling
and recursive mean square estimation. In this formulation, the measured EP
epochs are directly assumed to be vector valued stochastic processes. With the
selections Ft = I, Gt = I for every t the state-space equations are of the form
(random walk)

θt+1 = θt + ωt (7.20)

zt = Htθt + υt. (7.21)

If we denote the conditional covariance matrix of the parameter estimation error
as Pt = Cθ̃t

+ Cωt
, the Kalman filter equations (5.83-5.86) can be written as

Kt = Pt−1H
T
t (HtPt−1H

T
t + Cυt

)−1 (7.22)

Pt = (I −KtHt)Pt−1 + Cωt
(7.23)

θ̂t = θ̂t−1 +Kt(zt −Htθ̂t−1), (7.24)

where Kt is the Kalman-gain matrix. Estimators for the EPs can be directly
obtained from ŝt = Htθ̂t. The last equation can be written in the following form

θ̂t = θ̂t−1 +Ktǫt, (7.25)

where the residual or prediction error ǫt = zt − Htθ̂t−1 is the estimator of the
unknown noise vector υt. With different choices or assumptions for Cωt

, Cυt
, and

P0 several adaptive algorithms can be written in the form (7.22-7.24). Kalman
gain matrices Kt and recursive covariance estimates Pt for different recursive al-
gorithms, namely recursive least squares (RLS), least mean square (LMS), and
normalized least mean square (NLMS), are presented in Table 7.1. In that sense,
these adaptive algorithms can be optimal in the mean square sense if the specific
choices or assumptions about the parameters are valid. The connections of RLS,
LMS, and NLMS algorithms to Kalman filtering are discussed e.g in [183, 75]. Such
methods have been proposed for EP estimation (especially brain stem potential
tracking), see for example [170] and the references therein. For a comparison of
different adaptive algorithms in EEG spectrum estimation see [193, 190].
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Table 7.1: Kalman gain matrices Kt and conditional covariance matrices of

parameter estimation error Pt for different recursive algorithms.

Kalman filter
Kt = Pt−1H

T
t (HtPt−1H

T
t + Cυt

)−1

Pt = (I −KtHt)Pt−1 + Cωt

RLS
Kt = Pt−1H

T
t (HtPt−1H

T
t + λt)

−1

Pt = λ−1
t (I −KtHt)Pt−1

LMS
Kt = µHT

t

Pt = µ(I − µHT
t+1Ht+1)

−1

NLMS
Kt = µHT

t (µHtH
T
t + 1)−1

Pt = µI

If we further choose Ht = I, from (7.24) it holds

ŝt = θ̂t = θ̂t−1 +Kt(zt − θ̂t−1) = Ktzt + (1 −Kt)ŝt−1. (7.26)

If we compare now with equation (7.19), we can see that exponentially weighted
average can be obtained by choosing some fixed value for the Kalman gain such
as Kt = γI. Actually, it is enough to choose Ht = I, Cυt

= Cυ, Cωt
= γ2/(1 −

γ)Cυ for every t and P0 = γ/(1 − γ)Cυ in the Kalman filter equations to obtain
exponential weighted average. Through the connection of all the above mentioned
methods with Kalman filtering theory we can conclude that state-space modeling
and recursive Bayesian mean square estimation gives a good theoretical base for
the investigation of realistic models for dynamical estimation of EPs.

Some smoothing methods have also been proposed for modeling trial-to-trial
variability in EPs (e.g. [175, 202]). A Bayesian smoothing method that can be
applied for smoothing EPs across trials is given by smoothness priors method. If
G = (I + α2DT

1 D1)
−1, then estimates can be obtained in matrix notation as

Ŝ = ZG, (7.27)

where Z is the matrix having as columns the single trials. A pseudo two dimen-
sional smoothing procedure is given by (see eq. (7.11))

Ŝ′ = G′ZG, (7.28)

for appropriate selected dimensions. The connection of the above methods with
Kalman smoother has been presented in chapter V.



Chapter VIII

Tracking dynamic changes

In this chapter, novel methods for estimating dynamic features present in evoked
potential measurements are presented, and their applicability is discussed. The
methods are based on state-space modeling and recursive Bayesian mean square
estimation. These topics were treated in chapter V. Here, it is demonstrated the
capability of the proposed methods to track time-varying changes due to repeated
presentation of stimuli. The evaluation is based on simulated and real EPs. The
same measurement set, obtained form an auditory oddball type of experiment, is
used throughout the chapter.

8.1 Basic concepts and definitions

The sampled potential (from a single channel) relative to the t-th stimulus is
denoted with a column vector of length M

zt =








zt(1)
zt(2)

...
zt(M)







, t = 1, . . . , T. (8.1)

The observation at the t-th stimulus zt depends on some unobserved parameters
θt (state vector) through the model

zt = Htθt + υt, (8.2)

whereHt is an observation matrix, which contains the basis vectors ψt,1, . . . , ψt,n of
lengthM in its columns. The unknown quantity θt depends on the parametrization
of the estimation problem. For the time evolution of the hidden process θt a linear
first order Markov model is used, i.e.

θt = Ftθt−1 + ωt. (8.3)

The assumptions of the state-space model are given in section 5.2. The estimated
EPs ŝt can be obtained from the estimated parameters θ̂t as

ŝt = Htθ̂t, (8.4)

126
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and it represents stimulus triggered EEG activity. Optimal estimates θ̂t based
on past measurements are obtained recursively by Kalman filter (KF) algorithm.
If all the measurement vectors are available, i.e. zt, t = 1, . . . , T , then the fixed
interval smoother (KS) can be used. The algorithms are summarized as follows:

• Initialization

Cθ̃0
= Cθ0

, (8.5)

θ̂0 = E{θ0}. (8.6)

• Prediction step

θ̂t|t−1 = Ftθ̂t−1, (8.7)

Cθ̃t|t−1
= FtCθ̃t−1

FT
t + Cωt

. (8.8)

• Filtering step

Kt = Cθ̃t|t−1
HT

t (HtCθ̃t|t−1
HT

t + Cυt
)−1, (8.9)

θ̂t = θ̂t|t−1 +Kt(zt −Htθ̂t|t−1), (8.10)

Cθ̃t
= (I −KtHt)Cθ̃t|t−1

, (8.11)

for t = 1, . . . , T .

• Smoothing (backward recursion)

At = Cθ̃t
FT

t+1Cθ̃t+1|t
, (8.12)

θ̂s
t = θ̂t +At(θ̂

s
t+1 − θ̂t+1|t), (8.13)

Cθ̃s
t

= Cθ̃t
+At(Cθ̃s

t+1

− Cθ̃t+1|t
)AT

t , (8.14)

for t = T − 1, T − 2, . . . , 1. For the initialization of the backward recursion the
filter estimates can be used, i.e. θ̂s

T = θ̂T .

A random walk model Ft = I, for every t, for the state evolution can be
modified to (5.135)

θt = (I + Cωt
C−1

t )−1θt−1 + ωt, ωt ∼ N(0, (I + Cωt
C−1

t )−1Cωt
), (8.15)

in order to include extra prior information in the estimation procedure (e.g. extra
smoothness). Though, the prior selection of Ct depends on the parametrization.
Finally, the state-space identification algorithm presented in section 5.4 can also
be used. This can improve the tracking capabilities of the methods by introducing
time variation to the basic model.
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8.2 Applicability

For the methods based on Kalman filtering, a common issue is the investigation of
optimal choices for the covariance matrices Cωt

, Cυt
in an unknown environment.

The adaptation, or the speed-of-change of the parameters can be controlled by the
selection of different state noise Cωt

, and observation noise Cυt
covariance matrices.

The matrices Cυt
, although assumed to be known until now, could be estimated

based on the data. This is a difficult estimation task, since background EEG, even
not related to the stimulation, is a non-stationary process. Therefore, its properties
cannot be estimated accurately from a pre-stimulus sample or from ensemble data.
Estimation based on the prediction error is one possibility, but it is related to the
selection of the state noise covariance matrices. When recursive algorithms are
applied for adaptive modeling of time series, some strategies exist for time varying
selection. For some approach see [191, 192]. This thesis is primarily focused on
the selection of Cωt

, and of an appropriate state-space model for estimation. Since
different statistical properties of the residuals depend at least on the selection of
observation model, the selection Cυt

= σ2
υI, for all t, can be made. In that case

the selection σ2
υ = 1 follows, see equation (5.116). Then care can be given to the

selection of Cωt
in relation to the selected state-space model.

A common strategy in state-space modeling is the choice of diagonal matri-
ces for Cωt

. This implies that the vectors ωt have uncorrelated components. For
dynamical estimation of EPs, it can be further assumed that the interesting phe-
nomena should be slowly varying from stimulus to stimulus. Then the selection
Cωt

= Cω for every t can be made. This assumes that every sudden variation is
due to the background noise, and it should be filtered out. The simpler choice
is then Cωt

= σ2
ωI, i.e. all the parameters are allowed to change similarly from

trial-to-trial. Naturally, the speed-of-change of the estimated parameters is tightly
related to the selection of σ2

ω (in relation always to the observation model). When
it is selected to be too large, then the estimates tend to be close to the least squares
solution (e.g. see (5.116)). A very small selection forces the estimated parameters
to be almost identical, and identical to the initialization (e.g. see 5.107).

The assumptions imposed to the background noise are important for dynami-
cal estimation of EPs. The Gaussian assumption can be easily relaxed, if we only
require the optimality among all the linear estimators. Furthermore, it is under-
stood that EEG measures activity generated from different brain locations as well
as activity arising from non-neural sources. Therefore, it can be considered that a
significant part of the variability in EP data is created by superposition of a large
number of random processes that are not relevant to the stimulation. Addition-
ally, and much more important for the applicability of the proposed methods, some
part of the activity must be uncorrelated from stimulus to stimulus. Then it is
possible to eliminate all nearly Gaussian variability, and every other uncorrelated
from trial-to-trial contributions.

In practice, it is difficult to decide which part of the activity is related to the
eliciting event, and which parts represent just randomly occurring phenomena.
From this arises the following intuitional approach for dynamic estimation of EPs
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when slow changes of interest exist from stimulus to stimulus. With appropriate
tuning of the relevant parameters state-space representation and recursive mean
square estimation model the most dominant phenomena correlated to the stim-
ulation. Any other nearly randomly occurring phenomena will be filtered out.
Any significant violation of the assumptions may hide interesting results of the
experiment.

State-space modeling for EP estimation was originally proposed in [117, 116],
where the Kalman filter algorithm was considered. In those studies models of the
form Ht = H, Ft = I, Cυt

= I, and Cωt
= σωI, for every t = 1, . . . , T , where

only considered. In [64] the method was further developed, and the applicability
of Kalman filter was demonstrated based on the use of time shifted Gaussian
shaped functions (generic observation model). Kalman smoother algorithm for
EP estimation was briefly introduced in [63]. In this thesis, in the spirit of [64],
Kalman filter and smoother algorithms are compared in order to demonstrate the
better performance of the smoother, and to discuss the applicability of the method.
Additionally, models of the form (8.15) are introduced for the enhancement of the
random walk model for EP estimation. Finally, a state-space identification method
is presented for the improvement of the tracking capabilities of the methods.

In section 7.4.3, it was concluded that the dominant eigenvectors of the data
correlation matrix can form an observation model for EP estimation. Since this ba-
sis contains prior information about phase-locked characteristics of the EP signals
the following state-space model for dynamical estimation can be considered

θt = Ftθt−1 + ωt (8.16)

zt = Hsθt + υt, (8.17)

with Ht = Hs for all t. This observation model was also considered in [116]. The
performance of the method relates on the quality of the signal subspace in low
signal-to-noise ratio conditions, as well as on the assumption of hidden dynamical
behavior. In this thesis, this model is further exploited and its usability discussed
together with other generic parametrizations.

8.3 Simulations

Although the proposed methods are capable to estimate different kinds of EPs,
data resembling the P300 peak were simulated. The P300 peak is one of the most
extensively studied cognitive potential and there exist many studies where the
trial-to-trial variability of the component is discussed.

Real EEG measurements were used as background EEG activity (noise) in the
simulations. From the recordings, only the channel CZ was used, after preprocess-
ing and artifact removal by ICA (see section 7.3.2). As background activity for the
simulations, prestimulus EEG epochs from -700 ms to 0 ms relative to the deviant
stimulus onset were sampled. Simulated EP measurements were then constructed
according to the additive noise model by superimposing upon the selected real
EEG epochs linear combinations of 3 Gaussian shaped functions of the form
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st =

3∑

i=1

at(i)e
−(τ−bt(i))

2/c2
t (i), (8.18)

where at(i) is the amplitude , bt(i) is the latency, and ct(i) is the width of the
i-th Gaussian component at the t-th stimulus. The Gaussian components were
computed over the points τ = {−49, . . . , 0, . . . , 300}, such that the theoretical
stimulus occurs at point zero. In order to be consistent to the real measurements
sampling rate (500Hz), each pseudo-real EP vector has three Gaussian peaks,
a negative around 100 ms after the stimulus, a negative around 200 ms, and a
positive around 300 ms.

In order to evaluate the methods for different dynamic variations, four sets of
simulations (87 EPs per set) for the noiseless third peak were created. In the first
case (Case 1), trial-to-trial dynamic variations of the amplitude and latency of the
third peak were set to be linear functions of time. In Case 2, dynamic variations
were created by two different sinusoidal functions, one for the amplitudes and one
for the latencies. Random variations uniformly distributed were further added to
the amplitudes and latencies for both cases. In Case 3, for the amplitudes and
latencies of the third peak uniform variations in a larger range were allowed. Case
4 simulates a sudden change in amplitude and latency after trial 45. The range of
the random variability was set double compared to Case 1. The widths of the third
peak in all the cases were also uniformly distributed but in a smaller interval. The
amplitudes and latencies of the simulations are presented in Fig. 8.1 as functions
of the stimulus number. The other two peaks were selected to be the same for
the three cases having random variations for the amplitudes, latencies and widths,
and linear trends in amplitudes. The background noise was the same for all the
cases for better comparisons.

8.4 Kalman filter vs. smoother

For estimation the model (8.16), (8.17) was considered. For the state evolution
the random walk model , i.e. Ft = I, was selected. In section 8.5.1, the problem
of selecting the appropriate number of eigenvectors is treated. Here it is shown
that a few eigenvectors are enough to model dynamic variability. Focus is given
on the comparison of Kalman filter and smoother, as well as on the applicability
of the methods for tracking different trends. In this section, the matrix Hs can be
treated as preselected or fixed.

8.4.1 The model and practical considerations

From the eigenvalue decomposition of the matrix R̂ = ZZT /T , where Z is the
matrix with columns the measurement vectors, a few dominant eigenvectors can be
selected to form the columns of the time invariant observation matrix Hs. The first
5 dominant eigenvectors were here selected for every simulated set individually.
For better estimation performance, before obtaining the eigenvectors, the noisy
simulations have been smoothed with the smoothing operator in (4.86), i.e. z′t =
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Figure 8.1: Amplitudes and latencies of the third peak for the (noiseless) simu-

lations. Case 1: slow linear trends, Case 2: faster sinusoidal, Case 3: only random

variations uniformly distributed, and Case4: a jump in amplitude and latency.

Gzt, where G = (I + α2DT
1 D1)

−1, and D1 is the first order difference matrix.
The regularization parameter was selected as α2 = 25 by visual inspection of the
eigenvectors. Therefore, the matrix Hs was formed based on z′t, but for estimation
the original simulations were used. Estimates for the parameters θt were computed
with Kalman filter and smoother algorithms, and for st as ŝt = Hsθ̂t.

For the covariance matrices the selection Cωt
= σ2

ωI and Cυt
= σ2

υI was made,
for every t = 1, . . . , 87. Therefore, the selection of σ2

ω is not essential since only
the ratio σ2

υ/σ
2
ω has effect on the estimates. Then the choice Cυt

= I can be made
and care is given to the selection of σ2

ω. If it is tuned too small, then the estimates
have bias toward the previous estimates. If it is selected too big, then they have
too much variance tending to be similar to the ordinary LS estimates. The same
parameter controls the adaptivity or the over-smoothing of Kalman smoother. The
selection can be based on experience, expected variability, and visual inspection of
the estimates. If the variance of the background noise change randomly from trial-
to-trial, a time-varying selection is not expected to improve the overall properties
of the estimates. It may improve some individual single-trial estimates mainly
related to much lower or much higher signal-to-noise ratio conditions. Intuitively,
very noisy single-trials are better estimated based on the past, or past and future
measurements, while less noisy based on the present. If the background noise is
changing with a clear pattern, for example, if its variance grows from trial-to-trial,
the model variances should be selected accordingly.
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The influence of the initial values θ0, Cθ0
can be reduced by using the algorithm

first backwards in time. The last estimates of the backward run can then be used to
initialize the forward run. Usually, around 10 backward steps are enough for a good
starting point. Since we have a time invariant signal model, Kalman filter matrix
equations can be iterated until an adequate convergence is observed. The speed of
convergence relates to the initial conditions, properties of state-space model, and
state and observation noise covariance matrices. More about the convergence of
Kalman filters can be found for example in ([71], p. 286, [7]). The converged values
can be used to initialize the backward run. The average vector of the ordinary
LS estimates was used for initialization of the backward procedure (40 backward
steps). With this initialization, in the limited case of a very small state noise
variance parameter, ŝt will vary slowly around the mean of the measurements.
For bigger values the initialization is less important, and it is visible for a few
first estimates. Though, the smoother is less sensitive to initializations. The same
procedure was used for every initialization in the thesis.

8.4.2 Error comparison and state-noise variance parameter selection

In order to identify optimal values for the variance term σ2
ω = σ2, root mean square

errors (RMSEs) were calculated, between the estimates based on the noisy data
and the noiseless simulated EPs (for all the different cases, and for both Kalman
filter and smoother). This also describes the performance of Kalman filter and
smoother in relation to the parameter selection. In parallel, in order to investigate
the performance of the methods when the noise is not present, new estimates were
computed based on the noiseless data, and new RMSEs between these estimates
and the noiseless simulations. The same observation model, based on the smoothed
noisy data, was used for these estimates. This aims to describe the damage on
the hidden variability due to over filtering or over smoothing. A balance between
these two considerations is the guide for optimal selection. Since focus is given
on the third peak, the RMSEs were computed over the time interval (250-400ms).
The means of the RMSEs for different values of the variance term are presented
in Fig. 8.2 for all cases.

In all situations, the smoothing method results in significantly smaller errors
when the noisy measurements are used. For Cases 1, 2 and 4 the error measure
takes clear minimum for both filter and smoother. Case 1, which simulates the
slowest transition, is better estimated for values around 0.01. Case 2 and 4 require
bigger values around 0.05. The damage is naturally bigger for the sudden transition
(Case 4). These values give a compromise between noise reduction and tracking
performance. Additionally, it can be observed (see also Section 8.4.4) that the
difference in both estimation methods is due to two factors. Smoother reduces
greater the noise having in the same time better tracking performance. For Case 3,
although noise reduction is achieved, clear minimum cannot be observed. A value
bigger than 1 is reasonable with respect to the damage of the random variability
of the peak. Past and future measurements contain information about the shape
and sign of the EPs that is used to reduce the noise. Though, in that case the
damage is bigger for the smoother.
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Figure 8.2: Mean of the root mean square errors for different values of the state

noise variance parameter σ2, where Cωt = σ2I, and Cυt = I for every t. RMSEs

were computed between the estimates and the noiseless simulated EPs in the

interval 250-400 ms (third peak). The x-axis is in logarithmic scale. Observation

model: 5 eigenvectors of the data correlation matrix.

8.4.3 Single-trial estimates and applicability revised

By construction, the synthetic datasets have similar means, but different higher
order statistics and time correlations. Different plots describing the simulated EPs
are presented for Case 1, Case 2, Case 3, and Case 4 in Figs. 8.3-8.6 respectively.
The general structure and dynamic variability of the EPs is estimated by both
Kalman filter and smoother. The extra noise reduction by the smoother is visible
in all the image plots. Excellent estimates are obtained under poor signal to
noise ration conditions (Case 1 after stimulus 70, Case 2 stimuli 40-70, second
half of Case 4). With bigger values for the variance parameter noise is still highly
present (Case 3). In that case also over filtering and especially over smoothing is
observed. But even in that case the estimates preserve the general structure of
the peak. The effect of the filter and smoother for different values of σ2 can be
observed by comparing the estimates for the first two peaks. The first two peaks
are, by construction, better estimated in Case 1.
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Figure 8.3: Case 1: Slow trends, σ
2 = 0.01.
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Figure 8.4: Case 2: Sinusoidal trends, σ
2 = 0.05.
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Figure 8.5: Case 3: Random variability, σ
2 = 1.
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Figure 8.6: Case 4: Sudden jump, σ
2 = 0.05.
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Estimates for the latency and amplitude of the third peak were also computed,
by simply taking the maximum value in the interval 250-400ms. The estimates
for the different cases are presented in Figs. 8.7-8.10. The tracking capability
of the methods can be compared from these plots. The amplitude and latency
estimates are presented on top of each figure, and estimates based on noiseless
data on bottom. For the first two cases the reduction in noise is greater for
Kalman smoother, which provides better estimates for the latencies when the
signal-to-noise ratio is poor. Other significant observation is that it cancels the
time delays that the filter is causing (see also e.g. [193, 190]). With that selection
of parameter, for Case 2 the amplitudes are over smoothed towards the mean.
For Case 4, Kalman filter tracks well until the jump and creates a time delay after
that point for both amplitude and latency. The smoother tracks better the sudden
latency change, but oversmooths the sudden amplitude transition.

Case 3, with only random variability, represents the worst performance for the
methods. Although, there can be observed reasonable estimates for the latencies.
This is partly due to the selected observation model, which naturally contains prior
information about the range of the peak, and up to some level about the shape
of the peak. This depends also on the number of the eigenvectors included in the
model. Less eigenvectors preserve better the shape, but they might not be able to
model late potentials, and long latency trends. More eigenvectors introduce noise.
For small values of σ2 the selection is less important since prior information of the
observation model becomes inactive, as prior information from the state evolution
becomes dominant (see also section 8.5.1). The amplitude range is underestimated
and a bigger value for σ2 is perhaps more appropriate. This can improve individual
estimates for strong EPs, but it will keep hidden into the noise the smaller ones.

From the analysis of the simulations some general observations can be derived.
Recursive estimation by Kalman filter can model dynamic variability and creates
accurate estimates for the simulated EPs. Though, for small values of the state
variance parameter creates time delays in the estimates. Kalman smoother cancels
these delays, and in the same time removes greater portions of noise. Both have as
an effect reduction in the mean square error. Though, the biggest part of the noise
reduction is achieved during the filtering procedure. For slow variations, Kalman
filter and smoother give very good estimates. Relatively slow variability permits
the choice of small values for σ2, which leads to highly improved signal-to-noise
ratio. Bigger values for the state noise variance can still give good estimates,
but more noisy. The clear superiority of Kalman smoother makes necessary the
use of filter only in situations that the estimation is needed on-line (for example
to monitor depth of sedation in clinical applications). Then improvement in the
tracking capability is related to the fixed-lag smoother. When only sudden and
large random variations exist, bigger values for the state noise covariance are
appropriate in order to keep the random structure of the peak. Kalman filter seems
to track better some sudden jumps in the expense of more noise in the estimates.
In those situations extra prior information is needed for better estimation. In
addition, time-varying models should improve the tracking performance.
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Figure 8.7: Case 1: amplitude and latency values, true values (gray), raw data

values (dotted), Kalman filter estimates (thin), and smoother (thick).
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Figure 8.8: Case 2: line description as in Fig. 8.7.
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Figure 8.9: Case 3: line description as in Fig. 8.7.
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Figure 8.10: Case 4: line description as in Fig. 8.7.
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8.5 On the selection of observation model

In the previous section, the applicability of recursive mean square methods in
estimating dynamic variability present in the measurements was demonstrated.
Since Kalman smoother is essentially based on the filtering procedure, its better
performance do not seem to depend on the selection of observation model, neither
to the state evolution model.

8.5.1 Number of eigenvectors

The number of eigenvectors included in the previous analysis contains prior in-
formation about the overall mean and latency range of the peaks. Note that by
construction the simulations are covering the same range. In Figs. 8.11-8.14, there
are presented the dominant eigenvectors (up to 9) for the four simulated cases. In
the first column of each figure, there are the eigenvectors computed from the raw
simulated measurements (top row), after conservative smoothing (middle row),
and from the noise free simulations (bottom). On the other two columns there are
error measures based on different number of eigenvectors (average RMSEs between
estimates and noiseless simulations for the third peak). For small state variance
parameter selection, prior information embedded in the observation model con-
cerning individual peaks becomes inactive. Though, at least 2-3 eigenvectors are
needed in order to estimate latency variation for the 3 peak.

If the assumption is that the EPs should be smooth transient waveforms, then
too many eigenvectors do not contribute to the accuracy of the estimates. When
big state noise variance parameter is selected, better estimates are obtained with
less eigenvectors (preserving shape information). Since even perfect (noise free)
eigenvectors can largely model the noise (in the least-squares sense). Less domi-
nant eigenvectors model mainly random variability of the peaks, and details related
to the width and exact shape. Therefore, the associate parameters have mainly
uncorrelated from trial-to-trial behavior, and as a consequence they become eas-
ier eliminated in the filtering-smoothing procedure. Therefore, for small σ2 the
introduction of extra eigenvectors do not change the quality of the estimates. Ad-
ditionally, less dominant eigenvectors, when are based on raw measurements, they
largely correspond to the noise subspace. A combination of these considerations
gives the number of eigenvectors for estimating a single peak.

In relation to the assumptions for the speed of change of a particular peak,
someone can control the quality of estimates by introducing a diagonal matrix
for the state noise covariance, with different values associated to different eigen-
vectors. For example, in Case 1, first and second noiseless eigenvector model the
main amplitude decrease and latency shift. Therefore, they could be tuned with
different values. Though, with noisy eigenvectors this is rather difficult (especially
in real unknown measurements) since their order and shape do not always match
to intuition. Even dominant eigenvectors can correspond largely to the noise sub-
space, while containing information about the EPs. Notice that in Case 1 and 2
the order of the second eigenvector has changed to third when noise is added.

Another issue worth mentioning relates to the correlation between individual
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Figure 8.11: Case 1: Eigenvectors and means of the RMSEs for different di-

mensions of the observation model when noisy (top), smoothed (middle), and

noise-free data (bottom) are used for computing the eigenvectors.
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Figure 8.12: Case 2: figure description as in Fig. 8.11.
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Figure 8.13: Case 3: figure description as in Fig. 8.11.
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Figure 8.14: Case 4: figure description as in Fig. 8.11.
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peaks. Naturally the eigenvectors contain prior information about the correlation
structure between the wave-shapes of the hidden source signals. If the peaks are
largely correlated in amplitude, and especially, in latency changes then perhaps
eigenvectors are an optimal choice (in comparison to other generic observation
models) for reducing the dimension of the problem and for dynamic estimation.

8.5.2 Generic vectors

Other generic parametrizations can also be used for estimating features of EPs.
Here some examples are presented by considering only simulated Case 1. As a
starting point for a demonstration, an observation model formed by time shifted
and scaled (sampled) Gaussian functions was selected. The selection was not
intended to be optimal in any sense, but reasonable by visual inspection of the
obtained estimates. Thus the observation matrix becomes H = [ψ1, . . . , ψn], where
its columns are formed by

ψi = e−(τ−ai))
2/2b2 , (8.19)

The width parameter was chosen b = 20 and n = 20. The basis vectors are plotted
in the upper left part of Fig. 8.15.

It is known in regularization theory that the effect of the regularization param-
eter on the estimates relates to the singular values of the observation matrix (e.g.
[39], p. 59). For example, if the singular values of H are much larger than the
regularization parameter then the regularization parameter has little effect to the
solution. So at least the largest singular value must be considered, for example, in
order to compare the performance of two different observation models. However,
this is true when the model Ft = I, Cυt

= I, Cωt
= σ2I, is considered. Even the

introduction of diagonal matrices can change the situation, making the comparison
more difficult.

Furthermore, the singular value decomposition of the matrix H was considered,
i.e. H = UΣV T , where U = (u1, u2, . . . , uM ) ∈ R

M×M and V = (v1, v2, . . . , vn) ∈
R

n×n are orthogonal matrices and Σ is a pseudo-diagonal M by n matrix whose
top n rows contain the singular values diag{σ1, σ2, . . . , σn} (ordered σ1 ≥ σ2 ≥
. . . ≥ σn) and whose bottom (M − n) rows are all zero. From the SVD of H a
second observation model was formed Hu = [u1, u2, . . . , un], with columns the left
singular vectors. This matrix is shown on the top of Fig. 8.15 (b). Finally, a third
observation model was formed as H ′ = HuV

T , and it shown on the top of Fig.
8.15 (c). Note, that the matrices H,Hu,H

′ provide the same LS fitting error. In
order to have a reasonable, but not exact, comparison with the original matrix,
each column of H was normalized to unit norm.

The columns (length M = 350) of the observation models are shown in Fig.
8.15 (top row). In the second row there are plotted the LS parameter vector

estimates θ̂t,LS , for every t = 1, . . . , 87, k = 1, . . . , 20, obtained from the noiseless

simulated Case 1. The parameters θ̂t,LS are given in absolute values for better
visualization of the parameter space. Parameter estimates (based on the noisy
simulated Case 1) obtained with Kalman smoother are given in the third row. The
state noise variance was selected to be 0.01 for every observation model. Kalman
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Figure 8.15: Case 1: Different parametrizations of the EP estimation problem.

First row: basis vectors, Second row: LS parameter estimates (absolute values)

based on noiseless simulations, Third row: KS parameter estimates (absolute

values) based on noisy simulations, Last row: EP estimates (KS, noisy).

smoother estimates for the simulated EPs are give at the last row. For observation
model b) and c) the EP estimates are identical. Note that the vectors in Hu,H

′

are orthonormal. The Gaussian humps a) have the ability to provide smoother
results (bottom). However, the resulting estimates ŝt for the 3 observation models
tend to be the same for very big or very small values for the state noise variance
parameter.

This example aimed to emphasize that although the LS fit can be the same
for some observation models, when the state space model is considered the results
can be different. Additionally, even though the base and parameter space look
different (model b) and c)) the estimates for EPs can be exactly the same. These
observations are important for imposing extra prior information for estimation
or for state-space identification. The Gaussian functions can form a useful all
purpose model, for example for online estimation. The base in column b), is of the
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form of discrete sinusoidal type functions of different frequencies. Therefore, the
parameter estimates describe in that example decreasing signals from trial-to-trial
of different frequencies. The base in column (c), is of the form of time-shifted
discrete sinc type functions, uncorrelated, with band pass type discrete Fourier
transform. Roughly speaking, the parameters represent the time-varying behavior
of the power in a frequency band within a trial and from to trial-to-trial. Therefore,
different observation models (e.g. band pass filters) can be designed focusing on a
particular application.

8.5.3 A smoothness priors evolution model

Different observation models can force smoothness for the EPs. Though they
require the non trivial selection of wave shape and number of vectors in the ob-
servation model. Extra smoothness for the EPs can be enforced directly via the
smoothness priors method. The simplest observation model for estimation is given
by H = I. Thus, it is θt = st. Estimates for Case 1 with the same variance pa-
rameter as before (σ2 = 0.01) are shown on the left of Fig. 8.16. Prior information
about the smoothness of the EPs can be introduced through the state evolution
model (5.135)

F ′ = (I + σ2α2DT
1 D1)

−1, C ′
ω = σ2F ′, (8.20)

where D1 is the first order difference operator. This model can be understood as a
two dimensional smoothing method for EP estimation. For the selection σ2 = 0.01
and α2 = 1000 the improved estimates are presented in the middle of Fig. 8.16. As
a comparison, estimates obtained with observation model 5 dominant eigenvectors
of the noiseless data correlation matrix are presented on the right of Fig. 8.16.

8.6 State-space identification

In the previous sections different parametrizations for state-space modeling and
estimation of dynamic features in EP measurements were considered. For every
parametrization improvement of the tracking capabilities is related to the intro-
duction of time variation in the model. In this section, the performance of the
state-space identification method presented in section 5.4 is demonstrated. Its
form is general and can be modified according to the parametrization.

In order to continue the comparison based on the four simulated cases, as before
the 5 dominant eigenvectors are used for estimation. The simplest time-varying
prior for the enhancement of the random walk model (Ft = I, Cυ = I, Cω = σ2I)
is then (see section 5.4) Ct = c2t I and the model becomes

F ′
t =

c2t
c2t + σ2

I =
1

1 + σ2φ2
t

I = ftI, (8.21)

where it was set φ2
t = 1

c2
t

and

C ′
ωt

= σ2ftI = σ2 1

1 + σ2φ2
t

I (8.22)
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Figure 8.16: Case 1: Prior information only about the dynamic variability (left),

extra smoothness (middle), 5 eigenvectors from noise free simulations (right).

Estimates for the parameters φ2
t for t = 1, . . . , T can be obtained with the algo-

rithm presented in section 5.4. It must be noted that this parametrization is self
constrained not to over-fit to the measurements, neither to over-smooth the data.
Since for big values of φ2

t , state noise variance becomes small (thus over smooth-
ing) and the estimation criterion gets bigger, and small values of φ2

t lead to the
random walk model. Initialization was based on the random walk model. Thus, a
local minimum was searched in order to provide tracking improvements over the
basic random walk model. Though, the prior selection of σ2 is still necessary.

In Fig. 8.17, it is presented as before the error measure as a function of the state
variance parameter σ2 for the 4 simulated cases. The optimization was performed
in the interval 0-500 ms. The error is smaller than the filter. Near the optimal
choice for the parameter the presented state-space identification method and the
introduction of time variation at the model seems to reduce the error (smoother,
random walk model). The selection of the variance parameter seems to be less
important near the optimal since the adaptivity is improved. For big value of σ2

naturally bigger jumps are possible, which has as a consequence that the estimates
may follow also the noise. Inevitably the performance of the method relates to the
properties of the noise. Though the damage in the trends is always smaller.

For Case 1 it allows the use of even smaller values for the variance parameter
which leads to greater noise reduction. For the same value as before (σ2 = 0.01)
the error is improved by reducing the noise, tracking better the linear trends and
introducing some random variability in the estimates (Fig. 8.18). Though, for
the latencies there are very small differences. For Case 2 (Fig. 8.19), similar
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Figure 8.17: Error measures as a function of the variance parameter for the four

simulated cases.

observations can be made (σ2 = 0.05). For Case 3 (Fig. 8.20), the damage is
comparable to the filter (σ2 = 1). However, the identification method models
faster changes with greater noise reduction than the filter and plain smoother. For
Case 4, the estimates are overall improved (Fig. 8.21). For the selected parameter
(σ2 = 0.05), and the noise levels, the method could not estimate so sharp jump but
rather broke the amplitude jump into two smaller ones. Though now in the epoch
plots and in the image the sudden transition is more clear. The estimated models
ft are shown on the top left corner of Figs. 8.22-8.25. These figures also present
three individual single-trial estimates. Visual observation of the raw data for the
decision of amplitude and latency of peaks can be misleading (Stimulus 25) even
in simple pseudo real simulated examples. A compromise between following too
closely the measurements and respecting prior information gives better estimates.

Next, the performance of the methods is tested under different noises. In Fig.
8.26 mean RMSEs after repeated simulations for Case 1 (left) are presented. Dif-
ferent noise levels were considered (Gaussian noise with different variances) and
the error measure was computed for least squares, Kalman filter, smoother and
smoother optimized (the data were always smoothed before computing the eigen-
vectors). In this plot, the error measure is presented as a function of the standard
deviation of the added observation noise. The state noise variance parameter for
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Figure 8.18: Case 1: estimates, Kalman filter (dashed lines), smoother (thin

lines), smoother optimized (thick lines), and the simulated variability (gray).
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Figure 8.19: Case 2: line description as in Fig. 8.18.
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Figure 8.20: Case 3: line description as in Fig. 8.18.
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Figure 8.21: Case 4: line description as in Fig. 8.18.
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Figure 8.23: Case 2: line description as in Fig. 8.22.
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Figure 8.24: Case 3: line description as in Fig. 8.22.
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Figure 8.25: Case 4: line description as in Fig. 8.22.
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Figure 8.26: Error measure for different realizations of background noise.

estimation in all the simulations was fixed (σ2 = 0.01). In the same Fig. 8.26
(right) estimates with (σ2 = 0.05) were computed for Case 2 for different Gaus-
sian noises (100 set of realizations) with fixed standard deviation (STD= 40). In
Figure 8.27 it is presented the ensemble mean of all the estimates of amplitude
and latency (thin lines) for Case 2 only. Dashed lines denote intervals of ±2 times
the (ensemble) standard deviation and thick lines the simulated trends. The time
delay of the filter is visible, the state space method seems to over all correct the
smoother. The variance of the estimates is kept small even in poor signal-to-noise
ratio conditions. The state identification method seems also robust, and given
that it fixes individual EPs, corrects the trends, and controls over smoothing it
seems overall preferable. For higher signal-to-noise ratio conditions and for bigger
values of the state variance parameter the method can model accurately sudden
jumps of the state evolution (see Fig. 8.28).
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Figure 8.29: Deviant tone measurements and obtained eigenvectors.

8.7 Application to real EP data

In this section, the proposed single-trial estimation methods are applied to the
real EP data used in the ICA example (section 7.3.2).

8.7.1 Deviant stimuli and P300 component

As in the simulated examples, 5 eigenvectors of the data correlation matrix of
the smoothed measurements (after artifact removal by ICA) are used. Dominant
eigenvectors and measurements are plotted in Fig. 8.29. Three sets of estimates
were computed for different values of state noise variance parameter (σ2 =0.05,
0.1, and 0.5). Estimates obtained with Kalman smoother and smoother optimized
(in the interval 0-500ms) are presented in Fig. 8.30-8.32. By visual inspection
of the estimates the value 0.05 over-smooths the data (Fig. 8.30). Though by
adding time variability to the model better estimates are obtained. In Fig. 8.32
the estimates start to follow the noise. By considering the good quality of the
eigenvectors (at least the first 3) and by observing that for small values of σ2 the
data still show trend like variations both in latency and amplitude, a value around
0.1 seems optimal for σ2. For that value the optimized method seems also to give
better results. For that value single-trial estimates are presented in Fig. 8.33.
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Figure 8.30: Estimates σ2 = 0.05, KF (dashed), KS (thin), KS opt. (thick).
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Figure 8.31: Estimates σ2 = 0.1, KF (dashed), KS (thin), KS opt. (thick).
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Figure 8.32: Estimates σ2 = 0.5, KF (dashed), KS (thin), KS opt. (thick).
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8.7.2 Standard stimuli and N100/P200 complex

Estimates for the N100/P200 complex obtained from the standard tone were also
computed. The EP measurements and eigenvectors are shown in Fig. 8.34. In
the same way, 5 dominant eigenvectors of the data correlation matrix were used
for estimation. By visual inspection the value σ2 = 0.01 was selected. Estimates
for the EPs are presented in Fig. 8.35, image plots (up), and estimates for the
amplitude and latency of the P200 (bottom). Optimization was now considered
in the interval (0-400ms).

In order to investigate the effect of artifacts in the accuracy of the estimates,
dynamical estimation was applied to the measurements without artifact removal
by ICA. EP measurements with artifacts are presented in Fig. 8.36. The blink
artifacts are visible, especially at the end of the data epochs. The eigenvectors
and the signal subspace is distorted and the most dominant eigenvectors model
largely the blinks. Furthermore, estimates are presented in Fig. 8.37. Naturally,
the estimates are of less quality. Since the blinks were more concentrated at the
end of the epochs, and since there are randomly occurring, Kalman smoother
has largely removed them providing, for example, comparable estimates for the
amplitude of P200 (see Fig. 8.35 and Fig. 8.37). Though at the end of the
measurements the latencies are distorted. In case of noisy eigenvectors, it is better
to use other generic observation models, or to estimate the signal subspace by
first rejecting some corrupted epochs. Single-trial estimates (without artifacts)
are presented in Fig. 8.38, together with the estimated state-space model.

Furthermore, the blink artifacts are also visible in the averaged epochs. In
the Appendix (Fig. A.10) there are presented the averaged epochs obtained for
each channel separately before and after ICA. Clearly the blink contribution is
largely visible and ICA and BSS methods, or other artifact removal methods, are
important even for simple traditional analysis. In Fig. A.11 it is presented the
revealed variability of the N100/P200 complex in terms of amplitudes and latencies
of the two peaks. The estimates are based on the optimized smoother (channel
CZ). Kalman smoother estimates were also computed for each channel separately
(artifact corrected measurements). The observation model was 5 eigenvectors of
the correlation matrix of each channel individually. Multichannel estimates, in
form of scalp maps time locked at the latencies estimated from channel CZ for
the P200 are presented in Fig. A.12. The scalp maps (row by row) correspond to
steps of 10 stimuli. An overall decrease in amplitude is visible.
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Figure 8.34: Standard tone measurements and obtained eigenvectors.
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Figure 8.35: Estimates σ2 = 0.01, KF (dashed), KS (thin), KS opt. (thick).
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Figure 8.36: Blink corrupted measurements and eigenvectors.
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Figure 8.37: Estimates σ2 = 0.01, KF (dashed), KS (thin), KS opt. (thick).
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Chapter IX

Discussion and Conclusions

In this thesis, novel methods for EP denoising and enhancement were presented.
The developed methods involve state-space modeling and identification techniques
for dynamical estimation of EPs. Estimates for the EPs are obtained with Kalman
filter and smoother algorithms. The performance of the methods relates to the
quality of the EP signal subspace in low signal-to-noise ratio conditions, and es-
pecially to the assumption of hidden dynamic behavior from trial-to-trial. The
estimates could, for example, be used to study different habituation effects, to
detect changes in cognitive state, or to study cortical activity during anesthesia.

For the analysis of EPs, the clarification of different assumptions entering in
the estimation procedure is critical. Different assumptions can be investigated
or imposed within the framework of probability theory, based on the Bayesian
formalism, or rather deterministically, based on regularization theory. This has
been extensively discussed in this thesis. A mathematically elegant way to inves-
tigate dynamic variability in EPs is given by state-space modeling. The measured
potentials are treated as vector valued stochastic processes, and the target is to
recover slowly varying features buried into ongoing EEG and other interferences.
Bayesian recursive mean square estimation methods can then be applied. In this
thesis, the applicability, assumptions, and limitations of the approach were dis-
cussed and demonstrated. Furthermore, it was shown that the proposed methods
are able to track dynamic variability from trial-to-trial with simulated and real
EP data.

Kalman filter and smoother algorithms were systematically compared with
computer simulations. The simulation studies provide also empirical ways for tun-
ing relevant variance parameters. In this thesis, it was shown that the smoothing
estimation procedure should be used when all the measurements are available and
the filtering procedure is necessary only in cases when the estimation is required
to be on-line. This is because the tracking capability is improved and the noise
reduction is greater. This conclusion is neither restricted to the particular applica-
tion (e.g. [193]), nor to the selected observation model [63]. Compromises between
tracking capability and on-line estimation are given by fixed-lag smoothing algo-
rithms (e.g. [108]).

The identification of an appropriate observation model for estimation was also
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considered. Data-based observation models based on eigenvectors provide a good
choice since they contain information about prominent characteristics of the sig-
nals; although even dominant eigenvectors can reflect artifacts and ongoing ac-
tivity. The spatially dependent nature of multichannel EEG measurements can
be exploited for identification and correction of different artifacts. One way to
approach the problem is within the framework of blind source separation (e.g.
[85, 39]). ICA for BSS of EEG was considered in order to demonstrate that the
signal subspace, and therefore, the quality of the estimates can be affected by
strong artifacts. However, the proposed methods are able to estimate EPs under
very low signal-to-noise ratio conditions, as soon as slow changes from stimulus
to stimulus exist. This was demonstrated with computer simulations and real EP
measurements.

Some cases of generic observation models were also considered and demon-
strated. However, the development of other models which can be tailored accord-
ing to the application and estimation needs is still necessary. In parallel with
the selection of the observation model, a method for enhancement of the state-
evolution model for dynamical estimation of EPs was presented. The method
imposes extra prior information for the parameters and can be tailored depending
on the parametrization, for example, to provide smoothness. One such example
was demonstrated. Based on the same formulation, a method for state-space iden-
tification was proposed that seems to perform well in difficult estimation problems.
The method introducestime variability in the state-space model by estimating ex-
tra parameters from the data. Furthermore, it can better track sudden changes
and prevents over-smoothing. Though, the prior selection of one parameter is still
necessary for estimation.

In this thesis, the introduction of estimates for the observation noise variances
was not considered. Estimation of extra non-stationary properties is a difficult
task, but could improve tracking capabilities and estimation accuracy. More im-
portant, the fully Bayesian nature of the method is then going to be revealed by the
provision of meaningful estimates for the parameter error covariances. Modeling
of extra prior information obtained from the multichannel measurements or other
relevant biosignals could also be investigated. For some approaches see [172, 173].
Finally, the introduction of extra control inputs in the estimation procedure may
lead to further improvements.



Appendix I

Additional Figures

For the evaluation and categorization of ICs time and time-frequency plots, his-
tograms, and activation maps were computed. From the strong blink artifact
component estimates for the blink occurrence time were obtained, and for every
IC epochs relative to blinks were sampled. Epochs were also sampled relative
to the two stimulus types for every component, see also section 7.3.2. The Figs.
A.10-A.12 are discussed in section 8.7.2.
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Figure A.1: Left temporal artifact.
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Figure A.2: Right temporal artifact.
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Figure A.3: Rear head muscle artifact.
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Figure A.4: Artifact.

−4
−2

0
2
4
6

IC2

A
m

pl
itu

de

Time [s]

F
re

qu
en

cy
 in

 H
z

Time varying spectrum

 

 

0 100 200 300 400 500

10

20

30

40

low

high

Power

Time [ms]

S
tim

ul
us

 n
um

be
r

Standard tone (CZ)

 

 

0 200 400

100

200

300

400 −20

−10

0

10

20

30

Spatial distribution

 

 

−5

0

5

Time [ms]

S
tim

ul
us

 n
um

be
r

Deviant tone (CZ)

 

 

0 200 400

20

40

60

80
−20

0

20

40

Time [ms]

B
lin

k 
nu

m
be

r

Relative to blinks (CZ)

 

 

−100 0 100

30

60

90

120
−20

−10

0

10

20

30

−4 −2 0 2 4 6

Histogram

Figure A.5: Event related activity.
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Figure A.6: Brain activity.
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Figure A.7: Event related activity.
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Figure A.8: Event related activity.
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Figure A.9: Alpha activity component.
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Time locked average potential distribution
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Figure A.10: Averaged epochs before and after ICA, P200 Peak, channel CZ

(gray line).
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Figure A.11: Estimated stochastic variability of the N100 and P200 peaks in

terms of time-varying amplitudes and latencies. The estimates are based on the

state-space identification method for Kalman smoother.



168 A. Additional Figures

Figure A.12: Dynamic behavior of EPs (P200 Peak). Time-locked scalp maps

(based on Kalman smoother estimates from each channel individually) at the

latencies of the P200 peak (estimated from channel CZ). From left to right steps

of 10 stimuli, continuing to next rows.
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ponent approach to the analysis of EEG and MEG recordings. IEEE Transactions
on Biomedical Engineering, 47(5):589–593, 2000.

[207] R. N. Vigário. Extraction of ocular artifacts from EEG using independent compo-
nent analysis. Electroencephalography and Clinical Neurophysiology, 103(3):395–
404, 1997.

[208] G.L. Wallstrom, R.E. Kass, A. Miller, J.F. Cohn, and N.A. Fox. Automatic cor-
rection of ocular artifacts in the EEG: a comparison of regression-based and com-
ponent based methods. International Journal of Psychophysiology, 53(2):105–119,
2004.

[209] J.C. Webster, editor. Medical Instrumentation, application and design. John Wiley
and Sons, second edition, 1995.

[210] J.J. Westerkamp and J.I. Aunon. Optimum multielectrode a posteriori estimates of
single-response evoked potentials. IEEE Transactions on Biomedical Engineering,
34:13–22, 1987.

[211] C.H. Wolters, A. Anwander, X. Tricoche, D. Weinstein, M.A. Koch, and R.S.
MacLeod. Influence of tissue conductivity anisotropy on EEG/MEG field and re-
turn current computation in a realistic head model: A simulation and visualization
study using high-resolution finite element modeling. NeuroImage, 30(3):813–826,
2006.

[212] A. Yeredor. Non-orthogonal joint diagonalization in the least-squares sense with
application in blind source separation. IEEE Transactions on Signal Processing,
50(7):1545–1553, 2002.
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