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ABSTRACT

Glucosamine (GIcN) and glucosamine sulfate (GS) have been used to treat the patients with osteoarthritis
(OA) as a disease-modifying agent. Previous in vitro studies have focused on the effects of GIcN or GS
on cartilage metabolism, whereasin vivo studies have investigated their potentia for the treatment of OA.
Although these results have raised promises of the disease-modifying effects of GIcN or GS, the cellular
mechanisms behind these proposed effects are not clear. In generd, the effectiveness of GS in the
treatment of OA as a symptomatic and as a disease-modifying agent is amatter of debate.

Loss of proteoglycans (PGs) in OA could be partly due to deficient water binding eg., by
undersulfation of glycosaminoglycans (GAGS). In this study, the molar ratios of chondroitin sulfate (CS)
disaccharide isoforms were analyzed with fluorophore-assisted carbohydrate electrophoresis to
investigate the hypothesis that sulfate deficiency is involved with the development of bovine and human
OA. Our present results indicate that the molar ratio of non-sulfated CS disaccharide in human samples
was much lower than that detected in bovine samples, and it did not increase in human OA samples.
Conversdly, thisratio significantly decreased in bovine OA samples.

Furthermore, the steady-state levels of aggrecan mRNA expression and sulfated GAG synthesis
were analyzed by using Northern blot assay, quantitative real time reverse transcription polymerase chain
reaction and [*S]sulfate incorporation analyses in bovine primary chondrocyte cultures. Aggrecan which
is a large CS-PG of cartilage provides osmotic resistance for the cartilage helping it to absorb the
compressive loads. Loss of PGsisamajor cause of joint dysfunction and disability in OA. However, our
results from 25 individua animals showed that none of the different forms of hexosamines, nor the GS
salt, could stimulate aggrecan mRNA expression or GAG synthesis in bovine primary chondrocytes.

Glucosamine is produced intracellularly from endogenous glucose, and is one of the basic sugar
structures required for CS synthesis. It is converted to UDP-glucuronic acid (GlcA) and UDP-N-
acetylgalactosamine (UDP-GalNAc) before use for the synthesis of CS polysaccharide chain. If
exogenous GS is made available to the cultured cells, it can be directly incorporated into the CS synthesis
by UDP-GalNAc via GlcN-6-phosphate bypassing fructose-6-phosphate. Thus, the levels of intracelular
UDP-N-acetylhexosamines and UDP-GIcA were explored with reversed-phase high-performance liquid
chromatography-electrospray ionization mass spectrometry in bovine primary chondrocytes to anayze
whether a physiologically attainable level of GS could stimulate CS synthesis by increasing intracellular
UDP-sugar levels. Our present results with the cells from nine individual animals did not support this
hypothesis.

In conclusion, bovine and human articular cartilage PGs were not undersulfated in the early stage
of OA. Exogenous GS did not increase steady state levels of aggrecan mRNA expression, GAG synthesis
or intracelular levels of nucleotide-activated precursors of GAG synthesis in bovine primary
chondrocytes.

National Library of Medicine Classification: QU 58.7, QU 61, QU 83, QU 300, QY 60.M2, WE 300, WE
348

Medical Subject Headings: aggrecan; cartilage; articular; cattle; cells; cultured; chondrocytesmetabolism;
chondroitin sulfates; disaccharides; disease modds; animal; disease progression; eectrophoresis; agar
gd; glucosamine; glucuronosyltransferase; glycosaminoglycans, hexosamines, human; osteoarthritis;
proteochondraitin sulfates; proteoglycans, RNA; messenger; tissue culture technigues
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1. INTRODUCTION

Osteoarthritis (OA) is a degenerative musculoskeletal disease, mainly affecting articular
cartilage but also involving pericartilage structures (Brandt 2000; Felson 2004). It
usually causes pain and malfunction of the affected joint. The incidence of OA increases
with aging. The etiology of this disease is poorly understood, athough several risk
factors are recognized (Panula et al. 1998; MacGregor et a. 2000; Sinkov and Cymet
2003; Felson 2004). There is no optimal cure for this disease at present. However, many
treatments for OA have been proposed including nonpharmacological treatments, such
as physical and surgical interventions, and pharmacological treatments, such as
analgesic, nonsteroidal anti-inflammatory drugs (NSAIDs) and nutrient treatment.
Glucosamine (GlcN) and glucosamine sulfate (GS) have been used as nutraceuticals to
treat patients with OA due to their suggested analgesic and symptom-relieving
properties as well as chondroprotective and disease-modifying effects (Reichelt et al.
1994; McAlindon et al. 2000; Reginster et al. 2001; Pavelka et al. 2002).

The loss of the cartilage proteoglycans (PGs) from the extracellular matrix (ECM)
is one of the early events in the pathogenesis of OA (Venn and Maroudas 1977;
Grushko et al. 1989). Therefore, finding means to prevent PG loss and to stimulate PG
synthesis has been considered to be one of the key issues in the design of new
treatments for OA patients. It has been suggested that GIcN or GS could stimulate PG
synthesis (Bassleer et al. 1988; Setnikar et al. 1991; Bassleer et al. 19984d), inhibit the
cartilage degradation (Hua et al. 2002; Ilic et al. 2003), increase protein synthesis and
protein kinase C activity of chondrocytes in a dose-dependent manner, and decrease
cellular phospholipase 2 activity (Piperno et al. 2000). An increase in aggrecan mRNA
expression with donor-dependent manner and an inhibition of the activity of matrix
metalloproteinase-3 by GS has also been reported (Dodge and Jimenez 2003). Although
these results have raised the promise of the disease-modifying effects of GIcN or GS on
OA, the cellular mechanisms behind these proposed effects are not clear. On the other
hand, some recent industry-independent clinical trials in the treetment of OA with GIcN
and GS have generated negative results (Rindone et a. 2000; Hughes and Carr 2002;
McAlindon 2003 and 2004; Cibere et al. 2004; Clegg et al. 2006). Furthermore, many
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studies showing positive effects have been conducted with GIcN and GS concentrations
that cannot be reached physiologically in vivo after the recommended dose of oral
adminigtration. It has recently been shown that after its oral administration the GIcN
concentration reaches a very low level both in serum (Biggee et al. 2006) and synovial
fluid (Laverty et al. 2005). This raises doubts about the mechanism of action of the
proposed effect of GS. Also the sulfate moiety has been suggested to be a possible
effector of GS (Hoffer et al. 2001). Indeed, it was previously shown that sulfate
concentration could affect the sulfation level of chondroitin sulfate (CS) in cartilage
explants (van der Kraan et al. 1988; Brand et al. 1989).

Glucosamine is one of the basic sugar structures utilized in CS biosynthesis. It is
well-known that GIcN is converted intracellularly from glucose (Glc) via GIcN-6-
phosphate into fructose-6-phosphate (Silbert and Sugumaran 2002), then rapidly further
converted into uridine diphosphate-N-acetylgalactosamine (UDP-GalNAc) through
UDP-N-acetylglucosamine (UDP-GIcNAC) (Silbert and Sugumaran 2002). Chondroitin
sulfate is synthesized by adding UDP-activated monosaccharides of glucuronic acid
(GlcA) and GalNAc consequently to one end of a growing, linear polysaccharide chain.

In the present study, CS disaccharide compositions of bovine and human articular
cartilages were analyzed a various stages of OA using fluorophore-assisted
carbohydrate electrophoresis. The effects of different hexosamines and GS sat on the
steady-state levels of aggrecan and hyaluronan synthase (HAS) mRNA, and
glycosaminoglycan (GAG) synthesis in bovine primary chondrocytes were analyzed by
Northern blot assay, quantitative real time reverse transcription polymerase chain
reaction (QRT-PCR) and [**S]sulfate incorporation. The intracellular levels of UDP-N-
acetylhexosamines (UDP-HexN) and UDP-GICA in bovine primary chondrocytes after
exposure to GIcN and GS were investigated by reversed-phase high-performance liquid

chromatography-electrospray ionization mass spectrometry.
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2. REVIEW OF THE LITERATURE

2.1. Articular cartilage

Articular cartilage is a hyaline, avascular, aneural, alymphatic connective tissue that
covers the bony surfaces of the joints. Its major functions are to act as a shock absorber
during weight bearing, to protect the articulating bone ends and to provide smooth
surfaces for the movement of articulating bones. It is comprised of 5% chondrocytes
and 95% ECM, which is mainly composed of water (68-85%), PGs (5-10%) and
collagens (10-20%). In addition, there is also a small amount of noncollagenous
proteins and lipids present in cartilage. Articular cartilage is not a homogenous tissue.
Instead, it is divided into four different zones: superficial, middle, deep and calcified
zones (Fig. 1). The number, the size, the shape, and the metabolism of chondrocytes
differ considerably in the different zones (Aydelotte et al. 1988; Aydelotte and Kuettner
1988). The superficial or tangential zone contains proportionally the highest collagen
content, and arelatively low content of PGs. The relative amount of collagens decreases
whereas that of PGs increases in each zone closer to the tidemark, the border of
calcification. The heterogenous and depth- dependent composition and structure of
articular cartilage account for much of its anisotropic and non-linear properties in
compression and tension (Jurvelin et al. 2003). The compression modulus increases
significantly with depth and thus the properties of articular cartilage zones greatly affect
the biomechanical behavior of cartilage (Schinagl et al. 1997).

2.1.1. Chondrocyte

Chondrocyte is a specialized cell that produces the ECM of cartilage and organizes the
collagens, PGs and noncollagenous proteins into a highly ordered structure. In the
superficial zone, the chondrocytes are quite small, flattened and disc-shaped, and they
lie paralel to the surface embedded within PGs and tangentially oriented collagen
fibrils. The middle zone has round or oval chondrocytes, which are dispersed singly or

in small groups within the matrix, while the deep zone possesses fairly large cells,
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which are arranged in columns perpendicular to the cartilage surface. The course of the
collagen fibrils in the deep zone follows the orientation of the chondrocyte columns.
They have a role in the separation of the chondrocyte columns with the partitioning of
interterritorial matrix rich in cartilage PGs, and the columns formed by the spheroidal
chondrocytes are arranged along the axis of fibril orientation. The calcified zone is
adjacent to the subchondral bone, is partly mineralized and acts as the transitional zone
between the cartilage and the underlying subchondral bone. It contains few rounded
chondrocytes, which are hypertrophic, and has alow content of PGs (Fig. 1).

Since articular cartilage consists mainly of water, it acts as a lubricated, wear-
resistant, friction-reducing surface that is slightly compressible to ensure an even
digribution of forces onto the bone end and the subchondral bone. Chondrocytes
receive nutrition and oxygen via diffusion from synovial fluid through the cartilage
matrix (Scott and Haigh 1988; Kuettner 1992). Due to this lack of a vascular supply to
the cartilage, the chondrocytes are highly glycolytic cells and need a steady glucose
supply to ensure their viability and ECM synthesis (Otte 1991; Lee and Urban 1997).

Superficial zone '

Middle zone

Deep zone

Calcified zone

Bone

Figure 1. Schematic representation of the structure of articular cartilage.

2.1.2. Articular cartilage proteoglycans

Proteoglycans are macromolecules that consist of a protein core to which one or more
GAG chains are covalently attached (Hascall and Sajdera 1969; Muir 1978; Kuettner
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and Kimura 1985; Lohmander 1988). Aggrecan, the major large PG of cartilage, can
aggregate with hyaluronan (HA) to form large supramolecular structures in the ECM
that help to promote their retention within the collagen network (Hardingham and Muir
1972; Hardingham and Bayliss 1990; Hardingham and Fosang 1992). Proteoglycans
have many key functions since they are involved in the structure, assembly, and
breakdown of connective tissue matrix (Heinegard and Oldberg 1989; Knudson and
Knudson 2001; Perrimon and Bernfield 2001). Proteoglycans can be found within the
ECM, on the cell surface and in the intracellular granules (Ruoslahti 1988; Heinegard
and Oldberg 1989; Knudson and Knudson 2001; Perrimon and Bernfield 2001).
Extracellular matrix proteoglycans

Aggrecan, the large PG of the cartilage, has numerous GAG chains bound to its core
protein (Heinegard et al. 1987; Carney and Muir 1988; Heinegard and Oldberg 1989;
Kiani et al. 2002). The size of an aggrecan monomer is 1-4 x 10° Da, while its protein
backbone has a molecular size of 210-250 kDa. It is a well-characterized large
aggregating PG predominantly found in the articular cartilage (Doege et al. 1991,
Hardingham et al. 1994; Watanabe et al. 1998; Kiani et al. 2002). Approximately 90%
of aggrecan is comprised of CS chains, but it also contains keratan sulfate (KS) chains,
and both O- and N-linked oligosaccharides (Lohmander et al. 1980; Nilsson et al. 1982;
Buckwalter et al. 1994; Kiani et al. 2002). Itscritical function isto distribute the load in
weight-bearing joints (Hardingham and Bayliss 1990; Watanabe et al. 1998). Aggrecan
plays a key role in mediating both chondrocyte-chondrocyte and chondrocyte-matrix
interactions via binding HA (Hardingham and Muir 1972; Kiani et al. 2002; Watanabe
and Kimata 2006). Its core protein contains three globular domains, G1, G2 and G3, and
the CS 1 and 2 domain located between G2 and G3 domains, and KS chains located in
the initial part of core protein between G2 and G3. Keratan sulfate can be attached to
the core protein also anywhere on G1 and G2 or the short interglobular domain (1GD)
located between G1 and G2 domains. A number of O-linked and N-linked
oligosaccharides are also attached to the protein core (Fig. 2) (Nilsson et al. 1982;
Chandrasekaran and Tanzer 1992; Hardingham et a. 1994; Margolis and Margolis
1994; Watanabe et al. 1998; Knudson and Knudson 2001; Kiani et al. 2002).
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The G1 domain consists of 3 looped subdomains, A, B and B". Immunoglobulin
(lg)-type fold is present in A, while PG tandem repeat (PTR) units are formed from B
and B” subdomains, which provide the binding site for aggrecan and HA (Knudson and
Knudson 2001; Kiani et al. 2002). The G1 domain not only mediates the specific
interactions with HA through the PTR domain, but it also interacts with the link protein
viathe Ig fold (Heinegard and Hascall 1974; Tang et al. 1979; Perin et al. 1987; Mow et
al. 1989; Grover and Roughley 1994; Kiani et al. 2002).

HA IGD KS CSlI CS2

I II
| ail
Link protein ‘

G3

Figure 2. Molecular structure of aggrecan molecule showing its characteristic
structural domains (HA: hyaluronan; IGD: interglobular domain; KS: keratan
sulfate-binding region; CS1: chondroitin sulfate-binding region 1; CS2: chondroitin
sulfate-binding region 2).

The IGD domain is a short extended region that separates G1 and G2 in the
aggrecan molecule. It contains many different kinds of cleavage sites for proteinases,
such as matrix metalloproteinases (MMPs), plasmin, leukocyte elastase and cathepsin B
(Hardingham and Fosang 1995; Mort and Buttle 1997; Mort et al. 1998). Therefore, it
has been suggested that MMPs and aggrecanases are involved in the turnover of
aggrecan in normal and diseased cartilage (Lark et al. 1995; Singer et al. 1995; Lark et
al. 1997; Kiani et al. 2002).

The G2 domain contains two PTR domains that are similar to the corresponding

structure in the G1 domain and link protein, but the G2 domain does not interact with
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HA and link protein (Kiani et al. 2002). Ingtead, the suggested function of the G2
domain is to inhibit aggrecan secretion (Kiani et al. 2001). It is known that the amino
acid sequence of the G2 domain varies in different species (Antonsson et al. 1989;
Doege et a. 1991).

Adjacent to the G2 there is a KS binding region containing 30-50 KS chains in
mature aggrecan. The function of the KS binding domain is not clear, however, it might
be involved in the tissue distribution of aggrecan (Kiani et al. 2001 and 2002).

The CSY/ CS2 domain is located between the G2 and G3 domains in the aggrecan
molecule, and it is the largest domain in aggrecan molecule. It contains about 100 CS
chains. Chondroitin sulfate chains are negatively charged, thus providing a hydrated,
viscous gel that can absorb a compressive load (Watanabe et al. 1998; Kiani et al. 2001
and 2002).

In the C-terminal end, there is a globular G3 domain. The G3 domain isa complex
region produced by alternative splicing of exons in post-transcriptional processing
(Baldwin et al. 1989). It is claimed that the alternative splicing varies in different
species (Kiani et al. 2002). The G3 domain contains three folded modules, the
epidermal growth factor (EGF)-type module, a carbohydrate recognition domain, and a
complement binding protein-type domain, as well as a short C-terminal tail (Kiani et al.
2002) with homology to some ligands, which can bind sugars like galactose and fucose
(Halberg et al. 1988). The G3 domain appears to play a key role in GAG chain
attachment and PG secretion (Domowicz et al. 2000). All of the above aggrecan
domains play key roles in the maintenance of normal cartilage structure and function.

In OA, it is generally acknowledged that there is a net loss of PGs in articular
cartilage. However, the OA induced changes in the molecular size of aggrecan are
controversial with results in the literature showing either no change, a reduction, or an
increase in the molecular size of aggrecan (Sweet et al. 1977; Vasan 1980; Brocklehurst
et al. 1984). Futhermore, loss of PG aggregation in advanced OA has been reported
(Palmoski and Brandt 1976; Vasan 1980; Inerot et al. 1991). The chondroitin sulfate
content and the rate of GAG synthesis have been observed to be increased in the early

stages of OA when compared with changes in an age-matched control, but, the content
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and synthesis rate are decreased following the progression of OA (Mankin and Lippiello
1971; Thompson Jr. and Oegema Jr. 1979).

Decorin and biglycan are the mgjor small leucine-rich PGs (SLRPs) in the ECM,
and decorin was originally named due to its binding on the surface of the collagen
fibrils (Scott and Orford 1981). Decorin and biglycan usually contain one and two
CS/dermatan sulfate (DS) chains (Roughley and Lee 1994). The sizes of their core
proteins are approximately 40 kDa (lozzo 1997). Fibromodulin and lumican, the other
members of the SLRP family present in cartilage, contain KS-PG chains and have
protein cores of molecular weights of 42 and 38 kDa, respectively (Plaas et al. 1990;
Roughley and Lee 1994; 10zzo 1997). In decorin and biglycan, the GAG chains are O-
linked to the core protein. However, KS chains in fibromodulin are N-linked ones. The
core proteins of the SLRPs allow them to interact with fibrillar collagen and regulate the
fibrillogenesis (Vogel et al. 1984; Hardingham and Fosang 1992; Hedbom and
Heinegard 1993; Roughley and Lee 1994; Scott 1996; Roughley 2006). The binding of
the SLRPs on the surface of collagens also limits the access of collagenases and, thus,
they can protect the fibrils from proteolytic cleavage. Moreover, the four SLRPs have
also been reported to interact with type VI, XIlI and X1V collagen, fibronectin and
elastin, and several growth factors such as EGF, transforming growth factor b (TGF-b),
and the cytokine tumor necrosis factor a (TNFa) (Roughley 2006). The SLRPs can also
help modulate chondrocyte metabolism by regulating the interaction of growth factor
with GAG chain (Roughley 2006). Borrelia burgdorferi, which causes Lyme borreliosis,
adheres on decorin in the joints and skin (Brown et al. 2001). Decorin is also a ligand
for the EGF receptor, activating this protein by binding to the receptor (lozzo et al.
1999). It is internalized partly with the EGF receptor (Feugaing et al. 2007). However,
there are many endocytotic pathways for decorin uptake, modulated by EGF receptor
signaling (Feugaing et al. 2007). For biglycan internalization, the clathrin-mediated
endocytosis appears to be a major route (Gotte et a. 2004). Biglycan can modulate bone
morphogenetic protein 4-induced osteoblast differentiation (Chen et a. 2004).
Fibromodulin interacts with type | and 11 collagen through different peptides (Viola et
al. 2007). In cornea, lumican can only exist in the PG form. In adult cartilage, it is

present as a glycoprotein form lacking KS though in young cartilage, it is present as
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KS-PG (Grover et al. 1995; Corpuz et al. 1996; Melching and Roughley 1999; Knudson
and Knudson 2001).

Epiphycan is another small leucine-rich CS/DS-PG with a 35 kDa core protein
(lozzo 1997), and a primary structure similar to osteoglycin (Johnson et al. 1997).
Epiphycan may participate in the chondrocyte differentiation and osteogenesis (Kurita
et al. 1996; Knudson and Knudson 2001). Versican is another HA-binding PG found in
cartilage at low levels, which has an N-terminal G1 and C-terminal G3 domain similar
to that of aggrecan. It lacks the G2 domain, and its G1-domain binds HA and link
protein in adifferent manner when compared with aggrecan (Matsumoto et al. 2003 and
2006). The G3 domain of the versican has two EGF-type repeats, one lectin-like
sequence and one complement regulatory protein-type domain (Zimmermann and
Ruoslahti 1989).

Cell surface proteoglycans

Syndecans and betaglycan are typical transmembrane CS / heparan sulfate (HS)-PGs
characterized by a core protein which is composed of an extracellular domain, a single
membrane-spanning domain and a short cytoplasmic domain (Cheifetz and Massague
1989; Bernfield and Sanderson 1990; Hardingham and Fosang 1992). The syndecan
gene family contains four different PGs, [syndecan-1; syndecan-2 (fibroglycan);
syndecan-3 (N-syndecan); and syndecan-4 (amphiglycan)], which have similar
transmembrane and cytoplasmic domains, but different extracellular domains
(Tkachenko et al. 2005). Syndecan regulates cell behavior by binding cellsto ECM and
by binding growth factors viatheir HS chains (Bernfield and Sanderson 1990; Bernfield
et al. 1992). The expression, composition and function of each syndecan family member
differ in different cells and tissues (Saunders et al. 1989; Mali et al. 1990; Kim et al.
1994; Knudson and Knudson 2001; Woods 2001). Betaglycan is a receptor in the TGF-
b signaling pathway, which binds TGF-b through its core protein (Andres et a. 1992).
Betaglycan has also been called the type |11 TGF-b receptor. The cytoplasmic domain of
betaglycan is believed to have functional roles in regulating TGF-b signaling (Blobe et
al. 2001). It was recently reported that betaglycan can suppress breast and prostate
cancer progression (Dong et al. 2007; Turley et a. 2007).
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Intracellular granule proteoglycans

Serglycin is an intracellular PG, found especially in the storage granules of connective
tissue mast cells. It has several roles e.g. in packaging and regulation of the activity of
proteolytic enzymes (Schick et al. 2001).

2.1.3. Glycosaminoglycans

Glycosaminoglycan (GAG) is a long, linear unbranched polysaccharide containing a
repeating disaccharide unit, which consists generally of uronic acid (UA), that can be
either GIcA or iduronic acid (IdoA), and hexosamine (GalNAc or GIcNAC)
(Hardingham 1999). Chondroitin sulfate, DS, HS, heparin, KS and HA are the different
forms of GAGs found in articular cartilage. The components of a disaccharide and the
linkage to the core protein in the various GAG chains differ.

Chondroitin sulfate

Chondroitin sulfate is the predominant form of GAG in articular cartilage, where it
constitutes about 80% of the total GAGs. It consists of repeating disaccharide units
containing a GIcA and GalNAc (Fig. 3). Chondroitin sulfate is covalently attached to
the core protein. It has several important functions, maintaining the structural integrity
of the cartilage tissue, holding water and nutrients. Chondroitin sulfate chains are
seldom larger than 100 kDa, when the chains are fully mature elongated. Specific
enzymes add the sulfate esters onto the particular hydroxyl groups to form CS.
Disaccharides are often sulfated in either positions 4 (Di-4S) or 6 (Di-6S) of GalNAc
(Fig. 3). In CS chains, there can be disaccharides with a sulfate group attached to the
carbon 2 of GaNAc (Di-2S), or non-sulfated disaccharides (Di-0S), which have no
sulfate group.

The content of the CS in human articular cartilage differs with age. The Di-6S
content of the cartilage increases with growth and development up to the age of 20
years, whereas the Di-4S content decreases after birth until the age of 20 years (Bayliss
et a. 1999). In mature articular cartilage, the Di-6S content is much greater than that of
Di-4S (Bayliss et al. 1999). During the years between 20-85 of human age, there are
only minor changes in the Di-6S and the Di-4S contents, while the Di-0S content of the

cartilage remains at arelatively constant low level throughout life (Bayliss et al. 1999).



25

It has been reported that the concentration of the Di-4S increases significantly in the hip
joint of OA patients (Mankin and Lippiello 1971).
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Figure 3. Malecular structure of chondroitin 4-sulfate and chondroitin 6-sulfate.

Previous studies have shown that similarly to GS, CS can be absorbed from the
gastrointestinal tract in rats, dogs and also humans (Setnikar et al. 1986; Ronca et al.
1998). Furthermore, oral administration of CS has been shown to elevate PG synthesis
in articular cartilage (Bassleer et al. 1998b; Uebelhart et al. 1998). A low sulfate
concentration in culture media leads to the synthesis of undersulfated GAG in cartilage
explants (Ito et al. 1982; Brand et al. 1989; van der Kraan et a. 1989). When the content
of aggrecans decreases in OA cartilage, there is also a loss of CS (Thompson Jr. and
Oegema Jr. 1979).

Keratan sulfate

Keratan sulfate consists of a repeating disaccharide unit of GICNAc and galactose with
aternating (1—3)p and (1—4)p bonds instead of GIcA. There are two different forms
of KS, i.e. KS | and Il in mammalian tissues. In the large PGs of the cartilage, KS 11 is
present, whereas KS | isthe main form in cornea (Seno et a. 1965; Funderburgh 2000).
These two forms display major differences, e.g., in the length of their carbohydrate
chain, their linkage to the core protein, their association with the CS, their sensitivity to
the alkali treatment, and the degree of sulfation (Seno et al. 1965; Hascall and Riolo
1972). Their molecular weight varies in the range of 4-20 kDa (Hascall and Riolo
1972). The content of KS increases in cartilage with aging (Inerot et a. 1978). Keratan
sulfate content increases with depth (Venn and Maroudas 1977; Bayliss et al. 1983) that
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may be due to low oxygen tension in the deep zone of cartilage (Scott and Haigh 1988).
Anincreased KS content is also associated with the maturation of the articular cartilage
(S&&manen et al. 1987). However, the KS content has been reported to be decreased in
OA (Mankin and Lippiello 1971).
Dermatan sulfate
Dermatan sulfate is the predominant GAG expressed in the skin, and it is also widely
distributed in the ECM of blood vessel wall, tendon, sclera and other tissues (Fransson
1968b and 1968a; Fransson and Mamstrom 1971; Y anagishita et al. 1979; Coster and
Fransson 1981; Scott and Orford 1981; Sheehan et al. 1981; Damle et al. 1982).
Dermatan sulfate consists of UA and GalNAc groups, such that the UA can be either
GIcA or IdoA within the same GAG chain (Coster and Fransson 1981). Iduronic acid
can be sulfated at position C-2, and GalNAc at position C-4 or C-6 (Chatziioannidis et
al. 1999). Dermatan sulfate is active in binding fibroblast growth factor-2 during wound
repair and is also an important player in a variety of cellular events, such as wounding,
infection, and tumorigenesis (Penc et a. 1998; Trowbridge and Gallo 2002).
Heparan sulfate
Heparan sulfate contains repeating disaccharide units of GIcCNAc and GIcA/IdoA. The
size of a chain is normally less than 50 kDa Heparan sulfate is a sulfated
polysaccharide covalently linked to the core protein, and it is present at the cell surface
and also in ECM. Structuraly, HS has been shown to display a greater number of
possible variations than the other GA Gs described above (Lindblom et al. 1991).
Hyaluronan
Hyaluronan, also called hyaluronic acid, is an unsulfated GAG component of
connective tissue occurring in synovial fluid. Its function is to cushion and lubricate the
synovial joint structures. Hyaluronan is also found throughout the body in plentiful
amounts in many locations, such as heart valves, eyes, synovial fluid, cartilage, blood
vessels, skin and the umbilical cord (Laurent and Gergely 1955; Goa and Benfield
1994).

Hyaluronan is a key component of cartilage, where it binds to other molecules,
helping the cartilage to withstand the force of weight-bearing and movement of the
joint. It has the simplest GAG dtructure, and consists of an alternating polymer of
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GIcNAc and GIcA. Its molecular weight ranges from 300 kDa to 2000 kDa depending
on the tissue. A number of molecules can bind to HA with noncovalent bond, including
the link protein, which stabilizes the attachment of aggrecan to HA, and cell surface HA
receptors, such as CD-44 (Ishida et al. 1997), which bind the chondrocyte to the HA.

2.2. Metabolism of articular cartilage proteoglycans

Proteoglycans are synthesized similarly to protein in general. Initially, a part of the
nucleotide sequence of double-stranded DNA is transcribed into mRNA by the enzyme
RNA polymerase. Then the core protein is synthesized from the mRNA transcript on
rough endoplasmic reticulum (ER) and transferred to the Golgi complex. The
glycosylation is initiated a ER or at the early Golgi by addition of xylitol to serine
(Geetha-Habib et al. 1984; Vertel et al. 1993). The synthesis of PGs is completed in the
Golgi by the addition of CS chains (Ratcliffe et al. 1985; Hirschberg and Snider 1987;
Hirschberg et al. 1998) and sulfation (de Luca et a. 1973). After synthesis, PGs are
transferred from the Golgi to the ECM, the cell surface or intracellular organelles.
Hyaluronan is synthesized at the plasma membrane and transported immediately out of
the cell (Prehm 1984; Prehm 2006).

It has been shown that interleukin 1-o (IL-1a), interleukin 1-b (IL-1b) and TNF-a
can all inhibit PG biosynthesis and increase the rate of PG degradation in different
tissues or chondrocyte cultures. In contrast, insulin-like growth factor 1 (IGF-1) and
TGF-b have the opposite effect on PG metabolism (van de Loo et al. 1995). Matrix
metalloproteinases and aggrecanases are the main enzymes involved in the degradation
of aggrecan in cartilage (Tetlow et al. 2001; Nagase and Kashiwagi 2003; Visse and
Nagase 2003; Struglics et al. 2006).

2.2.1. M etabolism of cartilage glycosaminoglycans

Glucose is a general precursor for cellular GAG biosynthesis. Chondrocytes take up Glc
from the synovial fluid via Glc transporter family proteins. Inside the cell, glucose is
converted into Glc 6-phosphate and fructose-6-phosphate. The conversion of fructose-6-

phosphate to glucosamine-6-phosphate (GIcN-6-P) takes place by the enzyme
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glutamine:fructose-6-phosphate aminotransferase (GFAT, Fig. 4). Glucosamine-6-P is
rapidly converted into the N-acetylglucosamine-6-phosphate (GICNAc-6-P) by acetyl-
CoA:glucosamine-6-phosphate N-acetyltransferase (Acetyl-CoA: GNPNAT, Fig. 4).
Exogenous GIcN or GS supplemented to the cultured cells can enter this metabolic
pathway by conversion into GIcN-6-P. N-Acetyl-glucosamine-6-P is further converted
via N-acetylglucosamine-1-phosphate into UDP-GICNAc, and by epimerase into UDP-
GalNAc. These nucleotide-activated sugars, together with UDP-glucuronic acid (UDP-
GlIcA), are utilized in the assembly of GAG chains (Fig. 4). Chondroitin sulfate
polysaccharide chain is composed of GIcA and GalNAc (Davidson and Meyer 1954),
whereas keratan sulfate of galactose and GIcNAc (Seno et a. 1965), while HA consists
of GIcA and GIcNAc (Meyer and Palmer 1934; Prehm 1983a and 1983b) (Fig. 4).

Hyaluronan is synthesized at plasma membranes (Prehm 1984), and directly
released as a soluble product to the ECM (Prehm 1983a and 1983b). In the ECM, HA
and aggrecan form large PG aggregates, that are stably connected with link protein. It
has also been proposed that the inhibitors of HA export can prevent aggrecan loss from
OA cartilage (Prehm 2005).

Normally, chondrocytes can regulate the balance of the processes of degradation
and synthesis of the ECM in cartilage by secreting of a number of degradative enzymes
and their inhibitors. In addition to MMPs (such as collagenases, stromelysin, and
gelatinase), the degradative enzymes also include other proteinases, such as cysteine
proteinases, cathepsins and serine proteinases. There are several anabolic growth factors
e.g. IGF-1 and TGF-b. The enzymes secreted by the chondrocytes are released into the
ECM where they begin to degrade the matrix structures. Interleukin-1b and TNF-a can
stimulate the synthesis and activation of proteolytic enzymes by chondrocytes, and both
IL-1b and TNF-a have been detected in the synovial fluid of the OA patients (Schlaak
et a. 1996; Partsch et al. 1997; Horiuchi et a. 1999). The activation of these
degradative enzymes is controlled by their inhibitors, such as tissue inhibitors of
metalloproteinase (TIMPs) (Nagase and Brew 2003). These inhibitors function by
forming complexes that inactivate the degradative enzymes. Chondrocytes are
responsible for maintaining the balance between the degradative enzymes and their

inhibitors. Aggrecanases that cleave the Glu373-Ala374 bond of the aggrecan core
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protein play akey role in the early stages of cartilage destruction in rheumatoid arthritis
and in OA (Nagase and Kashiwagi 2003). Recently, it was reported that blockade of
aggrecanase cleavage in the aggrecan IGD could prevent cartilage erosion and promote
cartilage repair (Little et al. 2007). In addition to be aggrecanases, MMP-3 is also
thought to be an important enzyme involved in the cartilage degradation process,
because it can degrade many constituents of ECM, including cartilage aggrecan,
collagen 11, IX, X and X1, laminin and fibronectin (Wu et al. 1991; Burrage et al. 2006).
When the balance between these degradative enzymes and their inhibitors has become
disturbed for any reason, such as seemsto occur in OA, the enzymatic activity of MMPs
can be elevated (Wang et al. 2004).
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Figur e 4. The biosynthetic pathway of chondroitin sulfate from glucose or glucosamine.
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2.3. Changesin articular cartilage proteoglycanswith aging and degeneration

Articular cartilage is subject to sructural, compositional and mechanical changes with
aging. Normally, the content of hexosamine does not change very much with age,
although the concentration of UA has been reported to gradually decline, especidly in
the old cartilage (Buckwalter et al. 2005). Also, the content of hexose may increase
from the birth up to the age of 35 years, from that age onwards there seems to be a
gradual decline (Kosiagin 1986). The size of PG aggregates decreases due to the
degradation of PGs in the ECM, and also due to the compositional alterations in
aggrecan (Buckwalter et a. 1985; Thonar et al. 1986; Buckwalter et al. 1994) and link
protein synthesis (Buckwalter and Rosenberg 1988; Buckwalter et al. 1994; Tang et al.
1996). With increasing age, the length of the CS-rich region of aggregating PG
monomers decreases, the variability in aggrecan length increases, the content of
aggrecan KS chains increases, the number of monomers per aggregate decreases, and
there is a decline in the proportion of monomers that can aggregate (Buckwalter and
Rosenberg 1988; Buckwalter et al. 1994). The changes are, however, different from
those in human OA cartilage (Grushko et al. 1989). In OA cartilage, the content of
GAGs generally decreases (Kosiagin 1986). Decorin and biglycan are molecules
normally concentrated in the superficial layers of cartilage, while in OA cartilage there
is a trend towards their loss from that site (Poole et al. 1996). Proteoglycan depletion
from the ECM has been suggested to be a crucial component of OA (Grushko et al.
1989; Lohmander 1994). In canine experimental OA, the water content of the
superficial cartilage increased by 13% with an apparent 37% decrease in the PG content
and a 36% decrease in collagen content per wet weight (Guilak et al. 1994). However,
no compositional changes were seen on a dry weight basis. Therefore, it was suggested
that structural changes in the superficial zone of articular cartilage play a more
important role in the determination of the mechanical properties than the biochemical
composition (Guilak et al. 1994).
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2.4. Osteoarthritis

Osteoarthritis (OA) is a group of overlapping and distinct degenerative
musculoskeletal diseases that are believed to have many different etiologies. When the
disease develops, it affects not only the articular cartilage, but also involves the
periarticular structures of the affected joint. Ultimately, the articular cartilage
degenerates with fibrillation, fissures, ulceration and full thickness loss of the whole
joint surface (Brandt 2000; Felson 2004) and this usually causes pain and malfunction
of the affected joint. The incidence of the disease increases with aging (Martin and
Buckwalter 2002). It may affect any joint of the body, but especially the weight-bearing
joints, such as hips, knees and ankles, are more susceptible to OA. The etiology of
degenerative joint disease is poorly understood, athough several risk factors are known,

including age, obesity, and joint injury (Felson 2004).

2.4.1. Treatment of osteoarthritis

Even though there is no real cure for OA at the moment, there are many potential
treatments available for the disease. A number of approaches are used for this purpose,
e.g., non-pharmacological treatments including physical theray and surgical
intervention. Exercise and weight control are always the first recommendations
provided to the patients. Orthopaedic surgery is one way to treat the patients with OA
when the disease is particularly severe and unresponsive to the conservative treatments.
More attention is being paid to the pharmacological treatment to OA, such as
acetaminophen (or paracetamol) and nonsteroidal anti-inflammatory drugs (NSAIDs),
which are often used to relieve the symptoms of OA (Jordan et al. 2003). NSAIDs block
the cyclooxygenase enzymes and reduce the synthesis of prostaglandins. However, they
can cause many different side effects including nausea, abdominal pain, diarrhea, or
even gastrointestinal bleeding, liver and kidney damage, and high blood pressure. There
are aso other extremely serious side effects, eg., gastrointestinal ulceration,
perforation, and hemorrhage via inhibition of mucosal prostaglandin synthesis and
platelet aggregation (Blower 1996). They can also cause hypertension and renal damage
through inhibiting renal prostaglandin production.
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Intra-articular injections of corticosteroids and HA have also been used to relieve
pain and reduce inflammation in OA joints. Intra-articular corticosteroid injection can
achieve benefits in reducing pain and relieving inflammation of the patients with OA,
but the duration of the benefit is short-lived (Bellamy et al. 2006a). Hyaluronan has
been shown to regulate many processes occurring in the synovial fluid and cartilage via
an effect on matrix metabolism, chondrocyte growth and metabolism, and the regulation
of the expression and activity of chondrodegradative enzymes. In addition to its
symptom-modifying actions (Goldberg and Buckwalter 2005), HA could protect against
PG depletion (Larsen et al. 1992; Kato et a. 1995; Bellamy et al. 2006b) and combat
against the increase of IL-1b, TNF-a, and IGF-1 mRNA expression (Noble et al. 1993).
High molecular weight HA has been shown to have a structure-modifying and anti-
inflammatory effect by down-regulating aggrecanase-2, TNF-a, IL-8, and inducible
nitric oxide synthase in fibroblast-like synoviocytes of early stage OA patients (Wang et
al. 2006).

2.4.2. Glucosamine or glucosamine sulfate treatment of osteoarthritis

The use of GIcN to treat patients with OA was proposed for more than 20 years ago
since it is a natural substance and "a building block” of PGs in the joint tissues
(D'Ambrosio et al. 1981). Subsequently, many studies have investigated the effects of
GlcN or its aulfate salt, GS, on OA in clinical trials (Lopes Vaz 1982; Muller-
Fassbender et al. 1994; Bassleer et al. 1998a; Fenton et al. 2000; Rindone et al. 2000;
Reginster et a. 2001; Gouze et al. 2002; Pavelka et a. 2002; Ruane and Griffiths 2002;
Bruyere et al. 2004; McAlindon et a. 2004; Persiani et al. 2007) and the mechanism of
action in in vitro experiments (Bassleer et al. 1988 and 1998a; Sandy et al. 1998;
Piperno et a. 2000; Shikhman et al. 2001; Dodge and Jimenez 2003; Largo et al. 2003;
Mroz and Silbert 2003; Mroz and Silbert 2004; Poustie et al. 2004; Persiani et al. 2005;
Derfoul et al. 2007)

Several possible molecular mechanisms of GIcN and its derivatives on OA
treatment have been proposed (Bassleer et al. 1988 and 1998a; Piperno et al. 2000;
Dodge and Jimenez 2003; Tiku et al. 2007). Glucosamine sulfate has been reported to
increase PG synthesis in human OA chondrocyte cultures (Bassleer et al. 1988 and
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1998a), and to increase protein synthesis and protein kinase C activity in a dose-
dependent manner at a 50 UM concentration or higher, while decreasing cellular
phospholipase 2 activity (Piperno et al. 2000). Glucosamine sulfate was shown to
increase MRNA levels of aggrecan while at the same time it inhibited the activity of
MMP-3 in cultured human OA articular chondrocytes in a donor-dependent manner
(Dodge and Jimenez 2003). Glucosamine was shown to inhibit the aggrecanase-
dependent cleavage induced by interleukin-1b or retinoic acid in rat chondrosarcoma
cells and bovine cartilage explants but only at a concentration above 2 mM (Sandy et al.
1998). Anti-inflammatory effects have also been reported in the form of suppressed IL-
1B and nitric oxide production in human articular chondrocytes (Shikhman et al. 2001).
A recent in vitro study suggested that millimolar concentrations of GIcN could prevent
collagen degradation in chondrocytes by inhibiting advanced lipoxidation reaction and
protein oxidation (Tiku et al. 2007). Concentration of 2 mM GIcN was reported to
enhance mMRNA levels of aggrecan, type Il collagen and TGF-b1 in a dose-dependent
manner in cultured bovine chondrocytes (Varghese et a. 2007). Uitteilinden et al
demonstrated that 5 mM GIcN and GS could reduce the anabolic and catabolic
processes of bovine chondrocytes by decreasing total GAG content and these
compounds could also provide protection against IL-1b mediated ECM breakdown
(Vitterlinden et al. 2007). Glucosamine a& 5 mM concentration down-regulated
aggrecanase-1 and MMP3, and 5 mM GS additionally down-regulated aggrecanase-2
and the expression of the tissue inhibitor of MMP gene in human OA explants
(Uitterlinden et al. 2006). It is important to notice that many above-mentioned studies
could show effects only at concentrations, which cannot be reached by the
recommended oral doses of GS.

Two large industry-sponsored clinical trials using the joint space width and
improvement of the symptoms as evaluation criteria, indicated, that GS could retard the
progression of knee OA development (Reginster et al. 2001; Pavelka et al. 2002).
However, the precise measurement of the radioanatomic joint space width might be
affected by the presence of pain. Since pain can impair a patient’s ability to fully extend
the knee joint for radiography (Odding et al. 1998; Adams et al. 1999). A magnetic

resonance imaging study also showed that mild to moderate joint space narrowing could



be due to the meniscal extrusion rather than hyaline cartilage erosion (Adams et al.
1999). A recent industry-sponsored clinical trial showed that 1.5 grams of GS
administered once daily was more effective than placebo and improved the Lequesne
score (Herrero-Beaumont et a. 2007). However, some industry-independent clinical
trials have doubted the effectiveness of GS in the treatment of OA (Rindone et al. 2000;
Clegg et al. 2006). Glucosamine and CS alone or in combination did not reduce pain
effectively in the total group of patients with knee OA. Exploratory analyses suggested
that the combination of GIcN and CS might be effective in the subgroup of patients with
moderate-to-severe knee pain (Clegg et a. 2006).

Some investigations have determined the serum GIcN concentration after oral
administration of 1.5 grams of commercial GS and observed that the level of GICN was
very low, approximately 10 uM (Persiani et al. 2005; Biggee et al. 2006), and the
synovial fluid concentrations were at least 500-fold lower than those reported to modify
chondrocyte metabolism in tissues (Laverty et al. 2005). It was shown that exogenous
GIcN did not gimulate CS synthesis, and high concentrations of GIcN could actually
inhibit the synthesis of CS in mouse and human chondrocytes (Mroz and Silbert 2003
and 2004). A recent clinical study on GS/CS combined with exercise showed that the
GS/CS group did not fare better than the placebo group in function, pain, or when
measured by Western Ontario and McMaster University Osteoarthritis Index
(WOMAC) function and pain (Messier et al. 2007). Because of poor bioavailability of
GlcN after oral administration, the mechanism of action has been questioned, and it has
been suggested that the elevated levels of sulfate in plasma and synovial fluid which
occur after oral administration of GS may in fact mediate the main effects of GS
treatment on OA patients (Hoffer et al. 2001). A Cochrane review by Towheed et al
concluded that the results from the studies using the products other than Rottapharm
preparations or adequate allocation concealment did not show benefit in pain and
WOMAC function, while those studies evaluating the Rottapharm preparation showed
that GIcN was superior to placebo (Towheed et al. 2005). Contradictory results from
different clinical trials have been also obtained, depending on the different GIcN
preparations, various study designs and industry involvement, giving rise to an intense
debate in the literature (Reginster 2007; Reginster et al. 2007; Vlad et al. 2007).
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3. AIMSOF THE STUDY

Glucosamine is a basic structural unit of CS and HA of cartilage PG aggregates.
Therefore, oral administration of GIcN, GS or CS, either alone or in combination have
been widely used as nutraceuticals to treat OA, and they are also prescribed as drugs in
some European countries. It has been suggested that in addition to having a symptom-
modifying effect they are also structure-modifying agents, even though a number of
recent clinical trials have not convincingly shown that either GIcN or GS would be
more effective than placebo in the treatment of OA.

The aims of the study were:
1. To determine the sulfation degree of bovine and human articular cartilage CS in
normal and early OA cartilage by electrophoretic separation of the CS disaccharides.

2. To analyze the effect of GIcN and GS on the GAG biosynthesis, and on the aggrecan
and HAS mRNA levels by [*S]sulfate incorporation, Northern blotting analysis and
quantitative real time reverse transcription polymerase chain reaction (QRT-PCR),
respectively.

3. To investigate the intracellular UDP-hexoses (UDP-Hex), UDP-N-acetylhexosamines
(UDP-HexN) and UDP-glucuronic acid (UDP-GIcA) levels after GIcN and GS
treatments by reversed-phase high-performance liquid-chromatography and ionization-

electrospray mass spectrometry measurements.
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4. MATERIALSAND METHODS

4.1. Study materials

4.1.1. Human samples

Full-depth human articular cartilage specimens (diameter 19 mm; age of donors 26-78
years, mean age 55 years) from femoral lateral and medial condyle (FLC, n=13; FMC,
n=12), tibia lateral and medial plateau (TLP, n=12; TMP, n=13), femoral groove (FG,
n=13), and patella (PAT, n=11) of cadaver joints were used for biochemical and
histological analyses. The healthy and degenerated cartilage samples were scored
according to the Mankin scoring method (Mankin et al. 1971). Human samples were
taken with the permission of the Finnish National Authority for Medicolegal Affairs
(TEO, 1781132/32/200/01).

4.1.2. Bovine samples

Full-depth healthy and degenerated articular cartilage specimens (diameter 19 mm,
n=32) from the lateral facet of bovine patellae (age of animals 1-3 years) were used for
biochemical and histological studies. Primary chondrocytes were isolated from the
femoral condyles of 13 to 22 month-old healthy cows (n=25). Bovine joints were
provided by the local abattoir (Atria, corp.)

4.2. Cdl culture

Primary chondrocytes were isolated from the articular cartilage of bovine femoral
condyles. Cartilage pieces were incubated with 0.5 mg/ml of hyaluronidase in serum-
free Dulbecco’s Modified Eagle Medium (DMEM), supplemented with 250 pg/ml
fungizone, and 10 mg/ml gentamycin in an incubator a 37°C with 5% CO, for 30
minutes. Digestion was then continued overnight with 0.3 mg/ml of collagenase and 0.2
mg/ml of DNase in DMEM supplemented with 1% fetal calf serum, 250 pg/mi
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fungizone, 0.5 pg/ml of ascorbic acid, and 10 mg/ml gentamycin. Next morning, the
isolated chondrocytes were washed twice with phosphate-buffered saline (PBS),
counted and plated in monolayer cultures at 1x10° or 0.5x10° chondrocytes per well of a
6-well plate or a 6 cm diameter Petri dish. Cultures were maintained in DMEM culture
medium with high- (25 mM) or low- Glc (5.5 mM) supplemented with 10% FCS,
penicillin (100 U/ml), streptomycin (100 pg/ml) and 2 mM L-glutamine, and
maintained in a humidified incubator at 37°C with 5% CO; until the cells reached

confluence.

4.2.1. Treatment of chondrocyteswith different sugars

The cells were treated with 1 mM of GIcN, galactosamine (GalN), mannosamine
(ManN), GlcN 3-sulfate, GIcN 6-sulfate or GalN 6-sulfate for O, 4, 8 and 24 h when the
cells reached confluence after an 8-day-long cell culture.

To examine the effect of GS salt on PG synthesis, the chondrocytes were treated
with O, 10, 100 uM and 1 mM of Glc or GS salt on 6 well-plate for 24 h following 8-
day-long cell culture. Glucosamine sulfate salt solution was prepared by adding equal
molar concentrations of GIcN and sodium sulfate to the DMEM medium including the
supplements described above.

The chondrocytes were also treated with different concentrations (10, 100 uM and
1 mM) of Glc, GlcN or GS for 10, 20, 30, 60 and 120 min following 2- or 8-day-long

cell culture to analyze the intracellular UDP-sugar levels.

4.3. Histological analyses

The human (n=74) or bovine (n=32) samples were fixed in 4% (w/v) formaldehyde in
0.07 M sodium phosphate buffer, pH 7.0, for 48 hours at 4°C. After decalcification with
10% EDTA in 4% (w/v) phosphate-buffered formaldehyde for 12 days, microscopic
sections (3-pm-thick) were prepared and cartilage degeneration was histologically
graded using the Mankin scoring method (Mankin et al. 1971). Degeneration was
independently quantified by three investigators from blind-coded samples, and the final

Mankin score was calculated as the mean of those three scores. For some statistical
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analyses, the samples were divided into three groups according to their Mankin score
(Human: Group I, score O - 1; Group I, score 2 - 3; Group 111, score 3 - 10; Bovine:
Group 1, score O; Group 11, score 1 - 3; Group |11, score 3 - 10).

4.4. Biochemical Analyses

4.4.1. Quantitative and qualitative analyses of proteoglycans

The cartilage tissue was detached from the bone, immersed in PBS, and the wet weight
was measured. Subsequently, the specimens were extensively freeze-dried to determine
the dry weight of the tissue, and the water content was calculated from this information.
The dried bovine cartilage samples were moisturized, cut into small pieces, and PGs
were extracted at 4°C for 30 hours with guanidinium hydrochloride in 50 mM sodium
acetate, pH 5.8, containing 10 mM EDTA, 100 mM g-amino-n-caproic acid, and 5 mM
benzamidine-HCI (Sajdera and Hascall 1969). The extract of each sample was collected,
and the residual material was washed with PBS. The non-extractable fraction of the
cartilage was digested for 24 hours at 60°C with 0.05% proteinase K in 10 mM EDTA
and 100 mM sodium phosphate buffer (pH 7.4). Asthe PGs in human articular cartilage
are poorly extractable compared with most other species, the dried samples were
directly solubilized by digestion with 1 mg/ml papain in 150 mM sodium acetate, 50
mM Cys-HCl and 5 mM EDTA, pH 6.5, for 24 hours a 60°C. Uronic acid contents of
the digests were quantitated from the ethanol-precipitated samples (Blumenkrantz and
Asboe-Hansen 1973), and used to give an estimate of the PG content. The sum of uronic
acid contents of the extract and residual tissue was used in calculations on bovine
samples.

To evaluate the effect of different forms of hexosamines, GS salt and Glc on
aggrecan mMRNA expression, the treated samples were collected with Eurozol. Total
RNA was extracted with chloroform and precipitated from the agueous phase with
isopropanol. The concentration of RNA was determined by spectrophotometric

measurement at 260 nm.
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4.4.2. Agarose gel electrophoresis(l)

Safranin O assay (Lammi and Tammi 1988) was used to confirm whether the
precipitation resulted in an equal yield of the PGs in the precipitate. The extracted PGs
(5 png of UA) were precipitated in 75% ethanol overnight at 4°C, and dissolved in 100
mM Tris-sodium phosphate buffer. The PGs were electrophoresed in 1.2% agarose gel
(Sa&@manen et al. 1988), and the gels were stained with toluidine blue.

4.4.3. Fluorophore-assisted carbohydrate electrophoresis (1, I1)

The extracted PGs (5-10 ug UA, bovine samples) or papain digests (human samples)
were precipitated in absolute ethanol. The samples were incubated with chondroitinase
ABC (1 mU/ul) at 37°C overnight, the formed disaccharides and standards were
fluorescently-labelled with 2-aminoacridone and separated on 30% vertical
polyacrylamide gel with 1.5% stacking gel in 0.1 M Tris-borate running buffer, pH 8.9.
The running time was 50-60 minutes at 700 V at room temperature (Inkinen et al.
1999). Different disaccharides generated during the enzymatic digestion are
equivalently labeled during derivatization, and the linear behaviour of analysis has been
demonstrated previously (Calabro et al. 2000). The gel was photographed under
ultraviolet light, and the optical densities of digitized lanes were analysed to obtain an
estimate of the molar proportions of the CS disaccharide isoforms with the Imagel
software (NIH).

4.4.4. Northern blot analysis(111)

Total RNA (= 20 pg) was separated on a 1.0% agarose/formaldehyde gel, and stained
with ethidium bromide to confirm RNA integrity. RNA was transferred to a nylon
membrane by standard blotting techniques (Nemeth et al. 1989). [a-**P] dCTP-labeled
cDNA probes for human aggrecan (Glumoff et al. 1994), procollagen(ai)!l (Aigner et
a. 1992), bovine HAS2 (Usui et a. 2000) and glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) (Fort et al. 1985) and 28S ribosomal RNA (lruela-Arispe et
al. 1991) were hybridized with the membranes overnight at 42°C. After hybridisation,
the membranes were washed twice at low stringency (2x SSC, 0.1% SDS for 5 min) and
twice at high stringency (0.1x SSC, 0.1% SDS for 15 min at 42°C). Expressions of the
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specific genes were normalized to the reference mRNA expression of 28S ribosomal
RNA, because the expression of GAPDH as an enzyme acting on carbohydrate
metabolism might be altered in response to the added sugars. The experiments were
repeated in samples from 13 animals.

4.4.5. Quantitative real time reverse transcription polymerase chain reaction (1V)

Total RNA (10 pg) was treated with recombinant DNase |. The purity and integrity of
RNA was determined by spectrophotometry, and by gel electrophoresis before reverse
transcription (RT). For 20 ul of RT reaction, 0.5 pg of DNA-free total RNA from each
group, random primers, and ABsolute™ MAX QRTase Blend reverse transcriptase
were used. The RT reaction was incubated for 60 min at 42°C, for 10 min at 75°C, and
for 2 min a 4°C in a MJ Research PTC-200 device (Waltham, Massachusetts, USA).
The cDNA was stored at -20°C prior to use.

The levels of mRNA encoding for bovine aggrecan and GAPDH were quantified
with QRT-PCR employing Mx3000P™ Real-Time PCR System (Stratagene, La Jolla,
CA, USA). The 25 ul of RT-PCR reaction contained 4 pl of cDNA, 125 pl of
ABsolute™ QPCR SYBR Green Mix, 0.5 pl of ROX reference dye, and 300 nM
(GAPDH) or 100 nM (aggrecan) forward and reverse primers. The conditions of real
time RT-PCR were: asingle cycle of enzyme activation for 15 min at 95°C, followed by
40 amplification cycles for 30 sat 95°C denaturation, 1 min at 60°C annealing, and 30 s
at 72°C extension. The sequences of the primers used in QRT-PCR were as follows:
GAPDH forward primer: 5 TTC AAC GGC ACA GTC AAG G 3|, reverse primer:
S'ACA TAC TCA GCA CCA GCA TCA C 3, aggrecan forward primer: 5 CAC TGT
TAC CGC CAC TTC CC 3, reverse primer: 5GAC ATC GTT CCA CTC GCC CT 3.

The experiments were repeated in samples from 12 animals.

4.4.6. [*S]sulfate incorporation analysis (111, 1V)

Analysis of sulfate incorporation rate was used to investigate the effects of GS and
glucose on GAG synthesis. When the cells reached confluency, the medium was
changed with fresh media containing different concentrations (100 uM and 1 mM) of
glucose or GS salt. [*S]sulfate (5 pCi/ml) was added into each of the 6-well plates, and



41

the cultures were incubated in a humidified incubator a 37°C with 5% CO, for 24 and
72 h. The supernatant was collected, and the incorporated and the free [**S]sulfate were
analyzed after gel filtration separation on Sephadex G-25 (PD-10 columns). The
experiments on the effect of GS on GAG synthesis were repeated 25 times from the
cells of 25 animals. To test whether Glc concentration of the regular medium would
affect the capacity of different hexosamines to increase [**S]sulfate incorporation, the
experiments with GIcN, GalN, ManN, and GIcN 3-sulfate were performed in low- (5.5
mM) and high-Glc (25 mM) DMEM simultaneously. The experiments were repeated
four times from the cells of four animals. The increase of sulfate concentration in the
media caused by the addition of GS was taken into account when the results were
calculated on a molar basis.

4.4.7. Reversed-phase high-performance liquid chromatography-electrospray
ionization mass spectrometry (1V)

After treatment, the plates were placed on ice, and the mixtures of the cells and medium
were collected into 1.5 ml microcentrifuge tubes. The tubes were centrifuged at 380xg
(2000 rpm) for 5 min at 4°C, and the pellets were washed once with ice-cold 1xPBS.
The cell pellet was extracted with 300 pl of cold acetonitrile with a subsequent addition
of 200 pl of cold H,O within 2 min. The samples were mixed with a vortex, and then
centrifuged at 16060 xg (13000 rpm) for 1 min at 4°C. The supernatant was transferred
to a new tube, and stored frozen at -20°C for later analysis. The acetonitrile was
vaporized using a vacuum centrifuge and the sample dissolved by vortex mixing in 150
pl of Milli-Q water containing 5 UM N,N-methyladenosine 5'-triphosphate (AppCp) as
an internal standard prior to analysis. The levels of UDP-Hex, UDP-HexN and UDP-
GlcA were analyzed by using reversed-phase column and a Finnigan LTQ quadrupole
ion trap mass spectrometer (Thermo Electron Corporation, San Jose, CA, USA)
equipped with an electrospray ionization source (1V).
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45. Statistical methods

Kruskal-Wallis H- and post-hoc tests were used for testing the significance of
differences in biochemical parameters between the untreated and treated groups (I, 11).
A non-parametric K-independent test was used to perform statistical analysis for mMRNA
and [**S]sulfate incorporation data (111). Non-parametric Wilcoxon Signed Ranks Test
was used to test the significance of differences between the control and treated groupsin
UDP-sugar analyses (1V). A p-value less than 0.05 was considered as statistically
significant. SPSS software (SPSS Inc., Chicago, IL) was used for statistical analysis.
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5.RESULTS

5.1. Sulfation of chondroitin sulfate disaccharide isoform in bovine and human
samples(l, 11)

Chondroitin sulfate disaccharide isoforms were analyzed to test the hypothesis that
sulfate deficiency was involved in the progresson of bovine and human OA. The
Mankin scoring method was used to categorize bovine and human samples into three
groups according to their stage of OA degeneration.

Bovine samples were prepared from the lateral facet of patellae (n=32). In group |
(n=11), the cartilage looked healthy, with a smooth and shiny surface and no evidence
of superficial degeneration (Mankin score 0); in Group Il (n=11), the cartilage had
minor changes in the integrity of superficial cartilage and matrix stainability (Mankin
score 1 - 3); and in Group 111 (n=10), the cartilage displayed clear OA changes (Mankin
score 3 - 10).

Human samples (n=74) were prepared from femoral lateral and medial condyles
(FLC, n=13; FMC, n=12), tibia lateral and medial plateaux (TLP, n=12; TMP, n=13),
femoral groove (FG, n=13), and patellae (PAT, n=11). In Group |, there were 19
samples with a heathy, smooth and shiny surface, no evidence of superficial
degeneration (Mankin score O - 1); in Group I, there were 33 samples with minor
changes in the integrity of superficial cartilage and matrix stainability (Mankin score 2 -
3); and in Group I11, there were 22 samples with clear OA changes (Mankin score 3 -
10).

5.1.1. Water content and proteoglycan content

Water content increased and PG content decreased following the development of OA in
bovine and human samples (Table 1). The total UA content represents the PG content.



Table 1. Water (%, mean = SD) and uronic acid (UA) content (ug/mg wet weight, mean
+ SD) of bovine and human cartilage samples according to the severity of OA

Bovine Human
Group  Mankin Water UA content Mankin Water UA content
Score content (%) (png/mg) Score content (%) (png/mg)
I 0-1 799124 10.2+35 0 70.7+£3.8 70+1.0
I 2-3 81.6+1.2 6.7+15 1-3 720+35 6.8+2.0

11 3-10 84.2+269 41+1.2%Y 3-10 74.7+523 47+1.7*°

Kruskall-Wallis post-hoc test: p < 0.05, @: Group | vs Group I11; ®: Group |1 vs Group
[1.

5.1.2. Proteoglycan structure and chondroitin sulfate disaccharide isoform analysis

in bovineand human sample(l, 1)

Agarose gel electrophoresis was used to analyze the PG structure in bovine samples.
Two major aggrecan bands were observed from the samples in Group I, while the
heterogeneity of the extracted cartilage PG was increased following the progression of
OA, evaluated by the Mankin score of cartilage (I, Fig.1).

Monosulfated Di-6S and Di-4S disaccharides were the most abundant isoforms in
bovine (I, Table 2) and human (I1, Table 1) samples. The non-sulfated Di-0S isoform
accounted for about 2-8% of the total disaccharide content in bovine samples (Table 2),
and about 1% in human samples (Table 2). The relative amount of Di-0S was
significantly higher in group | than in groups |1 and 111 in bovine samples (Table 2). No

changes were found in the relative amount of Di-0S in human samples (Table 2).

The biosynthesis rate of PGs is known to vary in a site-dependent manner even
within the same joint (Parkkinen et al. 1990) and, theoretically, this could lead to a
limited availability of the substrates needed for GAG synthesis in the most active sites
of articular cartilage. Therefore, a site-pecific correlation between Di-0S and Mankin
scores or UA content was analyzed with human samples. The correlation between the
relative amount of Di-0S and Mankin scores was significant only in the medial femoral
condyle area. However, Kruskal-Wallis H- and post-hoc test revealed that showed there
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were no statistically significant differences in the percentage of Di-0S between the
different sample sites. Furthermore, no significant correlations were observed in the
comparison between Di-0S and total UA content per wet weight.

Table 2.The proportion of non-sulfated chondroitin sulfate (Di-0S) of bovine and
human cartilage samples according to the severity of OA (%, mean = SD).

Bovine Human
Group  Mankin score Di-0S (%) Mankin score Di-0S (%)
| 0-1 8.1+34 0 1.2+15
I 2-3 29+299 1-3 1.0+ 1.0
1 3-10 1.5+0.8" 3-10 1.1+1.2

Kruskall-Wallis post-hoc test: p < 0.05, @: Group | vs Group I1; ®: Group | vs Group Il

5.2. Effect of glucosamine and glucosamine sulfate on aggrecan and hyaluronan
synthase MRNA expression and [*S]sulfate incorporation (I11, 1V)

The effect of GIcN and GS on chondrocyte GAG synthesis was studied at
concentrations from 10 uM to 1 mM to compare the physiologically available level (10
HM) to anon-physiologically high level (1 mM) often used in the previous studies.

5.2.1 Effect of different forms of sulfated and non-sulfated hexosamines on
aggrecan mRNA expression

The phenotype of cultured cells at the end of the experiment was typical for the
chondrocytes since they expressed abundant levels of procollagen (1) 11 and aggrecan
MRNAS, i.e. typical of chondrocytes. Northern blot analysis of the steady-state levels of
aggrecan mRNA expression detected no remarkable changes in its expression levels
after the chondrocytes were treated with 1 mM GIcN, GalN, ManN, GIcN-3S, GIcN-6S,
GalN-6S in high-Glc DMEM for 24 h (Il1, Fig.1). The average of aggrecan band
intensities of 13 parallel experiments after normalization againgt 28S ribosomal RNA in
Northern blot analysis revealed that GS salt in high-Glc DMEM did not increase

aggrecan mRNA levels (Table 3). Furthermore, parallel experiments with the cells from
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12 individual animals showed that 10 pM and 1 mM GS in low-Glc DMEM did not
increase aggrecan mMRNA expression after normalization against GAPDH by QRT-PCR
(Table 3).

Table 3. Effect of GS on aggrecan mRNA expression evaluated by Northern blot and
QRT-PCR (%, mean £+ SD).

GS Relative aggrecan mRNA Relative aggrecan mRNA
treatment  expression in high-Glc DMEM, expression in low-Glc DMEM,
Northern blot, n=13 QRT-PCR, n=12
Control 100+ 0.0 100+ 11.0
10 uM not determined 104.1 £ 133
100 uM 108.3 £ 39.2 not determined
1 mM 114.1 + 46.2 114.6 + 14.1

Bovine primary chondrocytes were treated with 0, 10, 100 uM and 1 mM GS in high- or
low-glucose DMEM for 24 h. The difference between the control (untreated group) and
treated group were evaluated with nonparametric Wilcoxon Signed Ranks Test. No
significant changes were observed.

Chondrocytes from 13 individual animals were also treated for 24 h with different
concentrations (0, 100 uM and 1 mM) of Glc added to high Glc DMEM, and the
isolated RNAs were analyzed with the probes for aggrecan (I11, Fig. 2A). Statistical
analysis of densitometric data after normalization against 28S ribosomal RNA revealed
that Glc did not increase the steady-state level of aggrecan mRNA (l11, Fig. 2B).

5.2.2 Effect of glucosamine sulfate and glucose on hyaluronan synthase mRNA
expression

In Northen blot analysis, the expressions of both HAS-1 and 3 were below the detection
level, only the expression of HAS-2 was detectable in three isolations out of thirteen. In
one of these, an increase in HAS-2 level was detected when the cells were treated with
100 uM GS. However, the average of HAS-2 band intensities of three parallel
experiments after normalization against 28S ribosomal RNA showed that GS salt (0, 10,
50, 100, 500 uM and 1 mM) did not increase HAS-2 mRNA levels (I11, Fig. 3).
Furthermore, Glc did not increase the steady-state level of HAS-2 mRNA in these three

individual animals.
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5.2.3. Effect of different forms of sulfated and non-sulfated hexosamines on
glycosaminoglycan synthesis

[**S]sulfate incorporation analysis showed that GAG synthesis in the presence of 1 mM
concentration of GIcN, GalN, ManN, and GIcN-3S remained approximately at the
control level. High Glc concentration in DMEM might prevent the stimulatory effect of
hexosamines. We therefore performed [*S]sulfate incorporation assays for samples
cultivated in the presence of hexosamines in low- Glc DMEM. It was observed that in
high- Glc medium the presence of 1 mM hexosamine concentration did not change
GAG synthesis, while in low- Glc medium, ManN significantly inhibited [**S]sulfate
incorporation (11, Table 1). The experiments were repeated with the cells from four
individual animals.

[**S]sulfate incorporation analysis with the cells from 13 individua animals
indicated that none of the GS salt or Glc concentrations increased chondrocyte GAG
synthesis after the chondrocytes were cultured with GS or Glc in high- Glc DMEM for
24 h (111, Table 2). Furthermore, no increase was visible in GAG synthesis even after
the chondrocytes from 10 cell isolates were treated with 100 uM and 1 mM GS or Glc
for 72 h (111, Table 2). Serum may influence the uptake of the sugars, and could have
had a profound effect on transcription. Therefore, the cells were also treated with 100
MM and 1 mM GS in serum-free DMEM for 24 h. Three parallel experiments were
conducted but the results clearly showed that GS did not increase GAG synthesis in
serum-free conditions (111, Table 2). No change was found in the GAG synthesis from
[**S]sulfate incorporation analysis with the cells from 12 individual animals after the
cellswere treated with 10 uM and 1 mM GS in low-Glc DMEM for 24 h (1V, Table 1).
Furthermore, Glc did not increase GAG synthesis after the cells were treated with 100
uM and 1 mM GSin high- Gic DMEM for 24 hor even 72 h (111, Table 2).
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5.3 Effect of glucosamine, glucosamine sulfate and glucose on intracellular UDP-
hexoses, UDP-glucuronic acid and UDP-N-acetylhexosamines

The effect of GIcN and GS on the intracellular UDP-sugar levels at different
concentrations was examined, both in low- and high- Glc DMEM. Low Glc medium
corresponds to the level of Glc in normal serum and synovial fluid (Tercic and Bozic
2001). The content of UDP-HexN increased after 10-min-treatment at 1 mM GIcN (I1V,
Fig. 2A) and GS (1V, Fig. 2B) in low- Glc DMEM, while the content of UDP-GIcA
dightly decreased. Similar changes were found in the ratio of UDP-HexN/UDP-Hex
and UDP-GIcA/UDP-Hex. However, no changes were observed at 10 min after addition
of 10 and 100 uM GlIcN and GS (1V, Fig. 2A, B). In high- Glc DMEM, 1 mM GS did
not affect the UDP-sugar levels. Glucose at 10, 100 uM and 1 mM concentrations in
low-Glc DMEM had no effect on UDP-sugar levels. Consequently, the following

experiments were performed only in low-Glc DMEM.

The levels of UDP-sugars over atime period of 2 h were also studied. The highest
level of UDP-HexN was reached at 30 min after addition of 1 mM GS (1V, Fig. 3A).
Although the absolute level of UDP-HexN began to decrease after 30 min, the UDP-
Hex level also declined such that the ratio of UDP-HexN/UDP-Hex showed an increase
during the time course with 1 mM GS treatment. However, the level of UDP-GICA still
remained at the control level. Previously, the maximum level of GIcN in serum was
found to lie in arange of 1.9-11.5 uM after oral administration of GS (McAlindon and
Biggee 2005). Therefore, we treated the chondrocytes with 10 uM GS in low-Glc
DMEM for 30 and 60 min to investigate whether an exogenous but physiologically
relevant concentration of GS could increase the intracellular UDP-HexN and UDP-
GIcA levels. The experiment was repeated with chondrocyte cultures from nine animals.
However, no changes were noted in the contents of UDP-HexN and UDP-GIcA at the
different time points (1V, Fig. 3B).

Primary chondrocytes are often cultivated for several days prior to the
experimental procedures and this may affect the metabolic balance of the cells. Thus,

we investigated whether the duration of the culture time would have any impact on the
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response of the chondrocytes to GS. The cells were treated with 10 uM and 1 mM GS
for 30 min after 2 and 8 days culture. After the 2-day-culture period, the content of
UDP-HexN increased at 30 min after addition of 1 mM GS, while the contents of UDP-
GIcA and UDP-Hex decreased (p<0.05) (1V, Fig. 4A). The ratio of UDP-HexN/UDP-
Hex was significantly higher in 1 mM GS treatment for 30 min compared with that of
the controls, while the ratio of UDP-GICA/UDP-Hex was significantly decreased
(p<0.05). However, treatment with 10 uM GS for 30 min did not affect the contents of
UDP-sugars (1V, Fig. 4A).

After culturing the chondrocytes for 8 days, the content of UDP-HexN was
significantly increased at 30 min after addition of 1 mM GS (1V, Fig. 4B), but no
changes could be found in the content of UDP-GIcA (IV, Fig. 4B). Similarly to the 2-
day-culture period, addition of 10 uM GS did not have any effect on the UDP-sugar
levels of chondrocytes (1V, Fig. 4B). The level of UDP-GICA clearly increased during
the longer culture period and, as a consequence, the ratios of the UDP-HexN/UDP-Hex
and UDP-GIcA/UDP-Hex were much higher after the 8-day-culture period than those
observed after the 2-day-culture period.
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6. DISCUSSION

6.1. Articular cartilage proteoglycans are not undersulfated in bovine and human
osteoarthritis (I, I1)

Glucosamine, GS and/or CS have been used to treat OA patients as chondroprotective
drugs to reduce the pain and to improve the function of the affected joints (Rovetta
1991; Bassleer et al. 1992; Clegg et al. 2006). These substances have been claimed to
stimulate the PG production in human articular chondrocytes (Bassleer et al. 1998a;
Piperno et al. 2000). However, it has been demonstrated that the plasma level of GS lay
in arange of 1.9-11.5 puM after a 1.59g daily dosage (Persiani et al. 2005). In vitro, only
at a concentration of 50 uM or higher has GS been found to increase PG core protein
synthesis and protein kinase C activities, while reducing the phospholipase A2 activity
(Bassleer et a. 1998a; Piperno et a. 2000). Glucosamine sulfate has also been reported
to increase the expression of mRNA encoding the type Il IL-1b receptor (Gouze et al.
2002).

Recent experiments performed with [*H]-GIcN for metabolic labeling of CS
indicated that exogenous GIcN did not stimulate CS synthesis at the concentration
present around the cartilage after ora administration of normal doses of this compound,
or evenup to 1 mM (Mroz and Silbert 2003 and 2004). It iswell known that GIcN is not
auniform substrate for GAG synthesis in the cartilage, and it can’t be used directly for
GAG synthesis without the UDP-derivatization (Silbert and Sugumaran 2002). It has
also been suggested that in treating OA patients that sulfate could mediate the
therapeutic effect of GS rather than GIcN alone on account of increased sulfate
concentration in blood and synovial fluid after oral administration (Hoffer et a. 2001).
Previoudly, the serum levels of Di-4S and Di-0S were observed to be increased in OA
patients compared with the healthy individuals. However, in synovial fluid, Di-0S was
not detectable (Uesaka et al. 2001). Nonetheless, Di-0S has been shown to be present in
human (Bayliss et al. 1999) and equine (Brown et al. 1998) articular cartilage PGs. With

respect to horses, it was concluded that synovial fluid CS was not indicative of cartilage
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CS, and it rather represented turnover products of a subpopulation of PGs within the
matrix (Brown et al. 1998). The same conclusion appears to be valid for human
synovial fluid, although little is known about the degree of sulfation of human synovial
fluid CS. Recently, the possibility that blood sulfate levels could contribute to OA by
decreasing cartilage chondroitin sulfation was investigated (Blinn et al. 2006). That
study indicated that fasting and ingestion of protein-free meals could lead to adeclinein
the concentration of sulfate in serum (Blinn et a. 2006).

In normal bovine articular cartilage, Di-0S represents a much higher proportion of
CS isoforms than in humans, while in early OA cartilage in cows a satistically
significant decrease in Di-0S was evident. This indicated that the degree of sulfation
was increased in bovine OA cartilage (1). In macroscopically normal human articular
cartilage CS, the proportion of Di-0S was only 1.2+1.5% (11) compared with 8.1+3.4%
(1) present in the normal bovine CS. Even if the proportion of Di-0S would increase
considerably in human cartilage, it is very unlikely that it would dramatically affect the
water-binding capacity of PGs and, thus, worsen its functional quality (I1).

A deficiency in the amount of synovial fluid reaching the articular cartilage may
explain the possible sulfate deficiency. Under such conditions, also the availability of
other nutrients would be decreased, which would slow down the cartilage metabolism.
However, there are also conditions when a sulfate deficiency could develop without any
change in the availability of other nutrients into the synovial fluid. Several nonsteroidal
anti-inflammatory drugs, such as acetaminophen (or paracetamol) and ibuprofen, are
used to alleviate the symptoms of OA. Some of these drugs can evoke a decrease in the
serum sulfate level (de Vries et al. 1990). Recently, it was shown that the serum sulfate
level can decrease in spite of the simultaneous increase in serum Glc after fasting and
ingestion of 75 g Glc (Blinn et al. 2006). These are some situations which may in
principle predispose the articular cartilage to synthesis of undersulfated GAGs, i.e. a
low sulfate concentration in the medium would lead to the synthesis of undersulfated
GAGs (Brand et al. 1989; van der Kraan et al. 1989). There are known to be species-
specific responses in the sensitivity to sulfate deficiency, for example, murine cartilage

is less sensitive to sulfate deficiency than its bovine counterpart (van der Kraan et al.
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1989), while human articular cartilage appears to be rather susceptible to deviations
from physiological sulfate concentration (van der Kraan et a. 1990). The medication
history of our patients was not known. However, the very low level of Di-0S in human
articular cartilage observed in this study suggests that under normal and OA conditions,
the sulfate levels of the synovial fluid were sufficiently high to ensure the synthesis of
normal GAGs.

6.2. Glucosamine, glucosamine sulfate and glucose do not increase the steady-state
level of aggrecan and hyaluronan synthase mRNA expresson and
glycosaminoglycan synthesis (111)
Aggrecan isalarge CS-PG inthe cartilage providing osmotic resistance for the cartilage
to absorb compressive loads. Chondroitin sulfate is a major constituent of GAGs, while
GlcN isa major building block of the CS disaccharide units in cartilage. The suggested
positive effect of GS on OA has been associated with the involvement of GIcN in GAG
synthesis. However, there are some recent reports that have questioned whether a higher
synthesis rate of GAGs can be achieved after oral administration of GIcN or GS (Mroz
and Silbert 2003 and 2004). Certain industry-independent clinical trials with GIcN or
GS have shown that GIcN or GS is no better than placebo in the treatment of OA
(Rindone et al. 2000; Hughes and Carr 2002; McAlindon 2003; Cibere et al. 2004,
McAlindon et al. 2004). One trial was discontinued because there were no evident
symptomatic benefits of GS (Cibere et al. 2004). Weak research design, the many
different GS or GIcN preparations used, and industry bias have confused the evaluation
of the results of clinical trials (Distler and Anguelouch 2006; Reginster 2007; Reginster
et a. 2007; Vlad et al. 2007), leading to conclusion in some recent studies that GS or
GlcN may not be effective in the treatment of OA (Vlad et a. 2007).

We investigated whether exogenous administration of various concentrations of
hexosamine and GS salt would increase the steady-state level of aggrecan and HAS
MRNA expression, and GAG synthesis, in bovine primary chondrocytes. However, our

study could detect no positive responses from these compounds (111).
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Our finding that 1 mM hexosamines or 100 M and 1 mM GS, GIcN or Glc did
not increase the aggrecan mMRNA expression or the GAG synthesis in bovine primary
chondrocytes is in line with the studies performed with MC615 mouse (Mroz and
Silbert 2003) and human chondrocytes (Mroz and Silbert 2004). A concentration of 1
mM GIcN appeared to inhibit GAG synthesisin human chondrocytes (Mroz and Silbert
2004). A donor-dependent variation in the response of primary chondrocytes to GS has
been previoudly reported (Dodge and Jimenez 2003). Therefore, we tested cells from 25
different animals using two different techniques, Northern blot analysis and QRT-PCR,
for this part of the study. The results showed that GS salt did not increase the PG
expression in bovine primary chondrocytes (111, 1V)

Glucose is a general precursor for cellular GAG biosynthesis. It is taken up by the
Glc transporter family proteins into the chondrocytes from the synovia fluid. Inside the
cell, it is converted into Glc 6-phosphate which is the building block for the synthesis of
CS, and HA (Kelly 1998; Mobasheri et al. 2002). Chondrocytes are highly glycolytic
cells and need a steady Glc supply to ensure their viability and extracellular matrix
synthesis (Otte 1991; Lee and Urban 1997). It has been estimated that chondrocytes
have an excess ability to form GIcN from endogenous Glc (Mroz and Silbert 2003).
Thus, exogenous GIcN after ora or intravenous administration does not simulate CS
synthesis at concentrations higher than those normally present in the joint (Mroz and
Silbert 2003). Although the level of Glc in the body fluids is strictly regulated within a
relatively narrow concentration range, fluctuations in the blood Glc concentrations do
occur a times, e.g., after meals. Glucose level in synovial fluid is usualy within 0.55-
1.1 mM range of the serum Glc level (4.2-6.1 mM), although in inflammatory joint a
reduction of more than 2.8 mM concentration can occur (Brannan and Jerrard 2006).

Hyaluronan is one of the major constituents of the cartilage PGs, and together with
lubricin, it is primarily responsible for the lubricating and shock-absorbing properties of
synovial fluid. Hyaluronan content has been shown to decrease in OA cartilage (Thonar
et a. 1978; Rizkallaet al. 1992) and also in synovial fluid from OA patients (Belcher et
al. 1997). In an experimental OA model, HA in particular was decreased in the early
stage of OA (Manicourt and Pita 1988), while in joint immobilisation-associated
atrophy, HA and aggrecan appeared to be coordinately regulated (Haapala et al. 1996).



Hyaluronan has been used to aleviate joint pain of patients with OA (Altman and
Moskowitz 1998; Altman 2000), even though conflicting results on its effectiveness in
easing the symptoms have been reported. It is premature to draw any conclusions on the
effect of GS on HAS expression, since in Northern blot analysis HAS-2 was detectable
only in three donors, and HAS protein levels were not measured. As far as we are
aware, no previous reports are available on the effect of GICN or GS on any of the three
known HAS mRNAs. Theoretically, the increase in HAS-2 mRNA expression could be
beneficial for cartilage, with the assumption that also HA synthesis would be increased.
Nevertheless, our results indicated that GS or Glc did not increase HAS-2 mRNA

levels.

6.3. Physologically relevant level of glucosamine sulfate does not enhance
chondroitin sulfate synthess by increasng the intracellular levels of UDP-N-
acetylhexosamine and UDP-glucuronic acid (1V)

Glucosamine, which is intracellularly produced from endogenous Glc, is one of the
basic sugar structures used for the synthesis of CS via conversion of fructose-6-
phosphate to GIcN-6-P by the enzyme GFAT (Page 29, Fig. 4). GIcN-6-P is then
rapidly converted into the GICNACc-6-P by acetyl-CoA: GNPNAT (Fig. 4). Exogenous
GlcN or GS supplemented to the cultured cells can enter this metabolic pathway via
conversion to GIcN-6-P. N-acetylglucosamine-6-P is further converted via N-
acetylglucosamine-1-phosphate into UDP-GIcNAc, and by epimerase into UDP-
GalNAc. These nucleotide-activated sugars, together with UDP-GICA, are utilized in the
assembly of GAG chains (Fig. 4). The CS polysaccharide chain is composed of GICA
and GalNAc, and KS of galactose and GIcNAc, while HA consists of GIcA and
GIcNAc (Fig. 4). It has been shown that supplemental GIcN can affect cellular
metabolism in adipocytes (Marshall et al. 2004). However, that report did not show how
the levels of UDP-GIcCA and UDP-GalNAc behaved, or if GICN at concentrations
available after oral administration of GS had any effect on the cultured cells. Some
previous in vitro studies have shown that the addition of GIcN or GS to culture medium
increases the PG synthesis by chondrocytes (Setnikar et al. 1984 and 1986; Bassleer et
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al. 1998a). One recent study demonstrated that exogenous GIcN effectively protected
chondrocytes from the arthritogenic effects of IL-1b (Gouze et al. 2006). However, the
concentrations of GS or GlcN used in these studies were too high to be physiologically
achievable in vivo after oral administration.

Our results in this study show that two concentrations, 10, 100 uM GS salt did not
increase UDP-HexN and UDP-GIcA levels. The UDP-GIcA level was clearly lower
than that of UDP-HexN, though both components are required for GAG synthesis (1V).
Therefore, it is important to note that even when the level of UDP-HexN increased after
1 mM GlcN or GS, the level of UDP-GICA remained at the control level or even
decreased. This finding raises the question of whether this increase in UDP-HexN can
actualy accelerate GAG synthesis rate if the intracellular content of one of the two
essential components required for the GAG assembly remains unchanged. Furthermore,
it must be remembered that 1 mM GS is too high a concentration to be achieved in the
extracellular and intracellular fluids after administration of normal GIcN or GS doses
(Biggee et a. 2006).

Our present findings are in line with the previous studies performed with mouse
and human chondrocytes (Mroz and Silbert 2003 and 2004). It has been calculated that
chondrocytes can produce a sufficient level of GIcN for CS synthesis from endogenous
Glc, and that the exogenous GIcN will be diluted by the GIcN formed from endogenous
Glc (Silbert et al. 1989; Mroz and Silbert 2003 and 2004). It was also shown in human
chondrocytes that only 9% of galactosamine involved in the synthesis of CS is derived
from exogenous GIcN, when the concentration of exogenous radioactively labeled GIcN
was 102 uM (at maximum) in mouse and human chondrocyte cultures (Mroz and
Silbert 2003 and 2004).

Interestingly, the intracellular levels of UDP-HexN and UDP-GICA were clearly
higher after the 8-day-culture period than those achived after the 2-day-culture period,
and it seems possible that the level of UDP-GICA can be the rate-limiting factor of GAG
synthesis in newly isolated chondrocytes. A low concentration of GS salt (10 uM) did
not affect the UDP-sugar levels in either the 2- or 8-day-old primary chondrocyte

cultures.
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7. SUMMARY AND CONCLUSIONS

Glucosamine and/or GS have aroused considerable interest as possible
chondroprotective and disease-modifying agents for OA. Today these agents are present
in health products and are readily available as over-the-counter dietary supplements in
North America. They can also be prescribed as drugs in some European countries. The
use of GIcN/GS as a drug to treat OA is currently compensated by national social
insurance institutions in some European countries, including Finland. However, the
mechanisms to explain how GS might act in vivo have still remained mystery.

It has been suggested that GICN could act as a precursor of GAG biosynthesis and
this would increase the biosynthesis of GAGs should it be available in increased
amounts in the body. In theory, if GS could enter the metabolic pathway inside the
chondrocyte this would require less energy than the pathway utilizing Glc. However,
there does not seem to be any direct evidence for cellular transport system for GS. Some
studies in vitro have investigated the possible molecular mechanisms of GS on OA.
However, several studies have been conducted with GS concentrations that cannot be
achieved physiologically after a commonly prescribed oral dose. Furthermore, some
recent industry-independent clinical trials with GICN or GS have generated negative
results in the treatment of OA.

The effect of oral GS on the sulfate concentration in plasma and synovial fluid has
been suggested to be a more plausible mechanism for explaining how GS could
manifest its actions as a suggested OA-modifying agent rather than GIcN alone. Indeed,
it has been shown that the sulfate concentration of serum and synovial fluid can increase
after oral administration of GS. A low sulfate concentration in the culture medium could
lead to the synthesis of undersulfated GAGs in cartilage explants.

In conclusion, the results of this thesis demonstrate that articular cartilage PGs
were not undersulfated in bovine and human OA. Exogenous GS at physiologically
achievable concentration did not increase steady state levels of aggrecan mRNA
expression, GAG synthesis or intracellular level of UDP-HexN and UDP-GICA in
bovine primary chondrocytes. Therefore, no mechanism of action of GS could be

confirmed in this study.



57

8. REFERENCES

Adams JG, McAlindon T, Dimasi M, Carey J, Eustace S. (1999) Contribution of
meniscal extrusion and cartilage loss to joint space narrowing in osteoarthritis. Clin
Radiol 54:502-506

Aigner T, Stoss H, Weseloh G, Zeiler G, von der Mark K. (1992) Activation of collagen
type Il expression in osteoarthritic and rheumatoid cartilage. Virchows Arch B Cell
Pathol Incl Mol Pathol 62:337-345

Altman RD. (2000) Intra-articular sodium hyaluronate in osteoarthritis of the knee.
Semin Arthritis Rheum 30:11-18

Altman RD, Moskowitz R. (1998) Intraarticular sodium hyaluronate (Hyalgan) in the
treatment of patients with osteoarthritis of the knee: a randomized clinical trial. Hyalgan
Study Group. J Rheumatol 25:2203-2212

Andres JL, DeFalcis D, Noda M, Massague J. (1992) Binding of two growth factor
families to separate domains of the proteoglycan betaglycan. J Biol Chem 267:5927-
5930

Antonsson P, Heinegard D, Oldberg A. (1989) The keratan sulfate-enriched region of
bovine cartilage proteoglycan consists of a consecutively repeated hexapeptide motif. J
Biol Chem 264:16170-16173

Aydelotte MB, Greenhill RR, Kuettner KE. (1988) Differences between sub-
populations of cultured bovine articular chondrocytes. 11. Proteoglycan metabolism.
Connect Tissue Res 18:223-234

Aydelotte MB, Kuettner KE. (1988) Differences between sub-populations of cultured
bovine articular chondrocytes. I. Morphology and cartilage matrix production. Connect
Tissue Res 18:205-222

Baldwin CT, Reginato AM, Prockop DJ. (1989) A new epidermal growth factor-like
domain in the human core protein for the large cartilage-specific proteoglycan.
Evidence for aternative splicing of the domain. J Biol Chem 264:15747-15750

Bassleer C, Gysen P, Bassleer R, Franchimont P. (1988) Effects of peptidic
glycosaminoglycans complex on human chondrocytes cultivated in three dimensions.
Biochem Pharmacol 37:1939-1945

Bassleer C, Henrotin Y, Franchimont P. (1992) In-vitro evaluation of drugs proposed as
chondroprotective agents. Int J Tissue React 14:231-241



58

Bassleer C, Rovati L, Franchimont P. (1998a) Stimulation of proteoglycan production
by glucosamine sulfate in chondrocytes isolated from human osteoarthritic articular
cartilage in vitro. Osteoarthritis Cartilage 6:427-434

Bassleer CT, Combal JP, Bougaret S, Malaise M. (1998b) Effects of chondroitin sulfate
and interleukin-1 beta on human articular chondrocytes cultivated in clusters.
Osteoarthritis Cartilage 6:196-204

Bayliss MT, Osborne D, Woodhouse S, Davidson C. (1999) Sulfation of chondroitin
sulfate in human articular cartilage. The effect of age, topographical position, and zone
of cartilage on tissue composition. J Biol Chem 274:15892-15900

Bayliss MT, Venn M, Maroudas A, Ali SY. (1983) Structure of proteoglycans from
different layers of human articular cartilage. Biochem J 209:387-400

Belcher C, Yagub R, Fawthrop F, Bayliss M, Doherty M. (1997) Synovia fluid
chondroitin and keratan sulphate epitopes, glycosaminoglycans, and hyaluronan in
arthritic and normal knees. Ann Rheum Dis 56:299-307

Bellamy N, Campbell J, Robinson V, Gee T, Bourne R, Wells G. (20064) Intraarticular
corticosteroid for treatment of osteoarthritis of the knee. Cochrane Database Syst
Rev:CD005328

Bellamy N, Campbell J, Robinson V, Gee T, Bourne R, Wells G. (2006b)
Viscosupplementation for the treatment of osteoarthritis of the knee. Cochrane
Database Syst Rev:CD005321

Bernfield M, Kokenyesi R, Kato M, Hinkes MT, Spring J, Gallo RL, Lose EJ. (1992)
Biology of the syndecans. a family of transmembrane heparan sulfate proteoglycans.
Annu Rev Cell Biol 8:365-393

Bernfield M, Sanderson RD. (1990) Syndecan, a developmentally regulated cell surface
proteoglycan that binds extracellular matrix and growth factors. Philos Trans R Soc
Lond B Biol Sci 327:171-186

Biggee BA, Blinn CM, McAlindon TE, Nuite M, Silbert JE. (2006) Low levels of
human serum glucosamine after ingestion of glucosamine sulphate relative to capability
for peripheral effectiveness. Ann Rheum Dis 65:222-226

Blinn CM, Biggee BA, McAlindon TE, Nuite M, Silbert JE. (2006) Sulphate and
ogteoarthritis. decrease of serum sulphate levels by an additional 3-h fast and a 3-h
glucose tolerance test after an overnight fast. Ann Rheum Dis 65:1223-1225

Blobe GC, Schiemann WP, Pepin MC, Beauchemin M, Moustakas A, Lodish HF,
O'Connor-McCourt MD. (2001) Functional roles for the cytoplasmic domain of the type



59

I11 transforming growth factor beta receptor in regulating transforming growth factor
beta signaling. J Biol Chem 276:24627-24637

Blower AL. (1996) Considerations for nonsteroidal anti-inflammatory drug therapy:
safety. Scand J Rheumatol Suppl 105:13-24; discussion 25-17

Blumenkrantz N, Asboe-Hansen G. (1973) New method for quantitative determination
of uronic acids. Anal Biochem 54:484-489

Brand HS, van Kampen GP, van de Stadt RJ, Kuijer R, van der Korst JK. (1989) Effect
of sulfate concentration on glycosaminoglycan synthesis in explant cultures of bovine
articular cartilage. Cell Biol Int Rep 13:153-162

Brandt K. (2000) Definition of Osteoarthritis. In: Diagnosis and Nonsurgical
Management of Osteoarthritis), Caddo, OK: Professional Communications, pp 17-19

Brannan SR, Jerrard DA. (2006) Synovial fluid analysis. J Emerg Med 30:331-339

Brocklehurst R, Bayliss MT, Maroudas A, Coysh HL, Freeman MA, Revell PA, Ali
SY. (1984) The composition of normal and osteoarthritic articular cartilage from human
knee joints. With special reference to unicompartmental replacement and osteotomy of
the knee. J Bone Joint Surg Am 66:95-106

Brown EL, Wooten RM, Johnson BJ, lozzo RV, Smith A, Dolan MC, Guo BP, Weis JJ,
Hook M. (2001) Resistance to Lyme disease in decorin-deficient mice. J Clin Invest
107:845-852

Brown MP, West LA, Merritt KA, Plaas AH. (1998) Changes in sulfation patterns of
chondroitin sulfate in equine articular cartilage and synovial fluid in response to aging
and osteoarthritis. Am J Vet Res 59:786-791

Bruyere O, Pavelka K, Rovati LC, Deroisy R, Olgjarova M, Gatterova J, Giacovelli G,
Reginster JY. (2004) Glucosamine sulfate reduces osteoarthritis progression in
postmenopausal women with knee osteoarthritis. evidence from two 3-year studies.
Menopause 11:138-143

Buckwalter JA, Kuettner KE, Thonar EJ. (1985) Agerelated changes in articular
cartilage proteoglycans: electron microscopic studies. J Orthop Res 3:251-257

Buckwalter JA, Mankin HJ, Grodzinsky AJ. (2005) Articular cartilage and
ogteoarthritis. Instr Course Lect 54:465-480

Buckwalter JA, Rosenberg LC. (1988) Electron microscopic studies of cartilage
proteoglycans. Electron Microsc Rev 1:87-112



60

Buckwalter JA, Roughley PJ, Rosenberg LC. (1994) Age-related changes in cartilage
proteoglycans. quantitative electron microscopic studies. Microsc Res Tech 28:398-408

Burrage PS, Mix KS, Brinckerhoff CE. (2006) Matrix metalloproteinases: role in
arthritis. Front Biosci 11:529-543

Calabro A, Benavides M, Tammi M, Hascall VC, Midura RJ. (2000) Microanalysis of
enzyme digests of hyaluronan and chondroitin/dermatan sulfate by fluorophore-assisted
carbohydrate electrophoresis (FACE). Glycobiology 10:273-281

Carney SL, Muir H. (1988) The structure and function of cartilage proteoglycans.
Physiol Rev 68:858-910

Chandrasekaran L, Tanzer ML. (1992) Molecular cloning of chicken aggrecan.
Structural analyses. Biochem J 288:903-910

Chatziioannidis CC, Karamanos NK, Anagnosides ST, Tsegenidis T. (1999)
Purification and characterisation of a minor low-sulphated dermatan sulphate-
proteoglycan from ray skin. Biochimie 81:187-196

Cheifetz S, Massague J. (1989) Transforming growth factor-beta (TGF-beta) receptor
proteoglycan. Cell surface expresson and ligand binding in the absence of
glycosaminoglycan chains. J Biol Chem 264:12025-12028

Chen XD, Fisher LW, Robey PG, Young MF. (2004) The small leucine-rich
proteoglycan biglycan modulates BMP-4-induced osteoblast differentiation. Faseb J
18:948-958

Cibere J, Kopec JA, Thorne A, Singer J, Canvin J, Robinson DB, Pope J, Hong P, Grant
E, Esdaile M. (2004) Randomized, double-blind, placebo-controlled glucosamine
discontinuation trial in knee ogteoarthritis. Arthritis Rheum 51:738-745

Clegg DO, Reda DJ, Harris CL, Klein MA, O'Dell JR, Hooper MM, Bradley JD,
Bingham CO, 3rd, Weisman MH, Jackson CG, Lane NE, Cush JJ, Moreland LW,
Schumacher HR, Jr., Oddis CV, Wolfe F, Molitor JA, Y ocum DE, Schnitzer TJ, Furst
DE, Sawitzke AD, Shi H, Brandt KD, Moskowitz RW, Williams HJ. (2006)
Glucosamine, chondroitin sulfate, and the two in combination for painful knee
osteoarthritis. N Engl J Med 354:795-808

Corpuz LM, Funderburgh JL, Funderburgh ML, Bottomley GS, Prakash S, Conrad GW.
(1996) Molecular cloning and tissue distribution of keratocan. Bovine corneal keratan
sulfate proteoglycan 37A. J Biol Chem 271:9759-9763

Coster L, Fransson LA. (1981) Isolation and characterization of dermatan sulphate
proteoglycans from bovine sclera. Biochem J 193:143-153



61

D'Ambrosio E, Casa B, Bompani R, Scali G, Scali M. (1981) Glucosamine sulphate: a
controlled clinical investigation in arthrosis. Pharmatherapeutica 2:504-508

Damle SP, Coster L, Gregory JD. (1982) Proteodermatan sulfate isolated from pig skin.
J Biol Chem 257:5523-5527

Davidson EA, Meyer K. (1954) Structural studies on chondroitin sulfuric acid. 1. The
nature of chondrosine. J. Am Chem. Soc. 76:5686-5689

de Luca S, Richmond ME, Silbert JE. (1973) Biosynthesis of chondroitin sulfate.
Sulfation of the polysaccharide chain. Biochemistry 12:3911-3915

de Vries BJ, van der Kraan PM, van den Berg WB. (1990) Decrease of inorganic blood
sulfate following treatment with selected antirheumatic drugs: potential consequence for
articular cartilage. Agents Actions 29:224-231

Derfoul A, Miyoshi AD, Freeman DE, Tuan RS. (2007) Glucosamine promotes
chondrogenic phenotype in both chondrocytes and mesenchymal stem cells and inhibits
MMP-13 expression and matrix degradation. Osteoarthritis Cartilage 15:646-655

Distler J, Anguelouch A. (2006) Evidence-based practice: review of clinical evidence
on the efficacy of glucosamine and chondroitin in the treatment of osteoarthritis. J Am
Acad Nurse Pract 18:487-493

Dodge GR, Jmenez SA. (2003) Glucosamine sulfate modulates the levels of aggrecan
and matrix metalloproteinase-3 synthesized by cultured human osteoarthritis articular
chondrocytes. Osteoarthritis Cartilage 11:424-432

Doege KJ, Sasaki M, Kimura T, Yamada Y. (1991) Complete coding sequence and
deduced primary structure of the human cartilage large aggregating proteoglycan,
aggrecan. Human-specific repeats, and additional alternatively spliced forms. J Biol
Chem 266:894-902

Domowicz MS, Pirok EW, 3rd, Novak TE, Schwartz NB. (2000) Role of the C-terminal
G3 domain in sorting and secretion of aggrecan core protein and ubiquitin-mediated
degradation of accumulated mutant precursors. J Biol Chem 275:35098-35105

Dong M, How T, Kirkbride KC, Gordon KJ, Lee JD, Hempel N, Kelly P, Moeller BJ,
Marks JR, Blobe GC. (2007) The type Il TGF-beta receptor suppresses breast cancer
progression. J Clin Invest 117:206-217

Felson DT. (2004) An update on the pathogenesis and epidemiology of osteoarthritis.
Radiol Clin North Am42:1-9



62

Fenton JI, Chlebek-Brown KA, Peters TL, Caron JP, Orth MW. (2000) Glucosamine
HCI reduces equine articular cartilage degradation in explant culture. Osteoarthritis
Cartilage 8:258-265

Feugaing DD, Tammi R, Echtermeyer FG, Stenmark H, Kresse H, Smollich M,
Schonherr E, Kiesal L, Gotte M. (2007) Endocytosis of the dermatan sulfate
proteoglycan decorin utilizes multiple pathways and is modulated by epidermal growth
factor receptor signaling. Biochimie 89:637-657

Fort P, Marty L, Piechaczyk M, el Sabrouty S, Dani C, Jeanteur P, Blanchard JM.
(1985) Various rat adult tissues express only one maor mRNA species from the
glyceraldehyde-3-phosphate-dehydrogenase  multigenic family. Nucleic Acids Res
13:1431-1442

Fransson LA. (1968a) Structure of dermatan sulfate. 3. The hybrid structure of dermatan
sulfate from umbilical cord. J Biol Chem 243:1504-1510

Fransson LA. (1968b) Structure of dermatan sulfate. IV. Glycopeptides from the
carbohydrate-protein linkage region of pig skin dermatan sulfate. Biochim Biophys Acta
156:311-316

Fransson LA, Mamstrom A. (1971) Structure of pig skin dermatan sulfate. 1.
Distribution of D-glucuronic acid residues. Eur J Biochem 18:422-430

Funderburgh JL. (2000) Keratan sulfate: structure, biosynthesis, and function.
Glycobiology 10:951-958

Geetha-Habib M, Campbell SC, Schwartz NB. (1984) Subcellular localization of the
synthesis and glycosylation of chondroitin sulfate proteoglycan core protein. J Biol
Chem 259:7300-7310

Glumoff V, Savontaus M, Vehanen J, Vuorio E. (1994) Analysis of aggrecan and
tenascin gene expression in mouse skeletal tissues by northern and in situ hybridization
using species specific cONA probes. Biochim Biophys Acta 1219:613-622

GoaKL, Benfield P. (1994) Hyaluronic acid. A review of its pharmacology and use asa
surgical aid in ophthalmology, and its therapeutic potential in joint disease and wound
healing. Drugs 47:536-566

Goldberg VM, Buckwalter JA. (2005) Hyaluronans in the treatment of osteoarthritis of
the knee: evidence for disease-modifying activity. Osteoarthritis Cartilage 13:216-224

Gouze JN, Bianchi A, Becuwe P, Dauca M, Netter P, Magdalou J, Terlain B, Bordji K.
(2002) Glucosamine modulates IL-1-induced activation of rat chondrocytes at a receptor
level, and by inhibiting the NF-kappa B pathway. FEBS Lett 510:166-170



63

Gouze N, Gouze E, Popp MP, Bush ML, Dacanay EA, Kay JD, Levings PP, Patel KR,
Saran JS, Watson RS, Ghivizzani SC. (2006) Exogenous glucosamine effectively
protects chondrocytes from the arthritogenic effects of IL-1lbeta. Arthritis Res Ther
8:R173

Grover J, Chen XN, Korenberg JR, Roughley PJ. (1995) The human lumican gene.
Organization, chromosomal location, and expression in articular cartilage. J Biol Chem
270:21942-21949

Grover J, Roughley PJ. (1994) The expression of functional link protein in a
baculovirus system: analysis of mutants lacking the A, B and B' domains. Biochem J
300:317-324

Grushko G, Schneiderman R, Maroudas A. (1989) Some biochemical and biophysical
parameters for the study of the pathogenesis of osteoarthritis. a comparison between the
processes of ageing and degeneration in human hip cartilage. Connect Tissue Res
19:149-176

Guilak F, Ratcliffe A, Lane N, Rosenwasser MP, Mow VC. (1994) Mechanical and
biochemical changes in the superficial zone of articular cartilage in canine experimental
osteoarthritis. J Orthop Res 12:474-484

Gotte M, Sofeu Feugaing DD, Kresse H. (2004) Biglycan is internalized via a
chlorpromazine-sensitive route. Cell Mol Biol Lett 9:475-481

Haapala J, Lammi MJ, Inkinen R, Parkkinen JJ, Agren UM, Arokoski J, Kiviranta I,
Helminen HJ, Tammi MI. (1996) Coordinated regulation of hyaluronan and aggrecan
content in the articular cartilage of immobilized and exercised dogs. J Rheumatol
23:1586-1593

Halberg DF, Proulx G, Doege K, Yamada Y, Drickamer K. (1988) A segment of the
cartilage proteoglycan core protein has lectin-like activity. J Biol Chem 263:9486-9490

Hardingham T. (1999) Proteoglycans and Glycosaminoglycans. In: Dynamics of bone
and cartilage metabolism (Seibel M, Robins S, Bilezikian J, eds), San Diego: Academic
Press, pp 71-80

Hardingham T, Bayliss M. (1990) Proteoglycans of articular cartilage: changes in aging
and in joint disease. Semin Arthritis Rheum 20:12-33

Hardingham TE, Fosang AJ. (1992) Proteoglycans. many forms and many functions.
FASEB J 6:861-870

Hardingham TE, Fosang AJ. (1995) The structure of aggrecan and its turnover in
cartilage. J Rheumatol Suppl 43:86-90



Hardingham TE, Fosang AJ, Dudhia J. (1994) The structure, function and turnover of
aggrecan, the large aggregating proteoglycan from cartilage. Eur J Clin Chem Clin
Biochem 32:249-257

Hardingham TE, Muir H. (1972) The specific interaction of hyaluronic acid with
cartillage proteoglycans. Biochim Biophys Acta 279:401-405

Hascall VC, Riolo RL. (1972) Characteristics of the protein-keratan sulfate core and of
keratan sulfate prepared from bovine nasal cartilage proteoglycan. J Biol Chem
247:4529-4538

Hascall VC, Sajdera SW. (1969) Proteinpolysaccharide complex from bovine nasal
cartilage. The function of glycoprotein in the formation of aggregates. J Biol Chem
244:2384-2396

Hedbom E, Heinegard D. (1993) Binding of fibromodulin and decorin to separate sites
on fibrillar collagens. J Biol Chem 268:27307-27312

Heinegdrd D, Hascall VC. (1974) Aggregation of cartilage proteoglycans. 3.
Characteristics of the proteins isolated from trypsin digests of aggregates. J Biol Chem
249:4250-4256

Heinegard D, Inerot S, Olsson SE, Saxne T. (1987) Cartilage proteoglycans in
degenerative joint disease. J Rheumatol 14 Spec No:110-112

Heinegard D, Oldberg A. (1989) Structure and biology of cartilage and bone matrix
noncollagenous macromolecules. Faseb J 3:2042-2051

Herrero-Beaumont G, Ivorra JA, Del Carmen Trabado M, Blanco FJ, Benito P, Martin-
Mola E, Paulino J, Marenco JL, Porto A, Laffon A, Araujo D, Figueroa M, Branco J.
(2007) Glucosamine sulfate in the treatment of knee osteoarthritis symptoms: a
randomized, double-blind, placebo-controlled study using acetaminophen as a side
comparator. Arthritis Rheum 56:555-567

Hirschberg CB, Robbins PW, Abeijon C. (1998) Transporters of nucleotide sugars,
ATP, and nucleotide sulfate in the endoplasmic reticulum and Golgi apparatus. Annu
Rev Biochem 67:49-69

Hirschberg CB, Snider MD. (1987) Topography of glycosylation in the rough
endoplasmic reticulum and Golgi apparatus. Annu Rev Biochem 56:63-87

Hoffer LJ, Kaplan LN, Hamadeh MJ, Grigoriu AC, Baron M. (2001) Sulfate could
mediate the therapeutic effect of glucosamine sulfate. Metabolism 50:767-770



65

Horiuchi T, Yoshida T, Koshihara Y, Sakamoto H, Kanai H, Yamamoto S, Ito H.
(1999) The increase of parathyroid hormone-related peptide and cytokine levels in
synovial fluid of elderly rheumatoid arthritis and osteoarthritis. Endocr J 46:643-649

Hua J, Sakamoto K, Nagaoka . (2002) Inhibitory actions of glucosamine, a therapeutic
agent for ogteoarthritis, on the functions of neutrophils. J Leukoc Biol 71:632-640

Hughes R, Carr A. (2002) A randomized, double-blind, placebo-controlled trial of
glucosamine sulphate as an analgesic in osteoarthritis of the knee. Rheumatology
(Oxford) 41:279-284

llic MZ, Martinac B, Handley CJ. (2003) Effects of long-term exposure to glucosamine
and mannosamine on aggrecan degradation in articular cartilage. Osteoarthritis
Cartilage 11:613-622

Inerot S, Heinegard D, Audell L, Olsson SE. (1978) Articular-cartilage proteoglycansin
aging and osteoarthritis. Biochem J 169:143-156

Inerot S, Heinegard D, Olsson SE, Telhag H, Audell L. (1991) Proteoglycan alterations
during developing experimental osteoarthritis in a novel hip joint model. J Orthop Res
9:658-673

Inkinen RI, Lammi MJ, Agren U, Tammi R, Puustjarvi K, Tammi MI. (1999)
Hyaluronan distribution in the human and canine intervertebral disc and cartilage
endplate. Histochem J 31:579-587

lozzo RV. (1997) The family of the small leucine-rich proteoglycans: key regulators of
matrix assembly and cellular growth. Crit Rev Biochem Mol Biol 32:141-174

lozzo RV, Moscatello DK, McQuillan DJ, Eichstetter 1. (1999) Decorin is a biological
ligand for the epidermal growth factor receptor. J Biol Chem 274:4489-4492

Iruela-Arispe ML, Hasselaar P, Sage H. (1991) Differential expression of extracellular
proteins is correlated with angiogenesis in vitro. Lab Invest 64:174-186

Ishida O, Tanaka Y, Morimoto |, Takigawa M, Eto S. (1997) Chondrocytes are
regulated by cellular adhesion through CD44 and hyaluronic acid pathway. J Bone
Miner Res 12:1657-1663

Ito K, Kimata K, Sobue M, Suzuki S. (1982) Altered proteoglycan synthesis by
epiphyseal cartilages in culture at low SO4(2-) concentration. J Biol Chem 257:917-923

Johnson HJ, Rosenberg L, Choi HU, Garza S, Hook M, Neame PJ. (1997)
Characterization of epiphycan, a small proteoglycan with a leucine-rich repeat core
protein. J Biol Chem 272:18709-18717



66

Jordan KM, Arden NK, Doherty M, Bannwarth B, Bijlsma JW, Dieppe P, Gunther K,
Hauselmann H, Herrero-Beaumont G, Kaklamanis P, Lohmander S, Leeb B, Lequesne
M, Mazieres B, Martin-Mola E, Pavelka K, Pendleton A, Punzi L, Serni U, Swoboda B,
Verbruggen G, Zimmerman-Gorska |, Dougados M. (2003) EULAR Recommendations
2003: an evidence based approach to the management of knee osteoarthritis: Report of a
Task Force of the Standing Committee for International Clinical Studies Including
Therapeutic Trials (ESCISIT). Ann Rheum Dis 62:1145-1155

Jurvelin JS, Buschmann MD, Hunziker EB. (2003) Mechanical anisotropy of the human
knee articular cartilage in compression. Proc Inst Mech Eng [H] 217:215-219

Kato Y, Mukudai Y, Okimura A, Shimazu A, Nakamura S. (1995) Effects of hyaluronic
acid on the release of cartilage matrix proteoglycan and fibronectin from the cell matrix
layer of chondrocyte cultures. interactions between hyaluronic acid and chondroitin
sulfate glycosaminoglycan. J Rheumatol Suppl 43:158-159

Kelly GS. (1998) The role of glucosamine sulfate and chondroitin sulfates in the
treatment of degenerative joint disease. Altern Med Rev 3:27-39

Kiani C, ChenL, WuYJ, Yee AJ, Yang BB. (2002) Structure and function of aggrecan.
Cell Res12:19-32

Kiani C, LeeV, Cao L, ChenL, Wu Y, Zhang Y, Adams ME, Yang BB. (2001) Roles
of aggrecan domains in biosynthesis, modification by glycosaminoglycans and product
secretion. Biochem J 354:199-207

Kim CW, Goldberger OA, Gallo RL, Bernfield M. (1994) Members of the syndecan
family of heparan sulfate proteoglycans are expressed in distinct cell-, tissue-, and
development-specific patterns. Mol Biol Cell 5:797-805

Knudson CB, Knudson W. (2001) Cartilage proteoglycans. Semin Cell Dev Biol 12:69-
78

Kosiagin DV. (1986) Glycosaminoglycan levels in normal and degenerative articular
cartilage of people of different ages. Vopr Med Khim 32:73-76

Kuettner KE. (1992) Biochemistry of articular cartilage in health and disease. Clin
Biochem 25:155-163

Kuettner KE, Kimura JH. (1985) Proteoglycans: an overview. J Cell Biochem 27:327-
336

Kurita K, Shinomura T, Ujita M, Zako M, Kida D, Iwata H, Kimata K. (1996)
Occurrence of PG-Lb, a leucine-rich small chondroitin/dermatan sulphate proteoglycan
in mammalian epiphyseal cartilage: molecular cloning and sequence analysis of the
mouse cDNA. Biochem J 318:909-914



67

Lammi M, Tammi M. (1988) Densitometric assay of nanogram quantities of
proteoglycans precipitated on nitrocellulose membrane with Safranin O. Anal Biochem
168:352-357

Largo R, Alvarez-Soria MA, Diez-Ortego |, Calvo E, Sanchez-Pernaute O, Egido J,
Herrero-Beaumont G. (2003) Glucosamine inhibits IL-1beta-induced NFkappaB
activation in human osteoarthritic chondrocytes. Osteoarthritis Cartilage 11:290-298

Lark MW, Bayne EK, Flanagan J, Harper CF, Hoerrner LA, Hutchinson NI, Singer, 11,
Donatelli SA, Weidner JR, Williams HR, Mumford RA, Lohmander LS. (1997)
Aggrecan degradation in human cartilage. Evidence for both matrix metalloproteinase
and aggrecanase activity in normal, osteoarthritic, and rheumatoid joints. J Clin Invest
100:93-106

Lark MW, Gordy JT, Weidner JR, Ayala J, Kimura JH, Williams HR, Mumford RA,
Flannery CR, Carlson SS, Iwata M, Sandy JD. (1995) Cell-mediated catabolism of
aggrecan. Evidence that cleavage at the "aggrecanase” site (Glu373-Ala374) is a
primary event in proteolysis of the interglobular domain. J Biol Chem 270:2550-2556

Larsen NE, Lombard KM, Parent EG, Balazs EA. (1992) Effect of hylan on cartilage
and chondrocyte cultures. J Orthop Res 10:23-32

Laurent TC, Gergely J. (1955) Light scattering studies on hyaluronic acid. J Biol Chem
212:325-333

Laverty S, Sandy JD, Celeste C, Vachon P, Marier JF, Plaas AH. (2005) Synovial fluid
levels and serum pharmacokinetics in a large animal model following trestment with
ora glucosamine at clinically relevant doses. Arthritis Rheum 52:181-191

Lee RB, Urban JP. (1997) Evidence for a negative Pasteur effect in articular cartilage.
Biochem J 321:95-102

Lindblom A, Bengtsson-Olivecrona G, Fransson LA. (1991) Domain structure of
endothelial heparan sulphate. Biochem J 279 821-829

Little CB, Meeker CT, Golub SB, Lawlor KE, Farmer PJ, Smith SM, Fosang AJ. (2007)
Blocking aggrecanase cleavage in the aggrecan interglobular domain abrogates cartilage
erosion and promotes cartilage repair. J Clin Invest 117:1627-1636

Lohmander LS. (1994) Articular cartilage and osteoarthrosis. The role of molecular
markers to monitor breakdown, repair and disease. J Anat 184:477-492

Lohmander LS, De Luca S, Nilsson B, Hascall VC, Caputo CB, Kimura JH, Heinegard
D. (1980) Oligosaccharides on proteoglycans from the swarm rat chondrosarcoma. J
Biol Chem 255:6084-6091



68

Lohmander S. (1988) Proteoglycans of joint cartilage. Structure, function, turnover and
role as markers of joint disease. Baillieres Clin Rheumatol 2:37-62

Lopes Vaz A. (1982) Double-blind clinical evaluation of the relative efficacy of
ibuprofen and glucosamine sulphate in the management of osteoarthross of the knee in
out-patients. Curr Med Res Opin 8:145-149

MacGregor AJ, Antoniades L, Matson M, Andrew T, Spector TD. (2000) The genetic
contribution to radiographic hip osteoarthritis in women: results of a classic twin study.
Arthritis Rheum 43:2410-2416

Mali M, Jaakkola P, Arvilommi AM, Jalkanen M. (1990) Sequence of human syndecan
indicates a novel gene family of integral membrane proteoglycans. J Biol Chem
265:6884-6889

Manicourt DH, Pita JC. (1988) Progressive depletion of hyaluronic acid in early
experimental osteoarthritis in dogs. Arthritis Rheum 31:538-544

Mankin HJ, Dorfman H, Lippiello L, Zarins A. (1971) Biochemica and metabolic
abnormalities in articular cartilage from osteo-arthritic human hips. Il. Correlation of
morphology with biochemical and metabolic data. J Bone Joint Surg Am 53:523-537

Mankin HJ, Lippiello L. (1971) The glycosaminoglycans of normal and arthritic
cartilage. J Clin Invest 50:1712-1719

Margolis RU, Margolis RK. (1994) Aggrecan-versican-neurocan family proteoglycans.
Methods Enzymol 245:105-126

Marshall S, Nadeau O, Yamasaki K. (2004) Dynamic actions of glucose and
glucosamine on hexosamine biosynthesis in isolated adipocytes: differential effects on
glucosamine 6-phosphate, UDP-N-acetylglucosamine, and ATP levels. J Biol Chem
279:35313-35319

Martin JA, Buckwalter JA. (2002) Aging, articular cartilage chondrocyte senescence
and osteoarthritis. Biogerontology 3:257-264

Matsumoto K, Kamiya N, Suwan K, Atsumi F, Shimizu K, Shinomura T, Yamada Y,
Kimata K, Watanabe H. (2006) Identification and characterization of versican/PG-M
aggregates in cartilage. J Biol Chem 281:18257-18263

Matsumoto K, Shionyu M, Go M, Shimizu K, Shinomura T, Kimata K, Watanabe H.
(2003) Digtinct interaction of versican/PG-M with hyaluronan and link protein. J Biol
Chem 278:41205-41212



69

McAlindon T. (2003) Why are clinical trials of glucosamine no longer uniformly
positive? Rheum Dis Clin North Am 29:789-801

McAlindon T, FormicaM, LaValley M, Lehmer M, Kabbara K. (2004) Effectiveness of
glucosamine for symptoms of knee osteoarthritis: results from an internet-based
randomized double-blind controlled trial. Am J Med 117:643-649

McAlindon TE, Biggee BA. (2005) Nutritional factors and osteoarthritis: recent
developments. Curr Opin Rheumatol 17:647-652

McAlindon TE, Lavaley MP, Gulin JP, Felson DT. (2000) Glucosamine and
chondroitin for treatment of osteoarthritis: a systematic quality assessment and meta-
analysis. JAMA 283:1469-1475

Melching LI, Roughley PJ. (1999) Modulation of keratan sulfate synthesis on lumican
by the action of cytokines on human articular chondrocytes. Matrix Biol 18:381-390

Messier SP, Mihalko S, Loeser RF, Legault C, Jolla J, Pfruender J, Prosser B, Adrian A,
Williamson JD. (2007) Glucosamine/chondroitin combined with exercise for the
treatment of knee osteoarthritis: a preliminary study. Osteoarthritis Cartilage

Meyer K, Palmer JW. (1934) The polysaccharide of the vitreous humor. J. Biol. Chem.
107:629-634

Mobasheri A, Vannucci SJ, Bondy CA, Carter SD, Innes JF, Arteaga MF, Trujillo E,
Ferraz |, Shakibaei M, Martin-Vasallo P. (2002) Glucose transport and metabolism in
chondrocytes. a key to understanding chondrogenesis, skeletal development and
cartilage degradation in osteoarthritis. Histol Histopathol 17:1239-1267

Mort JS, Buttle DJ. (1997) Cathepsin B. Int J Biochem Cell Biol 29:715-720

Mort JS, Magny MC, Lee ER. (1998) Cathepsin B: an alternative protease for the
generation of an aggrecan 'metalloproteinase’ cleavage neoepitope. Biochem J 335:491-
494

Mow VC, Zhu W, Lai WM, Hardingham TE, Hughes C, Muir H. (1989) The influence
of link protein stabilization on the viscometric properties of proteoglycan aggregate
solutions. Biochim Biophys Acta 992:201-208

Mroz PJ, Silbert JE. (2003) Effects of [*H]glucosamine concentration on
[3H]chondroitin sulphate formation by cultured chondrocytes. Biochem J 376:511-515

Mroz PJ, Silbert JE. (2004) Use of 3H-glucosamine and 35S-sulfate with cultured
human chondrocytes to determine the effect of glucosamine concentration on formation
of chondroitin sulfate. Arthritis Rheum 50:3574-3579



70

Muir H. (1978) Proteoglycans of cartilage. J Clin Pathol Suppl (R Coll Pathol) 12:67-
81

Muller-Fassbender H, Bach GL, Haase W, Rovati LC, Setnikar 1. (1994) Glucosamine
sulfate compared to ibuprofen in osteoarthritis of the knee. Osteoarthritis Cartilage
2:61-69

Nagase H, Brew K. (2003) Designing TIMP (tissue inhibitor of metalloproteinases)
variants that are selective metalloproteinase inhibitors. Biochem Soc Symp:201-212

Nagase H, Kashiwagi M. (2003) Aggrecanases and cartilage matrix degradation.
Arthritis Res Ther 5:94-103

Nemeth GG, Heydemann A, Bolander ME. (1989) Isolation and analysis of ribonucleic
acids from skeletal tissues. Anal Biochem 183:301-304

Nilsson B, De Luca S, Lohmander S, Hascall VC. (1982) Structures of N-linked and O-
linked oligosaccharides on proteoglycan monomer isolated from the Swarm rat
chondrosarcoma. J Biol Chem 257:10920-10927

Noble PW, Lake FR, Henson PM, Riches DW. (1993) Hyaluronate activation of CD44
induces insulin-like growth factor-1 expression by a tumor necrosis factor-alpha-
dependent mechanism in murine macrophages. J Clin Invest 91:2368-2377

Odding E, Vakenburg HA, Algra D, Vandenouweland FA, Grobbee DE, Hofman A.
(1998) Associations of radiological osteoarthritis of the hip and knee with locomotor
disability in the Rotterdam Study. Ann Rheum Dis 57:203-208

Otte P. (1991) Basic cell metabolism of articular cartilage. Manometric studies. Z
Rheumatol 50:304-312

Palmoski M, Brandt K. (1976) Hyaluronate-binding by proteoglycans. Comparison of
mildly and severely osteoarthritic regions of human femoral cartilage. Clin Chim Acta
70:87-95

Panula HE, Hyttinen MM, Arokoski JP, Langsjo TK, Pelttari A, Kivirantal, Helminen
HJ. (1998) Articular cartilage superficial zone collagen birefringence reduced and
cartilage thickness increased before surface fibrillation in experimental osteoarthritis.
Ann Rheum Dis 57:237-245

Parkkinen JJ, Paukkonen K, Pesonen E, Lammi MJ, Markkanen S, Helminen HJ,
Tammi M. (1990) Quantitation of autoradiographic grains in different zones of articular
cartilage with image analyzer. Histochemistry 93:241-245



71

Partsch G, Steiner G, Leeb BF, Dunky A, Broll H, Smolen JS. (1997) Highly increased
levels of tumor necrosis factor-apha and other proinflammatory cytokines in psoriatic
arthritis synovial fluid. J Rheumatol 24:518-523

Pavelka K, Gatterova J, Olgjarova M, Machacek S, Giacovelli G, Rovati LC. (2002)
Glucosamine sulfate use and delay of progression of knee osteoarthritis. a 3-year,
randomized, placebo-controlled, double-blind study. Arch Intern Med 162:2113-2123

Penc SF, Pomahac B, Winkler T, Dorschner RA, Eriksson E, Herndon M, Galo RL.
(1998) Dermatan sulfate released after injury is a potent promoter of fibroblast growth
factor-2 function. J Biol Chem 273:28116-28121

Perin JP, Bonnet F, Thurieau C, Jolles P. (1987) Link protein interactions with
hyaluronate and proteoglycans. Characterization of two distinct domains in bovine
cartilage link proteins. J Biol Chem 262:13269-13272

Perrimon N, Bernfield M. (2001) Cellular functions of proteoglycans--an overview.
Semin Cell Dev Biol 12:65-67

Persiani S, Roda E, Rovati LC, Locatelli M, Giacovelli G, Roda A. (2005) Glucosamine
ora bioavailability and plasma pharmacokinetics after increasing doses of crystalline
glucosamine sulfate in man. Osteoarthritis Cartilage 13:1041-1049

Persiani S, Rotini R, Trisolino G, Rovati LC, Locatelli M, Paganini D, Antonioli D,
Roda A. (2007) Synovial and plasma glucosamine concentrations in osteoarthritic
patients following oral crystalline glucosamine sulphate at therapeutic dose.
Osteoarthritis Cartilage 15:764-772

Piperno M, Reboul P, Hellio Le Graverand MP, Peschard MJ, Annefeld M, Richard M,
Vignon E. (2000) Glucosamine sulfate modulates dysregulated activities of human
osteoarthritic chondrocytes in vitro. Osteoarthritis Cartilage 8:207-212

Plaas AH, Neame PJ, Nivens CM, Reiss L. (1990) Identification of the keratan sulfate
attachment sites on bovine fibromodulin. J Biol Chem 265:20634-20640

Poole AR, Rosenberg LC, Reiner A, lonescu M, Bogoch E, Roughley PJ. (1996)
Contents and distributions of the proteoglycans decorin and biglycan in norma and
osteoarthritic human articular cartilage. J Orthop Res 14:681-689

Poustie MW, Carran J, McEleney K, Dixon SJ, Anastassiades TP, Bernier SM. (2004)
N-butyryl glucosamine increases matrix gene expression by chondrocytes. J Pharmacol
Exp Ther 311:610-616

Prehm P. (1983a) Synthesis of hyaluronate in differentiated teratocarcinoma cells.
Characterization of the synthase. Biochem J 211:181-189



72

Prenm P. (1983b) Synthesis of hyaluronate in differentiated teratocarcinoma cells.
Mechanism of chain growth. Biochem J 211:191-198

Prehm P. (1984) Hyaluronate is synthesized at plasma membranes. Biochem J 220:597-
600

Prenm P. (2005) Inhibitors of hyaluronan export prevent proteoglycan loss from
ogteoarthritic cartilage. J Rheumatol 32:690-696

Prehm P. (2006) Biosynthesis of hyaluronan: direction of chain elongation. Biochem J
398:469-473

Ratcliffe A, Fryer PR, Hardingham TE. (1985) Proteoglycan biosynthesis in
chondrocytes: protein A-gold localization of proteoglycan protein core and chondroitin
sulfate within Golgi subcompartments. J Cell Biol 101:2355-2365

Reginster JY. (2007) The efficacy of glucosamine sulfate in osteoarthritis: financial and
nonfinancial conflict of interest. Arthritis Rheum 56:2105-2110

Reginster JY, Bruyere O, Neuprez A. (2007) Current role of glucosamine in the
treatment of osteoarthritis. Rheumatology (Oxford) 46:731-735

Reginster JY, Deroisy R, Rovati LC, Lee RL, Leeune E, Bruyere O, Giacovelli G,
Henrotin Y, Dacre JE, Gossett C. (2001) Long-term effects of glucosamine sulphate on
osteoarthritis progression: a randomised, placebo-controlled clinical trial. Lancet
357:251-256

Reichelt A, Forster KK, Fischer M, Rovati LC, Setnikar 1. (1994) Efficacy and safety of
intramuscular glucosamine sulfate in osteoarthritis of the knee. A randomised, placebo-
controlled, double-blind study. Arzneimittelforschung 44:75-80

Rindone JP, Hiller D, Collacott E, Nordhaugen N, Arriola G. (2000) Randomized,
controlled trial of glucosamine for treating osteoarthritis of the knee. West J Med
172:91-94

Rizkalla G, Reiner A, Bogoch E, Poole AR. (1992) Studies of the articular cartilage
proteoglycan aggrecan in headth and osteoarthritis. Evidence for molecular
heterogeneity and extensive molecular changes in disease. J Clin Invest 90:2268-2277

Ronca F, Palmieri L, Panicucci P, Ronca G. (1998) Anti-inflammatory activity of
chondroitin sulfate. Osteoarthritis Cartilage 6 Suppl A:14-21

Roughley PJ. (2006) The structure and function of cartilage proteoglycans. Eur Cell
Mater 12:92-101



73

Roughley PJ, Lee ER. (1994) Cartilage proteoglycans: structure and potential functions.
Microsc Res Tech 28:385-397

Rovetta G. (1991) Galactosaminoglycuronoglycan sulfate (matrix) in therapy of
tibiofibular osteoarthritis of the knee. Drugs Exp Clin Res 17:53-57

Ruane R, Griffiths P. (2002) Glucosamine therapy compared to ibuprofen for joint pain.
Br J Community Nurs 7:148-152

Ruoslahti E. (1988) Structure and biology of proteoglycans. Annu Rev Cell Biol 4:229-
255

Sajdera SW, Hascall VC. (1969) Proteinpolysaccharide complex from bovine nasal
cartilage. A comparison of low and high shear extraction procedures. J Biol Chem
244:77-87

Sandy JD, Gamett D, Thompson V, Verscharen C. (1998) Chondrocyte-mediated
catabolism of aggrecan: aggrecanase-dependent cleavage induced by interleukin-1 or
retinoic acid can be inhibited by glucosamine. Biochem J 335:59-66

Saunders S, Jalkanen M, O'Farrell S, Bernfield M. (1989) Molecular cloning of
syndecan, an integral membrane proteoglycan. J Cell Biol 108:1547-1556

Schick BP, Gradowski JF, San Antonio JD. (2001) Synthesis, secretion, and subcellular
localization of serglycin proteoglycan in human endothelial cells. Blood 97:449-458

Schinagl RM, Gurskis D, Chen AC, Sah RL. (1997) Depth-dependent confined
compression modulus of full-thickness bovine articular cartilage. J Orthop Res 15:499-
506

Schlaak JF, Pfers |, Meyer Zum Buschenfelde KH, Marker-Hermann E. (1996)
Different cytokine profiles in the synovial fluid of patients with osteoarthritis,
rheumatoid arthritis and seronegative spondylarthropathies. Clin Exp Rheumatol
14:155-162

Scott JE. (1996) Proteodermatan and  proteokeratan sulfate  (decorin,
lumican/fibromodulin) proteins are horseshoe shaped. Implications for their interactions
with collagen. Biochemistry 35:8795-8799

Scott JE, Haigh M. (1988) Keratan sulphate and the ultrastructure of cornea and
cartilage: a 'stand-in' for chondroitin sulphate in conditions of oxygen lack? J Anat
158:95-108

Scott JE, Orford CR. (1981) Dermatan sulphate-rich proteoglycan associates with rat
tail-tendon collagen at the d band in the gap region. Biochem J 197:213-216



74

Seno N, Meyer K, Anderson B, Hoffman P. (1965) Variations in keratosulfates. J Biol
Chem 240:1005-1010

Setnikar I, Giacchetti C, Zanolo G. (1986) Pharmacokinetics of glucosamine in the dog
and in man. Arzneimittelforschung 36:729-735

Setnikar |, Giachetti C, Zanolo G. (1984) Absorption, distribution and excretion of
radioactivity after a single intravenous or oral administration of [**C] glucosamine to
the rat. Pharmatherapeutica 3:538-550

Setnikar 1, Pacini MA, Revel L. (1991) Antiarthritic effects of glucosamine sulfate
studied in animal models. Arzneimittelforschung 41:542-545

Sheehan JK, Carlstedt |, Coster L, Mamstrom A, Fransson LA. (1981) Isopycnic-
centrifugation studies in caesium chloride and in caesium sulphate on dermatan sulphate
proteoglycans from bovine sclera. Biochem J 199:581-589

Shikhman AR, Kuhn K, Alaaeddine N, Lotz M. (2001) N-acetylglucosamine prevents
IL-1 beta-mediated activation of human chondrocytes. J Immunol 166:5155-5160

Silbert CK, Pamer ME, Humphries DE, Silbert JE. (1989) Production of
[3H]hexosamine-labeled proteoglycans by cultures of normal and diabetic skin
fibroblasts: dilution of exogenous [3H]glucosamine by endogenous hexosamine from
glucose and other sources. Arch Biochem Biophys 268:393-397

Silbert JE, Sugumaran G. (2002) A starting place for the road to function. Glycoconj J
19:227-237

Singer, 11, Kawka DW, Bayne EK, Donatdli SA, Weidner JR, Williams HR, Ayala JM,
Mumford RA, Larkk MW, Glant TT, et a. (1995) VDIPEN, a metalloproteinase-
generated neoepitope, is induced and immunolocalized in articular cartilage during
inflammatory arthritis. J Clin Invest 95:2178-2186

Sinkov V, Cymet T. (2003) Osteoarthritis: understanding the pathophysiology, genetics,
and treatments. J Natl Med Assoc 95:475-482

Struglics A, Larsson S, Pratta MA, Kumar S, Lark MW, Lohmander LS. (2006) Human
osteoarthritis synovia fluid and joint cartilage contain both aggrecanase- and matrix
metalloproteinase-generated aggrecan fragments. Osteoarthritis Cartilage 14:101-113

Sweet MB, Thonar EJ, Immelman AR, Solomon L. (1977) Biochemical changes in
progressive osteoarthrosis. Ann Rheum Dis 36:387-398

Sddméanen AM, Tammi M, Kiviranta I, Helminen HJ. (1988) Running exercise as a
modulatory of proteoglycan matrix in the articular cartilage of young rabbits. Int J
Sports Med 9:127-133



75

Sadamanen AM, Tammi M, Kiviranta I, Jurvelin J, Helminen HJ. (1987) Maturation of
proteoglycan matrix in articular cartilage under increased and decreased joint loading. A
study in young rabbits. Connect Tissue Res 16:163-175

Tang LH, Buckwalter JA, Rosenberg LC. (1996) Effect of link protein concentration on
articular cartilage proteoglycan aggregation. J Orthop Res 14:334-339

Tang LH, Rosenberg L, Reiner A, Poole AR. (1979) Proteoglycans from bovine nasal
cartilage. Properties of a soluble form of link protein. J Biol Chem 254:10523-10531

Tercic D, Bozic B. (2001) The basis of the synovial fluid analysis. Clin Chem Lab Med
39:1221-1226

Tetlow LC, Adlam DJ, Woolley DE. (2001) Matrix metalloproteinase and
proinflammatory cytokine production by chondrocytes of human osteoarthritic
cartilage: associations with degenerative changes. Arthritis Rheum 44:585-594

Thompson Jr. RC, Oegema Jr. TR. (1979) Metabolic activity of articular cartilage in
osteoarthritis. An in vitro study. J Bone Joint Surg Am 61:407-416

Thonar EJ, Buckwalter JA, Kuettner KE. (1986) Maturation-related differences in the
structure and composition of proteoglycans synthesized by chondrocytes from bovine
articular cartilage. J Biol Chem 261:2467-2474

Thonar EJ, Sweet MB, Immelman AR, Lyons G. (1978) Hyaluronate in articular
cartilage: age-related changes. Calcif Tissue Res 26:19-21

Tiku M, Narla H, Jain M, Yaamanchili P. (2007) Glucosamine prevents in vitro
collagen degradation in chondrocytes by inhibiting advanced lipoxidation reactions and
protein oxidation. Arthritis Res Ther 9:R76

Tkachenko E, Rhodes JM, Simons M. (2005) Syndecans. new kids on the signaling
block. Circ Res 96:488-500

Towheed TE, Maxwell L, Anastassiades TP, Shea B, Houpt J, Robinson V, Hochberg
MC, Wells G. (2005) Glucosamine therapy for treating osteoarthritis. Cochrane
Database Syst Rev:CD002946

Trowbridge JM, Galo RL. (2002) Dermatan sulfate: new functions from an old
glycosaminoglycan. Glycobiology 12:117R-125R

Turley RS, Finger EC, Hempel N, How T, Fields TA, Blobe GC. (2007) The type Il
transforming growth factor-beta receptor as a novel tumor suppressor gene in prostate
cancer. Cancer Res 67:1090-1098



76

Uebelhart D, Thonar EJ, Delmas PD, Chantraine A, Vignon E. (1998) Effects of oral
chondroitin sulfate on the progression of knee osteoarthritiss a pilot study.
Osteoarthritis Cartilage 6 Suppl A:39-46

Uesaka S, Nakayama Y, Shirai Y, Yoshihara K. (2001) Serum and synovial fluid levels
of chondroitin sulfate in patients with osteoarthritis of the knee joint. J Nippon Med Sch
68:165-170

Uitterlinden EJ, Jahr H, Koevoet JL, Bierma-Zeinstra SM, Verhaar JA, Weinans H, van
Osch GJ. (2007) Glucosamine reduces anabolic as well as catabolic processes in bovine
chondrocytes cultured in alginate. Osteoarthritis Cartilage

Uitterlinden EJ, Jahr H, Koevoet JL, Jenniskens YM, Bierma-Zeinstra SM, Degroot J,
Verhaar JA, Weinans H, van Osch GJ. (2006) Glucosamine decreases expression of
anabolic and catabolic genes in human osteoarthritic cartilage explants. Osteoarthritis
Cartilage 14:250-257

Usui T, Amano S, Oshika T, Suzuki K, Miyata K, Araie M, Heldin P, Y amashita H.
(2000) Expression regulation of hyaluronan synthase in corneal endothelial cells. Invest
Ophthalmol Vis Sci 41:3261-3267

van de Loo FA, Joogten LA, van Lent PL, Arntz OJ, van den Berg WB. (1995) Role of
interleukin-1, tumor necrosis factor apha, and interleukin-6 in cartilage proteoglycan
metabolism and destruction. Effect of in situ blocking in murine antigen- and zymosan-
induced arthritis. Arthritis Rheum 38:164-172

van der Kraan PM, de Vries BJ, van den Berg WB, Vitters E, van de Putte LB. (1988)
Effects of drug-mediated serum sulfate depletion on glycosaminoglycan synthesis.
Agents Actions 23:55-57

van der Kraan PM, de Vries BJ, Vitters EL, van den Berg WB, van de Putte LB. (1989)
The effect of low sulfate concentrations on the glycosaminoglycan synthesis in
anatomically intact articular cartilage of the mouse. J Orthop Res 7:645-653

van der Kraan PM, Vitters EL, de Vries BJ, van den Berg WB. (1990) High
susceptibility of human articular cartilage glycosaminoglycan synthesis to changes in
inorganic sulfate availability. J Orthop Res 8:565-571

Varghese S, Theprungsirikul P, Sahani S, Hwang N, Yarema KJ, Elisseeff JH. (2007)
Glucosamine modulates chondrocyte proliferation, matrix synthesis, and gene
expression. Osteoarthritis Cartilage 15:59-68

Vasan N. (1980) Proteoglycans in normal and severely osteoarthritic human cartilage.
Biochem J 187:781-787



77

Venn M, Maroudas A. (1977) Chemical composition and swelling of normal and
osteoarthrotic femoral head cartilage. I. Chemical composition. Ann Rheum Dis 36:121-
129

Vertel BM, Walters LM, Flay N, Kearns AE, Schwartz NB. (1993) Xylosylation is an
endoplasmic reticulum to Golgi event. J Biol Chem 268:11105-11112

ViolaM, Bartolini B, Sonaggere M, Giudici C, Tenni R, TiraME. (2007) Fibromodulin
interactions with type | and Il collagens. Connect Tissue Res 48:141-148

Visse R, Nagase H. (2003) Matrix metalloproteinases and tissue inhibitors of
metalloproteinases: structure, function, and biochemistry. Circ Res 92:827-839

Vlad SC, Lavalley MP, McAlindon TE, Felson DT. (2007) Glucosamine for pain in
osteoarthritis: why do trial results differ? Arthritis Rheum 56:2267-2277

Vogel KG, Paulsson M, Heinegard D. (1984) Specific inhibition of type | and type Il
collagen fibrillogenesis by the small proteoglycan of tendon. Biochem J 223:587-597

Wang CT, Lin YT, Chiang BL, Lin YH, Hou SM. (2006) High molecular weight
hyaluronic acid down-regulates the gene expression of osteoarthritis-associated
cytokines and enzymes in fibroblast-like synoviocytes from patients with early
osteoarthritis. Osteoarthritis Cartilage 14:1237-1247

Wang X, Liang J, Koike T, Sun H, Ichikawa T, Kitgima S, Morimoto M, Shikama H,
Watanabe T, Sasaguri Y, Fan J. (2004) Overexpression of human matrix
metalloproteinase-12 enhances the development of inflammatory arthritis in transgenic
rabbits. Am J Pathol 165:1375-1383

Watanabe H, Kimata K. (2006) The roles of proteoglycans for cartilage. Clin Calcium
16:145-149

Watanabe H, Yamada Y, Kimata K. (1998) Roles of aggrecan, a large chondroitin
sulfate proteoglycan, in cartilage structure and function. J Biochem (Tokyo) 124:687-
693

Woods A. (2001) Syndecans. transmembrane modulators of adhesion and matrix
assembly. J Clin Invest 107:935-941

Wu JJ, Lark MW, Chun LE, Eyre DR. (1991) Sites of stromelysin cleavage in collagen
typesll, IX, X, and XI of cartilage. J Biol Chem 266:5625-5628

Yanagishita M, Rodbard D, Hascall VC. (1979) Isolation and characterization of
proteoglycans from porcine ovarian follicular fluid. J Biol Chem 254:911-920



78

Zimmermann DR, Ruoslahti E. (1989) Multiple domains of the large fibroblast
proteoglycan, versican. EMBO J 8:2975-2981



79

Appendix: original publications|-1V






Under sulfated chondroitin sulfate does not increasein osteoarthritic cartilage.

Lammi MJ, Qu CJ, Laasanen MS, Saarakkala S, Reippo J, Jurvelin JS, Toyras J. J
Rheumatol 31: 2449-2453, 2004

Reprinted with permission of Journal of Rheumatology.






Human articular cartilage proteoglycans are not undersulfated in osteoarthritis.
Qu CJ, Rieppo J, Hyttinen MM, Lammi MJ, Kiviranta I, Kurkijarvi J, Jurvelin JS,
Toyras J. Connect Tissue Res 48: 27-33, 2007

Reprinted with permission of Informa Healthcare.






Thelack of effect of glucosamine sulphate on aggrecan mRNA expression and
%3 sulphate incorporation in bovine primary chondrocytes.

Qu CJ, Karjalainen HM, Helminen HJ, Lammi M J: Biochim Biophys Acta 1762: 453-
459, 2006

Reprinted with permission of Elsevier Science Ltd.






|V

Effects of glucosamine sulfate on intracellular UDP-hexosamine and UDP-
glucuronic acid levelsin bovine primary chondrocytes.

Qu CJ, Jauhiainen M, Auriola S, Heminen HJ, Lammi MJ: Osteoarthritis and Cartilage
15: 773-779, 2007

Reprinted with permission of Elsevier Science Ltd.






