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ABSTRACT

Excess energy intake in relation to expenditure, leads to weight gain and eventudly to obesity.
Obesity is rapidly increasing in Western countries and is associated with an increased risk of severd
diseases and a significantly higher mortality rate. Control of food intake conssts of complex interplay
between the peripheral body and the central nervous system. The gastrointestinal tract secretes severa
peptide hormones that participate in the control of feeding behaviour. The release of these peptides is
controlled by energy status and nutrients. In addition to food intake, gastrointestinal peptides contral
digestion and gastrointestina moatility. This study investigated the effects of food components on the
release of gastrointestinal peptides and their effects on food intake.

Our everyday diet is rich in plant lectins, proteins with carbohydrate binding capacity. In this
thesis we showed that human gallbladder contraction was effectively stimulated by red kidney bean lectin
phytohaemagglutinin (PHA). Intraduodenal administration of PHA induced gallbladder contraction via a
cholinergic mechanism, without affecting periphera plasmacholecystokinin (CCK) levels.

Dietary fibre is considered as a key dlement in a hedlthy diet. Postprandial glucose and insulin
lowering effects of fibre have been shown to be dependent on its viscosity. In this thesis we demonstrate
that viscosity also affects other postprandial gastrointestinal peptide responses and satiety. Interestingly,
low-viscous oat bran beverage evoked higher satiety scores compared to otherwise similar but high-viscous
beverage. This was in accordance with significantly increased releases of the hormones CCK, peptide Y'Y
(PYY) and glucagon like peptide 1 (GLP-1) as well as the more efficiently suppressed ghrelin levels after
the consumption of the low-viscous beverage compared to high-viscous one. Our results indicate that the
rheological properties of dietary fibre significantly affect the postprandial responses and satiety.

Spices, besides giving flavour to food, also induce thermogenesis and may affect satiety. Pungent
ingredients of wasabi, mustard oil and garlic are known to activate TRPA1 (transient receptor potential
ankyrin 1) channels. We found TRPAL expression in mouse and human duodenum and revedled that
activation of these channds caused a robust increase in CCK secretion from the mouse intestinal
neuroendocrine cell line STC-1 suggesting that these spices may improve digestion and affect satiety by
stimulating CCK release.

PYY, secreted from the ileum and colon, has been proposed to be a satiety peptide because it has
been shown to inhibit food intake in humans and in rodents. We performed proctocolectomy in rats in
order to create a surgical knock-out modd for PYY. Colectomized rats were implanted with minipumps
delivering PY'Y(3-36) or sdine In contrast to our expectations, colectomy increased rather than decreased
plasma PYY leves. In spite of significantly different plasma PY'Y levels between the treatment groups, no
differencein daily food intake or body weight gain was observed.

In conclusion, this thesis shows that components in our food significantly affect gastrointestinal
functions and peptide secretion. Thus by modulating the meal composition we may be able to affect food
intake and satiety.

National Library of Medicine classification: QU 68, QU 83, WI 102, WI 302, WK 170

Medical Subject Headings: Appetite Regulation; Cholecystokinin; Dietary Fiber; Digestive Physiology;
Gallbladder Emptying; Gastric Emptying; Gastrointestinal Hormones; Ghrelin; Glucagon-Like Peptide 1,
Peptide Y'Y; Phytohemagglutinins, Plant Lectins, Transient Receptor Potential Channels
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1INTRODUCTION

From the days of undernutrition, we have come to the time where the increasing prevalence of
obesity is a Sgnificant medical and social problem in most of the Western countries. In Finland, 60 % of
men and 40 % of women were overweight (body mass index, BMI 3 25 kg/m?) and 15 % of men and 14 %
of women were obese reaching the BMI of 3 30 kg/m? in 2005 (Helakorpi et a., 2005). In the United
States between 1980 and 2004 the prevalence of obesity has increased from 15 % to 33 % among adults
and alarmingly, from 6 % to 19 % amongst children (Ogden et al., 2007). Obesity is clearly arisk factor for
the development of type 2 diabetes, cardiovascular disease, dydipidemias, fatty liver, Alzheimer’s disease,
vascular dementia and some cancers thus causing potential health risk for the individual as well as
economical burden for the social health care system. In developing countries adapted to a Western lifestyle
the rates of obesity have tripled suggesting that soon in the near future, obesity will be a real global
epidemic (Hossain et a., 2007).

Overconsumption of energy in relation to expenditure leads to obesity. Decreased physical
activity and increased energy intake both contribute to the gain of excess body weight. In modern Western
society with its sedentary lifestyle, it may be easier to reduce daily energy intake together with increasing
expenditure than control body weight by solely increasing physical activity. Increased food intake has
recently been suggested as the main cause of increased body weight (Jeffery and Harnack, 2007). However,
regulation of feeding behaviour is complex and sill incompletely understood. In addition to its essential
purpose to satisfy the energy needs of the body, ingestive behaviour is aso associated with social, cultural
and environmenta factors which may hinder the homeostatic control systems to appropriately control the
energy balance.

The sophisticated control of feeding behaviour consists of a complex crosstalk between the brain
and peripheral body to control food intake in order to meet the energy needs of the body. The central
nervous system (CNS) receives information about the peripheral energy status via a variety of circulating
and neura signals arising from the gastrointestind organs and adipose tissue. This information is
interpreted in the CNS and implicated as induction of either orexigenic or anorexigenic behaviour. For
example, in the fasting state ghrelin as a hunger signal is secreted from the stomach and induces food
intake. During a meal, nutrients in the gagtrointestinal lumen €licit an array of postprandia signals that
contribute to the perception of satiation and lead to termination of the meal. These postprandial signas are
affected by the macronutrient composition, caorie content and structural properties of the ingested food.
Within the CNS, specialized areas including hypothalamus and brain stem are responsive to the peripheral
signals and integrate the afferent information with the inputs from higher cortical areas thus being key
centres in the appetite control.

Our knowledge about this very multimodal and complex regulatory network is still limited and
thus more intensive research is needed to better understand the physiological mechanisms behind the

control of energy homeostasis. In the growing prevalence of obesity, development of hedlthier foods which
15



produce higher satiety might be one asset to combat the epidemic on the population level. This study aimed
at investigating peptides released from the gastrointestinal tract in response to nutrients, their secretion and

significance in the control of food intake.
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2REVIEW OF THE LITERATURE

2.1 CONTROL OF FOOD INTAKE — GUT-BRAIN AXIS

The centra nervous system receives information about the whole body energy balance from the
peripheral tissues through metabolic, neural and endocrine sgnals and accordingly regulates energy
homeostasis. Considering the fact that digestion and nutrient absorption take place in the gastrointestinal
tract whereas sensation of hunger or satiety arise in the CNS, a tight reciprocal communication is required
between these organs. Thus gastrointestinal hormones and neura signals are key components in the control
of food intake.

In the cephalic phase of digestion, priming of the gastrointestinal tract for food to optimize
digestion and absorption is triggered by sight and smell even before the food is physically present in the
oropharyngeal cavity. Efferent signaling from the CNS towards the gastrointestinal tract occurs mainly via
the vagus nerve stimulating gastric, duodenal, pancreatic and biliary secretion. During a meal, ingested
food interacts with both the stomach and intesting, liciting an array of gastrointestina peptides as well as
an arousal of neural signals that function to coordinate and optimize the digestive process and eventually
cause the feeling of satiation leading to the termination of the meal. These signals are conveyed to the CNS
via circulation or via the afferent fibres of the vagus nerve. Peripheral signals arising from the
gastrointestinal tract are mostly short-term medal-related signals affecting the daily intake in contrast to, for
example, adipose tissue derived signals such as leptin that reflects more the long-term energy balance. In
addition, the endocrine pancreas secretes peptide hormones such as insulin, which participate in the control
of food intake. All these signals are integrated and interpreted in the CNS, forming the basis for the central
metaboalic regulation and maintaining a stable body weight despite of day-to-day fluctuations in the energy
intake (Figure 1).

2.1.1 Somach

The stomach acts as a reservoir of ingested food and is responsible for mixing and grinding of
solid foods as well as modulating the emptying of the chyme into the duodenum. Regulation of gastric
emptying ensures optimal digestion of ingested foodstuffs and the absorption of the liberated nutrients in
the intestine. Nutrient composition and solidity of the meal affect gastric emptying patterns. Chyme
entering the duodenum affects the gastric emptying via the release of peptide hormones that act as part of
the negative feedback mechanism, which prevents an overflow of nutrients into the duodenum and thus
maldigestion. Indeed, satiety peptides like peptide YY (PYY) and cholecystokinin (CCK) inhibit gastric
emptying among their other functions.

Gadtric cells are able to sense nutrients and control, for example, gastrin secretion accordingly yet
the satiation signals arising from the stomach are mainly evoked by mechanical distention and not the

composition of the ingesta. The stomach is densdly innervated by sensory vagal and splanchnic nerves
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sensitive to tension, stretch and volume that relay this information to the CNS. Early studies with pyloric
occlusion in rats suggested that gastric distention alone is sufficient to terminate ingestion but the amount
of food required for this exceeds the amounts eaten in a typical meal. However, in the normal situation,
contents of the stomach enter the duodenum aready during the meal stimulating intestinal peptide release
and neural signalling, which, together with gadtric distention, may contribute to the satiation (Ritter, 2004).

In addition, the stomach secretes substances that participate in the control of food intake via
paracrine and / or endocrine mechanisms. Ghrelin released by the endocrine cells of the oxyntic mucosais
the only known orexigenic hormone in humans (see 2.2.1). In addition, gastric leptin may affect short-term
food intake via activation of vagal afferents (Peters et a., 2006) in contrast to adipose tissue derived leptin
which is secreted in proportion to the fat mass and thus controls long-term energy balance.

2.1.2 Intestine

In the intestine, nutrient composition is the important factor driving satiation signal release from
enteroendocrine cells. Enteroendocrine cells, embedded among the absorptive enterocytes on the mucosal
villi of the small-intestinal wall, are able to sense the nutritive and non-nutritive properties of lumina
contents by their apical surface enriched with microvilli and in response to food these cells rel ease peptides
from their basolateral side. The released peptides may enter circulation, acting like hormones and reach the
CNS and other distant targets, or act locally by activating nerve fibres (e.g. enteric myenteric neurons or
vagal afferent and spinal afferent fibres).

The intestinal enteroendocrine cell population consists of different subtypes of cells with distinct
expression patterns of gastrointestina peptides. For example, I-type cells release CCK, K-cdls gadtric
inhibitory polypeptide (GIP) and L-type cells glucagon-like peptide 1 (GLP-1) and PYY. Different cell
types are also differently distributed along the intestina tract. I-cells are present in the duodenal and jejunal
mucosa whereas majority of L-cells are located in the digtal ileum and colon. Furthermore, postprandial
peptide release is influenced by the macronutrient composition of the ingested meal. As different peptides
vary in ther actions, the composition of meals will affect the gasrointestinal responses and thereby
influence the digestive processes and satiation.

Nutrient status regul ates the responsiveness of the gastrointestina tract to signals by regulating the
expression levels of peptide receptors in the vagus nerve and intestine. For exampl g, fasting upregulates the
expression of orexigenic cannabinoid receptor 1 (CB-1) and melanin-concentrating hormone receptor 1
(MCH-1) in the nodose ganglia of rats thus potentiating the effect of their orexigenic agonists on food
intake and this upregulation is reversed by refeeding or administration of CCK in the fasted state (Burdyga
et a., 2004; Burdyga et a., 2006a). Furthermore, orexin receptors are upregulated during the fed state and
mediate orexin-A stimulated bicarbonate secretion from the rat duodenum whereas in the fasted state the
receptors are downregulated and the stimul ation abolished (Bengtsson et al., 2007).
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Figure 1. Signals from the adipose tissue and pancreas (e.g. leptin and insulin) reflect the state of body
adiposity whereas hunger signals (ghrelin) and meal related satiety peptides (e.g. CCK, GLP-1 and PYY)
from the gastrointesting tract participate mainly in the short-term control of energy balance and sgnal to
CNSviacirculation and vagus nerve. Modified from Aronne and Thornton-Jones, 2007.

2.1.3 Central circuits controlling food intake

Periphera signds dicited by food and energy status have to be conveyed to and interpreted in the
CNS to be mirrored to appropriate behavioural responses. Classical lesion experiments in rats showed that
bilateral leson of the latera hypothalamus caused anorexia whereas damage of the ventromedial
hypothalamus induced overeating and obesity. These studies lead to oversimplification of the lateral
hypothalamus as “hunger centre’” and the ventromedial hypothalamus as “satiety centre’. Undisputively,
the hypothalamus with its complex connections between its nuclei and with other brain areas is a key site
in the regulation of energy balance and food intake.

The hypothalamus receives neural, metabolic and endocrine signals from the periphera body. The
median eminence of the hypothalamus, adjacent to the arcuate nucleus, lacks a functional blood-brain
barrier (BBB) and thus circulating peripheral substances reach neurons of the arcuate nucleus, which
express receptors for several peripheral signals.

The arcuate nucleus contains two major neuronal subpopulations that are crucial in the control of
food intake, one expressing orexigenic peptides neuropeptide Y (NPY) and agouti-related peptide (AgRP)
and the other one anorexigenic peptides cocaine and amphetamine-related transcript (CART) and pro-
opiomelanocortin (POMC). Activation of NPY/AgRP neurons increases food intake and weight gain via
NPY's stimulatory action on Y receptors (specifically subtypes Y1 and Y5) in second order neurons and

inhibition of melanocortin receptors 3 and 4 (MC3/4) mediated by AgRP. In contrast, POMC/CART
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neurons secrete apha-melanocyte stimulating hormone (a-MSH), which is an agonist of melanocortin
receptors. Thus activation of POMC/CART neurons inhibits food intake, promotes energy expenditure and
weight loss (Figure 2).

Fasting upregulates NPY as well as AgRP and downregulates POMC expression. Leptin, the first
discovered peptide inhibiting feeding, secreted from the adipose tissue exerts its effects by inhibiting the
activity of NPY/AgRP neurons and stimulating POMC/CART neurons. Ghredin, the orexigenic signa from
the gadiric mucosa stimulates NPY /AgRP neurons thus promoting appetite. Satiety signals such as PY'Y (3-
36) and GLP-1 on the other hand inhibit these orexigenic neurons and decrease food intake. The arcuate
nucleus neurons project to second order neurons in the paraventricular nucleus, lateral hypothalamus and
other hypothalamic nuclel, which further signal to higher brain areas and mediate the effects on appetite
and energy balance (for review, see Call et a., 2007).

The braingem in the hindbrain is another key appetite regulation centre in the CNS. This was
demonstrated in chronically decerebrated rats which still become satiated suggesting that gastrointestinal
feedback signas to the cauda brainstem are sufficient for the control of food intake (Grill and Norgren,
1978; Grill and Smith, 1988). Afferent fibres of the vagus nerve project into the brainstem dorsa vagal
complex (DVC), which consists of dorsa motor nucleus, area postrema and the sensory nucleus of the
tractus solitarius (NTS). Circulating signas reach brainstem structures like area postrema which lacks a
complete BBB. The brainstem and hypothalamus are extensively and reciprocally connected providing
another route by which gagtrointestinal signals can affect the activity of neurons in the arcuate nucleus
(Figure 2). Furthermore, mounting evidence has shown that the descending connections from the
hypothalamus to the brainstem are important for example in the mechanism via which leptin reduces mea
size (Morton et al., 2005).
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Figure 2. A smplified model of the regulation of energy balance. Peripheral signals (e.g. leptin, insulin,
PYY, ghrelin) can access the hypothalamic arcuate nucleus via relaxed BBB and act on orexigenic
NPY/AgRP and anorexigenic POMC/CART neurons expressing their receptors. NPY/AgRP neurons
inhibit POMC/CART neurons via local axon collaterals in the arcuate nucleus. NPY/AgRP and
POMC/CART neurons rel ease neuromodulator peptides and project to second order neurons expressing Y
receptors (stimulated by NPY) or melanocortin receptors (inhibited by AgRP and stimulated by a-MSH).
Afferent vagus nerve projects to nucleus tractus solitarius in the brainstem. Tight reciprocal connections
exist between hypothalamus and hindbrain. These signas together with inputs from higher cortical areas
regulate energy balance. Arrow means stimulatory connection, blunted arrow inhibitory connection, dashed
arrow indirect pathway. From Badman and Hier, 2005.

21



2.2 GASTROINTESTINAL SIGNALS CONTROLLING FOOD INTAKE

The gastrointestinal tract secretes several peptides that have been implicated in the regulation of
energy balance. In this work four of these, namely ghrelin secreted from gastric mucosa, CCK from
duodenum and jejunum as well as PYY and GLP-1 from the distal small intestine and colon have been
studied. In addition to these, oxyntomodulin, a cleavage product of proglucagon (see 2.2.4) is known to be
secreted in response to food and reduce gastric motility and secretion as well as diminish food intake
(Cohen et d., 2003; Dakin et al., 2004; Wynne et al., 2005). Pancreatic polypeptide and amylin secreted
from the endocrine pancreas have also been implicated in the control of food intake. Pancresatic polypeptide
reduces food intake and may delay gastric emptying and increase energy expenditure (Batterham et a.,
2003; Madaisse-Lagae et al., 1977). Amylin released from the beta cells, together with insulin, participates
in the control of glucose homeostasis and can also suppress food intake, at least at high levels (Morley and
Flood, 1991; Rath et al., 2007).

2.2.1 Ghrelin

As an exception among the peptides secreted from the gastrointestinal tract, the gastric mucosa
secretes an orexigenic 28-amino acid hormone ghrelin (Kojima et a., 1999) that stimulates food intake
when injected peripherally or centrally into animals (Wren et a., 2000) and peripherally into humans
(Wren et a., 2001). The stomach produces approximately 70 % of the circulating ghrelin, the small
intestine being responsible for the rest (Ariyasu et a., 2001; Jeon et al., 2004). Ghrelin undergoes a post-
trandational modification in which the serine-3 residue is acylated with a medium chain fatty acid, most
commonly octanoic acid, by a recently characterized acyltransferase (Yang et al., 2008). Octanoylated
ghrelin can exert various biological actions by binding to the growth hormone secretagogue receptor type
la (GHS-R1a), including stimulation of growth hormone secretion from the pituitary gland. GHS-Rla is
expressed in the brain and peripheral tissues, especialy in the hypothalamus, pituitary, stomach, intestine,
pancreas, thymus, gonads, thyroid and heart. However, the role of ghrdlin in the regulation of energy
homeostasis is generadly viewed as its most important function. Non-acylated ghrelin circulates in the
plasma as well, but its physiological activities are currently unclear. Some have reported that it simulates
food intake athough less potently than acylated ghrelin (Toshinai et al., 2006), whereas others have found
opposite, anorexigenic effects (Asakawa et al., 2005; Chen et al., 2005), and some no effect (Neary et .,
2006). Recently it was reported that also another secreted peptide, obestatin, is produced from
preproghrelin after proteolytic cleavage, and inhibits food intake (Zhang et a., 2005). However, these
results could not be reproduced and currently the physiological significance of obestatin is unclear
(Nogueiras et a., 2007).

Plasma ghrelin levels are high prior to meds and decline shortly after food intake (Cummings et
al., 2001) indicating arole for this peptide hormone in hunger and meal initiation. Ghrdin crosses the BBB
(Banks et al., 2002) and stimulates food intake by acting in the brain on several important weight and
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energy homeostasis centres, including the hypothalamus, hindbrain and mesolimbic reward centres. GHS-
Rla is expressed in the afferent vagus nerve and the nodose ganglion neurons in both humans and rats
(Burdyga et al., 2006b) and ghrdin decreases vagal afferent activity in rats (Date et al., 2002). Based on
total vagotomy experiments in rodents and humans arole for vagus nerve in ghrelin stimulated feeding has
been suggested (Asakawa et al., 2001; Date et a., 2002; le Roux et a., 2005). In contrast, cutting only the
subdiaphragmatic vagal afferents did not affect the feeding stimulatory effect of intraperitoneal ghrelin,
suggesting that vagal afferents are not necessary for the peripheral ghrelin induced stimulation of feeding
inrats (Arnold et a., 2006).

Exogenous ghrelin has been shown to increase animals’ motivation to seek out food and initiate
feeding thus increasing the number of eating bouts rather than the amount of food ingested during a single
meal (Faulconbridge et al., 2003). In addition to meal-to-meal fluctuations of ghrelin levels and the short-
term regulation of ingestive behaviour, plasma ghrelin levels respond also in a compensatory fashion to
aterations in body adiposity. In obese individuals, plasma ghrelin levels are decreased (Tschop et al.,
2001), but after weight loss the levels increase (Cummings et al., 2002; Leidy et al., 2004). Conversely,
weight gain decreases circulating ghrdin levels (Williams and Cummings, 2005; Williams et al., 2006)
indicating that ghrelin has arole in the long-term body weight regulation aswell.

2.2.1.1 Regulation of ghrelin release

Ghrelin levels are dlevated before meals but the mechanisms regulating ghrelin secretion and the
decrease of plasma levels postprandidly are not very well known. As many other premeal conditioned
responses such as salivation, gastric motility and acid secretion and insulin secretion are mediated via the
autonomic nervous system, this might apply to ghrelin surges as well. Sympathetic toneis activated during
fasting and indeed, stimulation of sympathetic nerves increased plasma ghrelin levelsin rats (Mundinger et
al., 2006). In contrast, studies in humans have suggested that the parasympathetic nervous system
stimulates ghrelin secretion because muscarinic receptor blockers such as atropine (Maier et d., 2004) and
pirenzepine (Broglio et a., 2004) decrease whereas the acetylcholine esterase inhibitor pyridostigmine
increase (Broglio et a., 2004) ghrdin levels in fasting humans. Vagotomy does not abolish the
postprandial ghrelin suppression in rats (Williamset al., 2003).

The enteroendocrine cdlls of the gastric oxyntic mucosa that secrete ghrelin (X/A-like cdlls) are
not directly in contact with the gastric lumen, but their basolateral membrane is adjacent to the bloodstream
(Date et al., 2000; Sakata et a., 2002). The postprandial ghrelin suppression does not require luminal
exposure to nutrients in the stomach or duodenum. Instead, signals further in the intestine and
postabsorptive plasma insulin, intestinal osmolarity and enteric nervous system seem to contribute,
whereas gadtric distention, vagal nerve and GLP-1 are not required (Murdolo et al., 2003; Williams et al.,
2003; Williams et a., 2003). However, interactions with other gastrointestinal peptides are possible, as
exogenous (Brennan et a., 2007) and endogenous (Degen et da., 2007) CCK and intravenously
administered PYY(3-36) (Batterham et a., 2003) suppress ghrelin secretion. An inverse connection
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between plasma ghrelin levels and GLP-1 or GLP-1 receptor agonist exendin-4 (Djurhuus et al., 2002;
Hagemann et al ., 2007; Perez-Tilve et a., 2007) has been shown.

Insulin and leptin have been suggested as regulators of plasma ghrein levels. Fasting plasma
ghrein levels correlate negatively with fasting insulin and leptin levels (Tshop et al., 2001). Negative
correlation between fasting ghrelin concentration and insulin resistance has been demonstrated (Ikezaki et
al., 2002; Cummings et a., 2002; Poykko et a., 2003). However, it seems that in the regulation of meal-
related ghrelin suppression insulin may not play a significant role since supraphysiological insulin levels
arerequired to achieve suppression of ghrelin levels in response to glucose infusion (Schaller et al., 2003).
The same may apply to leptin, because administration of neither physiological nor pharmacological doses
of leptin influenced ghrelin levels (Chan et al., 2004).

Since recognized as a hunger hormone, prolonged suppression of postprandia ghrein levels
would be expected to correlate with increased satiety. Indeed, ghrdin levels are suppressed in relation to
the amount of ingested calories if all the other components of the mea are kept the same (Callahan et al.,
2004). Macronutrients differ in their effectivity to suppress postprandia ghrelin levels. Carbohydrates have
been shown to be effective in suppressing postprandia ghrelin concentration (Monteleone et a., 2003;
Tannous dit El Khoury,D. et al., 2006). When subjects were followed for six hours after carbohydrate, lipid
or protein beverage ingestion, ghrelin levels were most markedly suppressed after the carbohydrate drink
when only the first three hours were analysed. However, the ghrdin curve after carbohydrate beverage
showed a hiphasic nature and the levels increased above fasting levels at four hours, whereas after protein
and lipid drinks they stayed below basdine until the end of the study. The most effective suppression was
observed after the protein beverage when the whole study period of six hours was analysed (Foster-
Schubert et a., 2008). Also other studies have reported more prolonged ghrelin suppression after protein
than carbohydrate meals (Al Awar et d., 2005; Blom et a., 2006; Bowen et a., 2006a, Bowen et d.,
2006b; Bowen et a., 2006b) yet also controversial results have been published with no change (Greenman
et a., 2004) or even an increase (Erdmann et al., 2003; Erdmann et al., 2004). Regarding high protein diets
used in the weight contral, the prolonged suppression of ghrein by protein would be consistent.

The effect of fibre on postprandial ghrdin is not fully understood due to a limited number of
studies as well as a wide range of fibres with different physical and chemical properties. Increased meal
fibre content has been shown both to decrease postprandia ghrelin concentration as well as to inhibit the
decrease. Consumption of a small amount (4 g) of non-caloric soluble psyllium fibre with water was as
effective in suppressing postprandial plasma ghrelin concentrations in heslthy subjects as the 585-kcal
mixed meal (Nedvidkova et al., 2003). In contrast, no decrease in ghrelin was reported after intake of a
non-caloric liquid containing 21 g of guar gum (Erdmann et al., 2003). A soluble arabinoxylan fibre (6 )
enriched breakfast induced a shorter postprandial decrease in ghrelin when compared to a control breskfast
(Mohlig et al., 2005). In contrast, arabinoxylan supplementation for 6 weeks increased total but not
acylated ghrelin levels in subjects with impaired glucose tolerance (Garcia et a., 2007). Enrichment of
bread with 10 g of insoluble wheat fibre blunted the decrease in postprandia ghrelin concentration,
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whereas the same amount of insoluble oat fibre did not differ from the control bread (Weickert et al., 2006).
Addition of insoluble carob fibre (5, 10 or 20 g) to aliquid meal decreased acylated ghrelin without dose-
dependent effects but failed to affect total or nonacylated plasma ghrelin in comparison to a non-fibre meal
(Gruendd et al., 2006).

The effect of dietary fat on postprandial release of ghrelin is dso unclear. Intravenous lipid
infusion seems not to affect fasting ghrelin concentrations (Mohlig et a., 2002; Murray et al., 2006). After
oral ingestion of a high-fat meal, ghrelin concentrations have been shown to decrease (Greenman et a.,
2004; Monteleone et a., 2003) or to increase (Erdmann et al., 2004). If decreased, the decrease has been
characterized by a dower return to baseline than after a high-carbohydrate meal (Otto et al., 2006; Romon
et a., 2006) or beverage (Foster-Schubert et al., 2008). Fat-induced suppression of ghrelin is dependent on
fat digestion (Feinle-Bisset et al., 2005) and on free fatty acid (FFA) chain length. Intraduodenal infusion
of FFA with 12 carbon atom length chains (C12, lauric acid) markedly suppressed plasma ghrelin
compared with a FFA with 10 carbons (C10, decanoic acid) that had no effect (Feltrin et al., 2006).
Similarly, in arecent study long-chain FFA (C18, sodium oleate) inhibited ghrelin whereas medium-chain
FFA (C8, sodium caprylate) was ineffective (Degen et al., 2007).

In conclusion, both increased and decreased ghrein concentrations have been reported after meals
with a greater satiety effect, such as those high in fibre or protein. Thus, the contribution of postprandial
ghrelin suppression on satiety still remains unclear.

2.2.2 CCK

CCK is the firg known satiety hormone and was identified in 1928 by Ivy and Oldberg who
observed that extracts of swine intestinal mucosa stimulated gallbladder contraction in dogs (Ivy and
Oldberg, 1928). Purification and characterization of CCK peptide was reported by Jorpes and Muitt in the
1960s (Jorpes and Mutt, 1961), and the first reports on its satiating effects were published in 1973 (Gibbs
et a., 1973a; Gibbs et a., 1973b) followed by intensive research and a vast number of publications during
the following decades until today.

CCK is synthesised as a 115-amino acid prepropeptide, which is then processed by
endoproteolytic cleavage into at least Sx different bioactive C-terminal peptides (CCK-8, CCK-22, CCK-
33, CCK-39, CCK-58 and CCK-83, figure 3). The seventh residue (tyrosine) from C-terminusis sulphated
and this heptapeptide is required for efficient binding to CCK; receptors. The bioactivity of different
peptides varies as does their abundance between tissues. The major circulating peptide forms in most
mammals are CCK-8, -22, -33 and 58. CCK is aso expressed in various areas of the central nervous
system acting as a neurotransmitter, and in the brain CCK-8 predominates (for review, see Rehfeld, 2004).
The five most C-terminal amino acids of CCK are identical to those of gastrin, which has caused problems
in the measurement of plasma levels with antibodies crossreacting with both peptides since gastrin
circulates in the plasma at 5-10 times higher concentrations than CCK.
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Two receptor subtypes bind CCK peptides. The CCK 4 receptor is expressed in the gastrointestinal
tract, pancreas, vagal afferents and enteric neurons but aso in the CNS areasincluding NTS, area postrema
and dorsal media hypothalamus and requires the sulphated tyrosine moiety in the C-terminal tyrosine
residue for high affinity binding. CCK, receptors are expressed widely in the brain but also in the afferent
vagus and the stomach and bind desul phated forms of CCK and gastrin with high affinity.
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Figure 3. Post-trandationa processing of CCK from the 115 amino acid propeptide (modified from
Rehfeld, 2004). The propeptide is endoproteol ytically cleaved mainly on mono-arginine but also on lysine
residues (CCK-33). Glycine extended CCK is amidated a the C-termina glycine by apha-amidating
mono-oxygenase resulting in the bioactive CCKs. In addition, CCK-39 has been described. The processing
may differ between tissues. PC = prohormone convertase(s), GR = glycine (G) and arginine (R) extended
CCK, G = glycine extended CCK.

2.2.2.1 Regulation of CCK releasein the intestine
In the intesting, most of the CCK islocalized in the specific enteroendocrine cells called | cellsin
the duodenal and proximal jejunal mucosa and in enteric nerves as CCK-58, CCK-33, CCK-22 and CCK-8.

CCK-containing neurons are present in the myenteric and submucosal plexi, in the muscle layers of the
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small intestine and colon, and in the celiac plexus and vagus nerve (Liddle, 1997). Fasting CCK levels are
low, but CCK isreleased into the circulation in response to nutrients in the intestinal lumen. Thisis arapid
response because eevated plasma CCK levels can be observed already 15 minutes after the start of the
meal. CCK-58 is the most abundant circulating peptide, at least in rats and dogs (Eysselein et a., 1987;
Eysselein et d., 1990; Reeve et al., 2003), but in humans this remains controversial, since also CCK-33 has
been suggested to predominate (Rehfeld et al., 2001). The nutrient composition of the meal regulates CCK
release, fat and protein being the most potent stimuli causing about five fold devation of plasma CCK
levels.

Ingested fat, first, has to be hydrolyzed to FFAs and monoglycerides in order to stimulate CCK
release (Hildebrand et al., 1998) with the acyl chain length of the FFA being decisive in the CCK response
(Egberts et d., 2000). In humans FFAs with more than 11 carbons have been reported to stimulate CCK
release (Lal et al., 2004; McLaughlin et d., 1999), whereas a recent study found a smaller but clearly
significant increase in plasma CCK levels with decanoic acid of 10 carbon atoms (Feltrin et al., 2004). The
difference between these three studies is that McLaughlin and Lal with their coworkers used a vehicle to
solubilize the fatty acids (Tween 80), which aone elevated CCK levels and thus possibly masked the
milder effect of C10. Feltrin and coworkers used sodium salts of the FFAS, thereby avoiding the use of the
vehicle. Recently, it has been shown that long-chain fatty acids may mediate CCK release via binding to G-
protein coupled receptor GPR120 (Tanaka et al., 2007), which mediates also the fatty acid induced
secretion of GLP-1 (see 2.2.4.1). Interestingly, feeding a high fat diet for 21 days increased the fasting
CCK plasmalevels compared to controls fed on low fat diet in normal weight men (Little et al., 2008).

Dietary protein effectively stimulates CCK release as well. Proteins are digested in the intestine
and absorbed by enterocytes mainly as di- and tripeptides viathe protein-coupled transporter PepT1 (Adibi,
1997; Fe et a., 1994). Protein hydrolysates (peptones) seem to produce more pronounced responses than
monomeric amino acids (Cuber et al., 1990), although in humans L-phenylalanine alone al so releases CCK
(Ballinger and Clark, 1994). A direct stimulatory action of peptones on enteroendocrine cells has been
suggested (Cordier-Bussat et a., 1997). In addition, the stimulation of CCK release by dietary protein is
mediated via endogenous trypsin sensitive duodenal CCK-releasing peptides (CCK-RP). Duodenal trypsin
and other proteolytic enzymes inactivate CCK-releasing peptides in the absence of other substrates. The
presence of dietary protein in the gut lumen protects CCK-RPs from proteolysis by competing as substrates
for the degrading enzymes and thus increases the amount of active CCK-RP in the lumen and stimulating
CCK release when proteins are present. At least four CCK-RPs have been suggested (Herzig, 1998).
Monitor peptide was isolated from rat pancreatic juice (Iwai et al., 1987), diazepam binding inhibitor (DBI)
from rat intestinal mucosa (Herzig et a., 1996) and luminal CCK releasing factor (LCRF) from rat
intestinal secretions (Spannagd et al., 1996).

Carbohydrates are less potent stimulants of CCK release than fat and proteins, but in humans

intragadtric or intraduodenal glucoseinfusion increases plasma CCK levels (Little et al., 2006; Parker et al.,
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2005). The CCK increase after carbohydrates is, however, quite short-lived and the plasma levels return
close to baseline within one hour (Bowen et al., 2006b).

Hydrolyzed guar gum fibre (20 g) increased the postprandial CCK response in obese women
during a weight loss program without affecting satiety ratings (Heini et a., 1998). In contrast, 15 g of
pectin included in a solid meal slowed gastric emptying and increased satiety, but did not modulate CCK
responses compared to methylcellulose (Di Lorenzo et d., 1988). Adding oat fibre to low fat solid meal
compensated the postprandial CCK response to the level of isocaloric low fibre, high fat meal in women,
whereas no difference was observed in men. Furthermore, plasma CCK levels correlated with the
subjective satiety measures (Burton-Freeman et d., 2002). In contrast, no difference in total CCK
responses were observed after high fibre pasta (total 15.7 g of barley fibre of which 5 g beta-glucan)
compared to low fibre pasta dthough the CCK levels stayed elevated longer after the high fibre pasta
(Bourdon et a., 1999). A high fibre meal containing bean flakes evoked a significantly greater CCK
response compared to low fibre meal in men although part of the pronounced response may have been

caused by the trypsin inhibitor present in beans (Bourdon et al., 2001).

2.2.2.2 Effects of CCK

Plasma CCK levels are elevated postprandialy but the majority of the effects of CCK are
mediated via activation of extrinsc neural pathways, especially the vagal afferent pathway. Vagal fibres
expressing CCK; receptors innervate multiple abdominal organs including the stomach and the small
intestinal mucosa. Anatomically vagal afferents terminate within the lamina propria of the gastrointestinal
mucosa in close apposition to the basolateral membrane of enteroendocrine cells, thus making it possible
for CCK and other peptides to act in a paracrine fashion (Berthoud et a., 2004). In addition to CCK;
receptor expression, the vagal afferent fibres express al'so several other receptors including CB-1 (Burdyga
et a., 2004), MCH-1 (Burdyga et a., 2006a), leptin receptor (Burdyga et a., 2002), GLP-1 receptor
(Nakagawa et d., 2004) and GHS-R1a (Burdyga et al., 2006b). CCK downregulates the expression of CB-
1 and MCH-1 (Burdyga et al., 2004; Burdyga et a., 2006a) and in addition, the orexigenic hormones
orexin-A and ghrelin inhibit vagal afferent dischargein response to CCK (Burdyga et a., 2003).

The multiple actions of CCK serve to optimise the digestive processes in the gut. CCK inhibits
gastric emptying and food intake, thus limiting the ddlivery of ingested food to the intestine. It stimulates
both gallbladder contraction and pancreatic exocrine secretion, thereby ensuring that digestive enzymes
and bile salts are available for digestion.

Inhibition of food intake. Exogenous periphera CCK administration inhibits food intake by
reducing mea size and duration in animals (Gibbs et a., 1973a) and humans (Kissleff et al., 1981).
Postprandially released CCK induces satiety mainly by activating vagal afferent fibres expressing CCK;
receptors in the intestine, which relay the signal to the appetite centres in the brainstem. CCK signalling in
the CNS is dependent on the melanocortin receptor MC4R in the brainstem (Fan et al., 2004). In addition,
CCK; receptors in the CNS (brainsem and hypothalamus) aso seem to be able to induce satiation

28



(Reidelberger et a., 2004). Additionaly, central CCK administration suppresses food intake (Blevins et al.,
2000). Therole of CCK in satiation has been confirmed by experiments conducted in several species. The
importance of the endogenous CCK in the control of food intake has been demonstrated with the use of
selective CCK; receptor antagonists, which lead to increases in the meal size (Beglinger et al., 2001).

The plasma hdf-life of CCK is only 1-2 minutes and it does not reduce meal size if delivered
more than 15 minutes before a med. Thus, CCK acts as a short-term signal of meal termination.
Chronically repeated or continuous administration of CCK does not induce weight loss in rats. Although
the meal size is reduced continuoudly, the long-term 24-hour food intake does not change significantly
because the animals compensate by increasing mea frequency (Crawley and Beinfeld, 1983; West et d.,
1984). Otsuka Long-Evans Tokushima Fatty (OLETF) rats, which carry a spontaneous mutation in the
CCK receptor, eat enlarged meals and gradually devel op mild obesity (Moran and Bi, 2006).

However, interactions between CCK and long-term satiety signals leptin and insulin occurs.
Satiating effects of CCK are attenuated in rats lacking leptin receptors (Morton et al., 2005). Furthermore,
coadministration of CCK with leptin or insulin increases the satiating effects of CCK in mice (Barrachina
et a., 1997), and prolonged fasting, which leads to a leptin deficient ate, reduces the satiety inducing
effects of CCK (McMinn et a., 2000). This could be interpreted as fine tuned mechanism via which signas
of body adiposity, such as leptin and insulin, modulate the sensitivity of brain to CCK; when fat is lost,
reduced leptin and insulin levels would decrease the sensitivity to CCK and thus an individual would eat
larger meals.

Inhibition of gastric emptying. CCK delays gastric emptying in animals (Moran and McHugh,
1982) and humans (Fried et a., 1991a; Fried et a., 1991b; Lal et al., 2004) by inducing the relaxation of
the proximal stomach via a vago-vagal reflex (Holzer et a., 1994; Raybould et al., 1987; Raybould and
Tache, 1988). In addition, CCK may act directly on smooth muscle cells in the distal stomach and regulate
contractions of the antrum (McLaughlin et d., 1999). After intragastric fatty acid administration, C12 fatty
acids caused higher plasma CCK levels than C10 fatty acids and the half gastric emptying time was
significantly longer after C12 than after vehicle or C10 administration. The subjects tolerated the same
amount of distention of the intragastric bag after either fatty acid, but the volume of water tolerated was
lower after C12 demonstrating that gastric emptying was indeed inhibited by the stimulated release of
endogenous CCK. Furthermore, subjects experienced an enhanced sensation of fullness and satiety (Lal et
al., 2004). CCK may inhibit food intake in part by delaying gastric emptying and thus enhance gastric
mechanoreceptor stimulation. Gastric distention and exogenous CCK have been shown to synergistically
activate vagal afferents (Schwartz et al., 1993) and to inhibit food intake (Kissileff et a., 2003).

Effects on intestinal and colonic motility. CCK immunoreactive neurons innervate the smooth
muscle cdls of the diga intestine and colon. Exogenous CCK increases intestinal motor activity and
shortens the intestinal transit time (Gutierrez et al., 1974). In contrast to increased motility of the intestine,
CCK inhibits colonic transit. CCK; receptors are expressed in the neurons of the myenteric plexusand to a
lower extent also in longitudinal muscle of colon and thus CCK may exert it functions both directly and via

29



the neural pathway (Rettenbacher and Reubi, 2001). Exaggerated release of or sensitivity to CCK has been
suggested to contribute to the pathogenesis of irritable bowe syndrome (IBS) characterized by constipation
and lower abdomina pain (Sjolund et a., 1996). Accordingly, CCK; receptor antagonists are being
developed for the treatment of IBS (for review, see Varga et a., 2004).

Stimulation of pancreatic exocrine secretion. Initialy porcine intestine extracts were shown to
stimulate pancreatic exocrine secretion, and the active component was hamed pancreozymin (Harper and
Raper, 1943). However, later it appeared that the isolated peptide was identical to already previously
isolated CCK (Jorpes and Mutt, 1961).

CCK stimulates pancreatic enzyme secretion in many species, including humans and rodents.
However, the mechanisms seem to differ. In human acinar cells, very low amounts of CCK receptor are
expressed and the cells do not secrete enzymes when stimulated with CCK in vitro (Ji et al., 2001; Ji et al.,
2002). In vivo, atropine (a muscarinic acetylcholine receptor antagonist) essentialy blocked postprandia
pancresatic enzyme secretion (Beglinger et al., 1992). Thus, it seemsthat in humans CCK released from the
intestinal cells activates a vago-vagal reflex that stimulates enzyme secretion from the pancreatic acinar
cells via cholinergic M3 muscarinic receptors. In contrast, rat acinar cells are responsive to direct CCK
stimulation via CCK; receptors and thus endocrine actions, in addition to neural pathways, mediate CCK’s
stimulatory effect on enzyme secretion (for review, see Wang and Cui, 2007).

Stimulation of gallbladder contraction. As implicated by its name, cholecystokinin induces
gallbladder contraction thusreeasing bile into the duodenum. Physiological postprandia concentrations of
CCK stimulate contraction of the gallbladder (Nitsche et al., 1998). In addition, CCK relaxes the sphincter
of Oddi, thereby facilitating bile flow. The gallbladder expresses CCK receptors, but in addition to the
direct actions of CCK on the gallbladder smooth muscle, it has been suggested that the contraction is
mediated also via neura pathways. Cholinergic mechanisms are involved because atropine, without
affecting plasma CCK levds, is able to reduce the contraction of the gallbladder during the duodenal
perfusion of atest meal, but does not totally abolish it (Beglinger et al., 1992). Also other studies have
demonstrated that gallbladder contraction is reduced, but not totally abrogated by muscarinic antagonists
(Hopman et d., 1990; Nelson et a., 1996). In humans galbladder volume has been reported either to
increase (Parkin et a., 1973) or stay the same (Shaffer, 1982) after vagotomy. Specific CCK; receptor
antagonists, however, remarkably dilate gallbladder volume in the fasting state (Jebbink et al., 1992) and
totally block the postprandia gallbladder contraction. Thisindicates that CCK isthe major regulator of the
gallbladder response, modulated by the cholinergic system (Beglinger et al., 1992).

2.2.3 PYY
Peptide YY (PYY) was isolated in 1980 from the porcine jeunal mucosa by Tatemoto and
coworkers (Tatemoto and Mutt, 1980; Tatemoto et al., 1988). PYY is a 36-amino acid peptide that is
produced by the endocrine L-cells, mainly in the distal intestine and colon. It isreleased into the circulation
in response to food intake. The released precursor peptide PY Y (1-36) is rapidly metabolized by dipeptidyl
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peptidase 4 (DPP-4) to the bio-active form, PYY (3-36). Approximately 60-70 % of the postprandia total
plasma PYY consists of PYY (3-36) (Batterham et al., 2006; Grandt et d., 1994). The highest amounts of
PYY are found in the rectum, followed by the colon and ileum (Adrian et a., 1985). It is also detected in
the pancreas as well asin the hypothalamus and hindbrain regions of the CNS (Ekman et d., 1986; Glavas
et a., 2008; Lundberg et al., 1984).

PY'Y inhibits many gastrointestinal functions, including gastric matility and emptying, gastric acid
secretion, jejunal and colonic motility and mouth-to-cecum-transit time. Thus it is one of the major
mediators of the ileal brake, which means the inhibition of the upper gastrointestinal motor activity
promoting digestive activities to increase nutrient absorption, and istriggered particularly in response to fat
(for review, see Van Citters and Lin, 2006). In addition, PY'Y reduces intestinal blood flow and causes
intestinal vasoconstriction (Lundberg et al., 1982). PYY also inhibits pancreatic exocrine secretion and
insulin secretion (Boey et al., 2007).

Recently, most of the interest on PYY(3-36) has concentrated on its suggested role as an
endogenous satiety factor in both humans and rodents. In humans, a 90 min intravenous infusion of
PY'Y (3-36) reduced energy intake by 36 % acutely after administration, and aso reduced the 24 h cdorie
consumption by a similar proportion despite the fact that PYY plasmalevels returned to its pre-stimulation
baseline levels (Batterham et al., 2002). PYY(3-36) inhibits food intake in obese subjects as well
(Batterham et a., 2003). Recent findings in normal weight subjects (Degen et al., 2005) indicate, however,
that the PYY doses required to observe significant satiating effects, which were the same as used by
Batterham and coworkers (2002), were pharmacological (the resulting plasma levels were nearly three
times higher than those dlicited by a large meal) and caused adverse effects such as nausea and abdominal
discomfort. The reduction in food intake, with severe adverse effects, was aso observed in obese subjects
in another study with the same dose (Sloth et al., 2007a). Furthermore, in a larger clinical trial, in which
PYY (3-36) was administered intranasally to obese humans for 12 weeks, the tolerated dose did not have
any effects on weight loss compared to placebo, and the higher dose was not tolerated (Gantz et al., 2007).

In rats, intraperitoneal administration of PY'Y(3-36) twice daily for 7 days reduced food intake
and decreased body weight gain (Batterham et al., 2002). Peripheral PY'Y (3-36) also reduced weight gain
in normal mice as well as severa rodent models of obesity and type 2 diabetes (Pittner et al., 2004). Food
intake was reduced acutely in rhesus macagues (Moran et al., 2005), and weight gain attenuated after two
weeks treatment (Koegler et a., 2005). However, several independent groups have reported that they were
unable to reproduce the effects of PY'Y (3-36) on energy intake and body weight in rodents (Tschop et .,
2004). Challis and colleagues observed the short-term anorectic effects, but none after seven days
adminigtration on either cumulative weight gain or food intake (Challis et al., 2004). Some groups have
reported that the anorectic effects of PYY were only seen in rodents that have been carefully acclimatized
to handling and experimental conditions (Abbott et a., 2006; Halatchev et al., 2004), which suggests that
PYY-induced satiety is highly sensitive to stress. Furthermore, differences may be caused by experimental
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protocols or animal strains studied. Therefore, as a conclusion, the anorexigenic effects of PYY seem to be
subtle and thus the hopes of PY'Y asamagic bullet to treat obesity seem to be over optimistic.

PYY belongs to the pancreatic polypeptide family, as does NPY, one of the most potent
stimulators of food intake in the brain. Interestingly, in contrast to its satiety inducing effects after
peripheral administration, centrally administered PYY (1-36) and PYY (3-36) effectively stimulate food
intake (Hagan, 2002; Morley et a., 1985). Peptide forms differ in their receptor binding. Full length PYY
activates NPY receptor isoforms Y1, Y2 and Y5, while PY'Y(3-36) activates Y2 and Y5 receptor subtypes
(Cox, 2007). Circulating PY'Y (3-36) crosses the BBB and is thus able to selectively reach Y 2 receptorsin
the arcuate nucleus of the hypothalamus and induce the anorexic effects by inhibiting NPY/AgRP neurons
(Acuna-Goycolea and van den Pal, 2005). In contrast, when delivered intracerebroventricularly, PYY by
acting on subtype Y1 and Y5 receptors located in the paraventricular nucleus has an orexigenic effect.
Additionally, the involvement of the vagal afferents has been implicated in the mechanism of action of
peripheral PYY (3-36), since vagotomy or transection of hindbrain-hypothalamic pathways eliminated its
anorectic effects (Abbott et al., 2005; Halatchev and Cone, 2005; Koda et al., 2005).

2.2.3.1 Control of PYY release

Plasma levels of PYY increase within 15 minutes after meal initiation, reaching a peak at
approximately 60 minutes, and then remaining elevated up to 6 hours (Adrian et a., 1985). Neurd
pathways and mediation via other gastrointestinal hormones like CCK may be involved in the initia phase
of release, since the plasma levels are increased even before the ingested nutrients reach the termina
intestine (Degen et al., 2007; Fu-Cheng et al., 1997; Lin et a., 2000) followed by the direct stimulation of
endocrine cells by nutrients. The plasma PY'Y concentration is not altered by gastric distension (Oesch et
al., 2006), water loading (Pedersen-Bjergaard et a., 1996) or sham-feeding (Soffer and Adrian, 1992).

The postprandial e€evation of plasma PYY leves is proportiona to the calories consumed.
Additionally, it is also affected by the nutrient composition of the meal. Intestinal fat isa potent stimulus of
PYY release, and because intravenous lipid infusion has no effect on PYY levds, sensing of the nutrients
in the gut lumen is required. Lipids induced the largest increase in postprandia PYY concentration
followed by protein and then glucose, with the latter causing only a transient and minor release (Adrian et
al., 1985). Other groups have aso shown lipids to be more effective than carbohydrates (Essah & al., 2007,
Macintosh et d., 1999), despite one paper that reported that PYY concentration increased after proteins
and carbohydrates whilst there was only a dight rise after a fat meal (Pedersen-Bjergaard et al., 1996).
Different fats dlicit different PY'Y responses. Asin the case of CCK and GLP-1 release, fat hydrolysis and
fatty acid chain length appear to determine the response (Degen et a., 2007). Fatty acids with 12 carbons
simulate PYY release, whereas 10-carbon fatty acids did not have any effect (Fetrin et a., 2006).
Furthermore, recently it was reported that a high-protein meal was the most potent stimulator of PY'Y
release and sdtiety, followed by fat and carbohydrate rich meals in humans and in mice (Batterham et al.,
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2006). The fact that PY'Y -null mice are obese and resistant to protein-induced satiety further indicates that
PYY might be amajor mediator of protein induced satiety (Batterham et a., 2006).

Total PYY fasting levels have been reported to be reduced in obese adults (Batterham et al., 2003)
and children (Roth et al., 2005). This suggests that obesity might be a PY'Y-deficient state that could be
cured by therapeutical PYY administration. In contrast, several other sudies did not find any differencein
the fasting PY'Y levels between lean and obese subjects (Kim et d., 2005; Korner et al., 2005; Korner et al.,
2006; Pfluger et d., 2007; Stock et al., 2005; Vazquez Roque et al., 2006). However, the postprandial PY'Y
response seems to be blunted in obese individuas, so that they have to consume more calories to achieve
plasma PYY levels that of lean ones (Batterham et al., 2003; le Roux et a., 2006; Stock et a., 2005).
Furthermore, bariatric gastric bypass surgery increases PYY levels and improves postprandia responses
(Korner et a., 2005; Korner et a., 2006; Morinigo et a., 2006; Reinehr et al., 2007). Postprandia changes
in gastric volume and PYY levels were independent predictors of satiation (Vazquez Roque et a., 2006).
Therefore, an association between reduced appetite and exaggerated PYY levels is suggested. Analyss of
plasma PYY concentration is performed with immunoassays that cross-react equally with PYY (1-36) and
PYY (3-36) and thus it remains to be investigated which molecular form causes the changes in the total
PYY levds. This may be of importance since PY'Y (3-36) ismore potent in inducing satiation than PY'Y (1-
36) (Chelikani et a., 2005).

2.2.4 Proglucagon cleavage products

The prohormone proglucagon consists of 180 amino acids and is posttrandationally cleaved in a
tissue-specific manner by prohormone convertases 1/3 and 2 to yield active peptides GLP-1, GLP-2,
glicentin, oxyntomodulin and glucagon (Figure 4). Proglucagon gene expression is differentially regulated
in tissues corresponding to the physiological function of the peptides produced. In the alpha cells of the
endocrine pancreas, the proglucagon gene transcription is up-regulated by fasting and hypoglycaemia.
Cleavage of the prohormone produces glucagon, which is of key importance in maintaining glucose
homeostasis in the fasting state by regulating hepatic glucose production via activation of glycogenolysis
and gluconeogenesis and inhibition of glycolysis.

In the intestine, proglucagon expression is downregulated by fasting and stimulated by refeeding
and the posttrandational processing of the prohormone yields GLP-1, GLP-2, glicentin and oxyntomodulin
that are secreted in response to food intake. GLP-1 is known as a potent incretin and reduces food intake
similar to oxyntomodulin. GLP-2 stimulates cell proliferation in intestinal crypts and has aso been
reported to stimulate glucose transport in the intestine and inhibit food intake. Glicentin is less well known
but exerts trophic effects in the rodent small intestine. In the CNS, proglucagon is expressed in caudal
braingem (in the NTS) and hypothaamus, where the peptides produced correspond to the intestina
cleavage products (Baggio and Drucker, 2007).
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Figure 4. Proglucagon is posttrandationally cleaved in atissue-specific manner. In the pancreas, glicentin-
related polypeptide (GRPP), glucagon (Gluc), intervening peptide-1 (IP-1) and major proglucagon
fragment (MPGF) are formed. In the intestine and brain, glicentin, which is further cleaved to
oxyntomodulin (OXM), GLP-1, intervening peptide 2 (IP-2) and GLP-2 are produced. No biological
activity has been shown for GRPP, MPGF, IP-1 and IP-2 (modified from Baggio and Drucker, 2007).

2.24.1GLP-1

In the endocrine L-cells, primarily in the ileum and colon, proglucagon is cleaved to GLP-1, GLP-
2, glicentin and oxyntomodulin that are postprandially co-secreted with PYY(3-36). GLP-1 is secreted as
two biologically active peptides, GLP-1(7-36)amide and GLP-1(7-37). The mgjor circulating form in the
plasma is GLP-1(7-36)amide. However, most plasma GLP-1 is N-terminally degraded after release within
avery short time by DPP-4, which is present on the surface of endotheliad cdlslining the blood vessels that
drain intestina mucosa. As a result, inactive GLP-1(9-36)amide and GLP-1(9-37) are formed. DPP-4 is
also present in many other tissues and a soluble form circulates in the plasma. It has been estimated that
only 10-15 % of the intestinaly released GLP-1 passes liver and enters the systemic circulation (Holst,
2007).

GLP-1 is released from the L-cdls in response to different nutrients. Fasting plasma GLP-1
concentration is low, indicating only a minor basal secretion, but postprandially 2-3 -fold increases in the
circulating plasma are measured. Elevated GLP-1 levels are observed aready 10 minutes after the med
initiation and continue to stay elevated for 60 to 120 minutes (Herrmann et a., 1995; Karamanlis et al.,
2007). The early response may be caused by neural mechanisms originating in the upper small intestine
(Berthoud and Morrison, 2008) or partially arise also after the contact of the nutrients with the L-cdls
located in the upper intestine. However, the later enhanced phase of the response is caused by a direct
contact between the nutrients and the mucosa in the lower gut where most of the L-cells arelocated.

Effects of GLP-1. The incretin effect was demonstrated aready in the early 1900s, as it was
found that intestinal factors lowered blood glucose levels (Moore et a., 1906), and the term incretin was
first introduced in the 1930s (La Barre, 1932). These factors potentiate glucose stimulated insulin secretion
and thus oral ingestion of glucose evokes a more pronounced insulin response than the same amount of
glucose administered intravenoudly. It has been estimated that the incretin effect via gastrointestina
hormones is responsible for 50-70 % of the total insulin secreted in response to an ora glucose load. GLP-

1 is one of the most potent mediators of the incretin effect. As GLP-1 is secreted rapidly in response to
34



nutrients, it participatesin the control of postprandial glycemia. GLP-1 isableto stimulateinsulin secretion
only in the presence of glucose and thus is unlikely to induce hypoglycaemia when used as a therapeutic
agent in the treatment of type 2 diabetes. In addition to the stimulation of insulin exocytosis, GLP-1 acts
synergigtically with glucose to promote insulin gene transcription and hormonal biosynthesis. Furthermore,
GLP-1 improves the ability of beta-cells to sense glucose levels by upregulating the expression of glucose
transporters and glucokinases and thus GLP-1 can restore glucose sensitivity to glucose-resistant beta-cells.
GLP-1 also increases beta-cell mass by stimulating beta-cell proliferation and neogenesis as well as
inhibiting apoptosis (Farilla et al., 2002). The effects of GLP-1 on the pancreas are mediated partly via
neural mechaniams originating from the intestine and liver via activation of vagal afferent nerves, which
further in areflexive manner activate pancreatic vagal efferent fibres (Nakabayashi et al., 1996). The more
pronounced GLP-1 responses after larger meals may produce GLP-1 levels that can also act in an
endocrine fashion to directly stimulate GLP-1 receptors on the cell membrane of beta cells.

GLP-1 dows down gastric emptying and inhibits gastric acid secretion, being in addition to PY'Y
one of the mediators of ileal brake mechanism. In fact, the inhibitory effect of GLP-1 on gastric acid
secretion was shown to be additive to that of PYY which isreleased in parallel in response to food intake
(Wettergren et al., 1997a). Although the GLP-1 receptor (GLP-1R) is expressed in the parietal cdlls of the
stomach, experimental evidence shows that the effects of GLP-1 are mediated by the vagus nerve (Imeryuz
et a., 1997; Wettergren et a., 1997b). Endogenous GLP-1 inhibits also antroduodenal motility and
mediates the postprandial inhibition of the antral and stimulation of pyloric motility (Schirra et al., 2006).
Importantly, the inhibition of gastric emptying and dowing of the transit of nutrients from the stomach to
the gut is one of the mechanisms by how GLP-1 lowers postprandial glycemia. Therefore, in spite of its
incretin effect, GLP-1 mediated reduction in glycemia is often associated with reduced rather than
increased postprandial insulin levels (Meier et al., 2003; Nauck et a., 1997).

Peripheral GLP-1 administration increases satiety and suppresses appetite in both healthy (Flint et
al., 1998; Gutzwiller et a., 1999) and diabetic subjects (Toft-Nielsen et al., 1999). In obese subjects, the
basal and postprandial GLP-1 concentrations are still under debate. Some have reported lower postprandial
GLP-1 levels (Ranganath et al., 1996; Verdich et d., 2001), whereas others did not find any differences
(Vilsboll et al., 2003). However, peripheral administration of GLP-1 decreases hunger ratings and reduces
energy intake also in obese subjects (Flint et al., 2001; Naslund et al., 1999; Verdich et al., 2001).
Subcutaneous preprandia GLP-1 injections for 5 days to obese subjects reduced their energy intake by
15 % and caused a 0.5 kg weight lass (Naslund et al., 2004).

The anorectic effects of GLP-1 are mediated specifically via the GLP-1R which is expressed in
the intestine, pancreas and the CNS. The physiological importance of endogenous GLP-1 in the regulation
of food intake has been demonstrated by severa experiments showing that blocking the GLP-1R with the
antagonist exendin(9-39) increases food intake (Meeran et al., 1999). Vaga afferent fibres express GLP-1R,
and consequently an intact vagus nerve is required for peripheral GLP-1 induced anorectic effects (Abbott
et d., 2005). GLP-1 crosses the blood-brain barrier, but the effects of periphera GLP-1 on central GLP-
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1Rs in the hypothalamus and braingem are still questionable because it seems unlikely that sufficient
amounts of the peptide could be transported from the intestine before degraded by DPP-4. In rodents, GLP-
1 reduces food intake also when applied intracerebroventricularly or directly into the paraventricular
nucleus (McMahon and Wellman, 1998; Turton et al., 1996).

Due to its beneficial effects on glucose metabolism, several outcomes have been developed to
circumvent the rapid degradation of GLP-1 in order to facilitate its therapeutic use in the treatment of type
2 diabetes. The DPP-4 resistant GLP-1 agonist, exendin-4, was originally isolated from the gila monster
salivaand is marketed since 2005 in the US and 2006 in the EU as synthetic exenatide (trade name Byetta)
for the treatment of type 2 diabetes. Sharing about 50 % of its amino acid sequence with mammaian GLP-
1, exendin-4 is protected from DPP-4 and only cleared by glomerular filtration in the kidneys. Its
circulating haf-life is 60-90 min, and a sngle subcutaneous injection increases plasma concentrations for
4-6 hours. Exenatide trestment improves glycemic control, fasting plasma glucose and importantly,
decreases body weight (Drucker and Nauck, 2006). The weight loss is exceptional considering that usually
diabetic medication tends to increase rather than decrease weight. Although 40-50 % of patients experience
transient nausea especially at the beginning of the treatment, they chose to continue with the medication.
The weight loss is not due to nausea since many patients devoid of side effects also lose weight.
Furthermore, once in combination with metformin, hypoglycemic events were not increased. Another
GLP-1 anaog liraglutide, which is partially DPP-4 resistant, is aso on the market.

Orally active DPP-4 inhibitors vildagliptin and sitagliptin have aso been developed for the
treatment of diabetes. They are effective in stimulating insulin secretion and improve glycemic control, but
are generaly not associated with deceleration of gastric emptying or weight loss, yet seem to prevent
weight gain (Drucker and Nauck, 2006). This may be due to less efficient stabilization of plasma GLP-1
levels compared to GLP-1 agonists.

Regulation of GLP-1 release. Proteins, carbohydrates and fat all stimulate GLP-1 release, yet
with different potencies. Proteins seem to be the most effective stimulants. When comparing breakfasts
with smilar energy density but rich in protein, fat, carbohydrate or acohol, the grestest GLP-1 response
was reported after a protein rich meal followed by carbohydrates, fat and alcohol (Raben et a., 2003). A
high-protein dairy product enriched with a whey protein isolate stimulated GLP-1 secretion more than a
high-carbohydrate meal (Blom et al., 2006). However, none of the studies observed any differences in
subjective sensations of hunger and ad libitum energy intake during the subsequent lunch. In contrast, after
a longer intervention period of four days on a high protein or adequate protein diet, high protein diet
produced lower hunger and higher satiety ratings and elevated GLP-1 responses (Lgeune et d., 2006).

Carbohydrates are aso strong stimuli for GLP-1 release, consistent with the role of GLP-1 as
incretin, and glucose seems to be the most effective GLP-1 secretagogue (Elliott et a., 1993; Kong €t al.,
1999). The GLP-1 responses after fat are delayed when compared to carbohydrates (Elliott et a., 1993).
The chain length of the fatty acids seems to be important. Intraduodena administration of fatty acids with
12 carbon atoms (C12, lauric acid) stimulated GLP-1 release, whereas a shorter one (C10, decanoic acid)
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did not (Feltrin et a., 2004). Recently, novel G-protein coupled receptors GPR120 and GPR119 have been
identified as mediators of fatty acid (Hirasawa et al., 2005) and fatty acid derivative induced GLP-1 release
(Chueta., 2008).

The effects of dietary fibre on GLP-1 release may be influenced by the amount of fibre or in
contrast depend on structural food properties. Resistant starch produced a smaller GLP-1 response than
digestible starch (Raben et a., 1994b). In contrast, pasta enriched with psyllium fibre did not modify
postprandial GLP-1 responses (Frost et al., 2003) nor did a med enriched with pea fibre (Raben et d.,
1994a). Whole-kernd rye bread and whole-mea pasta produced smaller GLP-1 responses than low-fibre
wheat bread or rye bread with beta-glucan (Juntunen et al., 2002). Furthermore, wheat bread with low
amount of fibre produced similar GLP-1 responses as rye breads with significantly higher amounts of total
fibre, although the insulin response after wheat bread was significantly greater, suggesting that merely the
amount of fibre does not define the GLP-1 responses (Juntunen et al., 2003). In rats, a diet rich in fibre
increased proglucagon expression in the intestine (Reimer and McBurney, 1996). After a standard
breakfast the GLP-1 levels were higher in norma weight subjects compared to obese ones. Once galactose
and guar gum were ingested prior to breakfast, elevated postprandial GLP-1 responses were observed and
the levels did not differ between the groups, yet satiety increased dightly only in norma weight subjects.
This suggests that postprandiad GLP-1 levels do not correlate with the feelings of satiety in obese
individuals (Adam and Westerterp-Plantenga, 2005).

2.2.5 Effects of nutrients on gastrointestinal peptide release

In summary, different macronutrients have different potencies in gimulating or inhibiting
gastrointestinal peptide release (Table 1). The type of protein and fibre may affect the responses. Fat
hydrolysis to free fatty acids is necessary for CCK, GLP-1 and PY'Y release and the length of the fatty acid
carbon chain affects the response.

Table 1. Effects of macronutrients on the release of gastrointestinal peptides and their effects on food
intake. + means simulatory effect, - means inhibitory effect. The signs in brackets indicate blunted or
inhibited increase or decrease. Suppression of ghrelin levels and stimulation of CCK, GLP-1 and PYY
secretion is thought to increase satiety.

Peptide Food intake  Carbohydrate Fibre Protein Fat
. - I no effect / -1+ -1+
Ghrelin * - ) no effect no effect
CCK - + + ++ ++
GLP-1 ; -+ +/ no effect -+ ++
(+)
PYY - + +/ no effect ++ ++
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2.3 SELECTED FOOD COMPONENTS IN OUR DAILY NUTRITION

2.3.1 Lectins

Lectins are carbohydrate-binding proteins that were initially discovered from castor beans by
Stillmark in 1888. The name “lectin” derived from the Latin word legere, select, describes the ability of
lectins to specifically recognize their ligands. Lectins form a heterogenous group of proteins with wide
diversity in their ligand specificity. In addition to plants, lectins are found ubiquitously in nature, even in
mammals. Lectins are defined by their carbohydrate-binding activity. Lectin proteins are distinct from
immunoglobulins, athough some animal lectins belong to the Ig superfamily and various lectins are
produced by lymphocytes along with antibodies. Lectins have to be also distinguished from enzymes
modifying glycoconjugates.

Initially lectins were recognized by their ability to agglutinate erythrocytes, yet thistest can result
in false positive results and in addition only reveals lectins which have at least two binding sites. Lectins
can bind to glycoproteins on the surface of the cells or to soluble extrace lular or intercellular glycoproteins.
Animal lectins are divided into several subclasses and are important molecules in a wide variety of
functions, including cell-cell and cell-matrix interactions, cell migration and routing, cell growth control
and recognition of foreign glycoproteins among others.

In plants, the majority of lectins are found in storage tissues like seeds, tubers, bulbs, corns and
rhizomes. Also leaves and stems of some plants accumulate storage proteins and lectins. Plant |ectins may
have defensive roles as some of them are toxic against fungi, insects or higher animals. Lectinsarerich in
legumes (Leguminosae). Especidly seeds, beans, peas, peanuts, lentils, soybean, whesat, potato and rice
contain lectins. Since the lectins are widdly distributed in plants they are also of physiological relevance as

part of our nutrition.

2.3.11PHA

Red kidney bean (Phaseolus vulgaris) lectin phytohaemagglutinin (PHA) is composed of two
polypeptides, L and E, that form five tetrameric isolectins Ly, L3E, LoE,, LE; and E4 (Leavitt et &., 1977).
The L and E polypeptides were named based on their strong mitogenic activity for T-lymphocytes and their
ability to agglutinate erythrocytes, respectively. Raw kidney beans are toxic to humans causing diarrhea
and abdominal pain, and this toxicity is mainly due to the lectin PHA. However, the toxicity can be
abolished by proper cooking of the beans prior to ingestion (Grant et d., 1982). Furthermore, toxic effects
depend on the purity of the lectin preparation, and this may also explain the contradictory results obtained
in different studies.

PHA isresistant to breakdown by the digestive enzymes of the gut and specifically recognizes and
binds to brush-border cells of the intestine. PHA causes disruption of the enterocytes without significant
alterations in the absorption capacity in adult rats (Pusztai et a., 1979). Inclusion of red kidney beans or
purified PHA in the diet for three weeks induced weight loss with malabsorption in weanling rats (Banwell

et a., 1983). Growth retardation was observed in rats fed with different lectins for 10 days as well (Pusztai
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et a., 1990). In suckling rats, administration of PHA and attachment to epithelial cells caused a shortening
of the intestinal villi, disturbances in the gut morphology and a decrease in macromolecular absorption
capacity during the first day. This was followed later by declined binding and endocytosis (Linderoth et al.,
20064a).

However, apart from the growth inhibiting effects of lectins, many of them have been reported to
be effective mitogens of the gastrointestina organs. PHA was the most potent mitogen of the lectins tested
that led to hyperplasia and hypertrophy of the small intestine (Pusztai et a., 1990). It was found that both
intestinal crypt length and the number of enterocytes were increased. In suckling rats, PHA feeding
increased crypt cdl proliferation, gut growth and functional maturation (Linderoth et d., 2006a). PHA dso
stimulated the growth of the pancreas and caused the accumulation of polyamines to the organ (Bardocz et
al., 1995). Pancreatic growth and digestive enzyme content increased in suckling rats as well (Linderoth et
al., 2006a). Since the growth promoting effects were only observed after ora or enteral feeding of lectins,
the direct contact with gut epithelia appearsto be required.

After 10 days on a PHA containing diet the weight of the rats was approximately 15 % lower
compared to pair-fed control animals. However, PHA significantly increased the wet weight of the small
bowel and pancreas and dose dependently elevated plasma CCK leves. The effect of PHA on pancreatic
but not on small intestinal growth was blocked by CCK; receptor antagonist MK 329 (Herzig et al., 1997).

Total parenteral nutrition (TPN) induces atrophy of the gastrointestina tract in humans and in
animals. Rats fed by TPN displayed reduced gastrointestina epithdia proliferation and lower tissue
weights of the gastrointestinal organs compared to oraly fed rats. Intragastric administration of lectins for
four days was ableto fully or partialy reverse the atrophy produced by TPN (Jordinson et al., 1999). PHA
treatment was the most potent of tested lectins and induced proliferation of gastric fundus, small intestine,
pancreas and proximal colon. A stimulatory effect on plasma CCK and enteroglucagon levels was also
noted in this study.

2.3.2 Dietary fibre

According to the official definition of dietary fibre given by the American Association of Cereal
Chemigts, “Dietary fibre is the edible parts of plants or anaogous carbohydrates that are resistant to
digestion and absorption in the human small intestine with complete or partial fermentation in the large
intestine. Dietary fibre includes polysaccharides, oligosaccharides, lignin, and associated plant substances.
Dietary fibres promote beneficial physiological effects including laxation, and / or blood cholesterol
attenuation, and / or blood glucose attenuation” (DeVries, 2003). As implicated by this definition, fibres as
part of our daily nutrition have hedth effects on glucose and lipid metabolism, as well as gut function.
Furthermore, the incidence of several common diseases has been shown to have an inverse reationship
with dietary fibre intake. These include congipation, diabetes, colorectal cancer, diverticular disease,
obesity, gallstones and coronary heart disease amongst others (DeVries, 2003).
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Thereis arich body of evidence showing that dietary fibre positively affects glucose metabolism
by producing lower glucose and insulin responses. Fibre intake has been shown to improve glucose
metabolism in type 2 diabetic patients (Chandalia et a., 2000; Jenkins et a., 2002; Jenkins et a., 1976).
Fibre intake also lowers serum cholesterol levels (Anderson et a., 2000; Brown et d., 1999; Olson et d.,
1997) and improves laxation (for review, see Dikeman and Fahey, 2006).

Dietary fibres can be classified based on their chemical properties to soluble (e.g. guar gum,
psyllium fibre, locus bean gum, pectins) and insoluble (e.g. cellulose, wheat bran, soyhulls) fibres. Many,
but not all, soluble fibres including beta-glucans, gums and pectins thicken when mixed with fluids, which
resultsin the production of viscous materid. Therefore, adding these soluble fibres to food altersiits textual
properties by increasing viscosity. Another key feature of dietary fibres is their fermentability in the large
intestine. Those fibres which are fermentable in the colon produce gases and short chain fatty acids,
whereas those which are less fermented are good bulking agents and promote laxation.

Importantly, viscosity is recognized as one of the factors contributing to the beneficial health
effects observed after fibre ingestion, and reducing viscosity or using low viscosity fibres inhibits or
attenuates these effects. Jenkins and coworkers concluded already in 1978 that viscosity of guar was an
important property of fibrein reducing postprandial glucose and insulin concentration (Jenkins et al., 1978).
High but not low viscosity guar gum was effective in reducing postprandia insulin responses when
included in an oral med (Leclere et al., 1994). Reducing the viscosity by acid hydrolysis prior to
consumption attenuated the glucose and insulin lowering effects of oat gum (Wood et a., 1994).
Furthermore, the beneficial effects of fibre on lipid metabolism seem to be dependent on viscosity as well
(Gallaher etal., 1993; Wang et al., 1992).

The mechanism by how viscous fibres reduce postprandial glucose and insulin responses has been
postulated to be due to dower gastric emptying rate, decreased intestinal absorption and increased
intestinal transit time, although the relative importance of these parametersis ill unclear (Edwards et a.,
1987; Ehrlein and Stockmann, 1998; Leclere et al., 1994; Meyer et a., 1988). Viscous fibres form a gel
like matrix as aresult of their water holding capacity and may thus thicken the unstirred water layer on the
mucosal surface which inhibits digestion processes by decreasing the accessibility of digestive enzymes to
nutrients and decreases the diffusion of glucose and nutrients to absorptive epithelium in the intestine
(Johnson and Gee, 1981). Viscosity may also hinder nutrient digestion by affecting activity of digestive
enzymes (Isaksson et a., 1982), although others have observed increased activities after fibre ingestion
(Tkegami et a., 1990). It seems that although the viscosity of the product is dependent on the amount of
fibre, the physiological responses may not change proportionally to increasing viscosity and lower doses of
viscous polysaccharidesincluded in the diet may be as efficient as high doses (Wood et al., 1994).

Gastric emptying has been shown to be dower after viscous fibre ingestion. Slower gastric
emptying and greater satiety was observed in obese subjects after the supplementation of a med with either
15 g of pectin (Di Lorenzo et al., 1988) or 10.8 g psyllium (Bergmann et al., 1992). However, Marciani and
coworkers sophistically demonstrated that a 1000-fold increase in viscosity of a nonnutrient liquid meal
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with locust bean gum decreased gastric emptying only modestly suggesting that the stomach adjusts to the
viscosity by more effectively diluting the digesta. Despite of the modest decrease in gastric emptying, a
more viscous drink induced higher fullness scores (Marciani et al., 2000). Furthermore, they showed in
another context that calorie content (nutrient vs. noncaloric meal) was more effective in decreasing gastric
emptying than increasing viscosity, but increasng the viscosity of a nutrient mea increased fullness
without significantly affecting gastric emptying rate (Marciani et al., 2001). Therefore, the mechanism
whereby viscosity of mealsinduces satiety does not seem to relate exclusively to delayed gastric emptying.

Although correlations between diet fibre content, viscosity and increased satiety have been
reported, the effects of dietary fibre on subsequent food intake and weight control are not very well
established. Decreased food consumption after higher fibre intake has been observed in both short
interventions (Burley et d., 1987; Porikos and Hagamen, 1986; Van de Ven et a., 1994) and after longer
periods (Krotkiewski, 1984; Pasman et a., 1997; Ryttig et al., 1989). On the contrary, many studies have
reported that dietary fibre has no effect on food intake (Pittler and Ernst, 2001). The variability of the
results may be due to several factors, such as the type of the fibre used and the weight of the test subjects.
It has also been suggested that fibre supplementation could be most effective in helping the subjects to
stick to low calorie diets (Astrup et a., 1990; Pasman et al., 1997).

2.3.3 Spices

Although spices have been used primarily to give flavour to foods, in addition to this they have
been shown to affect physiological functions such as thermogenesis and digestion or induce greater satiety.
For example capsaicin, the pungent ingredient in red hot pepper, increases thermogenesis. Increased
thermogenesis, via the activation of the sympathetic nervous system, may help to dissipate excess energy
as heat. Furthermore, a capsaicin preload has been shown to decrease food intake and increase satiety in
humans (Westerterp-Plantenga et al., 2005). Spices have also been shown to have beneficial effects on
digestion by stimulating digestive enzyme activities, bile flow and bile acid secretion in rats (for review,
see Westerterp-Plantenga et al., 2006). Capsaicin activates the transient receptor potential vanilloid
receptor 1 (TRPV1), a member of the transient receptor potential (TRP) family. Also other pungent
ingredients with thermogenesis simulating properties, such as piperine from black pepper and 6- and 8-
gingerols from ginger, are ligands of TRPV 1. However, only alimited number of studies have investigated
the involvement of other TRP channel family members activated by spices in the regulation of
gastrointestinal functions.

2.3.3.1 TRP channels
The transient receptor potential (TRP) ion channel superfamily consists of seven subfamilies of
nonselective cation channels with wide diversity in their activation mechanisms and cation selectivity (for
review, see Venkatachalam and Montell, 2007). The common feature of TRP channels is that they are
involved in the physiological sensing of the environment by vision, taste, olfaction, hearing, touch,
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chemicals, temperature and osmolarity. Their importance is demonstrated by the fact that mutations in at
least four TRP channels have been associated with diseases (TRPC6 in focal and segmental
glomerulosclerosis of the late-onset type; TRPM6 in hypomagnesemia with secondary hypocalcemia;
TRPP1 and TRPP2 in autosomal dominant polycystic kidney disease and TRPML1 in mucolipidosis type
V) and more are suggested (Venkatachalam and Montell, 2007).

TRP channels are mostly permeabl e to monovalent and divalent cations. Almost all TRP channels
(except TRPM4 and TRPM5) are permeable to calcium, an important second messenger in many cedllular
functions. TRP channdls modulate intracellular free calcium concentration either by acting as calcium entry
pathways, affecting membrane polarization and calcium entry mediated by other pathways or inducing
calcium release from intracel lular stores.

TRPAL. TRPA (transient receptor potential ankyrin) channels are a subfamily of the group 1
TRPs, which in humans and in mice consists of only one known variant, the TRPA1 channd (previoudy
ANKTM1) (Jaquemar et al., 1999). TRPAL is activated by severa structurally diverse compounds
including the pungent ingredient allyl isothiocyanate (AITC) present in wasabi, horseradish as well as
mustard oil, alicin and dialyl disulfide of garlic, cinnamaldehyde of cinnamon, eugenol from clove oil,
gingerol from ginger, tetrahydrocannabinol (the psychoactive component of marijuana), acrolein (present
in tear gas) and methyl salicylate in winter green oil (Bandell et al., 2004; Bautista et a., 2005; Bautista et
al., 2006; Jordt et al., 2004; Macpherson et a., 2005).

TRPAL1 is highly expressed in a subset of primary afferent somatosensory neurons of the dorsa
root, trigeminal and nodose ganglia, especially in small diameter neurons where it co-localizes with
markers of peptidergic nociceptors such as TRPV 1, calcitonin gene related peptide (CGRP) and substance
P (Bautista et al., 2005; Corey et al., 2004; Nagata et d., 2005; Story et d., 2003). In addition, TRPA1l is
expressed in several nonneuronal tissues including the urinary bladder and gastrointestinal tract (Andrade
et al., 2006; Penudas et al., 2007; Stokes et al., 2006).

Extracellular calcium enhances the current rate and magnitude of AITC induced currents (Jordt et
al., 2004). TRPA1 activation by highly reactive eectrophiles such as AITC is mediated by reversible
covalent modification of cysteine and lysine residues in the intracellular N-terminus of the channel
(Hinman et d., 2006; Macpherson et al., 2007) indicating that the activator compounds need to diffuse or
be transported insde the cell prior to activating TRPAL. In addition, TRPA1 may be indirectly activated
via receptor-mediated activation. For example, the inflammatory mediator bradykinin activates TRPA1
after bradykinin 2 (BK2) receptor binding coupled to phospholipase C activation (Bandell et al., 2004).
Furthermore, recent studies show that mere increases in the intracellular calcium concentration activate
TRPAL, yet the ECs required is rather high (905 nM) (Doerner et a., 2007; Zurborg et a., 2007)
indicating that any signal leading to robust increases in the intracellular calcium concentration might
activate TRPAL. This is of particular interest because many neurons coexpress TRPAL1 with TRPV1
channels and thus calcium influx after TRPV1 activation might also lead to downstream activation of
TRPAL. Since TRPAL channd activation itself increases intracellular calcium levels, a tight negative
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feedback isrequired to avoid cellular calcium overload (Doerner et a., 2007). Indeed, a calcium dependent
desingitization process has been proposed with calcium inducing fast channd closure (Nagata et d ., 2005).

TRPA1 has adso been implicated in the sensation of pain. As mentioned above, exogenous
irritants like AITC in mustard oil and acrolein in tear gas activate TRPAL1. More over, the topical
application of these substances induces sensory nerve fibre excitation and release of neuropeptides
(substance P and CGRP) and other neurotransmitters resulting in a robust hypersensitivity to therma and
mechanical stimuli. The endogenous inflammatory mediator bradykinin activates TRPA1 (Bandel et al.,
2004) as does endogenous proalgesic factor (4-hydroxy-2-nonenal, HNE) that is produced by reactive
oxygen species after tissue injury (Trevisani et al., 2007) and prostaglandin metabolites with electrophilic
carbon structure (Taylor-Clark et al., 2007). Furthermore, inflammation and nerve injury increase TRPA1
expression (Obata et al., 2005). Thus there is arobust body of evidence that TRPAL acts as a mediator of
noci ceptive inflammatory pathways and might be a target for the devel opment of novel analgesic and anti-
inflammatory medication.

TRPAL1 has been proposed to have arole in mechanosensation because of its multiple (14-18) N-
terminal ankyrin motif repeats (Figure 5) (Corey et al., 2004; Nagata et d., 2005). Expression of TRPAL at
the tips of the stereocilia in the hair cells of the inner ear suggested a role as the mechanically gated
auditory transduction channe which has not been identified so far (Corey et a., 2004). However, both
trpal null micelines have normal auditory responses (Bautista et al., 2006; Kwan et al., 2006).

TRPA1
it

Extracellular
Figure 5. TRPA1 channd is a nonsdlective cation channel
with seven transmembrane segments. It contains several
Intraceliular ankyrin domains in its N-terminus (black bars). P indicates
cation pore loop. TRPAL is activated by compounds in
wasabi, mustard oil, garlic, and ginger among others.
Modified from Venkatachalam and Montell, 2007.

et

M-term
C-term

Many TRP channdls are activated by temperature changes and thus participate in thermosensation.
Members of TRPV family have arolein detection of warm, hot or moderate temperatures whereas TRPM8
is activated by cool temperatures and menthol. TRPA1 was suggested to be activated by noxious cold
(17 °C) (Banddll et a., 2004; Story et al., 2003) yet thisissueis largely debated (Bautista et a., 2006; Jordt
et al., 2004; Nagata et al., 2005). However, nerve injury and inflammation upregulate TRPA1 expression
and contribute to cold hyperalgesia (Obata et al., 2005) and antisense knockout of TRPA1 aleviates cold
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hyperalgesia in a rat model (Katsura et a., 2006). Two different TRPA1 knock-out mouse lines with
different outcomes have been reported. One knock-out line showed no impairment in temperature
sensitivity (Bautista et al., 2006) in contrast to the other, which had a defect in paw withdrawal from a cold
surface (Kwan et al., 2006). The differences may be explained by dightly different testing procedures, the
inbred strain background of the mice lines or the differences in the production of a truncated TRPA1 which
might affect other channelsyet it seems that the possible role of TRPAL in the temperature sensation might
be very sensitive to confounding factors.

In the gastrointestinal tract, TRPA1 and its functions are so far unknown. A recent publication
reported that TRPAL activation induces contractions in the isolated mouse intestine, especialy in the
proximal and distal colon suggesting TRPA1 expression in the enteric nervous system and stimulation of
digestive processes (Penuelas et al., 2007). TRPA1 expression was aso demonstrated in the human
gastrointestinal mucosa (Stokes et al., 2006).



3 AIMSOF THE STUDY

The aim of this study was to investigate the release of gastrointestinal hormones in response to different
nutritional stimuli and to evaluate their effects on food intake and satiety. The following questions were
addressed:

Does duodena administration of red kidney bean lectin PHA affect gallbladder volume or CCK
release in humans? (Study 1)

[ Do otherwise similar oat bran beverages varying in fibre viscosity differ in their postprandial
gastrointestinal hormone responses or effects on satiety in humans? (Study 1)

Il Does alyl isothiocyanate, the active compound of the spice wasabi, activate TRPAL channelsin

neuroendocrine cellsand stimulate CCK release? (Study 111)

v Does PYY(3-36) affect food intake in colectomized rats (surgical knock-down model)? (Study
V)
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4 MATERIALSAND METHODS

4.1 HUMAN STUDIES

4.1.1 Ethical approval

Healthy volunteers participated in the studies. The experiments were approved by the Research
Ethics Committee, Hospital District of Northern Savo (II) and by the Ethics Committee of Basd,
Switzerland (1) and of the Universty of Kiel, Germany (l11) and were in accordance with the Helsinki
Declaration. Each subject provided their verbal and written informed consent before participation in the
study.

4.1.2 Intraduodenal PHA adminigtration (1)
4.1.2.1 Preparation of PHA

The complete mixture of PHA isolectins was purified by affinity chromatography with ovomucoid
as ligand glycoprotein immobilized on divinyl-sulfone-activated Sepharose 4B and duted using 150 mM
sodium tetraborate, pH 8.0 (Freier et a., 1985; Gabius, 1990; Rudiger, 1993). Qudity control of purity to
exclude presence of further proteins except for the lectin fraction was performed by one- and two-
dimensional gel electrophoresis, as described (Kohnke-Godt and Gabius, 1989), and activity measurements
were carried out by haemagglutination and solid-phase assays using (heo)glycoproteins exposing the
cognate complex-type N-glycans (Andre et a., 2004; Andre et a., 2006; Andre et al., 2007). Heat-
inactivated PHA was prepared by boiling at 100 °C for 20 min.

4.1.2.2 Sudy protocol

Five healthy mae volunteers (20-29 years) underwent four studies (iv. saline and id. PHA; iv.
salineand id. heat-inactivated PHA; iv. atropineand id. PHA; iv. dexloxiglumide and id. PHA) on different
days in randomized, single-blind, cross-over manner. Volunteers were taking no medication before the
study, and each subject was within 15% of his ideal body weight. Each subject had normal screening
physical examination and laboratory test results, including urine analysis, complete blood count, serum
chemistries, eectrocardiography, and abdomina ultrasonography. Subjects had no history of significant
illness or surgery. All studies were conducted in the morning after an overnight (12-hour) fast when an
intraduodenal tube was placed under fluoroscopic guidance. After a basal period (30 min) of saline
perfusion at a flow rate of 5 ml/min, PHA was perfused in increasing doses of 150 ng, 1.5 mg and 15 mg
for 30 min each at a constant flow rate of 5 ml/min. Saline or the specific CCK receptor antagonist
dexloxiglumide (Rotta Research Laboratories, Monza, Italy) (5 mg x kg* x h™) or the muscarinic
acetylcholine receptor antagonist atropine (Streuli Pharma, Uznach, Switzerland) (5 pg x kg* x h) were

infused intravenously from time -30 min to 90 min.
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Gallbladder contraction was assessed by high-resolution, rea-time sonography (ALOKA SSD650,
Soma Technology, Cheshire, CT, USA) using a 3.5-MHz probe on a sector scanner. Longitudinal
sonograms of the gallbladder were recorded every 10 minutes to calculate the volume based on dliptic
sections defined by two diameters (Beglinger et a., 1992). Gallbladder volumes were expressed as % of
basal gallbladder volume measured at -20 min. Mean gallbladder volume during each PHA dose was
calculated from the three measurement points during 30 minutes and used for statistical anaysis. Blood
was drawn for determination of plasma CCK concentrations at timepoints -20, -10, -5, 15, 25, 45, 55, 75
and 85 min. As a positive control a 50 ml bolus of a high caloric liquid meal (Ensure plus, Abbott, Abbott
Park, IL, USA) was perfused after the last dose of PHA.

4.1.3 Beverages with different viscosity (I1)
4.1.3.1 Subjects

Subject baseline characterigtics are given in table 2. At the beginning of the study, volunteers were
interviewed about their medical history, dietary habits and physical activity. Candidates with any food
intolerances or dlergies, smokers, who had modified their diet or exercise patterns during the past year to
lose weight or were on medication (except oral contraceptives) that would affect appetite were excluded. In
addition, al candidates filled in the questionnaires "Three-Factor Eating Questionnaire” (Stunkard and
Messick, 1985) and "Bulimic Investigatory Test, Edinbugh (BITE)" (Henderson and Freeman, 1987) to
exclude subjects with abnormal eating behaviour.

Table 2. Characteristics of the study subjectsin study II.

Value, mean + SEM Range

n (women / men) 20(16/4)
Age(y) 22.6+0.7 19-34
Weight (kg) 62.0+ 1.8 51.4-82.3
Body massindex (kg/m?) 21.6+0.3 18.9-235
Systolic blood pressure (mmHg) 1141+19 103.0-132.0
Diastolic blood pressure (mmHg) 68.4+ 15 56.0 - 84.0
Oral glucose tolerance test
Plasma glucose, 0 min (mmoal/L) 50£01 45-55
Plasma glucose, 120 min (mmol/L) 5.0+ 03 29-64
Three-Factor Eating Questionnaire

- factor 1 105+1.1 3-19

- factor 2 40+06 2-13

- factor 3 31+05 0-8
Bulimic Investigatory Test

-sympton subscale 26+£0.7 0-12

-severity subscale 0.7£0.2 0-3
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4.1.3.2 Test beverages

Two isoenergetic and isovolumic beverages that differed only in relation to viscosity were used as
test mealsin the study (see table 3). Viscosity of the low-viscous test beverage was eiminated by using 0.2
g of beta-glucanase enzyme (AB Enzymes GmbH, Darmgadt, Germany), which resulted in a marked
degradation of the beta-glucan molecules and didinctive distribution of molecular weight fractions
compared to the high-viscous test beverage (see table 4). The test beverages were prepared with
commercially available ingredients.

Table 3. Energy and macronutrient composition of the test beveragesin study I1.

Low-viscous High-viscous

Portion size (ml) 300" 300"
Energy (kJ/ kcal) 1250/ 300 1250/ 300
Energy density (kJ/ g) 4.17 4.17
Oat bran concentrate (g) 30 30
Carbohydrates (g / E %) 57.9/795 57.9/795
Total dietary fibre (g) 10.2 10.2

- insoluble dietary fibre () 5.1 5.1

- soluble dietary fibre (g) 5.1 5.1
Protein (g/ E %) 7.8/10.7 7.8/10.7
Fat (g/ E %) 3.3/9.8 3.3/9.8
T Ingested with 200 ml of water
# | ow-viscous oat bran, viscosity eliminated using beta-glucanase enzyme
Table 4. Chemical composition of the oat bran beveragesin study I1.

Low-viscous High-viscous

Molecular weight, MW
> 1000 000 (%) 5 50
1 000 000 - 100 000 (%) 10 35
< 100 000 (%) 85 15
Viscosity at 20min (mPas) <250 > 3000

4.1.3.3 Sudy design

The study was a single-blind, randomized, within-subject crossover design in which al

participants tested both beverages. The study visits were arranged > 2 days apart from each other. The

subjects were advised to maintain their habitual diet and exercise routines throughout the study. At each

study visit before the actual test the participants were weighed and their overall exercise and acohal

consumption of the previous day were checked by an interview. Heavy exercise was prohibited on the day

before the study visit, as was alcohol consumption for 2 days before and smoking in the morning of the test
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day. Subjects were requested to use acar or a bus on their way to the laboratory unit to avoid extra physical
stress. The use of paracetamol or any analgesic drugs containing paracetamol was forbidden during the
study.

At thefirst visit, al the subjects ingested a standard glucose load (75 g of glucose dissolved in 300
ml water, the oral glucose tolerance test, OGTT), to ascertain normal glucose tolerance. During the
subsequent two actual study visits, subjects ingested either a low-viscous oat bran beverage, or a high-
viscous oat bran beverage both containing 1500 mg paracetamol for gastric emptying assessment (Naslund
et al., 2000; Willems et al., 2001) along with 200 ml of water. The drinks were ingested within two minutes.
Three hours after administration of the test beverage an ad libitum meal was served which consisted of
vegetable soup, oat and rye bread, margarine, cheese, diced tomato and cucumber, noncaloric juice and tap
water.

Blood samples were drawn for the determination of plasma glucose, insulin, ghrdin, CCK, PYY
and GLP-1 and serum paracetamol concentrations through an indwelling cannula placed in the forearm
vein before and at 15, 30, 45, 60, 90, 120 and 180 min after ingestion of the test beverages. Tubes were
prechilled on ice. EDTA-tubes were used for ghrelin, CCK, PYY, GLP-1 and insulin, and centrifuged
within 15 minutes, for 15 minutes at 2800 rpm at +4°C and plasma immediately frozen. Fluoride citrate-
containing tubes were used for glucose samples and centrifuged for 10 minutes a 3300 rpm at + 4°C. All
samples were stored in -70 °C until analyzed.

The subjects rated their appetite sensations at the same time points immediately after the blood
samples were drawn. In addition, subjects rated the pleasantness of the test meal immediately before and
after ingestion of the test beverage. Corresponding measurements of appetite and pleasantness of the served

food components were also used after the ad libitum meal.

4.1.3.4 Subjective appetite measurements

Subjective sensations of appetite (hunger, satiety, desire to eat, fullness) and pleasantness were
evaluated using Visua Analogue Scales (VAS). Each VAS scale consisted of 100 mm horizonta line
verbally anchored at both ends (i.e. ‘| am not hungry at al’ or ‘I have never been hungrier’). The subjects
were instructed to draw a vertical line on the horizontal axis corresponding to their sensations that were
most appropriate at the time. Distances on the VAS were measured from the left boundary of the axisin

millimeters resulting in scores between 0-100.

4.1.3.5 Food intake
Study participants were advised to keep detailed scale-weighed 24-h food records throughout the
study to monitor their food intake. These included food records before each study day and half-day records
for the remaining day of each experiment to reflect the effects of each test meal on subsequent food intake
after the 3 hour study period. Food records were collected every subsequent study visit. The average daily
energy and macronutrient intake of the participants from the food records and from the ad libitum mea
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served after the test beverages were analyzed by using the MICRO-NUTRICA database (version 2.5;
Finnish Social Insurance Institution, Turku, Finland).

4.1.4 Human duodenal mucosa samples (111)
Duodenal mucosa for TRPAL mRNA expression studies was obtained from intestinal endoscopy
biopsies from pati ents undergoing routine diagnostic procedures for various clinical reasons. Samples were

snap frozen in liquid nitrogen and stored at - 70 °C.

4.2 ANIMAL EXPERIMENTS

4.2.1 Ethical approval
The experiments were approved by the Ingtitutional Animal Care and Use Committee of the
University of Kuopio and the Provincial Government. Animals were housed in 12 hour dark-light cycle at

the animal facility of the University of Kuopio.

4.2.2 Mouse duodenal samples (I11)
CD2 male mice were sacrificed by cervical didocation, proximal 5 cm of the duodenum dissected
and the mucosa scraped. The sample was snap frozen in liquid nitrogen and stored at -70 °C until mRNA

extraction.

4.2.3 Colectomized rats and PYY(3-36) infusion (V)
4.2.3.1. Colectomy

Adult male Wistar rats (300-395 g) were fasted for 24-36 h before surgery, during which time
their regular drinking water was replaced with water containing 5 % dextrose to reducethe hypermetabolic
effects associated with the prolonged postoperative fast required for anastomotic hedling. Animals were
anesthetized by intramuscular injection of a mixture of ketamine (75 mg/kg body weight) and xylazine
hydrochloride (10 mg/kg b.w.). After a 3-4 cm midline laparotomy, the caecum was removed from the
abdomen onto saline-soaked sterile gauze. Thetotal proctocol ectomy was performed by resecting the colon
ligating the mesentery with 4-0 silk (Ethicon, Cincinnati, OH, USA). The intestinal segment was excised
from 0.1 cm proximal to the ileocaecal junction. The rectum was resected at the level of the pelvic floor.
An iled Jpouch of 2 cm length was created by duplication of the distal end of the small intestine by
single-layer interrupted 6-0 prolene suture (Figure 6). The pouch ana anastomosis was performed by a
single layer interrupted 6-0 prolene suture. The sufficiency of the anastomosis was controlled by an
injection of 3-5 ml of 0.9 % saline through the anus. After surgery buprenorphine (0,05 mg/kg b.w. sc) was
given for two days as pain medication. The animals were allowed to recover from surgery for 2 weeks
before being subjected to experimental procedures.
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Figure 6. Surgical construction of ileal
J pouch after colectomy. Terminal
ileum is oversewn (1), incised along its
antimesenteric border and the two
limbs of the ileal loop are sutured
together to form a pouch with the J
configuration (2). An anastomosis is
performed between the distal end of the
pouch and the proxima end of the
recta stump (4). From Shebani et al.,
2002.

4.2.3.2 PYY administration

In total, 16 colectomized rats were adapted for 14 days, housed individualy and provided with
food and water ad libitum, before entering the study. Animals were randomized into two experimental
groups and Alzet® osmotic mini pumps (Model 2ML2, 14-day delivery; Durect Corp, Cupertino, CA, USA
ddivering 5 ul/hr) were implanted subcutaneously between the scapulae and the outlet catheter implanted
into the jugular vein. The control group of 7 animals received pumps loaded with phosphate-buffered
sdine (PBS) while in the test group of 9 animals pumps were filled with PYY (3-36) (Phoenix
Pharmaceuticals Inc, Belmont, CA, USA) dissolved in PBS delivering 175 ng/kg/day intravenously.

4.2.3.3 Measurement of food intake, body weight and plasma PYY levels

Blood samples were drawn in the fed state prior to colectomy and 7 days as well as 14 days after
the beginning of PBS or PY'Y (3-36) infusion for determination of PYY plasma levels. Blood samples were
collected using heparinized micro-pipettes, immediately placed on ice and centrifuged. Plasma was stored
at-70°C.

Food consumption and body weight was measured daily in the early light phase (8:00-9:00).
Cages were carefully monitored for evidence of food spillage or grinding, which was negligible.

4.3 CELL CULTURE

4.3.1 STC-1 cdl culture (I11)
STC-1 cells are derived from an intestinal endocrine tumor that occurred in a double-transgenic
mouse modd (Rindi et al., 1990). Cdls (passages 32-50) were cultured in DMEM (4.5 g D-glucose/liter)
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supplemented with horse serum (15 %), fetal bovine serum (2 %), antibiotics and L-glutamine and
maintained in 37 °C incubator (5 % CO,/ 95 % air).

4.3.2 CCK secretion (I11)

STC-1 cells were plated on 6-well plates and cultured for 4-5 days. Cells were washed once with
oxygenated HR-buffer (in mM: 130 NaCl, 5 KCl, 1.2 CaCl,, 1 NaH,PO,, 1.2 MgSO,, 10 HEPES, 6.7
glucose, 0.4 % bovine serum abumin, pH 7.4) and incubated for 20 minutes with buffer containing
stimulants (1 ml / well). Supernatants were collected, spinned to remove cell debris and stored at -20°C
until analyzed for CCK concentration.

4.4 ANALYTICAL METHODS

4.4.1 |solation of MRNA and RT-PCR (l11)

Total RNA was extracted using RNeasy Kit (Qiagen, Hilden, Germany). Genomic DNA was
digested by deoxyribonuclease | (Qiagen). Firg-strand cDNA was synthesized from 1 pg of mRNA by
using TagMan Reverse Transcriptase reagents (Applied Biosystems, Warrington, United Kingdom).

Trpal gene mRNA was amplified with the following primers: 5'-agtggcaatgtggagcaa-3' & 5-
tctgatecactttgegta-3'. PCR cocktail consisted of 2.5 pl 10 x PCR-buffer, 1.5 mM MgCl,, 250 uM dNTPs
(each), 2 units Dynazyme Il polymerase (Finnzymes, Finland), 0.5 UM sense and antisense primers and 5l
of the above described cDNA. The PCR profile performed was (35 cycles): 5 min at 95 °C, 30 sec at 48 °C,
30 sec at 72 °C, 30 sec at 94 °C, fina extension 5 min a 72°C. PCR products were separated on 2 %
agarose ge, purified (Qiagen, Hilden, Germany) and sequenced (AIVI sequencing service,
http://www.uku.fi/aivi/services/sequencing/index.shtml).

4.4.2 Quantitative fluorescence imaging (I11)

Coverdips with STC-1 cells were loaded with 4 uM fura-2-acetoxymethyl ester (fura-2-AM) in a
buffer (inmM: 137 NaCl, 5 KClI, 1 MgCl,, 1 CaCl,, 10 glucose and 20 HEPES, pH 7.4) for 60 min in room
temperature. Cells were rinsed with fura-2-AM free medium, placed on the bottom of an RC24-fast
exchange chamber (Warner Ingruments Inc.) and positioned on top of the microscope. For fura-2
excitation, cells were illuminated with two alternating wavelengths 340 and 380 nm through a dichroic
mirror (DM430, Nikon) using a Polychrome IV monochromator (TILL Photonics GmbH, Gréafefing,
Germany). The emission was guided through a 510 nm cut off filter then captured by a cooled 12-bit
IMAGO CCD camera and digitized by a computer running the TILLviSION Multi-Color Ratio Imaging
System (TILL Photonics GmbH, Gréfelfing, Germany). Ratio images were collected and saved for later
analysis. Fuorescence from 340 and 380 nm exposures were imported into the Microcal Software
programme (Northampton, MA, USA), and given as absolute intracellular calcium levels [Ca?]; or as
changesin [C&"]; levels (D[Ca®"]).
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4.4.3 Peptide analysis
4.4.3.1 CCK measurement (1, 11, 111)

In studies | and |1, measurement of plasma CCK levels was performed after sample extraction in
C-18 columns (Sep-Pak cartridges, WAT051910, Waters Corporation, Milford, MA, USA). Briefly,
columns were activated with 10 ml of 100 % acetonitrile and 10 ml of 100 % methanol and washed with 10
ml of 1% trifluoroacetic acid (TFA). 1 ml (in study I) or 0.9 ml (in study I1) of plasma was acidified with
an equa volume of 1 % TFA, applied to columns and washed with 10 ml of 1 % TFA. Sample was e uted
with 2 ml of 80 % acetonitrile in 1 % TFA, evaporated in SpeedVac concentrator for 3 hours in ambient
temperature, frozen and lyophilized. Sample extraction was not performed for cell culture supernatantsin
study 1.

CCK was determined by a radioimmunoassay (EuriaaCCK, Euro-Diagnostica, Malmé, Sweden).
The antibody recognizes CCK 26-33 sulphate (100 %) and CCK-33 sulphate (134 %), but does not
significantly cross react with gastrin-17 sulphate (0.5 %) or with non-sulphated gastrin-17 (< 0.01 %). The
inter-assay CV was 22.1 % at 0.55 pmoal/l and 13.0 % at 3.3 pmol/l. The intra-assay CV was 5.5 % at 4.4
pmol/l and 2 % at 20.6 pmol/I.

4.4.3.2 PYY measurement (11, 1V)

In study Il, total plasma PY'Y was measured with a radioimmunoassay that detects both PY'Y (1-
36) and PY Y (3-36) (Linco Research Inc., USA). In these experiments, the intra-assay CV was 11.0 % at 62
pa/ml and 8.0 % at 212 pg/ml.

Rat plasma (IV) was analysed using an enzyme immunoassay for PYY(3-36) (Phoenix
Pharmaceuticals Inc, Belmont, CA). The assay recognizes PYY(1-36) and PYY (3-36). The intra-assay
variability was < 5% and inter-assay variability < 14%.

4.4.3.3 GLP-1 measurement (11)

Plasma GLP-1 was measured using a radioimmunoassay (Linco Research Inc., USA). The assay
measures the active GLP-1, that is both GLP-1(7-36)amide and GLP-1(7-37). The intra-assay CV was
20.6 % and 14.2 % at 8.1 pmol/L and 42.0 pmal/l, respectively.

4.4.3.4 Ghrelin measurement (I1)

A radioimmunoassay method was used for the analysis of total plasma ghrelin, that is active
octanoyl and inactive des-octanoyl ghrelin (Linco Research Inc., USA). Here, the intraassay CV was
9.5 % and 8.2 % at 506 pg/ml and 1220 pg/ml, respectively.

4.4.3.5 Glucose, insulin and serum paracetamol measurement (I1)
Plasma glucose was analyzed using an enzymatic photometric assay (Konelab 20XTi Clinica
Chemistry Analyzer, Thermo Electron Corp, Vantaa, Finland) and plasma insulin usng a luminometric
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immunoassay (ADVIA Centaur Immunoassay System, Siemens Medical Solutions Diagnostics, Tarrytown,
NY, USA). Serum paracetamol concentration was measured with a fluorescence polarization immunoassay
(FPIA) (Abbott, Abbott Park, IL, USA).

4.5 STATISTICAL ANALYSIS

GraphPad Software (GraphPad Software Inc., San Diego, USA) and SPSS for Windows (SPSS
version 14.0, Chicago, IL, USA) were used for statistica analysis. Statistical comparisons were performed
using analysis of variance (ANOVA) with Tukey's Multiple Comparison Test, student t-test, paired t-test
and mixed modd s analysis of repeated measures when appropriate. Results are expressed as mean + SEM
unless otherwise stated. In study 1, repeated measures ANOVA with product and time as within-subject
factors and Huynh-Feldt, as a correction factor was used to compare the responses after different test
beverages by testing for the main effects and product x time interactions. Where a significant interaction or
main effect was observed, a post-hoc andysis was performed usng a Sidak correction for multiple

comparisons.



SRESULTS

5.1 EFFECTS OF DIETARY PHA ON GALLBLADDER CONTRACTION AND PLASMA CCK
LEVELSIN HUMANS

Red kidney bean lectin phytohaemagglutinin (PHA) has been shown to have mitogenic effects on
the gastrointestinal tract and stimulate CCK secretion in rats but the effects in humans are not known. PHA
was administered intraduodenally to fasted human volunteers in increasing doses (150 ng, 1.5 mg, 15 mg)
and gallbladder volume and plasma CCK levels were analysed.

5.1.1 PHA induced gallbladder contraction

The duodena administration of increasing doses of PHA stimulated gallbladder contraction in a
dose-dependent fashion, starting with the lowest dose (150 pg / 30 min). Ultrasonographic measurements
demonstrated that the gallbladder contracted: Mean gallbladder volume during the first 30 min of PHA
infusion was 83.0 + 5.8 % of the basal volume (p < 0.001) and reached 65.3 £ 9.4 % (p < 0,001) with the
highest dose. In contrast to native PHA, heat-inactivated PHA at any concentration did not induce
gallbladder contraction (mean gallbladder volume during the last 30 min of the experiment was 109.2 +
7.0 % of basal, p > 0.05, not significant).

In order to investigate the possible mechanisms by which PHA induces gallbladder contractions,
two distinct antagonists were used. Blocking CCK; receptors with dexloxiglumide when PHA was
simultaneoudly infused into the duodenum increased gallbladder volumes over time (208.7 + 23.7 % of
basal volume at the end of the experiment, p < 0.001). In addition, the muscarinic receptor antagonist
atropine completely inhibited PHA induced gallbladder contraction (104.0 + 7.0 % of basal volume at the
end of the experiment with the highest PHA dose, p > 0.05, not significantly different from baseline).

5.1.2 Effect of PHA on plasma CCK levels

Basal plasma CCK levels were approximately 3 pmol/l and were not increased even with the
highest dose of native PHA. Furthermore, neither dexloxiglumide, infused simultaneoudy with
intraduodenal PHA, nor heat-inactivated PHA caused any effect on plasma CCK levels. In contrast, a high
caloric liquid meal, used as a positive control, stimulated gallbladder contraction and increased plasma
CCK concentrationsto atypical postprandial range of approximately 10 pmol/I.

52 EFFECTS OF FIBRE VISCOSITY ON GASTROINTESTINAL PEPTIDE RELEASE AND
APPETITE

Fibres positively affect glucose and insulin metabolism by producing lower postprandia increases
of both parameters. This has been shown to depend on the viscosity of the fibre. The effects of fibre
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viscosity on postprandial gastrointestinad hormone secretion were studied in healthy humans after ingestion
of beverages with soluble oat bran fibre, with or without beta-glucanase treatment to reduce viscosity.

5.2.1 Postprandial glucose and insulin levels

Both oat bran beverages increased plasma glucose and insulin concentration compared to fasting
levels. Plasma glucose and insulin responses were significantly attenuated after the high-viscous beverage
as compared to the low-viscous one (product x time interaction p < 0.001 and p = 0.008 for glucose and
insulin, respectively).

5.2.2 Postprandial gastrointestinal hormone responses

Plasma ghrelin levels were decreased after both beverages. The decrease was more pronounced
after the low-viscous beverage compared to the high-viscous one (product x time p = 0.009). The low-
viscous beverage elevated plasma CCK, PYY and GLP-1 levels more than the high-viscous beverage. The
product x time interaction was statistically significant for CCK (product x time p = 0.035) and GLP-1 (p =
0.037) and almost reached significance also in case of PYY (product x time p = 0.051). The effect of
product was significant in all the cases (p < 0.05).

5.2.3 Gagtric emptying

Gastric emptying, as measured by increasing plasma paracetamol concentrations, was faster after
the low-viscous beverage consumption than after the high-viscous one (product x time interaction p =
0.034).

5.2.4 Satiety ratings and food intake

The fasting values of the subjective ratings of appetite (hunger, satiety, desire to eat, fullness)
showed no significant differences before the ingestion of the test beverages. During the three-hour
observation period after the test beverages, the low-viscous beverage produced greater satiety ratings than
the high-viscous one (product p = 0.048). A similar trend was observed in the fedling of fullness, yet this
did not reach datistical significance (product p = 0.069). Other parameters did not significantly differ
between the treatments.

The energy, macronutrient or dietary fibre consumption on the day preceeding each test day was
recorded by food diary and did not differ from the test days. Food intake during the ad libitumlunch served
three hours after the test beverages was not different between the trestments. Energy consumption during
the test day (ad libitum lunch and the rest of the day combined) as analyzed by the food diary was
significantly higher after the low-viscous (2005 + 154 kcal) than after the high-viscous beverage (1731 +
113 kcal) (p = 0.026). Macronutrient intake for the rest of the test day was not affected by the tested
beverages.
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5.3 EFFECTS OF TRPA1 CHANNEL ACTIVATION ON CCK RELEASE

TRPA1 channds have been described in sensory neurons and are activated by multiple plant
derived pungent ingredients including allyl isothiocyanate derived from both wasabi and mustard oil. We
hypothesized that these ingredients act on TRPA1 channels in the gastrointestina enteroendocrine cells and
stimulate peptide release. As an established model to study the peptide release we utilized the mouse
intestinal neuroendocrine cell line STC-1, which is known to secrete CCK, GLP-1 and GIP (Abdllo et al.,
1994; Glassmeier et al., 1998; Kieffer et a., 1995).

5.3.1 Trpal gene expression in the mammalian gastrointestinal tract
Trpal gene mMRNA was detected in native mouse duodenal mucosa, in the mouse intestinal
neuroendocrine cell line STC-1 and in human duodenal mucosa biopsies by RT-PCR. The PCR product

sequence was confirmed by sequencing.

5.3.2 Intracellular calciumlevels and CCK release

The stimulation of STC-1 cells with 100 uM TRPA1 agonist AITC sgnificantly increased CCK
secretion by 6.7-fold compared to basal levels (p < 0.001). This stimulation was completely blocked by
preincubation with 10 uM TRPA1 antagonist ruthenium red (RR).

Since TRPA1 channels are nonsdective cation channels permesble to calcium, an important
second messenger in exocytosis, the effect of AITC on intracelular calcium levels was investigated. 100
UM AITC caused a significant increase in the intracellular free calcium concentration ([Ca®'];). Therisein
[Ca?*]; was blocked by 1uM RR (p < 0.001).

5.3.3 The effects of extracellular calcium and blockade of L-type calcium channels on TRPAL mediated
CCK release

To evaluate the contribution of extracdlular calcium on AITC gimulated CCK reease,
extracellular calcium was chelated by 2 mM EGTA. In the presence of EGTA, AITC did not stimulate
CCK rdease thus indicating that AITC induced CCK release is dependent on the influx of extracellular
calcium.

Activation of L-type calcium channels by the depolarization of the membrane potential has
previoudy been shown to beinvolved in CCK release from STC-1 cells. STC-1 cells were stimulated with
100 puM AITC in the presence of L-type voltage gated calcium channel blocker 10 uM nifedipine or 5 uM
nimodipine. AITC simulated CCK release was reduced by 36 % in the presence of the nifedipine or
nimodipine (p < 0.001) suggesting that the main drive for calcium influx and CCK release in response to
AITC ismediated via TRPA1 channels.
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5.4 THE EFFECT OF PYY(3-36) ON FOOD INTAKE AND BODY WEIGHT IN COLECTOMIZED
RATS

PYY (3-36) has been suggested to inhibit food intake in both rodents and humans. Mast of the
circulating PYY isreleased from L-cellsin the distal small intestine and colon. Therefore, total colectomy
was performed in adult ratsin order to create a surgical knock-out model of PY'Y . After a 2-week recovery
period, PYY(3-36) or saline was continuously infused intravenously to colectomized animals, with food
intake and body weight monitored for two weeks.

5.4.1 Food intake and body weight after PYY(3-36) infusion in colectomized rats

PYY (3-36) did not affect food intake (mean daily food intake 26.22 + 1.35 g) compared to saline
treated control animals (25.63 + 1.04 g) at any time point during the 14 days experimental period. The
weight increases were calculated by subtracting the weight of the rats on thefirgs day of the study from the
weight on each subsequent day. Daily body weight gain was not statistically significant between PY'Y(3-
36) (mean 4.68 £ 0.35 g) and saline (5.61 + 0.48 g) treated animals at any time point during the experiment.

5.4.2 Plasma PYY concentrations

Plasma PYY concentrations before colectomy were similar between the two groups (279.3 + 60.8
pM in controls; 271.9 + 17.8 pM in PY'Y (3-36)-infused animals). In the control group with saline infusion,
PYY plasma concentration surprisingly increased from the preoperative basal concentration of 279.3
60.8 pM to 480.3 + 80.1 pM after 7 days of PBS infusion (p < 0.0001). 14 days after the beginning of the
saline infusion, the plasma PYY levels were reduced compared to the value recorded at 7 days (480.3 +
80.1 pM vs. 355.8 + 54.4 pM, p < 0.01). However, significantly elevated levels compared to basal
preoperative concentration were still observed (279.3 + 60.8 pM vs. 355.8 £ 54.4 pM; p < 0.05).

In PYY (3-36) infused animals plasma PYY increased from preoperative concentration of 271.9 +
17.9 pM to 812.6 + 107.3 pM after 7 days of PYY (3-36) infusion (p < 0.0001) and stayed elevated at the
same level until the end of the experiment (821 + 117.7 pM after 14 days infusion, p < 0.0001 compared to
preoperative aswell as p > 0.05 compared to 7 days infusion).
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6 DISCUSSION

Nutrients and food components in our meals trigger an array of signals in the body regulating the
maintenance of energy homeostasis. Nutrients from the ingested food are in direct contact with gut
epithelial cells and are therefore able to modulate peptide secretion from enteroendocrine cells which in
turn activate neural pathways or modulate the functions of other peripheral organs or the CNS via
circulation. In the studies detailed here, some of the food components and properties were investigated in
terms of ther ability to influence gastrointestinal peptide secretion that ultimately affect digestive

processes and food intake.

6.1 RED KIDNEY BEAN LECTIN PHA CONTRACTS THE GALLBLADDER IN HUMANS

Many plant products that are part of our daily nutrition are rich sources of lectins, proteinsthat are
capable of binding to carbohydrate moieties on other molecules. Lectins are especially enriched in seeds,
beans, peas, peanuts, lentils, soybean, whesat and rice and tubors (e.g. potatoes). Previoudy, it has been
shown that several plant lectins induce mitogenic effects on pancreas and intestinal epithelial cells and
increase plasma CCK levelsin animals.

This study shows for the first time that intraduodenal administration of lectin PHA from red
kidney beans induces gallbladder contractionsin humans. However, in contrast to animal sudies (Herzig et
al., 1997), no measurable changes in the peripheral plasma CCK levels could be detected in humansin the
dosages used. PHA stimulated gallbladder contraction was blocked by both the specific CCK; receptor
antagonist dexloxiglumide and the muscarinic cholinergic antagonist atropine.

Gallbladder contraction during the cephalic and gadtric phase of digestion is mediated via the
cholinergic fibres of the vagus nerve (Hopman et a., 1987), yet the highest rate of postprandial gallbladder
emptying correlates with the intestinal phase of digestion and elevated peripheral plasma CCK levels. Medl
induced gallbladder contraction can be partialy but not completely blocked by atropine (Beglinger et a.,
1992; Hopman et a., 1990; Nelson et al., 1996) indicating that, in addition to CCK; receptors, the
cholinergic nervous system is involved in the mediation of gallbladder contraction. Blocking the
muscarinic cholinergic receptors by atropine totally abolished the PHA induced gdlbladder contraction,
thus suggesting that cholinergic nerves are centrally involved in the mechanism.

CCK receptor antagonists have been shown to increase plasma CCK levels in the stimulated state
(Degen et d., 2007; Hildebrand et d., 1990; Schmidt et a., 1991). Elevation of plasma CCK levels during
CCK; receptor antagonist infusion has been suggested to block the autoregulatory negative feedback
mechanisms on |-cells during stimulated CCK release. In our study, PHA did not increase plasma CCK
levels nor did the concomitant infusion of dexloxiglumide with PHA, suggesting that PHA did not
establish a stimulatory state in 1-cdlls. The réliability of the plasma CCK measurement technique was
confirmed by the detection of significantly elevated CCK levels after liquid nutrient meal administration.
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Dexloxiglumide is a potent and selective CCK; receptor antagonist and thus an effective inhibitor
of CCK mediated gallbladder contraction. In fact, intravenous dexloxiglumide increases the volume of the
gallbladder in the fasted state (Hildebrand et a., 1990; Liddle et al., 1989; Meyer et a., 1989; Niederau et
al., 1989). PHA administered simultaneously with dexloxiglumide infusion was no longer able to induce
gallbladder contraction. Instead, a maximal increase to 208 % of the basal volume was observed at the end
of the experiment. Therefore, our data suggests that PHA might release CCK which could locally activate
the CCK; receptors on duodena vagal afferents within the lamina propria of the intestinal wall or on
enteric neurons generating entero-cholecystic reflexes (Balemba et al., 2004). Alternatively, PHA might act
directly on CCK receptors.

In rats, dietsrich in PHA induce the growth of the pancreas and increase plasma CCK levels. The
growth promoting effect of PHA on the pancreas is mediated via CCK (Herzig et d., 1997), whereas the
stimulation of intestinal hyperplastic growth is probably due to the strong binding of PHA to the brush
border membranes (Bardocz et a., 1995) and a direct effect (Otte et al., 2001). It appears that PHA induces
growth and functional maturation of the gastrointestinal tract in suckling rats, and this has been shown to
be dependent on enteral exposure to PHA, since the parenterally administered compound was without
effects on theintestinal organs (Linderoth et al., 2005; Linderoth et al., 2006a; Linderoth et al., 2006b).

The growth-promoting effects of lectins have raised the question whether these plant proteins are
beneficial for patients receiving total parenteral nutrition (TPN). Gastrointestinal atrophy during TPN leads
to malabsorption and the atrophic epithelial layer predisposes to the penetration of intestind bacteria into
the circulation. The intragastric administration of lectins was able to prevent atrophy in rats fed by TPN,
with PHA being most effective in the gastric fundus and in the proximal and mid small intestine (Jordinson
et al., 1999).

TPN is one of the risk factors for gallstone formation, possibly because of decreased gallbladder
emptying frequencies. Intravenous administration of CCK (Sitzmann et al., 1990) or amino acids (Wu et al.,
2000) has been proposed to prevent the formation of gallbladder sludge in adult TPN fed patients,
suggesting that a trestment enhancing gallbladder contractions would be beneficial for these patients. We
have shown for the first time in the present study that adminigtration of the lectin PHA stimulates
gallbladder contraction in healthy humans. Therefore, it would be of utmost interest to evaluate the effects
of PHA administration on sludge or gallstone formation in TPN patients or patients with short bowel
syndrome (Manji et a., 1989). Interestingly, recent studies proposed that frequent consumption of nuts,
which are known to be rich in lectins (Lotan et al., 1975), is correlated with lower incidence of gallstones
in a healthy population (Tsai et a., 2004a; Tsai et al., 2004b). Some concerns may rise because extensive
amounts of raw red kidney beans cause diarrhea due to lectin PHA. However, toxicity is dependent on the
dosage and purity of the PHA preparation used and therefore the adverse effects (e.g. weight loss or
intestinal degeneration) demonstrated by some animal studies could be avoided.
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6.2 FIBRE VISCOSITY AFFECTS POSTPRANDIAL GASTROINTESTINAL PEPTIDE RESPONSES

Fibre rich diets have many beneficia health effects on the human body. These include the
lowering of serum cholesterol levels, glucose and insulin responses as well as improving laxation. Diet
procured fibres have also been connected with increased satiety and considered beneficial in weight control,
although clear data on thisissue is lacking (van Dam and Seidell, 2007). Meal components may modulate
satiety and food intake by differentialy affecting the postprandial secretion of gastrointestinal peptides, but
the effects of fibre viscosity on these responses have not been evaluated before.

The present study demonstrates that the viscosity of an oat bran beverage strongly modifies the
short-term postprandial responses, as seen as delayed gastric emptying and attenuated postprandial
metabolic and hormonal responses compared to an otherwise identical but low-viscous test product. Our
study confirms the previous results showing that glucose and insulin lowering effects of soluble viscous
fibres are dependent on the viscosity of the meal (Jenkins et a., 1978; Leclere et a., 1994; Panahi et al.,
2007; Wood et a., 1994). The beverage with high-viscous oat bran caused a sgnificantly lower increasein
postprandial glucose and insulin levels compared to the low-viscous counterpart drink. Furthermore, the
second phase of the glucose curve (i.e. the suppression of glucose levels below the fasting values after 60
minutes), was less pronounced after the high-viscous than after the low-viscous beverage consumption.
This may indicate delayed gastric emptying and absorption of glucose from the intestine after the high-
viscous drink. However, here, we cannot evaluate whether the beneficial effects of fibre on postprandial
glycemia were totally abolished after the reduction of viscosity because our study did not include a control
beverage without fibre.

Interestingly, the low-viscous oat bran beverage evoked significantly higher postprandial CCK,
PYY and GLP-1 responses compared to the high-viscous one. In addition, the low-viscous fibre beverage
induced a more pronounced reduction of postprandia ghrdin levels compared to the high-viscous fibre.
The reason for the attenuated peptide responses after the high-viscous beverage might be that the viscosity
of the beverage may prevent the close interaction between the nutrients and gastrointestinal mucosa,
required for efficient stimulation of enteroendocrine cells and peptide release. Furthermore, digestive
processes such as the cleavage of triglycerides to free fatty acids and the stimulation of CCK, PYY and
GLP-1 release may have been hindered by viscosity and thus contribute to the markedly lower peptide
levels (Isaksson et al., 1982).

Interactions between the gastrointestinal peptides might modulate the secretion of each other.
Exogenous (Brennan et a., 2007) and endogenous (Degen et a., 2007) CCK suppresses ghrelin
concentration and increases plasma PYY concentration. In addition, intravenous PYY administration
suppresses ghrelin secretion (Batterham et al., 2003). These al are in accordance with our observations
after the low-viscous fibre beverage. Insulin has been suggested to mediate the suppression of plasma
ghrein levels in normal subjects and in type 1 diabetic patients (Murdolo et a., 2003), although this has
not been the case in patients with metabolic syndrome (Heinonen et al., 2007). In our study, the low-

viscous beverage consumption caused a more pronounced stimulation of insulin secretion and reduction of
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ghrein levels than the high-viscous drink. Additional factors have been implicated in the suppression of
ghrelin secretion. The low-viscous beverage evoked higher GLP-1 responses. An inverse correlation has
been suggested between plasma ghrelin levels and GLP-1 or GLP-1 receptor agonists (Djurhuus et a.,
2002; Hagemann et al., 2007; Perez-Tilve et a., 2007).

In contrast to expectations, but in accordance with the postprandial peptide responses, the feeling
of fullness and satiety evaluated by visual anaogue scales was higher after the low-viscous than after the
high-viscous beverage. However, no difference between the treatments was observed in the fedling of
hunger or in food intake during the ad libitum lunch served three hours after the test beverages in spite of
the significant increase in circulating satiety hormones recorded after the low-viscous beverage. This may
be due to the fact that at three hours most of the differences in peptide responses were attenuated. In
addition, other factors cannot be excluded such as a free lunch, which might have encouraged the subjects
to consume the habitual amount of food regardless of the actual needs. Interestingly, later during the test
day, subjects reported sightly higher energy consumption after the low-viscous than after the high-viscous
beverage. Thisleaves us to speculate whether the high-viscous beverage might have evoked delayed effects
on satiety. We did not obtain plasma levels from those time points.

The overall gastric emptying rate after the consumption of the high-viscous beverage was
significantly slower compared to the low-viscous one, as has been suggested before for viscous fibres
(Marciani et al., 2000; Marciani et al., 2001). Postprandial CCK, GLP-1 and PYY are known to decrease
the gastric emptying rate, yet, despite the more pronounced peptide responses after the low-viscous fibre
meal gastric emptying was faster compared to the high-viscous fibre meal. Thus, the viscosity of the fibre
seems to be a more powerful regulator of gastric emptying than postprandial peptide responses.

Our study has certain limitations. We did not include a test beverage with the same macronutrient
composition but without any fibres and therefore can not eval uate the effects of the low-viscous oat bran on
glucose and insulin responses or on gastrointestinal peptides. Furthermore, the gender distribution of the
subjectsis biased towards women because of the difficulty to recruit male volunteers. All the subjects were
served the same test meal with the same energy content which may not correspond to egual proportions of
their total daily energy requirements.

The current daily dietary reference intake value for fibre is 14 g /1000 calories based on the
amount required for risk reduction of coronary heart disease. This means that adequate intake is reached
with approximately 25 g total fibre per day in adult women and 38 g per day in men, yet currently the
averageintake is only about half of thisrecommendation (Food and Nutrition Board, Institute of Medicine.
Dietary, functional and total fibre: dietary reference intakes for energy, carbohydrate, fibre, fat, fatty acids,
cholesterol, protein, and amino acids. Washington, DC: National Academy Press, 2002
http://www.nap.edu/openbook.php?ecord_id=10490& page=R1. February 2008). Therefore, thereis aneed
to incorporate higher amounts of fibre in the food productsin the future. This might be challenging because
adding fibre also alters the textua properties of the food and this might affect palatability. Reducing the
viscosity of the fibre might alleviate this problem, but as this and other studies have shown, reducing
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viscosity significantly aters the physiological effects evoked by dietary fibres. Therefore, the effects of
fibre viscosity on glycemia but also on other measures like satiety and food intake require more careful
investigation in order to achieve better knowledge about the optimal intake and health effects.

6.3 THE PUNGENT INGREDIENT OF WASABI STIMULATES CCK SECRETION VIA ACTIVATON
OF TRPA1 CHANNELS

Spices give flavour to foods and drinks but may also affect metabolism, for example, by activating
thermogenesis or by stimulating digestive processes (Westerterp-Plantenga et a., 2006). Many plant
derived pungent ingredients, including allyl isothiocyanate in wasabi and mustard oil, are known to
activate TRPA1 channels. This study shows that TPRA1 channels, which have been previoudy mainly
described in sensory neurons, are also expressed in gastrointestinal tract in humansand in mice.

Furthermore, TRPA1 channd, activated by compounds in ingested food, might also be involved
in the neuroendocrine cell signalling and participate in the secretion of gastrointestinal peptides. The mouse
neuroendocrine intestinal cell line STC-1 which is known to secrete several gastrointestinal peptides (CCK,
GLP-1 and GIP) has been widely used as a modd to study the mechanisms of peptide secretion
(Glassmeier et ., 1998, McLaughlin et al., 1998). STC-1 cells were shown to endogenously express
TRPAL. Activation of TRPA1 channels with AITC showed a robust stimulation of CCK release, which
was mediated via extracellular calcium influx. Other pungent ingredients, in addition to AITC in wasabi
and mugtard ail, activate TRPA1 channels. These include allicin (derived from garlic), cinnamal delyde (of
cinnamon), gingerol (of ginger) and eugenal (of clove ail). Thus a wide range of spices could stimulate
CCK secretion viaactivation of TRPA1 channdls.

Recently, also also other reports have shown that TRPAL is present in the mouse and human
gastrointestinal tracts (Penuelas et al., 2007, Stokes et a., 2006). Penuelas and coworkers found that
stimulation of TRPAL channds induced the contraction of the small intestine and colon. In summary,
spices via TRPA1 activation and stimulation of CCK secretion might facilitate digestive processes. In the
future these findings, so far demondrated in vitro systems, need to be confirmed in vivo before further
conclusions can be drawn. Furthermore, as CCK is known to induce satiation, it would be interesting to

study the effects of these spices on food intake.

6.4 PYY(3-36) DOES NOT AFFECT FOOD INTAKE IN COLECTOMIZED RATS

Recently, gastrointestinal hormones have received new attention in the light of the obesity crisis
and the newly rediscovered connections between the peripheral body and the CNS in the regulation of food
intake. One of the most discussed peptides during the past years has been PYY after the report of
Batterham and coworkers in 2002 showing that PYY, the hormone released from the digta intestine and
colon, reduces food intake in humans and in rodents (Batterham et al., 2002). However, many laboratories
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were unabl e to reproduce their results (Tschop et d., 2004). In addition, the doses used have been criticized
as unphysiologically high and causing side effects like nausea (Degen et a., 2005). Therefore, we
attempted to approach the problem by creating a surgical knock-out modd of PYY by performing atotal
colectomy in rats thus removing the mgjor organ responsible for PY'Y production in the body. After a 2-
week recovery period the rats were implanted with minipumps continuously delivering PYY (3-36) or
saline intravenously. However, to our surprise, plasma PYY levels were not reduced at seven days after
pump implantation (i.e. 21 days after surgery) in the control group with saine infusion, but were
significantly increased compared to presurgery levels. The PYY levels were reduced after 14 days on
salineinfusion but still remained significantly elevated compared to the preoperational levels.

Indeed, other studies have found elevated PY'Y levels after colectomy. Abdominal colectomy and
ileorectostomy increased basa PYY levels in rats and tissue levels of PYY were higher after colectomy
(Vukasin et a., 1992). Additionally, total proctocolectomy and ilea J-pouch increased PYY levelsin dogs
one year after the surgery (Armstrong et al., 1991), and the number and density of L-cells was increased in
the ileal pouch (Imamura et al., 1999). This increase might be due to the fact that ileal and rectal mucosa
remaining after colectomy still contain sufficient amounts of PY'Y secreting cells to compensate for the
loss. After colectomy villus length and density increased proximal to the pouch (Willis et d., 2002). This
increases the amount of PY'Y producing cells (Imamura et d., 1999) and therefore might contribute to the
elevated systemic PYY levels after colectomy. In contrast, in humans basal PYY levels were decreased
after colectomy and ileal J-pouch and anastomosis (Ternent et al., 1998) or remained the same (van Battum
et al., 1999). However, in both studies the meal-stimulated PY'Y release was significantly decreased. The
elevated PYY levels observed in our study might have been caused by possible inflammation of the
mucosa after surgery. In addition, a small remaining part (1 cm) of rectum could not be surgically removed
due to technicd reasons (very small lower pdvis) and the remaining PYY cells might have contributed to
the PY'Y production after colectomy.

In spite of the increased PYY levels after colectomy in our study, the colectomized rats with
PYY (3-36) infusion had Hill significantly higher PYY plasma levels compared to the control group with
salineinfusion at 7 and 14 days after the start of the infusion. Y et, no differences in the food intake or body
weight were observed between the groups. Colectomy caused a drop in the body weight of the animals, but
before the beginning of the study they had already recovered, as demonstrated by the normal daily food
intake and weight gain. In addition, the rats were adapted to handling, thus eliminating the possibility that
stress would have hampered the effects of PY'Y on food intake as suggested by some studies (Abbott et al .,
2006; Halatchev et a., 2004).

In our study, the total PYY plasma level of the PY'Y(3-36) group was 1.7 and 2.3 times higher
than that of the control group at the 7 day and 14 day timepoints, respectively. This difference was not
effective enough to produce a difference in the food intake or body weight gain. In one human study, a
large lunch of 1500 kcal caused approximately a 1.5 fold increase in plasma PY'Y concentration compared
to fasting levels (Degen et al., 2005), and the lowest dose of administered PY'Y (3-36) that was effectivein
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reducing calorie intake (0.4 pmol/kg/min) caused approximately a 2.7 fold increase in the fasting state
plasmaPYY levels.

Some studies, in which robust anorexic effects of PY'Y(3-36) on food intake have been observed,
have reported significantly higher differences between the plasma levels of controls and treated subjects.
For example, a 200-fold difference in plasma PYY (3-36) levels between PYY(3-36) infused rats and
controls was measured after 3 hours fasting in diet-induced obesity prone rats (approximately 500 g b.w.)
after two weeks continuous infusion of PY'Y (3-36) with a dose of 200 pg/kg/day causing a 13 % drop in
food intake and a 3.2 % decrease in body weight gain (Roth et al., 2007). Thus, it remains possible that one
of the reasons why we could not detect any difference in the food intake of PY'Y (3-36) infused and control
rats could be that the required pharmacological increasesin PY'Y levels were not achieved.

However, the interest in the use of PYY (3-36) as a therapeutic agent in the treatment of obesity
still remains due to several studies that have been able to demonstrate anorexic effects of this hormone. In
clinical trials performed so far, this enthusiasm is dightly hampered by the frequently observed side effects
(Gantz et a., 2007; Soth et a., 2007b), and it remains to be seen whether, for example, with escalated
dosing these problems could be overcome.
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7 SUMMARY

In conclusion, this thesis shows that

Duodenal administration of red kidney bean lectin PHA stimulates gallbladder contraction,
without affecting peripheral plasma CCK levels in humans. This contraction is mediated via

cholinergic mechanism and CCK; receptors.

[ The viscosity of oat bran beverages significantly affects postprandial responses in humans. A
high-viscous beverage attenuates short-term glucose, insulin, ghrelin, CCK, GLP-1 and PYY
responses, gastric emptying and feelings of satiety and fullness compared to |ow-viscous beverage.

[l AITC, the active pungent ingredient of wasabi and mugtard oil stimulates CCK release in STC-1
cells by activating TRPAL channels, which are also expressed in native human and mouse

duodenum.

v PYY (3-36) infusion, in the concentration used, did not affect food intake or body weight gain in
colectomized rats.
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