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ABSTRACT 

 
 Obesity has become a world-wide epidemic and a major burden for health-care system in 
countries that have adopted a Western lifestyle. The metabolic syndrome (MetS) is a cluster of risk 
factors predisposing to complications of obesity, including hypertension, hypercholesterolemia and 
impaired glucose tolerance. Patients with MetS are at high risk for diabetes and cardiovascular 
diseases. Essential features of MetS are insulin resistance and low grade systemic inflammation. 
During the past decade, several peptides regulating food intake, insulin sensitivity, blood pressure 
and inflammation have been discovered from adipose tissue and the gut. The physiological 
significance of many of these compounds is unclear. This study was established to determine 
whether circulating levels of three adipose tissue and gut derived peptides are altered in obesity and 
MetS. 
 Apelin is a peptide detected in cardiovascular system, adipose tissue, gut, pancreas and 
hypothalamus. Administration of apelin in pharmacological doses affects food intake and potently 
stimulates heart rate and contraction in animals. In humans, peripheral administration of apelin 
causes a nitric oxide mediated arterial vasodilatation. Its expression in adipose tissue is up-regulated 
by inflammation and insulin. In the current study, plasma apelin level was increased in morbid 
obesity, yet the correlation to body adiposity during diet-induced weight loss was weaker than for 
the abundant adipokines leptin and adiponectin. Minor changes in apelin levels in response to a 
pronounced diet-induced weight loss in patients with MetS were related to arterial pressure and 
inflammation. 
 Orexin A (OXA) was discovered as a hypothalamic peptide regulating food intake, wakefulness 
and sleep. Subsequent studies revealed that orexin A and its receptors are expressed in various 
tissues outside the central nervous system (CNS) such as the gastrointestinal tract and pancreas, 
where it modulates gastrointestinal motility and secretion of bicarbonate and insulin. It has been 
detected also in blood, yet source and the physiological role of circulating OXA is unknown. In the 
present study, plasma OXA level was increased in morbid obesity and decreased in obese children 
with Prader-Willi syndrome. 
 Ghrelin is an orexigenic peptide secreted by stomach in response to low energy status. Plasma 
ghrelin level raises prior to and decreases after a meal, suggesting strong involvement in the 
regulation of food intake. The physiological significance of ghrelin in energy metabolism is 
controversial, since ghrelin-deficient and ghrelin receptor-deficient mice have normal growth rate 
and appetite. Ghrelin secretion may be regulated by postprandial signals and insulin, yet the current 
data is contradictory. In the present study, postprandial suppression of plasma ghrelin was impaired 
in patients with MetS independently of insulin. In addition, ghrelin increased in response to weight 
loss, but the increase was not sustained during prolonged weight reduction. 
 In conclusion, the present study demonstrated that circulating apelin, orexin A and ghrelin 
levels are altered in obesity. These results help to define the roles of these peptides in obesity and 
MetS.  
 
National Library of Medicine Classification: QU 68, WD 210, WK 185, WK 820 
Medical Subject Headings: APLN protein, human [Substance Name]; Blood Glucose; Body Mass 
Index; Energy Metabolism; Ghrelin; Insulin; Intercellular Signaling Peptides and Proteins; Leptin; 
Metabolic Syndrome X; Neuropeptides; Obesity; Obesity, Morbid; orexins [Substance Name]; 
Peptide Hormones; Prader-Willi Syndrome; Weight Loss 
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1. INTRODUCTION 
 
 Over the past few decades obesity has become a major burden for health world-wide. Its 

prevalence in developing countries that have adopted a Western lifestyle has tripled in 20 years. 

Today more than 1.1 billion adults world-wide are overweight (BMI > 25 kg/m2) and 312 million of 

them are obese (BMI > 30 kg/m2) (Hossain et al., 2007). In Finland, already 57% of adult men and 

43% of adult women are overweight and 15% of men and 16% of women are obese (Helakorpi et 

al., 2008). In the United States, the percentage of overweight adults has increased from period 1988 

- 1994 to 2003 - 2004 from 56% to 66% and the incidence of obesity has increased from 23% to 

32% (Flegal et al., 2002; Ogden et al., 2006). Alarmingly, the prevalence of overweight among 

school-age children and teens in the United States has more than tripled (from 5% to 16%) in the 

last three decades and similar trends have been observed world-wide (Flegal et al., 2006). Obesity is 

a major cause for development of the metabolic syndrome (MetS), a state characterized by 

overweight, insulin resistance, hypertension and impaired lipid metabolism and body fat 

distribution. Individials with MetS have marked risks for the development of type 2 diabetes and 

they possess high cardiovascular mortality (Reaven, 1988; Klein et al., 2002; Lakka et al., 2002). 

Due to these adverse consequences, obesity has been estimated to decrease life expectancy by 7 

years at the age of 40 years (Peeters et al., 2003). The prevalence of MetS in Finland has varied 14 - 

21% depending on the definition (Laaksonen et al., 2002), while in the United States the prevalence 

in 49 - 59 years old men has been estimated at 30% (Ford, 2005). In addition, obesity predisposes to 

the development of cancer, astma, osteoarthritis, sleep apnea, pregnancy complications and 

depression leading to overall decrease in quality of life. The estimated costs of obesity-related 

diseases for the health care system in the European Union exceeded 32 billion euros in 2002 (Fry 

and Finley, 2005). 

 Excess energy intake and decreased energy consumption due to a sedentary Western lifestyle 

are the main contributors to the obesity epidemic (Stein and Colditz, 2004). Energy balance is 

regulated by a complex network of neurons in central and lateral hypothalamus. In obesity, these 

regulatory mechanisms fail to inhibit excess food intake and storage of energy. Hypothalamic 

neurons receive neuronal and neurohumoral feedback from peripheral tissues that are in direct 

contact with ingested nutrients. Anorexigenic and orexigenic peptides secreted from the 

gastrointestinal (GI) tract and pancreas regulate short-term food intake, while peptides from adipose 

tissue regulate long-term energy balance. The exact functions of many of these peptides are not 

known. 
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 Rather than being a passive energy depot, adipose tissue has been shown to be an active 

endocrine organ producing various peptides regulating food intake, insulin resistance, blood 

pressure and inflammation. Currently, the functions of these potential peptides are not fully 

understood. In some patients, genetic defects are responsible for development of obesity. Prader-

Willi syndrome (PWS) is a genetic disorder characterized by failure to thrive, early-onset 

hyperphagia and obesity, hypotonia, hypogonadism, growth hormone deficiency, respiratory 

distress and mental retardation (Goldstone, 2004). Without adequate dietary control, PWS leads to 

morbid obesity, type 2 diabetes and mortality in early adulthood. The endocrinological disturbances 

responsible for all these complications have not been elucidated. Thus, the treatment of PWS is 

currently difficult. 

 This thesis was initiated to assess the possible roles of three GI tract and adipose tissue derived 

peptides in obesity and MetS. Therefore, circulating levels of apelin, OXA and ghrelin were 

measured under different metabolic conditions in morbidly obese patients, patients with MetS and 

obese children with PWS. 
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2. REVIEW OF THE LITERATURE 

2.1. The metabolic syndrome 

2.1.1. Definition 

 
 Early description of MetS proposed by Reaven (1988) included obesity, insulin resistance, 

hypertension and dyslipidemia characterized by elevated triglycerides and low HDL concentrations. 

Since then, various definitions of MetS have existed (Reaven, 1988; Liese et al., 1998). The 

National Cholesterol Education Program (NCEP) expert panel (1999) and World Health 

Organization (WHO) (2001) have published their definitions to facilitate research and comparison 

between studies (Table 1). Using these definitions, patients with MetS have been shown to posses 

higher risk for the development of atherosclerosis, coronary artery disease and type 2 diabetes than 

individuals with simple obesity alone (Reaven, 1988; Klein et al., 2002; Lakka et al., 2002). 

 

Table 1. The definitions of the MetS by modified WHO (1999) and NCEP ATP III (2001) criteria. 

WHO definition NCEP ATP III definition 
At least ONE of the following:  
• Hyperinsulinemia (upper quartile of the 

non-diabetic population) 
• Fasting plasma glucose ≥ 7.0 mmol/l 
• A 2-hr glucose ≥ 7.8mmol/l 
• any medication for diabetes mellitus 
 
And at least TWO of the following: 
• Abdominal obesity 

Definition 1: Men WHR ≥ 0.90 or BMI ≥ 
30 and women WHR ≥ 0.85 or BMI ≥ 30 

• Dyslipidemia 
Serum triglycerides ≥ 1.70 mmol/l or HDL 
< 0.9mmol/l in men and < 1.1mmol/l in 
women 

• Hypertension 
Blood pressure ≥ 140/80 mmHg  

At least THREE of the following: 
• Fasting plasma glucose ≥ 6.1 mmol/l 
• Abdominal obesitya: waist circumference > 

102 cm in men and > 88 cm in women 
• HDL < 1.0 mmol/l in men and < 1.3 mmol/l 

in women 
• Blood pressure ≥ 130/85 mmHg or on 

medication 

aSome male patients can develop multiple metabolic risk factors when the waist circumference is 
only 94-102 cm. Such patients may have strong genetic contribution to insulin resistance and they 
should benefit from changes in life habits, similarly to men with categorical increases in waist 
circumference. 

2.1.2. Pathophysiology of MetS 

 
 MetS has also been called “insulin resistance syndrome”, since several features of MetS such as 

hyperinsulinemia, glucose intolerance, hypertriglyceridemia and low HDL level and type 2 diabetes 
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may be accounted by resistance to the actions of insulin to carbohydrate and lipid metabolism 

(DeFronzo and Ferrannini, 1991; Dandona et al., 2005). Even though it has been long known that 

excess adipose tissue is often accompanied by insulin resistance (Reaven, 1988), the actual 

mechanisms causing the features of MetS are only partly understood.  

 The main depots of fat in humans are subcutaneous (SAT) and visceral adipose tissue (VAT). 

VAT has been considered the main culprit in MetS. VAT has been shown to secrete greater amounts 

of pro-inflammatory cytokines than SAT (Fain et al., 2004). In addition, VAT delivers released 

compounds directly to the portal vein contributing to hepatic insulin resistance.  Recent studies have 

indicated that increased accumulation of fat in obesity leads to low-grade systemic inflammation. 

This association was clearly demonstrated by Hotamisligil et al. (1993), who showed that TNF-α 

mRNA was induced in adipose tissue in several rodent models of obesity and diabetes. Subsequent 

studies have confirmed that obesity and MetS are accompanied by increased levels of pro-

inflammatory cytokines such as TNF-α, IL-6, CRP and PAI-1 and fibrinogen (Kern et al., 2001; 

Vozarova et al., 2001; Kressel et al., 2009). Although immune cells, fibroblasts, endothelial cells, 

and monocytes have traditionally been regarded as the major sources of circulating cytokines (Fried 

et al., 1998), a considerable proportion of circulating IL-6 is derived from the adipose tissue 

(Mohamed-Ali et al., 1997). In contrast, TNF-α originates from infiltrated macrophages and it may 

not be secreted by adipocytes in vitro. Adipose tissue is abundantly infiltrated by macrophages, 

which may be the source of inflammatory cytokines, but they can also modulate secretory activity 

of adipocytes (Xu et al., 2003).  

 A series of studies have revealed another likely mechanism leading to insulin resistance. It has 

been shown that TNF-α may induce serine phosphorylation of IRS-1, which in turn causes an 

inhibitory phosporylation of insulin receptor. Thus, TNF-α could directly inhibit the downstream 

signal transduction of the insulin receptor (Hotamisligil et al., 1996). Consistently with this 

mechanistic data, neutralization of TNF-α in obese fa/fa rats causes a significant improvement in the 

peripheral insulin sensitivity (Hotamisligil et al., 1993). Also IL-6 induced insulin resistance in 

adipocytes in vitro by inducing inhibitory tyrosine phosphorylation of IRS-1 and by down-

regulation of gene expression of several co-factors (Rotter et al., 2003). Thus, increased 

inflammation may directly interfere in insulin signal transduction, possibly leading to insulin 

resistance in tissues.  

 In addition, insulin itself is also an important anti-inflammatory regulator. Insulin has been 

shown to suppress proinflammatory transcription factors and downstream genes such as PAI-1 

(Dandona et al., 2001; Aljada et al., 2002). Consistently, treatment of type 2 diabetes with insulin 

for 2 weeks causes a reduction in plasma CRP concentration (Takebayashi et al., 2004). Similarly, 

insulin treatment in acute severe hyperglycemia causes a rapid decrease in circulating inflammatory 
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cytokines (Stentz et al., 2004). Thus, in insulin resistant state, insulin fails to suppress inflammatory 

drive leading to increased expression of pro-inflammatory mediators. 

2.2. Adipokines and gastrointestinal peptides in obesity 

2.2.1. Dysregulation of adipokines in obesity 

 
In obesity, the size and number of adipocytes are increased and this is accompanied by changes 

in the gene expression profile in large adipocytes (Bluher et al., 2002). Adipose tissue is infiltrated 

with macrophages and the macrophage quantity has been correlated with measures of insulin 

resistance (Otto and Lane, 2005). In addition to stimulation of low-grade inflammation, the 

secretion of adipokines regulating food intake, insulin sensitivity, blood pressure and inflammation 

is altered in obesity. Leptin is 167-amino acid adipokine secreted largely by adipose tissue (Zhang 

et al., 1994). Leptin production is augmented in large adipocytes (Considine et al., 1996). The 

circulating level of leptin parallels adipose tissue mass and is therefore increased in states of obesity 

and overfeeding. Conversely, leptin levels decrease in starvation in rodents and humans. Impaired 

leptin signaling in genetically engineered animals induces massive hyperphagia and obesity, 

indicating that leptin is essential in the regulation of long-term food intake and energy expenditure 

(Friedman and Halaas, 1998). Most obese individuals become resistant to the satiety and weight-

reducing effects of leptin. Thus, use of leptin as anti-obesity drug in humans is currently limited.  

Adiponectin is a 30 kDa adipokine secreted exclusively from adipocytes (Scherer et al., 1995). 

Adiponectin circulates in several different isoforms with distinct biological functions. The insulin 

sensitizing functions are linked to the high-molecular weight isoform, while some effects have been 

attributed to hexamer and trimer isoforms (Wang et al., 2008). Adiponectin levels are decreased in 

obesity and insulin resistant states (Weyer et al., 2001). Low adiponectin levels have been linked to 

higher prevalance of diabetes, hypertension, atherosclerosis and endothelial dysfunction (Weyer et 

al., 2001; Kadowaki and Yamauchi, 2005; Chow et al., 2007). Genetically engineered mice lacking 

adiponectin have reduced insulin sensitivity (Maeda et al., 2002). Overexpression of adiponectin in 

ob/ob mice results in dramatic metabolic improvements, including reversal of diabetic fenotype, 

reduction of macrophage infiltration in adipose tissue and systemic inflammation (Kim et al., 2007).  

In addition to leptin and adiponectin, variations in levels of adipose tissue-derived peptides 

including resistin, retinol-binding protein-4, visfatin, angiotensin II, acylation-stimulating protein, 

TNF-α, IL-6 and PAI-1 have been observed in obesity. The various functions of these potential 

peptides is beyond the scope of this thesis, and are discussed in detail in excellent reviews (Rajala 

and Scherer, 2003; Rasouli and Kern, 2008).  
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2.2.2. Role of gastrointestinal peptides in obesity 

 

The GI tract and pancreas secrete multiple peptides and hormones that regulate food intake, 

glucose metabolism, GI motility and secretion. These compounds signal to the brain and may be 

essential in the regulation of food intake (Strader and Woods, 2005). Majority of the vagal fibers are 

afferent (Prechtl and Powley, 1990) underlining the importance of the direct neuronal gut-brain axis. 

The enteric nervous system (ENS) consists of myenteric and submucosal plexuses located between 

the muscle layers of the GI tract. Presence of food in the bowel activates epithelial enteroendocrine 

cells leading to secretion of various GI peptides such as insulin, glucagon, cholecystokinin (CCK), 

glucagon-like peptide 1 (GLP-1), peptide YY, pancreatic polypeptide, gastric inhibitory peptide and 

vasoactive intestinal peptide. These peptides may regulate whole body energy homeostasis, gut 

motility and secretion by binding their receptors on ENS neurons and secretory cells in the intestinal 

mucosa (Bray. 2000). Some of the GI peptides may also bind to their receptors on vagal afferent 

fibers that are widely dispersed throughout the gut and enter the brain via the blood stream 

(Schwartz, 2000). 

A classical example of a GI peptide is CCK, which is secreted by the duodenal and jejunal 

mucosa in response to nutrients in the duodenum. CCK stimulates gallbladder contraction and bile 

and pancreatic secretion and inhibits gastric secretion. In addition, CCK binds to CCK1R receptors 

on the local vagus fibers decreasing gastric emptying and increasing satiety (Schwartz and Moran, 

1994). CCK1R is also expressed in the hindbrain and hypothalamus indicating that circulating CCK 

may activate hypothalamic neurons directly. Rats genetically lacking functional CCK1R receptors 

become markedly hyperphagic and overweight (Funakoshi et al., 1995). However, fasting plasma 

CCK levels in obese subjects have been reported to be increased, rather than decreased 

(Baranowska et al., 2000). The satiating effect of acute intravenous (i.v.) infusion of exogenous 

CCK in obese subjects does not appear to differ from that observed in healthy lean subjects 

(Lieverse et al., 1995), suggesting that CCK could be a target molecule in treatment of obesity.  

GLP-1 is another GI peptide that is post-translationally processed from preproglucagon. GLP-1 

belongs to the incretin hormone group and is produced by L cells in the distal small intestine and 

colon in response to food intake. Post-prandial GLP-1 levels have been decreased in obesity in some 

(Verdich et al., 2001), but not all studies (Feinle et al., 2002). Although GLP-1 is rapidly degraded 

by DPP4 in plasma, peripheral GLP-1 infusion has been reported to cause a dose-dependent 

reduction in food intake in humans (Gutzwiller et al., 1999). In addition, the GLP-1 analog 

exenatide stimulates glucose-dependent insulin release and inhibits glucagon secretion (DeFronzo et 
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al., 2005). The diverse functions and release of incretins are beyond the scope of this thesis and they 

are discussed elsewhere (Karhunen et al., 2008; Vincent et al., 2008). 

2.2.3. Apelin 

2.2.3.1. Production of apelin 

 
 Apelin is a peptide discovered from bovine stomach extracts as an endogenous ligand for the 

orphan receptor APJ (Tatemoto et al., 1998). Apelin is a product of APLN gene and translated as a 

77 amino-acid prepropeptide. The prepropeptide is subsequently cleaved to form several bioactive 

peptides denoted by their length, including apelin-12, -13, -16, -17, -19 and -36 (Figure 1). Studies 

using synthetic peptides have revealed that apelin-13 and -36 may be the most abundant and 

biologically active fragments (Tatemoto et al., 1998; Hosoya et al., 2000; Kawamata et al., 2001). 

Structural studies showed that APJ has 31% structural similarity with angiotensin receptor I 

(Murphy et al., 1991; O'Dowd et al., 1998). In addition, apelin-36 is degraded to apelin-13 by 

angiotensin-converting enzyme-related carboxypeptidase 2 (Vickers et al., 2002). 

2.2.3.2. Apelin in regulation of cardiovascular functions 

 

 Several studies have linked apelin to the regulation of cardiovascular system. Apelin has been 

shown to potently stimulate heart rate and contraction in animals (Szokodi et al., 2002; Berry et al., 

2004). However, variable results following central and peripheral administrations of apelin on blood 

pressure have been observed. Peripherally administered apelin-12 and [pGlu]-apelin-13 caused 

vasodilatation via a nitric oxide (NO) dependent mechanism in anesthetized and conscious rats 

(Tatemoto et al. 2001; Cheng et al., 2003; Mitra et al., 2006). In contrast, increases in MAP and 

heart rate were observed following intracerebroventricular (i.c.v.) injection of (Pyr)apelin-13, while 

the effects of peripheral injections were weak (Kagiyama et al., 2005).  I.c.v. injection of 

pharmacological doses of apelin-13 in conscious rats showed no effect, while i.v. injections slightly 

decreased MAP and increased heart rate (Reaux et al., 2001). However, apelin KO mice do not have 

significant changes in blood pressure and heart rate and blockage of APJ does not affect blood 

pressure and heart rate in rats with portal hypertension (Ishida et al., 2004; Tiani et al., 2008). A 

recent study by Japp et al. (Japp et al., 2008) shows that apelin-36 and (Pyr)-apelin-13 cause NO-

dependent arterial vasodilatation in human brachial arteries with no apparent effects on venous tone, 

heart rate or systemic blood pressure.     
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Figure 1. The production of the main biologically active apelin fragments from the APLN gene. At 
least 12 C-terminal amino acids are required for biological activity (Tatemoto et al., 2001). 
 

 Apelin has been suggested to play a protective role in heart failure, since apelin ameliorates 

isopretenol-induced cardiac injury in rats. A simultaneous downregulation of endogenous apelin is 

observed (Jia et al., 2006). Plasma apelin levels are reduced also in patients with chronic heart 

failure (Chong et al., 2006) and in left ventricular dysfunction after ischemic heart disease (Foldes et 

al., 2003). In addition, plasma apelin is increased 9 months after cardiac resyncronization therapy 

together with left ventricular reverse remodeling, decreased NT-proBNP levels and improved 

ejection fraction supporting a protective role for apelin in cardiac dysfunction (Francia et al., 2007). 

Apelin KO mice develop cardiac overload and cardiac dysfunction with age suggesting that apelin 

may help to maintain the cardiac function during persistently elevated blood pressure (Kuba et al., 

2007). However, tissue concentrations of apelin are increased and APJ is up-regulated in end-stage 

heart failure (Chen et al., 2003). In patients with idiopathic dilated cardiomyopathy of variable 

severity, but with similar ejection fractions and NT-proBNP levels, no differences in plasma apelin 

is observed (Miettinen et al., 2007).  Similarly, apelin levels do not significantly predict the 

development of acute heart failure (van Kimmenade et al., 2006). 

 Apelin-APJ signaling has also been linked to the development of atherosclerosis. Hashimoto et 

al. (2007) found that APJ-/-APOE-/-  mice fed with high-cholesterol diet have reduced lesion size 

compared with APJ+/+APOE-/- mice. Another study showed that apelin blocks angiotensin II induced 
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formation of atherosclerotic lesion areas and blood pressure in APOE-/- mice (Chun et al., 2008). 

These findings indicate that apelin may participate in the regulation of cardiovascular functions. 

2.2.3.3. Apelin in food and water intake 

 

 Both apelin and APJ expression have been localized in the hypothalamus in the anterior 

pituitary and around the supraoptic and paraventricular nuclei suggesting involvement in hormone 

release and regulation of food and water intake (De Mota et al., 2000; O'Carroll et al., 2000; Reaux 

et al., 2001). Indeed, i.c.v. administration of apelin-13 decreases food intake in fed and starved rats 

(Sunter et al., 2003). A similar effect is observed with apelin-12 during nocturnal administration, 

while acute day-time i.c.v. injections increased food intake (O'Shea et al., 2003). A recent study by 

Valle et al. (2008) showed that i.c.v. injection of apelin-13 for more than 10 days increases food 

intake, locomotor activity and body temperature in mice. In contrast, intraperitoneal (i.p.) 

administration of apelin-13 for 10 days does not affect food intake, yet dose dependently inhibits 

body weight gain in rats (Higuchi et al. 2007). In addition, apelin-13 increases body temperature 

and expression of uncoupling protein-1 in brown adipose tissue, suggesting that apelin may also 

regulate body temperature. Hence, apelin may participate in the regulation of food intake in animals, 

but further studies are required to determine the exact mechanisms.  

 In the hypothalamus, apelin has been involved in the regulation of fluid homeostasis by 

inhibiting the electrical activity of vasopressin-releasing neurons (De Mota et al., 2004). However, 

studies regarding the effect of apelin on water intake have yielded variable results. Central and 

systemic injections of apelin increase water intake in water-depleted rats (Lee et al., 2000; Taheri et 

al., 2002), but an inhibitory effect on drinking has been found in rats deprived for water for 48 hours 

(Reaux et al., 2001). A recent study found no reliable effect on water intake after central or 

peripheral administrations of pharmacological doses of [pGlu]apelin-13 (Mitra et al., 2006). 

2.2.3.4. Apelin in peripheral tissues 

 

 Outside the CNS, apelin mRNA has been detected in a wide range of tissues including vascular 

endothelial cells, stomach, kidney, lung, mammary gland and adipose tissue in rodents and humans 

(Tatemoto et al., 1998; Medhurst et al., 2003; Kleinz and Davenport, 2004; Wang et al., 2004). 

Similarly, APJ mRNA has been detected in multiple organs including lung, heart, adipose tissue, 

small intestine, colonic mucosa, ovaries, thyroid gland and hypothalamus (Edinger et al., 1998; 

Hosoya et al., 2000; O'Carroll et al., 2000).  

 Like many other peptides, apelin has been suggested to possess multiple physiological roles.  

Apelin expression is increased in SAT in response to a high-fat diet in rats (Garcia-Diaz et al., 2007) 
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and plasma apelin levels are elevated in high-fat fed mice (Boucher et al., 2005). Conversely, apelin 

expression was reduced in streptozotocin-induced diabetes and after fasting in mice. Since apelin is 

secreted into the medium in cultured adipocytes, the authors named apelin a novel adipokine 

(Boucher et al., 2005). In these mice, no difference in apelin expression in stromal-vascular and 

adipocyte fractions was observed. However, analysis of apelin mRNA levels in rats revealed a 

higher expression in stromal-vascular fractions than in adipocytes in subcutaneous and 

retroperitoneal fat pads. In addition, apelin expression is increased by high-fat diet in subcutaneous, 

but not retroperitoneal fat (Garcia-Diaz et al., 2007).  

 Apelin may also modulate glucose homeostasis and improve insulin sensitivity in animals. I.p. 

administration of apelin-13 decreases insulin levels and improves glucose tolerance in lean and 

obese rats (Higuchi et al. 2007). I.v. administration of apelin enhances glucose uptake in skeletal 

muscle and lowers glucose levels in mice (Dray et al., 2008). Instead, apelin-36 inhibits glucose-

stimulated insulin secretion in mice (Sorhede Winzell et al., 2005).  

 Interestingly, apelin expression in mouse and human adipose tissue is upregulated by insulin 

and TNF-α, but not glucose (Boucher et al., 2005; Daviaud et al., 2006). Apelin partially suppresses 

cytokine production by mouse spleen cells suggesting that apelin may be involved in the regulation 

of inflammation (Habata et al., 1999). A recent study by Castan-Laurell et al. (2008) showed that 

adipose tissue apelin and APJ mRNA and plasma apelin peptide levels are decreased after 3 months 

of diet-induced weight loss in obese patients. A correlation between apelin, insulin and TNF-α were 

observed in a subgroup of individuals with the highest improvements in insulin sensitivity. 

  In the gut, apelin-13 and -36 stimulate gastric cell proliferation. Apelin-12, -13 and -19 induce 

CCK-release from murine enteroendocrine STC-1 cells (Kiehne et al., 2001; Wang et al., 2004) 

Apelin immunoreactivity has been detected in a vesicle-like structures in oxyntic cells in the rat 

stomach suggesting that apelin might function as a luminal CCK-releasing factor. Since CCK binds 

to CCK1R receptors on the local vagus fibers decreasing gastric emptying and increasing satiety, 

apelin could modulate post-prandial CCK signaling (Schwartz and Moran, 1994). 

2.2.4. Orexin A 

2.2.4.1. Orexins 

 
 Orexins (or hypocretins) were discovered by two independently working groups as 

hypothalamic peptides with homology to GI peptide secretin. Orexin A increases food intake in rats 

(de Lecea et al., 1998; Sakurai et al., 1998). Orexin A (OXA; hypocretin 1) and orexin B (OXB; 

hypocretin 2) are 33- and 28-amino acid peptides originating from a single precursor produced by 

the prepro-orexin (PPO) gene. PPO is proteolytically cleaved and the cleavage products are 



  23 

postranslationally processed (Lee et al., 1999). The actions of OXA and OXB are mediated via 

binding to closely related OX1 and OX2 receptors belonging to the family of G-protein coupled 

receptors (Sakurai et al., 1998). OXA selectively binds OX1, while OXB binds both OX1 and OX2 

with slightly lower affinities. OXA has been more active in the stimulation of food intake in rats, 

while functions of OXB are generally less well characterized (Sakurai et al., 1998; Haynes et al., 

1999). 

2.2.4.2. OXA in CNS 

 

 Initial studies showed that orexins are highly expressed in rat hypothalamic areas known to 

regulate food intake, the sleep-wake cycle and neuroendocrine functions. The highest PPO mRNA 

expression and OXA peptide level has been detected in the lateral hypothalamic area (LHA), yet 

orexin immunoreactivity has also been detected in the ventromedial hypothalamus and the 

perifornical, arcuate (ARC) and dorsal motor nuclei (de Lecea et al., 1998; Sakurai et al., 1998; 

Taheri et al., 1999). In rats, both orexin receptors are abundantly expressed in hypothalamic areas, 

including ARC, the paraventricular nucleus, the locus coeruleus and the dorsal raphe nucleus 

(Trivedi et al., 1998; Lu et al., 2000; Backberg et al., 2002). The locus coeruleus and raphe nucleus 

in the caudal brain stem are two centers known to regulate arousal, suggesting an involvement of 

orexins in the regulation of sleep-wake cycle (Kilduff and Peyron, 2000; Mignot, 2004). Indeed, 

familial canine narcolepsy in Labrador retrievers and Doberman pinchers is caused by a mutation in 

the OX2 receptor implying a major role of this receptor in the sleep regulation (Lin et al., 1999). 

Genetic ablation of orexin neurons results in narcolepsy, hypophagia and obesity in mice (Hara et 

al., 2001). Orexigenic fibers from the hypothalamus spread to several brain areas, including the 

cerebral cortex, hippocampus, amygdala, thalamus, nucleus of solitary tract and locus coeruleus. 

Orexins may therefore be involved in various metabolic and behavioural processes linked to food 

intake, energy homeostasis and sleep (Nambu et al., 1999; Peyron et al., 1998).  

 Administration of OXA into brain ventricles acutely increases food intake in rats, while OXB 

has been less effective (Sakurai et al., 1998; Haynes et al., 1999). Subsequent studies have shown 

that OXA activates neurons in various hypothalamic areas linked to food intake such as ARC, 

paraventricular nucleus, ventromedial hypothalamus and nucleus of solitary tract (Date et al., 1999; 

Mullett et al., 2000). I.c.v. injection of anti-OXA antibodies blocked fasting stimulated feeding, 

while i.p. injections had no effect (Yamada et al., 2000). However, i.p. injection of the selective 

OX1 receptor antagonist SB-334867 inhibited baseline feeding, weight gain and the feeding 

response elicited by i.c.v. injection of OXA (Rodgers et al., 2001).  
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 Prolonged and continuous i.c.v. administration of OXA did not increase cumulative food 

intake, since increased light phase food intake was followed by reduced nocturnal feeding (Haynes 

et al., 1999; Yamanaka et al., 1999). Therefore, the result may be affected by circadian rhythms and 

a short-term rather than long-term effect is likely. An increase in food intake has been reported at 

doses varying 7 - 36 µg (Rodgers et al., 2002) and the lowest effective dose has been reported 0.25 

µg (Smart and Jerman, 2002). The stimulatory effect of centrally administered OXA was similar to 

galanin and melanin-concentrating hormone, but substantially less than the effect seen with the most 

potent feeding stimulator of the currently known neuropeptides NPY (Edwards et al., 1999).   

 Orexin level has been shown to increase during low energy conditions and decrease when the 

energy level is high. Hypothalamic orexin and PPO mRNA increase with fasting and acute insulin-

induced hypoglycaemia in rats (Sakurai et al., 1998; Cai et al., 1999; Karteris et al. 2005). Similarly, 

isolated orexin containing LHA neurons are activated by low glucose in vitro (Muroya et al., 2001). 

Both OX1 and OX2 productions are up-regulated by fasting in the rat hypothalamus (Karteris et al. 

2005). In genetically obese ob/ob and db/db mice with high basal glucose levels PPO mRNA, OXA 

and OXB levels were decreased in LHA compared with controls (Yamamoto et al., 1999). In 

addition, hypothalamic PPO mRNA levels in obese Zucker fatty rats are decreased and weight gain 

further decreased PPO expression. However, after chronic food restriction accompanied by 

significant reductions in weight, glucose, insulin and leptin concentrations, no difference in 

hypothalamic PPO mRNA expression was observed (Cai et al., 1999). 

 As discussed above, the orexin neurons are strategically situated in the LHA and are activated 

by low energy status. In fact, orexin neurons in the LHA have been shown to regulate the essential 

components of the hypothalamic network regulating energy balance. NPY is the most potent 

feeding stimulator of the currently known neuropeptides and is produced in the ARC. NPY-

containing neurons in the ARC are activated by low glucose levels (Beck et al., 1990), while POMC 

in the ARC is decreased (Brady et al., 1990; Steiner et al., 1994). NPY neurons in the ARC express 

OX1 (Suzuki et al., 2002) and OXA neurons in LHA send orexin-containing axon terminals to NPY 

and POMC neurons in the ARC (Horvath et al., 1999). An elegant study by Muroya et al. (2004) 

showed that OXA may stimulate food intake by directly activating NPY neurons and suppressing 

POMC neurons in the ARC. The blockage of NPY receptors Y1 and Y5 by using specific antibodies 

suppressed OXA induced feeding, suggesting that NPY neurons are downstream of OXA neurons 

(Dube et al., 2000; Yamanaka et al., 2000). 
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2.2.4.3. OXA in the gut-brain axis 

 
 OXA has been detected in various peripheral tissues, including stomach, duodenum, ENS, 

pancreas, adrenal gland, lung, kidney, adipose tissue, spleen, testis and ovaries (Heinonen et al., 

2008). Both orexins and orexin receptors have been located in both myenteric and submucosal 

plexuses in the mouse, rat, guinea pig and human (Table 2). OX1 is expressed in enteric neurons, 

while OX2 expression has been localized to endocrine cells (Naslund et al., 2002). OXA is 

colocalized with gastrin and OX1 has been detected in the gastric corpus in the rat (Ehrstrom et al., 

2005b). The highest density of orexin immunoreactivity along the GI tract has been detected in the 

duodenum where nutrients first arrive from the stomach (Kirchgessner and Liu, 1999). In addition, 

OX1 and OX2 are expressed and immunoreactivity to orexin has been located in pancreatic islets. 

Also nerve fibers and paravascular nerve bundles associated with blood vessels showed orexin-

immunoreactivity (Kirchgessner and Liu, 1999).  

  

Table 2. The distribution of orexins and their receptors in the gut in and related tissues in different 
species (PPO = pre-proorexin; IHC = immunohistochemistry; RT-PCR = reverse transcriptase PCR; 
+ detected; - not detected; NA = not analyzed; gp = guinea pig; h = human, r = rat, m = mouse). 
Modified from (Heinonen et al., 2008).  

Tissue Method PPO OXA OXB OX1 OX2 Species  Reference 

ENS         

stomach  IHC NA + NA + - human Ehrstrom et al., 2005a 

duodenum IHC NA + - + + rat Naslund et al., 2002 

small intestine IHC + + + + + h, r, gp, m Kirchgessner and Liu, 1999 

GI tract  IHC + + NA NA NA human Nakabayashi et al., 2003 

Stomach RT-PCR, IHC NA + NA + - rat Kirchgessner and Liu, 1999 

 RT-PCR - NA NA - - rat Johren et al., 2001 

Pancreas RT-PCR - NA NA - - rat Johren et al., 2001 

 RT-PCR NA NA NA + + rat Kirchgessner and Liu, 1999 

alpha cells IHC NA + - + - rat Ouedrago et al., 2003 

 IHC + + NA NA NA human Nakabayashi et al., 2003 

beta cells IHC NA + NA + - rat, gp Kirchgessner and Liu, 1999 

 IHC + NA NA + + rat Nowak et al., 2005 

nerve fibers IHC NA + NA + - rat, gp Kirchgessner and Liu, 1999 

Vagus nerve IHC NA NA NA + + human Burdyga et al., 2003 

Adipose tissue RT-PCR - NA NA - - rat Johren et al., 2001 

  

 Like in the hypothalamus, OXA neurons in ENS are activated upon fasting as measured by 

immunoreactivity and CREB expression (Kirchgessner and Liu, 1999). Consistently, a decrease in 

plasma OXA levels has been observed after a meal (Ehrstrom et al., 2005b). However, 

hypoglycemia stimulated release of OXA from pancreatic islets (Ouedraogo et al. 2003) where 
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orexin was found to be costored with insulin in secretory granules in pancreatic β-cells. 

Interestingly, orexins has been shown to modulate glucose homeostasis by affecting both insulin 

and glucagon release. In vivo, subcutaneous administration of OXA stimulated insulin release from 

β-cells in rats and both OXA and OXB stimulate insulin release in vitro perfused islets (Nowak et 

al., 2000; Nowak et al., 2005). These findings are in accordance with increased feeding, since 

increased insulin secretion followed by lower glucose levels stimulates feeding. A recent study by 

Göncz et al. (2008) showed that OXA inhibits glucagons secretion in perfused rat pancreas in situ 

and isolated pancreatic islets in vitro. In addition, orexin-immunoreactive neurons were shown to 

express leptin receptors indicating that OXA neurons in the gut may respond to the whole body 

energy status (Kirchgessner and Liu., 1999; Liu et al., 1999). Thus, orexins may play an important 

role in the regulation of glucose homeostasis. 

 Orexin has been detected in the circulation and its levels respond to changes to the metabolic 

state. However, the source of plasma OXA has not been elucidated. As discussed above, orexin 

neurons in the hypothalamus and ENS are activated in response to fasting. Consistently, fasting for 

10 days significantly increased plasma OXA levels in normal weighted subjects from 29.9 ± 1.6 

pg/ml to 47.9 ± 5.4 pg/ml (Komaki et al., 2001).  Adam et al. (2002) found that OXA levels in 

individuals with BMI ranging 19.8 - 59 kg/m2 were significantly lower in overweight and obese 

individuals with a negative correlation to BMI. However, the overall changes were minor. A 

negative correlation between BMI and OXA has also been described in obese women (Baranowska 

et al., 2005). In addition, weight loss in obese children was associated with increased plasma OXA 

immunoreactivity (33.3 ± 1.97 pg/ml vs. 51.7 ± 3.07 pg/ml; Bronsky et al., 2006). Slightly lower 

basal plasma OXA levels have been observed in patients with narcolepsy (20.8 ± 4.3 pg/ml) than in 

healthy control subjects (26.7 ± 3.2 pg/ml) (Higuchi et al., 2002). Deranged plasma OXA levels 

have also been detected in sleep-apnea disorders. OXA plasma levels were lower in untreated (9.4 ± 

1.9 pg/ml) and treated patients with obstructive apnea-hypopnea syndrome (OSAS) (4.2 ± 1.5 

pg/ml) than in healthy subjects (20.6 ± 4.5pg/ml) (Busquets et al., 2004). Arihara et al. (2001) 

measured basal plasma OXA concentrations of 1.94 ± 0.24 pmol/l (6.9 ± 0.9 pg/ml) in 17 healthy 

individuals. 

 OXA has been shown to modulate gut motility. I.v. infusion of OXA inhibited the gastric 

migrating motor complex in anesthetized rat. Inhibition was not affected by bilateral vagotomy 

suggesting a peripheral mechanism of action (Ehrstrom et al., 2003). Another study found that i.v. 

infusion of OXA alone had no effect on either acid secretion, plasma gastrin or gastric emptying, 

while OX1 antagonist inhibited both gastric acid secretion and increased gastric retention of the 

liquid nutrient in rats (Ehrstrom et al., 2005b). Plasma OXA levels decreased after intake of the 

nutrient meal and infusion of the OX1 antagonist. Only weak effects were seen on plasma glucose 
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and insulin by OXA. In guinea pig ileum and rat duodenum, orexin is co-localized with vasoactive 

intestinal peptide P (VIP) and substance P in the submucous and myenteric plexuses (Kirchgessner 

and Liu., 1999; Naslund et al., 2002). VIP and substance P are GI peptides known to control gastric 

motility and secretion (Cooke, 1998; Ljung and Hellstrom, 1999). I.v. infusion of OXA produces a 

comparable inhibitory effect to VIP on migrating motor complex suggesting that orexin may 

modulate the relaxation in the peristaltic motility (Naslund et al., 2002). OXA was also colocalized 

with serotonin in enterochromaffin cells in rat duodenal mucosa (Kirchgessner et al., 1992; Naslund 

et al., 2002). Enterochromaffin cells appear to be sensory transducers responding to luminal stimuli 

by secreting 5-HT which in turn may directly modulate the signals of mucosal vagal afferent fibers 

(Kirchgessner et al., 1992). Central infusion of OXA into the brain ventricles or dorsal motor 

nucleus of the vagus stimulates pancreatic and gastric secretion and gastric contractility (Takahashi 

et al., 1999; Krowicki et al., 2002; Miyasaka et al., 2002). I.c.v. administration of OXA induces 

gastric acid secretion in rats, while peripheral infusion has no effect. The effect was abolished by 

vagotomy suggesting a central mechanism of action (Takahashi et al., 1999).   

 OXA has been shown to stimulate secretion of intestinal fluids. I.c.v. injection of OXA dose-

dependently stimulated pancreatic fluid and protein output and this effect was abolished by 

pretreatment with the ganglion blocker hexamethonium and atropine. I.c.v. injection of OXB and 

i.v. injection of OXA had no effect. These results suggest a vagus nerve-dependent role for OXA in 

digestion (Miyasaka et al., 2002). However, OX1 are detected in duodenal mucosa in rats where 

OXA invoked a dose-dependent stimulation of bicarbonate secretion. The stimulation is blocked by 

SB-334867 which is a partial agonist of OX1, but not by atropine suggesting independence from 

vagal cholinergic pathways (Bengtsson et al., 2007). Dose-dependent stimulation of bicarbonate 

secretion is abolished by overnight fasting, suggesting that the effects of orexin A are modulated by 

energy status (Flemstrom et al. 2003).  Consistently, an overnight fast suppresses OX1 and OX2 

expression and OX1 protein levels in the rat duodenal mucosa (Bengtsson et al., 2007).  

 Orexin A also stimulates CCK release via an OX1 and Ca2+-dependent mechanism (Larsson et 

al., 2003). CCK is secreted by mucosal enteroendocrine cells in response to nutrients in the gut 

lumen. As discussed earlier CCK binds to CCK1R receptors on the local vagus fibers decreasing 

gastric emptying and increasing satiety (Schwartz and Moran, 1994). OXA modulates the vagal 

response to CCK via the CC1R receptor indicating that OXA may regulate gut-brain signaling by 

CCK (Burdyga et al., 2003). 
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2.2.5. Ghrelin 

2.2.5.1. Characteristics of ghrelin 

   

 Ghrelin is an acylated 28-amino acid peptide that was isolated from rat stomach extracts as an 

endogenous ligand for GH secretagogue receptor 1a (GHS-R1a) (Kojima et al., 1999). The third 

serine residue of ghrelin is post-translationally esterified by octanoid acid, thich is essential for its 

biological activity. Ghrelin is secreted mainly by A/X-cells in oxyntic glands in the stomach 

submucosa. Approximately 70% of the ghrelin is produced by stomach and the rest is mainly 

produced by the small intestine (Ariyasu et al., 2001; Jeon et al., 2004). Minor amounts of ghrelin 

have been detected in the lungs, pancreatic islets, adrenal cortex, kidney and brain (Kojima et al., 

1999; Hosoda et al., 2000).  

 Administration of pharmacological doses of ghrelin potently increases food intake and weight 

gain in rodents (Tschop et al., 2000; Wren et al., 2001b; Murakami et al., 2002) and humans (Wren 

et al., 2001a). Conversely, administration of GHS-R1 antibodies inhibits energy intake, weight gain 

and gastric emptying in lean, obese and leptin-deficient mice (Asakawa et al., 2003). However, 

ghrelin-deficient and ghrelin receptor-deficient mice have a normal growth rate and appetite (Sun et 

al., 2003; Wortley et al., 2004). Ghrelin also potently increases GH secretion (Date et al., 2000; 

Wren et al., 2000). Ghrelin stimulates gastric motility, gastric acid secretion and pancreatic exocrine 

secretion suggesting that ghrelin prepares gut for effective transport and processing of food (Masuda 

et al., 2000; Asakawa et al., 2001; Miyasaka et al., 2002). Ghrelin concentrations in the circulation 

rises prior to and falls shortly after a meal suggesting involvement in the regulation of short-term 

food intake (Cummings et al., 2002b; Shiiya et al., 2002). Circulating ghrelin concentrations are 

decreased in obesity and in insulin resistant and diabetic patients (Poykko et al., 2003; Shiiya et al., 

2002; Tschop et al., 2001). Ghrelin levels increase in response to weight loss induced by gastric 

banding (Hanusch-Enserer et al., 2004) and during a low-fat high-carbohydrate diet (Cummings et 

al., 2002b; Weigle et al., 2003). Consistently, ghrelin secretion is increased in anorexia and cachexia 

(Nagaya et al. 2001a; Otto et al 2001). Gastric bypass suppresses ghrelin levels and abolishes 

postprandial ghrelin response (Cummings et al., 2002b). However, the increase of ghrelin after 

weight loss may be an acute adaptation to negative balance, since the increase is not sustained 1 

year after weight loss (Garcia et al., 2006). 

 Ghrelin has been shown to cross the blood-brain barrier by nonsaturable transmembrane 

diffusion and to stimulate food intake by activating orexigenic NPY and Agouti-related peptide-

containing neurons in the ARC and orexin-expressing neurons in the LHA (Kamegai et al., 2001; 

Banks et al., 2002; Toshinai et al., 2003). Moreover, ghrelin exerts its effect on orexin neurons 
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independently of NPY. In addition, NPY and orexin receptor antibodies together inhibited more 

than 80% of ghrelin-induced feeding (Toshinai et al., 2003). ). Chemical and surgical vagotomy 

abolished the effects of peripherally administered ghrelin on food intake and GH secretion in rats, 

suggesting that ghrelin functions via the vagus (Date et al., 2002). However, another study found 

that i.p. administered ghrelin stimulates food intake also in rats with subdiaphragmatic vagotomy, 

suggesting that ghrelin induced feeding may not require vagal afferents signals (Arnold et al. 2006). 

 In addition to its important roles in gastrointestinal tract and in the regulation of energy 

homeostasis, ghrelin may also regulate cardiovascular functions. I.v. administration of ghrelin 

causes a vasodilatation without changing heart rate in humans (Nagaya et al., 2001b). GHS-R1a is 

expressed in the myocardium and aorta in low levels in rats (Gnanapavan et al., 2002). Subsequent 

studies using [I125]-Tyr4-desacyl-ghrelin have proposed the existence of a putative subtype of GHS-

R1a in cardiomyocytes that mediates the anti-apoptotic effect of ghrelin in these cells (Baldanzi et 

al., 2002). Ghrelin may also have anti-inflammatory effects on vascular endothelials cells, since 

ghrelin inhibits basal and TNF-α induced cytokine release in human umbilical endothelial cells (Li 

et al., 2004). Interestingly, ghrelin improves cardiac contractility and left ventricular function in 

chronic heart failure and reduces infarct size in isolated rat heart (Chang et al., 2004).   

2.2.5.2. Regulation of ghrelin release 

 
 Signals regulating ghrelin secretion have been suggested to originate from intestinal post-

absorptive events independently of gastric distention and vagal feedback (Cummings, 2006). Insulin 

changes inversely to ghrelin levels and it has been proposed that insulin rather than glucose 

regulates ghrelin secretion (Saad et al., 2002; Flanagan et al., 2003). Some studies have shown that 

insulin administration decreases plasma ghrelin concentrations (Saad et al., 2002; Flanagan et al., 

2003; Leonetti et al., 2003), while in other studies the effect was not apparent (Spranger et al., 2003; 

Caixas et al., 2008).  

 Nutrients in the meal differently regulate postprandial secretion of ghrelin. A carbohydrate-rich 

meal induces a greater and more rapid suppression of postprandial ghrelin levels than protein and fat 

(Erdmann et al., 2003; Monteleone et al., 2003), while the suppression after high protein meal is 

prolonged compared with fat and carbohydrates (Foster-Schubert et al., 2008). High-fat diet has 

been stimulated gastric ghrelin mRNA expression (Doucet et al. 2004), while oral and i.v. 

administrations reduce circulating ghrelin levels in rats (Lee, 2002). In humans, continuous lipid 

infusion does not influence circulating ghrelin levels (Mohlig et al., 2002). 

 Both sympathetic and parasympathetic nervous systems have been suggested to affect ghrelin 

secretion. Stimulation of sympathetic nerves increased ghrelin levels in rats (Mundinger et al., 
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2006), while the muscarinic receptor blocker atropine decreases ghrelin levels in fasting humans 

(Broglio et al., 2004; Maier et al., 2004). Elevation of ghrelin levels induced by food deprivation is 

prevented by subdiaphragmatic vagotomy in rats supporting the involvement of parasympathetic 

nervous system in ghrelin release (Williams et al., 2003b). Ghrelin secretion does not require 

luminal nutrients in the stomach and duodenum, yet postprandial insulin, intestinal osmolarity and 

the ENS may be involved (Murdolo et al., 2003; Williams et al., 2003a; Williams et al., 2003b). 

2.3. Genetic obesity – Prader-Willi syndrome 

 

 Prader-Willi syndrome is a genetic disorder characterized by an infantile failure to thrive and 

hypotonia, hypogonadism, growth hormone deficiency, respiratory distress, mental retardation and 

early on-set extreme hyperphagia and obesity (Holm et al., 1993; Goldstone, 2004). PWS is rare 

condition with estimated incidence of 1 in 25 000 births in the United Kingdom (Whittington et al., 

2001). The syndrome arises from the lack of expression of paternally inherited genes in 

chromosome locus 15q11-q13 either by genomic imprinting, uniparental disomy or deletion 

(Goldstone, 2004). The region 15q11-q13 contains an imprinting centre and deletion of this region 

abolishes the expression of paternally inherited genes (Yang et al., 1998). Imprinting of maternally 

inherited genes in the same locus results in the Angelman syndrome, a condition characterized by 

severe mental retardation, ataxia and absent speech (Clayton-Smith and Pembrey., 1992). 

 PWS is likely to arise from a disruption of several genes in the locus 15q11-q13 (Goldstone, 

2004). SNURF-SNRPN is a complex locus that regulates imprinting and encoding Magel2, several 

proteins and small nucleolar RNAs (Nicholls and Knepper, 2001). Studies utilizing mouse models 

have revealed that candidate genes, necdin and melanoma antigen family L2 that are imprinted in 

locus 15q11-q13 and are not expressed in the developing brain of the mouse model of PWS. 

Functions of the genes located in 15q11-q13 in the development of PWS are complex and not 

completely understood (Goldstone, 2004).   

 Neuroendocrine and metabolic disturbances observed in PWS indicate abnormalities in the 

development of hypothalamus. Rapid onset of abnormal feeding behaviour between ages 1 - 6 years 

includes obsession with food, food stealing, reduced satiety and earlier return of hunger after eating 

(Goldstone, 2004). Without adequate dietary control, PWS leads to morbid obesity and type 2 

diabetes and mortality below 35 years of age (Greenswag, 1987). Classical endocrinological 

alterations include growth hormone deficiency and elevated plasma ghrelin levels (Cummings et al., 

2002a; Haqq et al., 2003). Elevated ghrelin level differs from other states of obesity such as leptin 

resistance and genetic leptin deficiency, where ghrelin levels are decreased (Tschop et al., 2001; 

Cummings et al., 2002a). Increased ghrelin levels might be caused by the decreased visceral fat and 
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relative hypoinsulinemia observed in PWS, but the exact mechanisms still remain to be confirmed 

(Goldstone et al., 2001). 

 In addition, PWS patients have been shown to display sleep disturbances, including excessive 

daytime sleepiness and disturbed rapid eye movement sleep (Manni et al., 2001; Nevsimalova et al., 

2005). Sleep apnea is also frequent in PWS (Holm et al., 1993; Nevsimalova et al., 2005). Reduced 

CSF OXA levels have been observed in PWS patients in several studies (Dauvilliers et al., 2003; 

Arii et al., 2004; Nevsimalova et al., 2005). PWS patients also display an abnormal chemoreceptor 

response to hypoxia and hypercapnia (Arens et al., 1994; Gozal et al., 1994) and blunted arousal 

response to hypercapnia (Livingston et al., 1995), suggesting an altered control of ventilation. 

Interestingly, OXA has been shown to stimulate breathing via medullary and spinal pathways in rats 

(Young et al., 2005). Lack of OXA in pre-proorexin knock-out mice leads to decreased peripheral 

chemosensitivity to carbon dioxide during wakefulness and this effect may be partially restored by 

i.c.v. supplementation of OXA (Deng et al., 2007). In mice deficient in Magel2, one of four genes 

within the PWS region in chromosome 15q11-q13, the OXA peptide concentration in hypothalamus 

was 60% lower than in the wild-type. However, no reduction in number of hypothalamic OXA 

neurons was observed in post mortem analysis of PWS patients (Fronczek et al., 2005). 

2.4. Treatment of obesity 

2.4.1. Diet-induced weight loss 

 
Weight loss is important in reducing the risk of MetS and type 2 diabetes and improving 

glucose homeostasis, dyslipidemia and blood pressure in these patients. Dietary interventions often 

lead to the recommended weight loss (5 - 10%) during 6 months, but the real challenge is long-term 

weight maintenance. Avenell et al. (2004) analyzed 12 balanced low-calorie diets with deficit of 

600 kcal/day and found that the treatment group lost in average 5.31 kg more weight than the 

controls during 12-month follow-up. Balanced low-calorie diets decreased incidence of type 2 

diabetes, and improved control of other risk factors, with weight loss sustained for 3 years. Another 

systematic review analyzing 16 studies showed that weight loss after 2-3 years was 3.5 ± 2.4 kg and 

after 4-7 years 3.6 ± 2.6 kg (Douketis et al., 2005).  

The energy content of the diet may be decreased by modifying the proportions of nutrients. 

Dietary fat has high energy content and therefore low-fat diets have been widely applied to help 

patients to lose weight. A large meta-analysis of almost 50 000 postmenopausal women showed that 

ad libitum low-fat diet produces 2.2 kg weight loss during first year and maintained 0.4 kg lower 

weight than control women during an average of 7.5 years of follow-up. In addition, weight loss 
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was greatest among women in either group who decreased their percentage fat in energy intake 

(Howard et al., 2006). In another systematic review of 16 studies including 1910 patients, ad libitum 

low-fat diet results in 3.2 kg weight loss during 2-12 months. Low-fat diet was most beneficial for 

individuals with highest initial weight (Astrup et al., 2000).  

The efficacy of low-carbohydrate diets with low glycemic index and overall lower glycemic 

load has also been studied. The glycemic index is based on comparison of insulin response of the 

chosen meal to a 50 g portion of white bread (Ludwig, 2002). Two randomized clinical trials 

comparing low-glycemic load (high-fiber) and a conventional diet failed to show any differences in 

weight, yet resulted in improvements in insulin resistance, triglycerides and resting energy 

expenditure (Pereira et al., 2004; Ebbeling et al., 2007). In the Finnish Diabetes Prevention study, 

dietary fat and fiber were significant predictors of sustained weight reduction and progression to 

type 2 diabetes in high-risk subjects (Lindstrom et al., 2006). Rye-bread containing high levels of 

fiber also decreases postprandial insulin response (Leinonen et al., 1999). Thus, high fiber content 

of the food may provide additional benefits independently of weight loss. 

High-protein diets have also been shown to enhance weight maintence. Individuals on ad 

libitum high-protein diet lost significantly more weight than individuals on medium-protein diet (9.4 

kg vs. 5.9 kg). A high-protein diet was accompanied with 10% decrease in intra-abdominal fat 

depot, yet no differences in blood measures were detected. After 12 months, difference in weight 

was no longer significant and 50% of study participants were dropped out partly due to difficulties 

in maintaining the high-protein diet (Due et al., 2004). Protein has been accepted to be more 

satiating than isoenergetic ingestion of carbohydrates and fat (Westerterp-Plantenga., 2008). The 

mechanisms may involve induced thermogenesis, increased GLP-1 and CCK and prolonged 

suppression of postprandial ghrelin secretion (Latner and Schwartz, 1999; Blom et al., 2006; 

Lejeune et al., 2006). 

A very-low-calorie diet (VLCD) is designed to contain energy levels between 200 and 800 

kcal/day. Various VLCD diets have been utilized to achieve rapid weight loss. No significant 

differences between three VLCD diets containing 400-800 kcal/day were observed in obese women. 

Participants lost on average 17.8 ± 0.6 kg (about 20%) after 3 months of VLCD and more than -

85% of that mass was fat (Foster et al., 1992). Despite significant initial weight loss during VLCD, 

the weight loss is difficult to sustain. In a meta-analysis of the long-term effects of VLCDs (< 800 

kcal/day) in combination with dietary counseling in obese patients, the effect of the VLCD was 

approximately 3.0 kg (3.2%) after 2-5 years of treatment despite a weight loss of over 20 kg 

(21.3%) during the VLCD (Anderson et al., 2001). 
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2.4.2. Exercise 

 
Increasing physical activity has been shown to be a key element for successful long-term 

weight maintenance. National Weight Control Registry contains the weight loss data of 4000 adults 

who have lost at least -13.6 kg and kept it off at least 1 year. The results suggested that regular high-

intensity exercise was the most important indicator for long-term success at weight loss (Wing and 

Phelan, 2005). Exercise alone decreased body weight by 4.0 kg and the change was accompanied 

with improvements in LDL and HDL profile. When exercise program was combined with dietary 

prescription, weight loss of 7.2 kg was achieved (Wood et al., 1988). A Cochrane review of 43 

studies found 1.1 kg reduction in weight in the exercise and diet group compared with the diet alone 

group. High intensity exercise produces additional 1.5 kg weight loss than low intensity exercise. 

Moreover, exercise reduces diastolic blood pressure 2 mmHg more than no exercise (Shaw et al., 

2006). 

In addition, benefits of physical activity on glucose metabolism have been observed 

independently of decrease in body fat. It has been shown that exercise increases insulin-stimulated 

glycogen synthesis and glucose transport leading to improved plasma glucose concentrations 

(Perseghin et al., 1996). In addition, elevated capillary proliferation and increased muscle mass 

leads to improved insulin sensitivity (Goodyear and Kahn, 1998). Exercise has been shown to 

decrease low-grade systemic inflammation that is known to be a hallmark feature of MetS and type 

2 diabetes. Petersen et al. (2005) suggested that acute release of IL-6 from muscle observed during 

exercise may suppress TNF-α and lead to overall suppression of systemic inflammation. 

Consistently, exercise has proven efficient in prevention of type 2 diabetes. More than 2.5 

hours/week of walking was associated with 63% lower risk of type 2 diabetes (Laaksonen et al., 

2005a). A recent meta-analysis of 10 studies showed that regular physical activity of moderate 

intensity decreases incidence of type 2 diabetes by 30% (Jeon et al., 2007). Thus, 30 min or more of 

daily activity of moderate intensity as recommended by guidelines can substantially reduce the risk 

of type 2 diabetes (Pate et al., 1995). 

Yet data in humans is lacking, improvement in systolic blood pressure in response to physical 

activity is accompanied with upregulation of apelin/APJ expression in aorta and myocardium in 

spontaneously hypertensive rats (Zhang et al., 2006). The effect of exercise on plasma ghrelin in 

humans is currently controversial. Single aerobic exercise has either slightly decreased (Vestergaard 

et al., 2007) or had no effects on total plasma ghrelin (Burns et al., 2007; Jürimäe et al., 2007a). 

Also increase in total ghrelin levels during prolonged (3h) medium-intensity exercise has been 

described (Christ et al., 2006). However, acylated ghrelin levels have been shown to decrease 

during to treadmill running in healthy males. Unfortunately, the total ghrelin concentration was not 
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measured (Broom et al., 2007). Using bicycle exercise on an ergometer, increase in total ghrelin was 

observed rather in low than high-intensity training. These changes did not correlate with variations 

in hunger (Erdmann et al., 2007). However, prolonged regular exercise of 6 hours/day was 

associated with slightly higher acylated ghrelin levels in adolescent girls compared to inactive age 

and BMI matched controls (Jürimäe et al., 2007b).    

2.4.3. Drugs 

 
Currently available drugs for obesity are designed to reduce food intake either by acting 

directly on neurons in the brain or decreasing absorption of nutrients in the gut. When used as 

monotherapy, current drugs have reduced weight less than 10%. When the treatment is 

discontinued, weight returns back to the level before the treatment. In addition, current drugs have 

significant side effects such as nausea, diarrhea and depression leading to reduced compliance (Bray 

and Greenway, 2007). Therefore, considerable effort for development of novel approaches for 

treatment of obesity is being carried out.  

Orlistat is a selective pancreatic lipase inhibitor and inhibits digestion of fat in the gut lumen. 

Thus, the amount of absorbed triglycerides and fatty acids is reduced. A 4-year randomized trial 

found that orlistat combined with hypocaloric diet produces approximately a 10 kg weight loss 

during the first year compared with 6 kg on a hypocaloric diet alone. After 3 years, slight weight 

regain occurs resulting in 2.8% weight loss compared with placebo. Weight loss was accompanied 

with 37% reduction in impaired glucose tolerance and diabetes (Torgerson et al., 2004). In a 

randomized double-blind multicentre study Richelsen et al. (Richelsen et al., 2007) found that 

orlistat provides additional 2.2 kg weight loss compared with placebo after 3 years of weight 

maintenance, slightly less than the 3 kg weight loss found in meta-analyses (Rucker et al., 2007). 

Orlistat has little systemic side effects, since it is not absorbed to a significant degree. However, 

initial loss of fecal fat and GI symptoms are common and may lead to poor compliance. Studies 

regarding the effect of orlistat treatment on plasma inflammatory markers have yielded variable 

results. Samuelsson et al. (2003) observed slightly lower TNF-α levels in the orlistat treated group 

than in the placebo group after 12-month caloric restriction, while difference in IL-6 was observed 

only in patients with type 2 diabetes and hypertension. Similarly, TNF-α levels were decreased in 

non-diabetic women after 6-month hypocaloric diet with orlistat treatment compared with diet 

alone.  

Sibutramine is a serotonin-norepinephrine reuptake inhibitor. Serotonin 5-HT2C receptors have 

been shown to modulate fat and food intake in animals. 5-HT2C receptor deficient mice are obese 

and have increased food intake possibly through modulation of downstream melanocortin-4 
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receptors (Lam et al., 2008). Activity of α- and β-receptors in the brain also modulate food intake in 

a reciprocal manner. Stimulation of α2-receptors increases while activation of β2-receptors reduces 

food intake (Jackson et al., 1997). In a meta-analysis of long-term treatment, sibutramine produced 

4.16 kg weight loss during 1-year follow-up (Rucker et al., 2007). When sibutramine was combined 

to behavioral therapy, weight loss of 6.7 kg was obtained during a 12-month study. Intensive 

lifestyle intervention combined to sibutramine increases weight loss to 12.1 kg (Wadden et al., 

2005). Sibutramine has been shown to increase systolic and diastolic blood pressure in 

normotensive patients by 0.8 mmHg  and 0.6 mmHg, respectively (Kim et al., 2003). In addition, 

sibutramine should not be used simultaneously with selective serotonin reuptake inhibitors or 

monoamine oxidase inhibitors. These things significantly limit the use of sibutramine in patients 

with history of coronary artery disease, cardiac insufficiency and arrythmias, stroke and depression. 

Rimonabant is an antagonist of cannabinoid receptor 1 that is distributed in the brain areas 

related to regulation of feeding. Mice lacking cannabinoid receptor 1 are lean and resistant to diet-

induced obesity (Di Marzo et al., 2001). Rimonabant was approved by European Medicines 

Evaluation Agency for treatment of obesity, but not by Food and Drug Administration (FDA) in the 

United States. Initial studies with obese patients showed that 20 mg of rimonabant administered 

daily produces additional 6.3 kg weight loss compared with placebo during a 1-year follow-up. The 

weight loss was accompanied with improvements in LDL, HDL and insulin sensitivity. The drop 

out rate was as high as 39% at end of the treatment pefiod due to psychiatric, nervous system and GI 

tract symptoms (Van Gaal et al., 2005). A subsequent study in overweighted and dyslipidemic 

patients showed similar results. Administration of 20mg rimonabant produced 6.5 kg weight loss 

compared with the control group. Drop-out rate reached 40% during 1-year trial. Adverse effects 

included nausea, diarrhea, vomiting, dizziness fatigue and anxiety, which were generally mild or 

moderate. Rimonabant also increased plasma adiponectin by 58% compared with baseline (Despres 

et al., 2005). A recent double-blind multi-center study in 839 obese patients with the MetS showed 

that despite weight loss, rimonabant did not improve atheroma plaque volume. However, psychiatric 

adverse effects were two-fold greater in the treatment group (43% and 28%, p < 0.001) (Nissen et 

al., 2008). Therefore, rimonabant was withdrawn from the market also in Europe in January 2009.         

2.4.4. Obesity surgery 

 
Obesity surgery is the most efficient treatment option for morbidly obese patients with 

history of several failed weight loss attempts by dietary and pharmacological methods. The National 

Institute of Health recommends consideration of bariatric surgery for patients with BMI greater than 

40 kg/m2 and for those with BMI greater than 35 kg/m2 who also have serious medical problems 
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due to obesity such as diabetes and sleep apnea (Hubbard and Hall, 1991). Several surgical 

techniques have been developed (Pories. 2008), but the Roux-en-Y gastric bypass and laparoscopic 

adjustable gastric banding are currently the most widely used (Buchwald and Williams, 2004). 

Classical Roux-en-Y surgery involves a creation of 20 - 30 ml pouch in the cardia of the 

stomach. The jejunum is dissected distal to the Treitz ligament and the distal end is anastomosed to 

the pouch created to upper stomach. The proximal jejunum is anastomosed to distal jejunum. 

Weight loss after Roux-en-Y has been varied 65 - 75% of excess weight corresponding 

approximately 35% of initial weight (Brolin, 2002).  

In gastric banding surgery, a silicone band is placed around the cardia of the stomach to create a 

30 ml pouch similarly to a Roux-en-Y bypass. Laparoscopic gastric banding surgery was improved 

by the invention of adjustable gastric banding. The caliber of the silicone band may be regulated by 

filling or emptying the inflatable saline reservoir placed under the skin of the patient (Figure 2).  

 

 
 

Figure 2. Adjustable gastric banding. Modified from (Crookes, 2006).  

 

The efficacy of bariatric surgery was demonstrated in a study of over 2000 patients. During 10 

years of follow-up, the weight losses in gastric bypass, vertical-banded gastroplasty and gastric 

banding were 25%, 16%, and 14%, respectively. There were 101 deaths in the bariatric surgery 

group and 129 deaths in the control group receiving conventional weight loss therapy (hazard ratio 

0.76, p = 0.04). Among the main causes of death were cardiac infarction and cancer (Sjostrom et al., 



  37 

2007). Another study of 1000 patients found that 67.1% of the excess weight loss is maintained 16 y 

after the surgery. Mortality and morbidity were significantly reduced compared with controls during 

5 years of follow-up (0.68% and 6.17%). The prevalences of cancer, cardiovascular disease, 

endocrinological disorders and respiratory conditions are also reduced 5 years after the surgery 

(Christou et al., 2004). Remarkably, complete resolution or improvements in diabetes, hypertension, 

hyperlipidemia, and obstructive sleep apnea have been observed (Pories et al., 1987; Hickey et al., 

1998; Tice et al., 2008) (Figure 3). In a meta-analysis of 10 studies including 4594 patients, 

adjustable gastric banding resulted in over 50% of excess weight loss accompanied by resolution of 

type 2 diabetes and hypertension (Cunneen, 2008). 

 

Figure 3. The resolution of obesity associated co-morbidities after Roux-en-Y gastric bypass and 
laparoscopic adjustable gastric banding. Values are reported as median values from meta-analysis of 
14 comparative studies. Modified from (Tice et al., 2008).  
 

According to a recent meta-analysis of 14 clinical trials, Roux-en-Y is considered more 

effective compared with adjustable gastric banding producing a 26% greater loss of excess body 

weight 1 year after the operation (Tice et al., 2008). The follow-up data from Kuopio Universital 

Hospital clinic showed that postoperative reduction of excess weight is 36 ± 24% 1 year and 21 ± 

5% nine years after the operation, respectively. Most patients started to regain weight after 1-3 years 

and the final average weight decrease from baseline was 19.5 kg (Martikainen et al., 2004). 

However, 52% of 200 patients required re-operation, which is high compared with the 19% 

observed in a larger study (Chevallier et al., 2004).  

Gastric banding is considered safer in short-term, yet the overall mortality rate is low (0.06% 

vs. 0.17%) after both gastric banding and Roux-en-Y during the follow-up period of 1-5 years, 

respectively (Tice et al., 2008). Common complications of the gastric banding include band slippage 
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and pouch dilation, while bowel obstruction has been the most common problem after the Roux-en-

Y gastric bypass. Short-term complications of different laparoscopic bariatric surgery techniques 

include conversion to open procedure, bleeding and anastamose leakage. Band erosion, gallbladder 

problems, and incisional hernias are relatively uncommon long-term complications. A study of 1000 

laparoscopic gastric banding operations reported 193 complications (19.3%) during 7 years of 

follow-up. Twelve of these complications (1.2%) were lifethreatening. In addition, an abdominal 

reoperation was required in 111 (11%) cases (Chevallier et al., 2004). These complication rates need 

to be weighted against the individual risk for obesity-related complications when considering the 

bariatric surgery as a treatment option in obese patients. 

Obvious mechanisms leading to weight loss after the bariatric surgery are malabsorption of the 

nutrients due to intestinal bypass and mechanical restriction of the stomach. In Roux-en-Y, food is 

directed pass the stomach, duodenum and upper parts of jejunum leading to poor absorption. 

Creation of small pouch limits the amount of ingested food after both operations. However, 

improvement or full resolution of obesity-associated diabetes and insulin resistance immediately 

after the surgery, before the occurrence of weight loss (Pories et al., 1987; Hickey et al., 1998). The 

mechanism of action is currently under intensive research. In response to gastric banding, leptin 

levels decreased and ghrelin significantly increased (Hanusch-Enserer et al., 2004; Coupaye et al., 

2005). However, weight loss after Roux-en-Y has been associated with decreases in ghrelin levels 

in some (Cummings et al., 2002b; Fruhbeck et al., 2004), but not in all studies (Borg et al., 2006). 

The conflicting data may be due to the different surgical techniques that affect the functionality of 

the gastric fundus from which ghrelin is mainly secreted (Fruhbeck et al., 2004). Adiponectin levels 

increased in morbidly obese patients after Roux-en-Y bypass and pre-operative levels predict post-

operative weight loss (Faraj et al., 2003). In contrast, no change in fasting serum peptide YY and 

GLP-1 values has been observed after Roux-en-Y bypass (Clements et al., 2004; Borg et al., 2006), 

yet peptide YY and GLP-1 responses to a 420kJ mixed test meal has been increased 6 months after 

the operation (Borg et al., 2006). Thus, further studies are required to understand the rapid 

metabolic improvements observed in patients undergoing bariatric surgery. 
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3. AIMS OF THE STUDY 

 

The current study was designed assess the possible roles of apelin, OXA and ghrelin in obesity 

and MetS. More specifically, the following questions were addressed: 

 

1. Are plasma apelin levels altered in morbidly obese patients? What is the effect of diet-induced 

weight loss and 6 months of weight maintenance on plasma apelin in patients with MetS? Are 

apelin levels associated with changes in body fat mass, inflammation and blood pressure?  

2. Are plasma OXA levels altered in morbidly obese patients undergoing bariatric surgery? 

3. Are circulating OXA levels altered in children with PWS? 

4. Is the post-prandial ghrelin response blunted in individuals with MetS and is this response 

altered differently by two high-carbohydrate meals producing different insulin levels? 
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4. MATERIALS AND METHODS 

4.1. Study protocols 

4.1.1. Apelin and OXA levels in morbidly obese patients 

 
A study group of 32 morbidly obese patients undergoing gastric banding were recruited for the 

study at the Department of Surgery, Kuopio University Hospital. Characteristics of the participants 

are given in Table 3. All patients had participated in long-term non-surgical weight reduction 

programs at the Division of Clinical Nutrition of Kuopio University Hospital by a multidisciplinary 

team, including surgeon, endocrinologist and clinical nutritionist before undergoing surgery. 

Criteria for the bariatric surgery were: age > 18 y, BMI > 40 kg/m2 or > 35 kg/m2 with significant 

co-morbidities, including diabetes, hypertension, hyperlipidemia, hypertension, sleep apnea and 

osteoarthritis. The patients were required to be obese for 15 y and possess no acute psychiatric 

illness or eating disorder. Information regarding the benefits, risks and side effects of surgery were 

discussed in detail and the patients were informed of the necessity to undergo postoperative life-

long follow-up and the importance to change dietary habits. 

 

Table 3. Characteristics of morbidly obese patients undergoing gastric banding, subgroup of 
morbidly obese patients analyzed before and 1 year after the gastric banding and healthy lean 
controls (amorbidly obese-lean controls, bsubgroup-lean controls). 

 Morbidly obese Subgroup Lean controls p valuea p valueb 
Male/Female 10/22 1/7 2/10 - - 
Age (y) 44 ± 2 37 ± 1  49 ± 6 0.31 0.12 
Weight (kg) 134 ± 4 135 ± 7 61 ± 8 0.90 < 0.001 
BMI (kg/m2) 48 ± 1 48 ± 2 22 ± 2 0.99 < 0.001 

 

In the morning prior to surgery, blood samples were drawn from antecubital vein after an 

overnight fast. In a subgroup of 8 obese patients, fasting blood samples were obtained one year after 

surgery. An adjustable silicone gastric band (Lab-Band, BioEnterics Corporation, California) was 

placed either in open surgery or using a laparoscopic technique. The surgery followed the principles 

described by Kuzmak (1989). The results of the gastric banding procedure on weight loss, late 

complications and quality of life have been reported (Martikainen et al., 2004). A control group of 

12 normal weighted and age matched volunteers was recruited from the university staff (Table 3). 

Participants were required to have BMI < 25 kg/m2 and no interfering medical history, diabetes, or 

use of corticosteroids. 
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4.1.2. The effect of diet-induced weight loss 

 
A study group of 35 obese subjects with a BMI between 30 and 45 kg/m2 and waist 

circumference ≥  102 cm (men) and ≥ 92 cm (women) (Table 4) was recruited from the Kuopio 

center of the Scandinavian multicenter study of obese subjects with the metabolic syndrome 

(SMOMS) (Laaksonen et al., 2003b; Richelsen et al., 2007). The study was initiated to investigate 

the effects of lipase inhibitor orlistat on weight maintenance after a VLCD. Participants were 

required to have plasma glucose concentrations ≥ 7.0 mmol/l treated by diet only, or at least one of 

the following criteria: impaired fasting glucose (plasma glucose ≥ 6.1mmol/l), dyslipidemia (HDL ≤ 

0.9 mmol/l [men] and ≤ 1.2 mmol/l [women]) and/or serum triglycerides ≥ 2.0 mmol/l. Exclusion 

criteria were poorly controlled diabetes (HbA1c ≥ 10%), hypertension exceeding ≥ 180/120 mmHg, 

ischemic heart disease, psychiatric disorders and kidney insufficiency. 

 

Table 4. Charasteristics of patients with MetS at baseline (p value between sexes). 

 Males Females p value 

Number 19 16  
Age (y) 52 ± 2 53 ± 2  0.84 
Weight (kg) 106.9 ± 2.5 95.6 ± 2.7 < 0.01 
BMI (kg/m2) 34.0 ± 0.7 36.2 ± 1.0 0.07 
Waist circumference (cm) 116 ± 2 111 ± 2 < 0.05 
Systolic blood pressure (mmHg) 130 ± 2 128 ± 2 0.60 
Diastolic blood pressure (mmHg) 80 ± 1 79 ± 1 0.91 
Glucose (mmol/l) 5.9 ± 0.4 6.4 ± 0.4 0.37 
Hb1Ac (%) 5.9 ± 0.1 6.4 ± 0.3 0.06 
HDL (mmol/l) 1.11 ± 0.07 1.23 ± 0.06 0.20 
LDL (mmol/l) 3.95 ± 0.32 3.81 ± 0.27 0.96 
Triglycerides (mmol/l) 2.86 ± 0.47 2.03 ± 0.20 0.14 

 

After the baseline measurements were performed, subjects who lost ≥ 5% of the initial weight 

during the VLCD were included into the study. Participants consumed a VLCD of 800 kcal day for 

8 weeks (Nutrilett; Leiras Co., Finland). They supplemented the Nutrilett diet with low-calorie 

vegetables as desired. Subjects were randomized into two groups receiving either 120 mg of orlistat 

or placebo three times a day during a 6-month weight maintentace period (WM). WM consisted of a 

hypocaloric low-fat (< 30 E%) diet of at least 1200 kcal/day individualized according to estimated 

daily energy expenditure allowing a deficit of 600 kcal/day. In addition, similar dietary and exercise 

counselling was given to both study groups (Laaksonen et al. 2003a; Richelsen et al. 2007). Blood 

samples were taken at baseline, after VLCD and after the 6-month WM. Antropometric data was 
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also collected at given time points and ambulatory blood pressure measurements and CT scan were 

performed as described in 9.5 and 9.6.   

4.1.3. OXA levels in children with PWS 

 
Eight children with diagnosed PWS were recruited for the study in the Poznan University of 

Medical Sciences (Table 5). Two of the patients were taking GH treatment. Eighteen lean and 

healthy young adults were recruited from the students of Poznan University of Medical Sciences 

and Poznan University of Life Sciences. They were all non-smokers and taking no medication. All 

of the healthy controls were young adults, since the use of children in the current study was 

considered unethical. All participants were informed written consent and the study plan was 

approved by the Joint Ethics Committee of Poznan University Hospital. 

 

Table 5. Athropometric data and plasma variables at baseline in PWS children and healthy adults. 

 PWS Healthy p value 

Women/Men 1/7 11/7  
Age (y) 11 ± 2 23 ± 1  <0.001 
Height (m) 1.38 ± 0.06  1.73 ± 0.02 <0.001 
Weight (kg)  48.3 ± 6.1 63.0 ± 2.2 <0.01 
BMI (kg/m2) 24.5 ± 1.6 21.1 ± 0.4 <0.05 
BMI (Z-score) 1.76 ± 0.28 - - 
Glucose (mmol/L) 5.0 ± 0.1 5.7 ± 0.1 <0.001 
Insulin (pmol/L) 42.5 ± 5.3 42.4 ± 3.0  0.99 
HOMA-IR 1.4 ± 0.2  1.6 ± 0.1 0.58 

 

In the morning after an overnight fast, basal blood samples were taken. The study participants 

consumed liquid meal consisting of two packages of Nutridrink (2 x 200 mL; N.V. Nutricia, 

Zoetermeer, The Netherlands) containing 600 kcal of energy. The meal consisted of 12 g protein (E 

16%), 37g carbohydrates (E 49%), 11.6 % fat (E 35%) and a variety of vitamins. After the meal, 

blood samples were drawn at 30 and 90 min time points from the antecubital vein. 

4.1.4. Ghrelin levels after two meals producing different insulin responses 

 
Eight obese individuals (3 men and 5 women; BMI 33.7 ± 0.7 kg/m2) were recruited from a 

larger study cohort for the effect of carbohydrate modification to metabolic parameters in patients 

with MetS (Laaksonen et al., 2005b). Participants were required to fulfill three of the following 

criteria: waist circumference > 102 cm (men) and > 92 cm (women), fasting serum trigycerides 

concentration > 1.7 mmol/l, fasting HDL < 1.0 mmol/l (men) or < 1.2 mmol/l (women), fasting 

plasma glucose concentration between 6.1 and 6.9 mmol/l, blood pressure ≥ 130/85 mmHg or blood 
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pressure medication. Exclusion criteria were diagnosed diabetes and lipid lowering medication and 

corticosteroids. The control group of eight healthy volunteers (3 men and 5 women, BMI 22.5 ± 0.5 

kg/m2) was recruited from another intervention study (Karhunen, 2005; Obes Rev, abstract). They 

had normal glucose tolerance, serum lipid profile and blood pressure levels. They were not taking 

any medication and had no significant weight loss 1 year prior to the experiment. Characteristics of 

the patients with MetS are given in Table 6. 

 

Table 6. Characteristics of obese subjects with MetS.     

Age (y) 55.6 ± 1.8 
Body mass index (kg/m²) 33.7±0.7 
Waist circumference, men (cm) 109 ± 1 
Waist circumference, women (cm) 114 ± 1 
Blood pressure, systolic (mmHg) 152 ± 5 
Blood pressure, diastolic (mmHg) 93 ± 3 
Plasma glucose (mmol/L) 6.3 ± 0.1 
Serum triglycerides (mmol/L) 1.9 ± 0.3 
Total cholesterol (mmol/L) 5.7 ± 0.4 
LDL cholesterol (mmol/L) 3.6 ± 0.4 
HDL cholesterol, (mmol/L) 1.2 ± 0.1 

 

After an overnight fast (12 h), the obese study group consumed rye bread or wheat bread meals 

(A or B) known to produce low and high insulin responses in separate days a week apart (Table 7). 

The control group consumed only wheat bread meal. Blood samples were collected via intravenous 

catheter in obese study group at 15, 30, 45, 60, 90 and 120 min after the meal. In the control group, 

blood samples were collected at 20, 40, 60 and 90 min.  

 

Table 7. Portion size and the calculated nutrient composition of the test bread baskets. 

 
 
 
 

 Rye bread meal Wheat bread meal A Wheat bread meal B 

Portion size (g) 113 125 114 
Available carbohydrate (g) 50 50 52 
Total dietary fiber (g) 10.2 7.0 3.4 
Protein (g) 6.9 13.9 9.2 
Fat (g) 2.6 5.1 5.7 
Energy content (kJ) 1093 1260 1250 
Energy content (kcal) 259 299 298 
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4.2. Ethical approval 

 

Study protocols of studies I, II and IV were approved by the Joint Ethical Committee of Kuopio 

University Hospital. In study III, the study protocol was approved by Joint Ethics Committee of 

Poznan University Hospital. All participants were informed about the methodology used in the 

study. All participants gave informed written consent. 

4.3. Blood samples 

 

After an overnight fast, blood was drawn from antecubital vein into Vacutainer tubes (BD, 

Franklin Lakes, NJ, USA) and samples were immediately cooled on ice. Serum or plasma was 

separated with centrifugation 1700-3000 g x 12-15 min in +4 C within 10 min of sampling and 

samples were stored -70 C until the analysis.  

4.4. Plasma peptide measurements 

 

Plasma apelin was measured with commercially available EIA (EK-057-23; Apelin-12; 

Phoenix Pharmaceuticals Inc., CA, USA) that detected human apelin-12, -13 and -36 and intra- and 

inter-assay CV% reported by the manufacturer were < 5% and < 14%, respectively. Plasma OXA 

was measured using RIA or EIA (Phoenix Pharmaceuticals Inc., CA, USA). Prior to the analysis, 

plasma was extracted using Sep-Pak C-18 (Waters Associates, Milford, MA, USA) columns using a 

slightly modified method by Arihara et al. (Arihara et al. 2001). In study I, 1-2 ml of was applied to 

the Sep-Pak comlumn previously activated with methanol and sterile water. The column and 

washed with 20 ml of water and samples were eluted slowly with 80% ACN. Resulting volume was 

reduced to 0.4 ml under nitrogen flow and the aliquot was evaporated into dryness using Speedvac 

(Savant Instruments, Holbrook, NY). The dry residue was dissolved in sterile water and used for 

EIA. The intra- and inter-assay CV% for OXA EIA reported by the manufacturer were < 5% and < 

14%, respectively. In study III, 1 ml of plasma was acidified with 1 ml of 0.1% TFA and applied to 

Sep-Pak column previously equilibrated with methanol, 60% ACN in 0.1% TFA and 0.1% TFA. 

The column was washed with 10 ml of 0.1% TFA and peptides were eluted with 2 ml of 60 % ACN 

in 0.1% TFA. Samples were evaporated into dryness and dissolved in 0.1 ml of RIA buffer. RIA 

was conducted in the same tube without additional dilutions to avoid loss of the peptide. RIA 

detected full length human orexin A, but did not crossreact with orexin B. Ghrelin RIA kit detected 

human ghrelin, des-octanoyl-Ser3-ghrelin and o-n-octanoyl-ser3-ghrelin(1-27). Intra- and inter-

assay CV% determined in our lab were 5% and 20%, respectively. TNF-α and IL-6 were measured 

with Quantikine HS EIA kit (R&D Systems Inc., MN, USA). Intra- and inter-assay CV% for 
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Quantikine HS kits were 3.1 - 8.5% and 6.5 - 10.6%, respectively. Plasma adiponectin and leptin 

were determined with EIA and RIA, respectively (Linco Research Inc., MO, USA). Intra- and inter-

assay CV% for leptin RIA were 10.2% and 13% and for adiponectin EIA 7.4% and 8.4%, 

respectively. In study IV, also EIA by Cayman Chemicals Inc. (MI, USA) was used. Intra- and 

interassay CV% reported by the manufacturer were 9%. Plasma glucose was determined using 

glucose dehydrogenase method after precipitation of protein by trichloroacetic acid or glucose 

hexokinase method (Roche, Basel. Switzerland). Serum insulin was measured with 

chemiluminescent immunoassay (ACS 180 Plus, Bayer Diagnostics, Germany) or RIA (Pharmacia 

Diagnostics, Uppsala, Sweden; Millipore, MA, USA). Insulin sensitivity was assessed by the 

homeostasis assessment model (HOMA-IR [mmol/l x µU/ml] = fasting glucose [mmol/l] x fasting 

insulin [µU/ml] / 22.5). LDL and HDL fractions were separated from serum by combined 

ultracentrifugation and precipitation. Cholesterol and triglyceride contents were measured 

enzymatically. All samples were measured in duplicates except in OXA RIA (Study III) that was 

measured in single due to the lack of sample material.  

4.5. Ambulatory blood pressure measurements 

 

Participants underwent 24-h ambulatory measurements using a digital ambulatory blood 

pressure system (SpaceLabs 90207; SpaceLabs Medical Inc., Redmond, WS, USA) at baseline and 

after VLCD and 6-month weight maintenance period. The blood pressure was measured in 15 min 

intervals in the daytime and 30 min in the night. The mean heart rate and mean MAP ([2 x diastolic 

blood pressure + systolic blood pressure]/3) during 24-h measurements were used in the 

calculations.  

4.6. Determination of body adiposity 

 

The amount of visceral and subcutaneous fat was measured at the L4-L5 level using 

computational tomography (CT; Somatom Plus S, Siemens, Erlangen, Germany) scan before and 

after VLCD of 15 study participants. CT derived VAT and SAT were measured as described 

(Sjostrom et al., 1986). Briefly, a 10 mm thick cross-sectional scan centred on the L4 vertebra was 

obtained at 120 kV with a scanning time of two seconds and a 512 matrix. The areas of total and 

visceral fat were determined by delineating them with a graph pen and then computing the areas at 

an attenuation ranging from -30 to -190 HU. The area of visceral fat was defined by drawing a line 

inside the muscle wall outlining the abdominal cavity, and the area of subcutaneous fat was 

calculated by subtracting the area of visceral fat from the area of total fat. 
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4.7. Statistics 

 
 All values are reported as mean ± SEM and p values lower than 0.05 were considered 

significant. Normality of the data was tested using the Kolgomorov-Smirnov or Shapiro-Wilk tests. 

In study I, peptide levels between the morbidly obese and healthy controls and levels before and 

after the surgery were compared using Student´s t-test and paired t-test when appropriate. 

Correlations were calculated using Pearson correlation. In study II, changes in anthropometric 

measures and plasma cytokine values at different time points and differences between sexes and 

orlistat and placebo groups were compared using repeated measures ANOVA. Post-hoc tests were 

based on comparing estimated marginal means. A relative decrease in VAT and SAT was compared 

using paired samples t-test. Pearson correlations were calculated at each timepoint. Plasma apelin, 

TNF-α, IL-6, ghrelin, insulin and adiponectin levels were not normally distributed and therefore 

Spearman correlation was used between these variables. Multivariate regression analysis was 

performed to assess the effect of individual parameters on changes in plasma apelin. Univariate 

analysis of variance was used in analysis of the effect of degree of weight loss on changes in plasma 

markers after the WM. The Bonferroni post test was used to determine the differences between 

groups. Differences from baseline after the VLCD and WM in weight loss groups were determined 

with repeated measures ANOVA and the Bonferroni post-hoc tests. In study III, peptide levels 

between PWS patients and healthy adults were compared using Student´s t-test. Peptide levels 

between the groups at different time points were compared using repeated measures ANOVA with 

Bonferroni post-hoc test. In study IV, post-prandial variations within the group were determined 

using repeated measures ANOVA with Bonferroni post-test. Differences between the obese groups 

were determined using two-way ANOVA with Bonferroni post-hoc test and lean and obese groups 

were compared using Student´s t-test in each overlapping time point. AUCs were compared using 

ANOVA with Bonferroni post-hoc test. Statistical tests were performed using Graphpad Prism 4.0 

(Graphpad Software Inc., CA, USA) and SPSS 14.0 (SPSS Inc., IL, USA). 
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5. RESULTS 

5.1. Apelin and OXA in morbid obesity 

 

We found that plasma apelin levels were elevated in morbidly obese patients compared with 

healthy normal-weight controls (736 ± 50 pg/ml and 174 ± 14 pg/ml; p < 0.001). Apelin levels 

correlated positively with BMI in morbidly obese patients and lean controls (r = 0.77, p < 0.001). 

OXA levels determined with EIA were increased in morbidly obese patients undergoing gastric 

banding (75.3 ± 24.1 pg/ml and 0.8 ± 0.4 pg/ml; I). A weak positive correlation to BMI was 

observed (r = 34, p < 0.05). Gastric banding was accompanied with significant weight loss (-16 ± 6 

kg, p < 0.001) and improvements in glucose levels (-0.8 mmol/l, p < 0.001). Despite pronounced 

weight loss, minor decrease in plasma OXA level did not reach statistical significance (56.1 ± 16.1 

pg/ml, p = 0.19). 

5.2. Apelin, adipokine and cytokine levels after weight loss 

 

In response to weight loss induced by VLCD and WM, plasma apelin levels decreased in 23 

(66%) individuals, yet this decrease did not reach statistical significance (1003 ± 69 pg/ml to 913 ± 

67 pg/ml; p = 0.26; Table 8). Furthermore, plasma IL-6 and TNF-α did not change significantly 

from baseline during the VLCD and WM. 

Substantial reductions in body weight and BMI, body adiposity, MAP and enhancement of 

glucose metabolism and a modest improvement in blood pressure in response to a VLCD and WM 

were observed (Table 8). Participants lost on average 14.8 ± 0.8 kg of weight during the VLCD and 

weight loss of 15.1 ± 1.0 kg was maintained after WM. Both VAT and SAT significantly decreased 

after the VLCD (p < 0.001). The proportional decrease was higher in VAT than in SAT (-28.7 ± 

4.0% and -17.9 ± 3.4%; p < 0.05). Systolic and diastolic blood pressures decreased during the 

VLCD.  

Adiponectin levels acutely increased in response to the VLCD and remained increased during 

the WM (Table 8). Leptin decreased in response to the VLCD and increased slightly towards the 

baseline during the WM. Leptin levels remained higher in females throughout the study. The 

decrease after the VLCD was more pronounced in females than in men (-16.6 pg/ml vs. -9.5 pg/ml; 

p < 0.01). 
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Table 8. Changes in metabolic parameters of patients with metabolic syndrome after the VLCD and 
WM (a baseline-VLCD values; b baseline-WM values).   

 Baseline VLCD WM p valuea p valueb 

      

Weight (kg) 101.7 ± 2.0 86.9 ± 1.7 86.6 ± 1.8 < 0.001 < 0.001 

BMI (kg/m2) 35.0 ± 0.6 30.0 ± 0.6 29.9 ± 0.6 < 0.001 < 0.001 

Visceral fat (cm2) 217 ± 48 161 ± 56 - < 0.001 - 

Sucbutaneous fat (cm2) 415 ± 128 319 ± 110 - < 0.001 - 

Systolic blood pressure (mmHg) 129 ± 1 120 ± 2 125 ± 1 < 0.001 < 0.01 

Diastolic blood presure (mmHg) 80 ± 1 75 ± 1 78 ± 1 < 0.001 < 0.05 

Glucose (mmol/L) 6.2 ± 0.3 5.5 ± 0.1 5.6 ± 0.1 < 0.001 < 0.001 

Insulin (pmol/L) 92.0 ± 6.8 48.6 ± 4.7 60.6 ± 4.2 < 0.001 < 0.001 

HOMA-IR (mmol/L x mU/L) 3.8 ± 0.4  1.8 ± 0.2 2.2 ± 0.2 < 0.001 < 0.001 

Leptin (ng/mL) 20.7 ± 1.7 7.9 ± 0.9 11.1 ± 1.1 < 0.001 < 0.001 

Adiponectin (ug/mL) 5.6 ± 0.4 7.6 ± 0.6 7.7 ± 0.5 < 0.001 < 0.001 

Ghrelin (pg/mL) 763 ± 44 897 ± 66 823 ± 61 < 0.01 0.06 

Apelin EIA (pg/mL) 1003 ± 69 900 ± 65 913 ± 67 0.18 0.26 

IL-6 (pg/mL) 1.55 ± 0.28 1.76 ± 0.29 1.30 ± 0.20 0.38 0.49 

TNF-alpha (pg/mL) 1.68 ± 0.15 1.71 ± 0.14 1.64 ± 0.14 0.62 0.89 

 

To further investigate the overall effect of weight loss after VLCD and WM, participants of the 

study were divided into three subgroups: high weight loss (HWL, > 16.5 kg, n = 12), medium 

weight loss (MWL, 12 - 16.5 kg, n = 12) and low weight loss (LWL, < 12 kg, n = 11; Figure 4). 

Decreases in plasma apelin, MAP, TNF-α and IL-6 tended to occur only in HWL group, yet 

significance was reached only in MAP and TNF-α. Instead, leptin decreased in all subgroups (at 

least p < 0.01) and adiponectin increased in HWL and MWL subgroups (at least p < 0.05). 

5.3. Correlations between variables in patients with MetS 

 
Apelin correlated with TNF-α at baseline (r = 0.41, p < 0.05) and minor changes in plasma 

apelin during the VLCD and WM correlated with ∆TNF-α and ∆MAP. During the VLCD, changes 

in plasma apelin correlated with ∆BMI (r = 0.40, p < 0.05), but this correlation was non-significant 

after the WM. In a multiple linear regression model using ∆apelin as the dependent variable and 

∆BMI, ∆TNF-α and ∆MAP as independent variables, ∆MAP (β = -0.45; p = 0.01) and ∆TNF-α (β = 

0.34; p < 0.05) were significantly associated with ∆apelin (baseline-WM levels). The model 

significantly predicted overall changes in plasma apelin level (r2 = 0.28, p < 0.01) during the VLCD 

and WM and ∆MAP accounted for 45% of the variation.  
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Figure 4. The overall effects of the degree of weight loss during the VLCD and WM on measured 
variables (baseline-WM). Participants were divided into subgroups losing > 16.5 kg (HWL), 12-
16.5 kg (MWL) and < 12 kg (LWL) of initial weight. TNF-α, MAP, adiponectin and leptin, but not 
apelin changed significantly from the baseline in the indicated subgroups (***p < 0.001, **p < 0.01, 
*p < 0.05). 
 

At baseline, adiponectin levels correlated positively with ghrelin (r = 0.40, p < 0.05) and 

negatively with VAT (r = -0.55; p < 0.05). After the WM, adiponectin correlated negatively with 

TNF-α (r = -0.35; p < 0.05). Significant correlations were detected between ghrelin and circulating 

insulin (r = -0.37, p < 0.05) and HOMA-IR (r = 0.39; p < 0.05) at baseline. IL-6 correlated 

significantly with VAT at baseline (r = 0.68, p < 0.01). A strong correlation between TNF-α and IL-

6 was observed throughout the study (at least r = 0.584, p < 0.01). 

Plasma leptin levels correlated positively with BMI (at least r = 0.40; p < 0.05) throughout the 

study. Significant correlations to insulin (r = 0.60, p < 0.001), VAT (r = 0.47, p < 0.01) and SAT (r 

= 0.72, p < 0.001) were detected after the VLCD. Overall changes in leptin after the VLCD and 

WM correlated with ∆weight (r = 0.70, p < 0.001) and ∆BMI (r = 0.50, p < 0.01). 

 Significant correlations were detected between ghrelin and circulating insulin (r = -0.37, p < 

0.05) and HOMA-IR (r = 0.39; p < 0.05) at baseline, but not after VLCD and WM periods. 

5.4. OXA levels in PWS children 

  

 In PWS children, plasma OXA levels determined by RIA were lower than in healthy adult 

controls (12.6 ± 1.3 pg/ml and 15.9 ± 0.7pg/ml, p < 0.05). Furthermore, no significant posprandial 
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response in plasma OXA levels or significant correlations between OXA, BMI, glucose, insulin and 

age were observed.   

5.5. Ghrelin responses to carbohydrate meal and diet-induced weight 

loss 

  

 The postprandial suppression of plasma ghrelin observed in the healthy subjects (524 ± 

52pg/ml to 458 ± 45pg/ml, p < 0.05) was absent in patients with the MetS, whose ghrelin 

concentrations remained similar to the mean preprandial values (445 ± 25 pg/ml) throughout the 

experiment. Plasma ghrelin levels tended to be higher in healthy subjects, but this difference did not 

reach statistical significance. Postprandial insulin response 30 – 60 min after the wheat bread meal 

was higher than after the rye bread meal (P < 0.05) in patients with the MetS. Despite different 

insulin levels, no difference in plasma ghrelin levels was observed. 

 A transient increase in plasma ghrelin level was seen after the VLCD, but the elevation was no 

longer significant during the WM (Table 8).  
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6. DISCUSSION 

6.1. Apelin levels in obesity and effect of diet-induced weight loss  

   

 Apelin has been previously detected in the circulation and in this thesis we showed that apelin 

levels are increased in morbid obesity. However, despite pronounced weight loss, no significant 

decrease in plasma apelin was observed in obese patients with MetS. The apelin assay used in the 

current study was chosen to detect apelin-12, -13 and -36 fragments, since those peptides have been 

shown to contain the biological activity of apelin (Tatemoto et al., 1998; Tatemoto et al., 2001; 

Szokodi et al., 2002; Berry et al., 2004). Moreover, apelin-13 and -36 have been the most abundant 

endogenous fragments detected in colostrum and human tissues (Hosoya et al., 2000; Kawamata et 

al., 2001). In agreement with our findings, adipose tissue apelin mRNA and plasma apelin levels 

have been increased in obesity, impaired glucose tolerance and diabetes (Boucher et al., 2005; Li et 

al., 2006; Castan-Laurell et al., 2008).  

 Because it is present in the circulation, apelin could function in an endocrine manner activating 

cells expressing APJ. Based receptor studies using synthetic peptides, circulating apelin may indeed 

be sufficient to increase intracellular cAMP levels in cells expressing APJ. TheEC50 for APJ binding 

for apelin-36 in HEK-293 cells transfected with the human APJ receptor is 2.5 nmol/l (10 ng/ml), 

whereas cAMP accumulation was observed already at 0.1 nmol/l (0.5 ng/ml). Ca2+ mobilization 

required a concentration of 20 nmol/l (80 ng/ml) of apelin-36 (Medhurst et al., 2003). However, 

studies showing that apelin regulates arterial tone, heart contraction and food and water intake have 

used pharmacological doses of apelin. Thus, it is not certain whether physiological plasma 

concentrations of endogenous apelin may exert those effects. Further studies utilizing physiological 

doses of apelin are required to verify whether apelin may function as endocrine hormone regulating 

arterial tone, inflammation and food and water intake. 

 In contrast to our findings, plasma apelin levels were decreased in overweighted patients with 

newly diagnosed diabetes suggesting that factors other than adiposity may regulate apelin levels 

(Erdem et al., 2008). The minor changes in plasma apelin correlated with ∆BMI after the VLCD, 

but not after the WM. Recently, Castan-Laurell et al (Castan-Laurell et al., 2008) reported that 

plasma apelin and adipose tissue apelin mRNA levels decrease in response to a 3-month diet-

induced weight loss in obese women (-6.7 ± 3.7 kg). Changes in apelin levels correlate significantly 

with TNF-α and insulin in a subgroup analysis of individuals with highest improvement (> 20%) in 

insulin resistance. Previously, apelin expression in adipose tissue has been shown to be up-regulated 

by TNF-α in mice (Daviaud et al., 2006). In addition, administration of an APJ antagonist decreases 

inflammatory cytokines including TNF-α in rats (Tiani et al., 2008). In humans, plasma apelin 
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levels are up-regulated by insulin and TNF-α (Boucher et al., 2005; Castan-Laurell et al., 2008), 

although a negative correlation has also been described (Tasci et al., 2008). In the current study, 

minor changes in circulating apelin correlate positively with TNF-α supporting the role of TNF-α as 

a regulator of apelin levels. 

 Since apelin is secreted by adipocytes in vitro (Boucher et al., 2005), we hypothesized that 

plasma apelin would correlate with abdominal fat depots. However, the minor changes in apelin 

levels did not correlate with abdominal adipose tissue deposits measured by CT. In agreement with 

previous findings showing a close relation between leptin and body fat (Havel et al., 1996), leptin 

levels were correlated with BMI, VAT and SAT. Moreover, a negative correlation between 

adiponectin and VAT was observed. When the study group was divided into three groups according 

to the amount of weight loss, small decreases in plasma apelin, TNF-α, IL-6 tended to occur in 

individuals losing > 16.5 kg of weight. These findings contrast the pattern observed in leptin and 

adiponectin where significant changes occurred already after 6 and 12 kg weight losses, 

respectively. In addition, improvement of hypercholesterolemia without changes in body weight 

was accompanied with pronounced increase in plasma apelin, suggesting that body adiposity may 

not be a major regulator of apelin (Tasci et al., 2008). Thus, these results suggest that apelin is not 

that strongly correlated with the fat mass like the more abundant adipokines adiponectin or leptin. 

 The minor changes in circulating apelin in response to weight loss were linked to MAP. 

Systemic administration of apelin in anestethized rats has been shown to decrease MAP via a NO-

mediated mechanism (Tatemoto et al., 2001), the effects of peripherally administered apelin have 

been variable (Kagiyama et al., 2005; Mitra et al., 2006). In addition, APJ KO mice have normal 

blood pressure and heart rate and blockage of APJ does not affect blood pressure and heart rate in 

rats with portal hypertension (Ishida et al., 2004; Tiani et al., 2008). In healthy volunteers, local 

infusions of apelin-36 and [Pyr]-apelin-13 (from 420 pg to 1300 pg/kg min) into brachial artery and 

dorsal hand vein causes a NO-dependent arterial vasodilatation with no apparent affect on venous 

tone, systemic blood pressure or heart rate (Japp et al., 2008). Our results suggest that apelin may be 

involved in the regulation of systemic cardiovascular tone in humans via regulation of arterial rather 

than venous vasodilatation. 

6.2. OXA levels in morbid obesity and PWS children 

 

 OXA is a neuropeptide abundantly expressed in CNS and GI tract regulating food intake, 

wakefullness, sleep and gastric motility and secretion. Although its physiological role in the 

circulation is currently unclear, we found that basal OXA levels are elevated in morbidly obese 

patients compared with lean and healthy age-matched controls when plasma OXA was measured 
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using EIA. Despite significant improvements in BMI, leptin and glucose levels, the decreases 

observed in OXA and lipid levels did not reach statistical significance. Elevated plasma OXA levels 

in morbid obesity measured with EIA contrast the RIA measured data in the literature. Adam et al. 

(Adam et al., 2002) found a negative correlation between plasma OXA levels and BMI in 

individuals with BMI ranging 19-59 kg/m2. However, the overall variations in plasma OXA were 

minor (40-61.4 pg/ml). A negative correlation between BMI and OXA has also been described in 

obese women (Baranowska et al., 2005) and weight loss in obese children has been associated with 

increased plasma OXA (Bronsky et al., 2006). Plasma OXA levels have increased in fasting 

subjects and decreased upon refeeding with a negative correlation to leptin in lean men and women 

(Komaki et al., 2001).  

 Animal data mainly support the data obtained from RIA measurements. Orexin expression is 

down regulated in LHA in genetically obese ob/ob an db/db mice with high basal glucose levels 

(Yamamoto et al., 1999). In obese Zucker fatty rats, hypothalamic PPO mRNA levels are decreased 

and weight gain further decreases PPO expression. Surprisingly, in extremely obese and diabetic 

Zucker fatty rats, PPO expression is similar to lean and non-diabetic controls (Cai et al., 2000). In 

another study, hypothalamic OXA levels in obese fatty Zucker rats were similar to lean control rats 

(Taheri et al., 1999). Thus, plasma OXA levels in extreme obesity and diabetes may differ that of 

observed in modest uncomplicated obesity.   

 The discrepancy between our data and the literature in morbidly obese patients may also be 

caused by different methodology used. Orexin EIA detected full-length OXA and did not crossreact 

with OXA fragment (16-33), OXB, agouti-related protein (83-132)-amide, neuropeptide Y or leptin. 

The minimal detectable concentration given by the manufacturer was 0.37 ng/ml and all measured 

values were below that level. However, the standard curve enabled the comparison of the results 

between 10 and 100 pg/ml and hence, this exception was accepted. In addition, plasma was 

extracted prior to EIA analysis using methodology different from RIA measurements. Peptide was 

eluted in 80% ACN without 0.1 - 1% TFA widely used in Study III and in the literature (Adam et 

al., 2002; Baranowska et al., 2005). Using the same EIA after Sep-Pak extraction, Tomasik et al. 

(2004) reported plasma levels of 1000 pg/ml in healthy children of varying ages. These results are 

significantly higher than our EIA results and RIA values reported in the literature. Unfortunately, 

comparison of RIA and EIA was not possible, since the EIA used in the study I was discontinued by 

the manufacturer. 

 Decreased plasma OXA levels in PWS children measured with RIA are in line with previous 

data showing that PWS is characterized by low CSF OXA levels (Dauvilliers et al., 2003; Arii et al., 

2004; Nevsimalova et al., 2005). Our findings indicate that in addition to central OXA deficiency 

observed in PWS, also peripheral OXA levels are suppressed. These findings suggest that decreased 
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OXA levels may reflect impaired orexin signaling in PWS. Sleep apnea is frequent in PWS (Holm 

et al., 1993; Nevsimalova et al., 2005). In addition, PWS patients have shown abnormal 

chemoreceptor response to hypoxia and hypercapnia (Arens et al.,1994; Gozal et al., 1994) and 

blunted arousal response to hypercapnia (Livingston et al., 1995) These findings suggest that 

ventilatory problems may not be explained by muscle weakness and obesity alone (Burman et al., 

2001). OXA stimulates breathing via medullary and spinal pathways in rats (Young et al., 2005) and 

a lack of OXA in pre-proorexin knock-out mice leads to decreased peripheral chemosensitivity to 

carbon dioxide during wakefulness. The effect could be partially restored by i.c.v. supplementation 

of OXA (Deng et al., 2007). Thus, reduced OXA levels might contribute to the disturbed sleep 

pattern, wakefulness and impaired chemoreceptor response observed in PWS. In mice deficient of 

Magel2, one of four genes within PWS region in chromosome 15q11-q13, OXA peptide 

concentrations in the hypothalamus were 60% lower than for wild-type. However, no reduction in 

number of hypothalamic OXA neurons was observed in post mortem analysis of PWS patients 

(Fronczek et al., 2005).  

 Yet children with PWS had BMI < 25 kg/m2, they were obese according to the BMI z-score, 

which is commonly used in the evaluation of obesity in children. Therefore, we cannot exclude the 

possibility that decreased OXA level is reinforced by obesity rather than PWS alone. However, 

PWS children had normal glucose tolerance, suggesting that complications of obesity have not 

developed. The control group was also significantly older and consisted of young adults, since use 

of children was considered unethical. We did not observe correlation between plasma OXA levels, 

which agrees with some, but not all earlier results. Kanbayashi et al. (2002) studied CSF levels of 

OXA in a large cohort of apparently healthy individuals with ages ranging from 4-months to 79-

years and revealed no significant differences. Consistently, no correlation between age and OXA 

levels were observed in either study group in the current study. Tomasik et al. (2004) analyzed 

plasma OXA in children and young adults with ages varying 0-18 years using EIA and found higher 

OXA levels in newborns and adolescents (10-15 y) than in young adults (16-18 y). In agreement 

with our data, no correlation to age was detected. Another study found that OXA levels correlated 

with age in 39-60 years old adults (Matsumura et al., 2002). These results suggest that lower OXA 

levels are not explained by different age in our study group.   

 The physiological significance and source of circulating OXA is currently unclear. Plasma 

OXA levels measured with RIA have varied between 1-100 pg/ml corresponding to 0.4-28 pmol/l in 

most studies. Some studies reported even higher levels of 175-847 pg/ml (50-240 pmol/l) (Dalal et 

al., 2001). Concentration of OXA in the circulation is comparable to other circulating peptides, 

including GLP-1 (16-50 pg/ml) (Carr et al., 2008) and CCK-8 (1-5 pg/ml) (Enck et al., 2009). 

Fasting serum gastrin concentration is usually 14-25 pg/ml and intact gastric inhibitory polypeptide 
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concentration varies 77-260 pg/ml in healthy volunteers (Carr et al., 2008). Plasma OXA levels are 

lower than most affinities of recombinant OX1 and OX2 in vitro. Sakurai et al. (Sakurai et al., 1998) 

used an iodinated [125I-Tyr17]-OXA tracer and OX1 and OX2 transfected CHO cell line and found 

that IC50 for OXA binding to OX1 was 20 nmol/l. Another study utilizing [125I]-OXA tracer in OX1 

and OX2 expressing CHO cells found EC50 20 nmol/l for OXA. (Shibahara et al., 1999). Similar 

concentrations have been required to trigger Ca2+ transient in CHO cells expressing human orexin 

receptors. OXA EC50 for OX1 was 30 nmol/l and 34 nmol/l for OX2 (Sakurai et al., 1998). In locus 

coeruleus, administration of 10-30 nmol/l OXA was required to increase firing rate of neurons 

(Hagan et al., 1999). Surprisingly, Okumura et al. (Okumura et al., 2001) reported that EC50 for 

OXA induced Ca2+ influx was as low as 68 pmol/l (240 pg/ml) for OX1 and 57 pmol/l (200 pg/ml) 

for OX2 using similar study setup and the same CHO cell line. The discrepancy in the results is not 

known, yet latter results are close to OXA levels detected in the circulation.  

 Comparable results have been obtained with the GI peptides GLP-1 and CCK. Studies with 

HEK293 cells overexpressing human GLP-1 receptors showed that EC50 for GLP-1 was 2.6 nmol/l 

(8.6 ng/ml) and the concentration of 3.6 pmol/l (12 pg/ml) was required for activation of the 

receptor mediated transcription (Murage et al., 2008). For CCK-8, EC50 values for receptor binding 

were 4.1 nmol/l (4.3 ng/ml) and Ca2+ mobilization 230 pmol/l (255 pg/ml) (Wu et al., 2008). Yet 

receptor binding affinity of OXA is slightly higher, plasma OXA levels are in the same range with 

other GI peptides detected in the circulation.  

 When administered to the circulation, half-life of OXA was 27 min which is long compared 

with insulin (6 min) or GLP-1 (3.3 min) (Ehrstrom et al., 2004). In CSF, OXA was more stable than 

OXB and its concentration after i.c.v. injection lasts for 4h, which is significantly longer than in 

blood stream (Yoshida et al., 2003). Iodinated OXA, but not OXB, has been shown to penetrate the 

blood-brain barrier by simple diffusion (Kastin and Akerstrom, 1999). Iodination has been observed 

to modify the properties of the peptide and thus, these results should be interpreted with caution 

(Bauer et al., 1996). Despite significantly reduced CSF OXA concentration in narcoleptic patients, 

no differences in plasma levels were observed (Dalal et al., 2001). Bingham et al. (2001) found that 

i.v. infusion of pharmacological doses of OXA (30 mg/kg) in rat and mouse was not reflected in the 

peptide levels in the brain. Therefore, it has been suggested that OXA in CNS and periphery may 

form two different pools (Ehrstrom et al., 2005a). 

 As discussed earlier in this thesis, OXA and its receptors are located in ENS. Administration of 

pharmacological doses of OXA has been shown to modulate glucose homeostasis, intestinal 

motility, CCK release, gastric acid secretion and duodenal bicarbonate secretion. Therefore, OXA 

detected in the blood stream may be originated from ENS reflecting the activity of orexigenic 

neurons in GI tract and pancreas. OXA-immunoreactivity has been located in pancreatic nerve 
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fibers and paravascular nerve bundles associated with blood vessels (Kirchgessner and Liu, 1999). 

In addition, orexin receptors have been detected in vagal afferent neurons (Burdyga et al., 2003). 

Orexin is costored with insulin in secretory granules in pancreatic β-cells, where it was released in 

response to hypoglycemia (Ouedraogo et al., 2003). Subcutenous administration of OXA stimulated 

insulin release from β-cells in rats and both OXA and OXB stimulated insulin release in vitro 

perfused islets (Nowak et al., 2000; Nowak et al., 2005). In this thesis, we did not observe 

significant postprandial response in plasma OXA levels in PWS children and healthy individuals. In 

addition to GI tract and pancreas, orexins have been detected in several peripheral tissues, including 

adrenal gland, testis, ovary, cardiovascular system and adipose tissue (Heinonen et al., 2008). 

Therefore, further identification of factors regulating OXA signalling are required to determine the 

physiological significance of circulating OXA.  

6.3. Ghrelin responses to diet-induced weight loss and carbohydrate 

meal 

 

 Ghrelin is an orexigenic peptide secreted by stomach that increases food intake and weight in 

animals and humans when administered in pharmacological doses (Tschop et al., 2000; Wren et al., 

2001a; Wren et al., 2001b; Murakami et al., 2002). Currently, the physiological significance of 

ghrelin is controversial, since ghrelin-deficient and ghrelin receptor-deficient mice have normal 

growth rate and appetite (Sun et al., 2003; Wortley et al., 2004). In the current study, weight loss 

during the VLCD is accompanied with increase in plasma ghrelin, but the increase is attenuated and 

no longer significant after the 6 months of WM. Plasma ghrelin levels have been shown to increase 

in response to weight loss in obese subjects (Cummings et al., 2002b; Hansen et al., 2002) and 

during a 6-month diet and exercise induced weight loss in hyperlipidemic women (Santosa et al., 

2007). Garcia et al. (2006) found an increase in plasma ghrelin after 6-month low caloric diet 

combined with orlistat treatment and exercise. However, after 1 year ghrelin levels were returned to 

the baseline. These findings suggest that plasma ghrelin level is attenuated in obesity and MetS. In 

addition, ghrelin increases in response to weight loss, but the increase may not be sustained during 

prolonged weight reduction. 

 Despite different insulin response in obese subjects with the metabolic syndrome, there was no 

difference in postprandial plasma ghrelin levels. The interaction between insulin and ghrelin is 

currently under debate. Administration of insulin has been shown to suppress plasma ghrelin levels 

in both healthy non-obese and obese individuals under hypo-, eu- and hyperglycemic clamp 

conditions (Saad et al., 2002; Flanagan et al., 2003; Leonetti et al., 2003). Significant negative 

correlation between plasma insulin and ghrelin levels has been observed in some studies 
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(Monteleone et al., 2003; Tannous dit El Khoury et al., 2006), whereas no such correlation was 

observed in others (Shiiya et al., 2002; Leonetti et al., 2003). Postprandial ghrelin secretion profile 

resembles inversely that of insulin in response to macronutrients and isocaloric glucose sweetened 

beverages producing different insulin levels (Teff et al., 2004; Foster-Schubert et al., 2008). 

However, the postprandial decrease in plasma ghrelin levels in type 1 diabetic patients lacking 

insulin secretion was comparable to healthy and lean controls (Spranger et al., 2003). Insulin 

dependent modulation of ghrelin was less pronounced in insulin resistant and type 2 diabetic 

patients (Anderwald et al., 2003; McLaughlin et al., 2004). Therefore, it is possible that insulin 

resistance of the ghrelin producing cells may be a determinant of the postprandial ghrelin secretion 

(Erdmann et al., 2005; Krohn et al., 2006). However, mice lacking ghrelin and ghrelin receptor 

display improved insulin sensitivity, supporting involvement of ghrelin in the regulation of glucose 

homeostasis (Sun et al., 2006). 
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7. METHODOLOGICAL CONSIDERATIONS 

  

 A widely used method for measuring peptide levels in biological samples is to utilize 

commercially available RIA and EIA kits. However, variations in the assay performance are likely 

to occur between laboratories. In the current study, two different commercially available methods 

were used to measure plasma OXA levels. The results from the EIA measurements in Study I 

contrast results obtained in obese subjects in other laboratories and the PWS children in Study III. 

The reliability of the RIA assay could be tested, while the EIA assay was no longer available.  

 The performance of the OXA RIA assay was analyzed in our lab (Heinonen et al. unpublished 

results). Ionization spectra of the standard peptide of the OXA RIA was compared with synthetic 

OXA purchased from NeoMPS (San Diego, CA, USA) using electro spray ionization tandem mass 

spectrometry (ESI-MS/MS) (LTQ, Thermo, San Jose, CA) after Sep-Pak C-18 (Waters Associates, 

Milford, MA, USA) extraction and subsequent fractionating with reverse-phase high-pressure liquid 

chromatography (RP-HPLC; Waters, Milford, MA, USA; Vydac C-18 column, 218TP510, Western 

Analytical Products Inc., .Murrieta, CA, USA). Linear gradient from 0.1% TFA to 80% ACN in 

0.1% TFA (40 min; 2 ml/min) was used and 1min fractions were collected, dried overnight and used 

for RIA or ESI-MS/MS. OXA standard peptide added to extracted plasma eluted from the RP-

HPLC in a single immunoreactive peak at 32 min (Figure 5C). Identical mass and tandem mass 

spectra to synthetic OXA was observed in the 32 min fraction (results not shown). To determine the 

linearity and recovery of RIA, 1ml of pooled plasma was spiked with serial dilutions of OXA 

standard peptide (128, 64, 32, 16, 8, 4, 2, 1 pg) provided with the kit before applying to Sep-Pak. 

Same dilutions were added to extracted plasma prior to RIA. The recovery of added OXA above 32 

pg/tube in plasma samples was poor (Figure 5A). This was not due to Sep-Pak, since OXA added to 

plasma after Sep-Pak displayed similar trend. The increase in plasma volume did not lead to a 

corresponding increase in OXA immunoreactivity, as observed earlier by Nishino et al. (2002) 

(Figure 5B). However, the sensitivity of the current ESI-MS/MS system was not sufficient to detect 

endogenous OXA from 1 or 2 ml of human plasma. These findings indicate that OXA RIA used in 

the measurement underestimates OXA concentrations above 32 pg/ml. However, values measured 

with RIA in study III were mainly below that and therefore values between PWS children and adult 

controls may be compared. 

 Total intra-assay CV% of the OXA RIA including Sep-Pak extraction was 16.7%, yet for RIA 

it was 4.2%. Inter-assay CV% of the RIA was 18%. The limit of detection using serial dilutions of 

plasma was determined between 4.6 pg/tube and 2.3 pg/tube. OXA immunoreactivity remained 

constant in plasma for 6 hours in room temperature. The recovery of 37 pg OXA after Sep-Pak was 

77.8 ± 17.5%. Intra- and inter-assay CV% of the RIA were in line with the values reported by the 
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manufacturer. However, when Sep-Pak extraction was taken into account, the intra-assay CV% 

increased to 18.8% exceeding the generally accepted level (< 10%). Thus, the use of internal 

standards to compensate the variability between the assays is highly recommended.  

 

Figure 5. The linearity OXA RIA in plasma. (A) Measured concentrations of serial dilutions 
standard peptide in RIA buffer and in 1ml of pooled plasma added before or after Sep-Pak (n = 4; 
***p < 0.001). (B) Recovery of 37 pg OXA added either before or after the extraction in different 
amounts of pooled plasma (n = 4). (C) OXA detected in RP-HPLC separated fractions of 1 ml 
plasma with or without added OXA and 2 ml of plasma. 
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8. FUTURE ASPECTS 

  

 Apelin stands in the cross-roads of obesity, inflammation and cardiovascular system. Apelin 

was named an adipokine, since it is secreted by adipocytes and its expression is increased in obesity 

(Boucher et al., 2005). In contrast to well established adipokines leptin and adiponectin, which are 

produced mainly by adipocytes, apelin was discovered from rat stomach. A wide expression pattern 

in non-adipose tissues, including vascular endothelium, heart, lung, mammary gland, hypothalamus 

and GI tract also indicates that apelin may not be secreted by adipose tissue alone. In addition, 

apelin mRNA expression is higher in stromal-vascular fraction than in adipocytes in rat 

subcutaneous and retroperitoneal fat pads (Garcia-Diaz et al., 2007). These findings suggest that in 

addition to its role as an adipokine, apelin is likely to possess other functions. In the current study, 

plasma apelin levels were increased in obesity, yet correlations to arterial pressure and inflammation 

rather than body adiposity were observed. Animal studies have shown that apelin may stimulate 

cardiac contractility and cause arterial vasodilatation, which would be beneficial for patients with 

cardiac insufficiency. However, Japp et al. (2008) did not observe changes in systemic blood 

pressure and heart rate after local intravenous and intra-arterial administrations of apelin in humans 

and therefore, studies using systemic administrations of apelin in physiological concentrations are 

indicated. 

 Adipose tissue has an exceptional ability to grow and regress throughout adulthood. It is highly 

vascularized and an extensive capillary network surrounds each adipocyte. Angiogenesis has been 

suggested to be a limiting factor of adipose tissue expansion (Rupnick et al., 2002). Intriguingly, 

apelin has been shown to induce retinal angiogenesis and retardation of retinal vascular 

development was observed in apelin KO mice (Kasai et al., 2004; Kasai et al., 2008). Inhibition of 

apelin-APJ signaling reduces splanchic neovascularization to half and suppresses important 

proangiogenic factors in rats with portal hypertension (Tiani et al., 2008). Proangiogenic effect of 

apelin has been also detected in adipose tissue (Kunduzova et al., 2008). Hypoxia is a major driver 

of angiogenesis also in adipose tissue and stimulates expression of leptin and angiogenic factors 

(Lolmede et al., 2003). Apelin expression is stimulated by hypoxia in cultured rat cardiomyocytes 

(Ronkainen et al., 2007) and adipocytes (Kunduzova et al., 2008). Therefore, apelin might 

potentiate the increase of adipose tissue mass in obesity as well as regulate vascular endothelial 

functions in other tissues.  

 In addition, apelin has been shown to induce intestinal endothelial proliferation and CCK 

release in rats suggesting that apelin might stimulate endothelial growth in the gut (Wang et al., 

2004). Interestingly, apelin has been expressed in mammary gland and it is abundant secreted into 

colostrum (Habata et al., 1999). Apelin mRNA expression is increased in fetal and post-natal 
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stomach than in the adult rat stomach (Wang et al., 2004). Thus, apelin could modulate the 

maturation of the intestinal endothelium in fetal and post-natal states.   

 In addition to its central role in the regulation of food intake, sleep and wakefulness, OXA has 

been shown to participate in several functions in the peripheral tissues. As shown in the current 

study, orexin A is detected in plasma and its level varies in response to the metabolic state. Thus, 

studies further defining the modulatory role of OXA in peripheral tissues are implicated. Recently, 

orexin receptor expression was shown to be strongly upregulated during proestrus in rat ovaries and 

similar upregulation was observed in the hypothalamus and pituitary indicating the involvement in 

ovulation. Since PPO has not been detected in the ovaries, these results suggest a role for circulating 

OXA (Silveyra et al., 2007). 

 Ghrelin is an orexigenic peptide whose role in the regulation of short and long-term energy 

balance seems likely. However, since phenotypic changes in ghrelin-deficient and ghrelin-receptor 

deficient transfenic animals are subtle, the relative importance of ghrelin in energy homeostasis is 

controversial (Cummings, 2006). Ghrelin levels are decreased in obesity and as shown also in the 

current study, ghrelin levels increase in response to weight loss. Attenuated plasma ghrelin in 

obesity and MetS therefore might reflect transient protective response against overfeeding. The 

efficacy of anti-ghrelin treatment is currently unproven in human obesity. Fasting ghrelin levels are 

increased in anorexia nervosa and cachexia and they return to normal levels after weight recovery 

(Hosoda et al., 2006). Thus, administration of ghrelin and ghrelin antibodies may offer potential for 

pharmacologic treatment of eating disorders and obesity. 
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9. SUMMARY 

 

In the current study: 

 

I Plasma apelin levels were increased in morbid obesity, but correlation to body adiposity 

during diet-induced weight loss was weaker than for the abundant adipokines leptin and 

adiponectin. The minor changes in apelin levels in response to a pronounced diet-induced 

weight loss were related to arterial pressure and inflammation in patients with MetS. 

 

II Plasma OXA levels measured with EIA were increased in morbidly obese patients. 

 

III Plasma OXA levels measured with RIA were decreased in children with PWS.  

 

IV Postprandial suppression of plasma ghrelin was impaired in patients with MetS 

independently of insulin after different carbohydrate-rich meals. In addition, ghrelin 

increased in response to diet-induced weight loss in patients with MetS, but the increase was 

not sustained during prolonged weight maintenance. 
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