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ABSTRACT 

Particulate matter is an important component of the air pollution mixture that has been linked 
to various adverse health outcomes as well as having general environmental effects. It is not 
yet clear which causative agents and underlying mechanisms are responsible for these adverse 
health effects. However, it is likely that the source of the particles, a factor which influences 
their characteristics and composition, plays a role in determining the health effects of 
particles. 
 
The focus of this thesis is first on characterizing urban ambient particulate matter with the 
emphasis on resuspended soil and street dust, and second, on the identification and 
comparison of major sources of urban particulate matter in Europe. The data for this work has 
been collected during three epidemiological studies conducted during 1995-1999 in Finland 
(Kuopio 1995, Number of measurement days=36; Helsinki 1996-97, N=185 and 1998-99, 
N=182), The Netherlands (Amsterdam 1998-99, N=237) and Germany (Erfurt 1998-99, 
N=177). Mass and number concentrations of several size fractions of particulate matter were 
monitored on a daily basis mainly during winter and spring months. Concentrations of 
gaseous air pollutants, elemental composition of PM samples and absorption coefficients of 
PM filters, a marker for carbonaceous particles from combustion sources,  were also 
measured. 
 
Average mass concentrations of particulate matter (PM2.5 and PM10) were notably lower in 
Helsinki compared to Amsterdam and Erfurt, but the difference was less clear for number 
concentrations of ultrafine particles (in this work, 10-100 nm) and absorption coefficient of 
PM2.5, both of which are markers mainly for traffic-related fine particulate matter at the 
measurement sites used in this study. In Helsinki, the absorption coefficients of PM2.5 and 
PM10 samples were rather similar and clearly higher than that of PM1 samples, indicating that 
the fraction of particles between 1-2.5 �m in diameter contained substantial amounts of 
carbonaceous material. Absorption coefficients were better correlated with the number than 
with the mass of particles. 
 
Sources of PM2.5 were resolved from two measurement periods in Helsinki and one period in 
Amsterdam and Erfurt. Source categories with very similar elemental profiles were obtained 
for both periods in Helsinki and Amsterdam, with the exception that a component related to 
industrial activities was detected only in Amsterdam. In all cities, secondary and primary 
particles from long-range sources and local traffic were clearly the most important 
determinants of PM2.5 concentrations. In Helsinki, the relative contribution of long-range 
transported air pollution to average PM2.5 levels was clearly higher (50%) than in the two 
Central European cities (32-34%). On the other hand, traffic made more similar relative 
contributions to PM2.5 in each city (23-36%). Owing to the higher PM2.5 concentrations in 
Amsterdam and Erfurt, the PM2.5 mass contributions from long-range transport were equal 
and contributions from traffic notably larger in these two cities compared to Helsinki. The 
other major components of PM2.5 identified included soil, oil combustion particles, sea salt 
and particles from industrial sources. 
 



 

A comparison of a statistical multivariate method (principal component analysis with multiple 
linear regression) and a deterministic method (chemical mass closure), indicated that the 
agreement of the two source apportionment methods was good for sources whose chemical 
composition is stable and well defined, such as crustal dust and sea salt. Source contribution 
estimates for the more complex sources of particulate matter, such as local combustion and 
long-range transported air pollution, differed substantially between the two methods. 
 
Notable episodes of high resuspended dust concentrations took place at all monitoring sites. 
However, a seasonal influence of these episodes was seen only in Finland, shown by high 
concentrations of crustal dust during the spring months. These dust episodes affected the 
PM2.5/PM10 ratio more than the PM1/PM2.5 ratio. Also, the correlation of PM2.5 with PM10 
during winter was clearly higher than during spring, while the correlation of PM2.5 with PM1 
did not change from season to season. The stability of the PM1/PM2.5 ratio suggests that in 
terms of variation of fine particle mass, monitoring of PM1 did not significantly add to the 
information content already obtained from monitoring of PM2.5. The major cause for elevated 
concentrations of resuspended dust in urban environments seems to be the turbulence and tyre 
stress related to traffic. Results from Kuopio also showed that resuspended particulate matter 
could contain considerable amounts of trace elements from anthropogenic sources. 
 
In summary, the two most distinctive features in the Finnish cities (Helsinki and Kuopio) 
compared to Amsterdam and Erfurt were, in addition to the lower average mass 
concentrations of particles, the large relative contribution from secondary and long-range 
transported particulate matter and the seasonally dependent episodes of resuspended dust in 
urban environments. 
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Abs2.5 Absorption coefficient of a PM2.5 filter sample 
 
CMB Chemical mass balance 
 
ED-XRF Energy-dispersive X-ray fluorescence 
 
ICP-MS Inductively coupled plasma - mass spectrometry 
 
MLR Multiple linear regression 
 
NC0.01-0.1 Number concentration of particles (1/cm3) in the size range 0.01-0.1 �m 
 
NC0.1-1.0 Number concentration of particles (1/cm3) in the size range 0.1-1.0 �m 
 
PCA Principal component analysis 
 
PM Particulate matter 
 
PMX Particulate matter in the air collected using an instrument with a 50% cut-

off aerodynamic particle diameter of X �m 
 
TSP Total suspended particulate matter 
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1 INTRODUCTION 

 

Increased awareness of health problems related to air pollution arising from urbanisation and 

industrialisation has, especially during the last two centuries, gradually created a demand for 

more efficient emission controls, especially in the developed world, and thus there has been a 

notable decrease in both the emissions and ambient concentrations of many air pollutants. 

Recently, problems caused by atmospheric particulate matter in urban air have received 

greater attention. Various health effects attributable to PM have been documented (WHO 

1999, Brunekreef and Holgate 2002). The most conclusive evidence has been provided by 

cohort and time series studies that have linked elevated concentrations of PM to increased 

morbidity and mortality (Dockery et al. 1993, Pope et al. 1995, Katsouyanni et al. 1997, 

Samet et al. 2000). The majority of these studies have assessed the health effects of particles 

expressed as the risk per unit mass/m3 of PM10 or PM2.5. However, the cause-effect chain is 

thought to be very complex, including issues such as chemical composition and physical 

characteristics of the inhaled particles, and it is not yet clear which causative agents and 

underlying mechanisms are responsible for the adverse health effects. Therefore, 

identification of sources and characteristics of particulate matter that are responsible for the 

documented health burden to the public has become a crucial issue. 

 

The majority of recent health studies suggest that fine particles (PM2.5) arising mainly from 

man-made sources are more harmful than coarse particles (Schwartz et al. 1996, Laden et al. 

2000, Mar et al. 2000, Hoek et al. 2002, Pope et al. 2002) and, therefore, the measurement of 

PM in health effect studies has currently focused on fine particulate matter (PM2.5) rather than 

on coarse particles (PM2.5-10). Several efforts have also been specifically aimed at studying 

concentrations and potential health effects of the so-called ultrafine particles in the size range 

below 0.1 �m (Peters et al. 1997, Ruuskanen et al. 2001, de Hartog et al. 2003). However, 

some studies have also detected adverse health effects related to coarse particles (Gordian et 

al. 1996, Tiittanen et al. 1999, Mar et al. 2000), highlighting the importance of controlling the 

concentration and studying the potential health effects of all PM size fractions. In addition, 

administrative guideline values in Europe are currently in place only for PM10 and TSP, 

although new PM2.5 standards are now being considered. 

 

The composition and size distribution of particles, and hence their harmful effects, depend 

strongly on particle formation processes, i.e., the sources of the particles, and this has been 
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explored in numerous studies with respect to PM10 and PM2.5. The main sources of PM are 

traffic, energy production using fossil fuels and biomass, industrial sources, resuspension of 

soil, and sea salt spray, but the relative contribution of different sources varies greatly in time 

and location. Fugitive dust episodes cause some of the highest concentrations of ambient 

primary PM in many areas around the globe. These dust episodes often show seasonal 

concentration patterns that are much more pronounced than the concentration patterns of PM 

from most anthropogenic sources. Resuspension of accumulated crustal dust from the streets 

due to traffic and wind is a specific problem in subarctic urban areas where sanding of streets 

and studded tyres are used during the cold season. The inconsistent findings on health effects 

of resuspended particles (Gordian et al. 1996, Tiittanen et al. 1999, Mar et al. 2000, Englert 

2004) require that their properties and potential effects be studied further. Also, resuspended 

dust episodes can cause exceeding of the limit values which are primarily aimed at regulating 

the concentrations of particulate matter from anthropogenic sources. 

 

For risk management purposes, the crucial issue is the identification of the sources of 

particulate matter responsible for the health burden in the general public. A sound knowledge 

of the sources of particulate matter and possible differences in the health effects of particulate 

matter could allow the differentiation of sources regarding their importance for human health 

and thus permit a more efficient risk management. The sources affecting PM concentrations at 

a given location can be determined by applying source apportionment methods based on the 

chemical composition of PM, other air pollution measurement data and meteorological data. 

Source apportionment studies provide an estimate of the average source impacts on local air 

quality, as well as time series data (variability) on source-specific PM concentrations. The 

estimated daily concentration of PM from each source can then be related to the daily 

variation in the observed or measured health effects in epidemiological studies. Therefore, 

dividing particulate matter into sources and analysing their separate associations with health 

effects in the context of an epidemiological study could provide results that could be directly 

used in risk assessment, risk management, and in setting air quality guidelines and standards. 
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2 REVIEW OF THE LITERATURE 

 

2.1 Particulate matter 

 

Particulate matter refers to the solid and liquid particles that are dispersed into ambient air. 

These particles can be classified in several ways. Firstly, they can be classified into primary 

and secondary particles based on the mechanism of their formation. Primary particles are 

emitted directly as particles, whereas secondary particles are formed from precursor gases in 

the atmosphere via gas-to-particle conversion. Both types of particles are subject to growth 

and transformations since there can be formation of secondary material on the surface of 

existing particles. 

 

Secondly, particles can be classified by their physical size; the size is from a few nanometers 

(nm) to tens of micrometers (�m) in diameter. Size is the single most important determinant 

of the properties of particles and it has implications on formation, physical and chemical 

properties, transformation, transport, and removal of particles from the atmosphere. Particle 

size is normally given as the aerodynamic diameter, which refers to the diameter of a unit 

density sphere of the same settling velocity as the particle in question. The notation PMX 

refers to particulate matter comprising particles less than X �m in diameter (most often, X is 

10, 2.5 or 1 �m). Particles greater than 2.5 �m in diameter are generally referred to as coarse 

particles, and particles less than 2.5 �m and 100 nm in diameter as fine particles and ultrafine 

particles, respectively. The term total suspended particles (TSP) refers to the mass 

concentration of particles less than 40 to 50 �m in diameter (Seinfeld and Pandis 1998). 

 

Ambient particulate mass typically has a modal size distribution, meaning that the total mass 

of particulate matter tends to concentrate around one or more distinguishable points on the 

particle size scale. The modal character of the particle mass size distribution results from 

continuous processes leading to particle formation on one hand, and processes leading to 

removal of particles from the atmosphere on the other hand. Thus, the number of observable 

modes in particle size distribution varies depending on age of the aerosol and the vicinity of 

active sources of particles of different sizes. The definition of fine and coarse particles is an 

operational one based on a bimodal size distribution. Due to the overlap between fine- and 

coarse-mode particles in the intermodal region (1-3 �m), measurement of PM2.5 is only an 
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approximation of fine-mode particles and measurement of PM2.5-10 is only an approximation 

of coarse-mode particles (Wilson and Suh 1997). 

 

The balance of the factors that lead to pollutant accumulation and the factors that lead to 

pollutant dispersion controls temporal and spatial variations in concentrations of pollutants 

(Fang et al. 2000). Firstly, the concentration and other characteristics of suspended particulate 

matter are determined by the presence and activity of sources. Once formed, particles change 

their size and composition by condensation or evaporation, by coagulating with other particles 

or by chemical reactions (Seinfeld and Pandis 1998). Meteorological factors such as wind 

speed and direction, temperature, amount of precipitation, and the height of the atmospheric 

boundary layer, are most important in governing the concentration variations of particulate 

matter (Pohjola et al. 2000). The highest PM concentrations are often reported during stable 

meteorological conditions such as inversion with low wind speeds (Pohjola et al. 2004). Also 

the physical and chemical processes affecting the particles are regulated to a great extent by 

meteorological factors. 

 

PM from specific sources typically follow short-term and long-term (seasonal) trends (Yatin 

et al. 2000). For example, space heating generates more combustion-related PM emissions 

during the cold seasons while, at the same time, snow cover can inhibit PM emissions from 

the soil. Seasonal peak concentrations of PM2.5 during the winter in polluted European areas 

have been reported (Van Dingenen et al. 2004). The authors hypothesised that this finding 

was mainly related to enhanced condensation of semi-volatile species during cold seasons 

leading to formation of large average sized fine particles. Generally, the total particulate mass 

has a lower temporal variability than any of the major components of the aerosol. This may be 

associated with opposite seasonal concentration variations in some of the major PM 

components, for example, the carbonaceous component and the secondary component (Kao 

and Friedlander 1995). 

 

2.2 Characteristics of urban PM from different sources 

 

The majority of total PM emissions to the atmosphere are attributable to natural sources, such 

as suspended terrestrial dust, oceans and seas, volcanoes, forest fires and natural gaseous 

emissions. However, these emissions are dispersed rather evenly into the atmosphere and, 

therefore, result in a relatively low tropospheric background PM concentration. The natural 
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sources that have the greatest impact on the urban PM concentrations in Europe include 

suspended terrestrial dust, sea salt spray (mainly at coastal sites) and biomass burning (forest 

fires) (Lazaridis et al. 2002). The major sources of anthropogenic, i.e., man-made, particles 

include transportation, stationary combustion, space heating, biomass burning, and industrial 

and traffic-related fugitive emissions (street dust). Urban PM from man-made sources is a 

complex mixture, since the majority of sources emit both primary particles and precursor 

gases for the formation of secondary particles. The majority of anthropogenic PM is emitted 

within relatively small urban and industrial areas, resulting in hot spots of high concentrations 

of particulate matter and other air pollutants. Man-made primary and secondary particles also 

affect regional background PM concentrations since a fraction of the emitted particles can 

remain in suspension for several days and travel up to thousands of kilometres in the 

atmosphere. 

 

Air samples of particulate matter from urban areas from around the world typically show the 

same major components, although in considerably different proportions according to the 

sampling location (Harrison and Yin 2000). These major components are typically: 

1) sulphate - derived predominantly from sulphur dioxide oxidation in the atmosphere; 

because SO2 is oxidised only slowly, spatial gradients of sulphate on a scale of tens of 

kilometres are expected to be small, over hundreds of kilometres they can be significant, and 

over entire continents, very large; 

2) nitrate - formed mainly from oxidation of nitrogen oxides (NO and NO2) to nitrate; NO2 

oxidises much more rapidly than SO2 

3) ammonium - atmospheric ammonia forms ammonium salts in neutralisation reactions with 

sulphuric and nitric acids 

4) chloride - main sources are sea spray and de-icing salt during winter; also from ammonia 

neutralisation of HCl gas from incineration and power stations 

5) elemental carbon (EC) and organic carbon (OC) - combustion processes (in urban areas 

mainly traffic) emit primary carbonaceous particles and semi-volatile precursors 

6) crustal materials - soil dusts and wind-blown crustal material; are quite diverse in 

composition reflecting local geology and surface conditions; their concentration is dependent 

on climate as the processes which suspend them into the atmosphere tend to be favoured by 

dry surfaces and high winds; these particles reside mainly in the coarse particle fraction 

(Harrison et al. 1997) 
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7) biological materials - bacteria, spores, pollens, debris and plant fragments; generally coarse 

in size, considered as part of the organic carbon component in most studies rather than as a 

separate biological component. 

 

The distinction between anthropogenic and natural particle sources and the emitted particulate 

matter is sometimes difficult to make, for example, fugitive dust emissions and biomass 

burning (BéruBé et al. 1997). In addition, there are large differences in the relative importance 

of different sources from one geographical area to another. For example, the greater part of 

emissions of primary particulate matter in eastern parts of Europe originates from stationary 

combustion sources and processes, whereas in western parts of Europe, emissions are more 

evenly distributed among all economic sectors, although transport emissions play the most 

significant role at many locations (ApSimon et al. 2000). In the central and northern parts of 

Europe, anthropogenic sources dominate long-term average PM concentrations, while 

resuspended dust and forest fires are relatively more important in southern Europe (Lazaridis 

et al. 2002). In the following sections, the characteristics of particulate matter from some of 

the major source categories are discussed. Resuspended road dust has been discussed at more 

length due to its marked impact on urban ambient PM levels, and the inadequate scientific 

information on its composition and other characteristics. 

 

2.2.1 Traffic 

 

Vehicular particle emissions are the result of a great many processes, e.g. combustion 

products from fuel and oil, wear products from brake linings, tyres, bearings, car body and 

road material, and the resuspension of road and soil dust (Laschober et al. 2004). Traffic is an 

effective source of both fine and coarse mode primary particles, condensable organic gases, 

and a major source of nitrogen oxides that then form secondary nitrate aerosols. Particles of 

condensed carbonaceous material are emitted mainly by diesel vehicles and poorly maintained 

petrol vehicles (Vardoulakis et al. 2003). Diesel exhaust particles have been shown to display 

a multimodal size distribution (Kerminen et al. 1997) and are mainly carbonaceous 

agglomerates below 100 nm in diameter, whereas particles emitted by gasoline vehicles are 

also mainly carbonaceous agglomerates but considerably smaller, ranging from 10 to 80 nm 

(Morawska and Zhang 2002). Particulate matter originating from traffic can be present at 

elevated concentrations especially during high traffic density and poor dispersion conditions, 
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e.g. in street canyons, which can lead to high human exposures to traffic-related pollutants 

(Vardoulakis et al. 2003). 

 

Identification of traffic related particulate matter in source apportionment studies has become 

difficult due to phasing out of Pb as an additive to gasoline. Elements that have often been 

associated with vehicular emissions include Cu, Zn, Pb, Br, Fe, Ca and Ba (Huang et al. 1994, 

Cadle et al. 1997, Kemp 2002, Morawska and Zhang 2002, Sternbeck et al. 2002). Emissions 

of many metallic elements from vehicular sources are mainly due to non-exhaust emissions, 

e.g., from the wearing of tyres, brakes and other parts of vehicles (Sternbeck et al. 2002, 

Adachi and Tainosho 2004, Laschober et al. 2004, Lough et al. 2005). In addition to road 

traffic, emissions from the main and auxiliary engines of ships can be a significant source of 

particulate matter and associated elements such as V and Ni (Lyyränen et al. 1999) at certain 

locations (Ohlström et al. 2000, Colvile et al. 2001, Isakson et al. 2001). 

 

2.2.2 Stationary sources 

 

The most significant stationary combustion sources include energy production facilities such 

as municipal power plants, waste incineration, and residential combustion. Several industrial 

processes, such as iron and steel production, also involve combustion of fossil fuels or 

biomass for generating power and heat needed for the process. Most of these sources are 

considered point sources, although smaller and more widespread sources such as residential 

combustion could also be considered as an area source. Physical and chemical characteristics 

of the particles emitted from these source categories depends on the combustion process itself, 

and the type of fuel burnt (solid, liquid, or gas). Combustion processes and properties of 

particulate matter emitted from these sources have been comprehensively reviewed by 

Morawska and Zhang (2002). 

 

The major industrial processes include factories processing metals and chemicals, materials 

handling, construction and mining. Particulate matter from these sources are partly released as 

fugitive emissions, which are not collected and released in a controlled manner, but emitted 

from a variety of points and areas connected to a process (Seinfeld and Pandis 1998). 

Chemical and physical properties of fugitive emissions depend on the processes by which 

they are emitted. Since the bulk of most trace metals are nowadays emitted from industrial 

processes, their concentrations are spatially heterogeneous and subsequently, their 
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measurement is quite sensitive in terms of location; however, the reported concentrations of 

trace metals in major cities demonstrate rather similar levels of trace metals (Harrison and Yin 

2000). 

 

2.3 Resuspended dust 

 

2.3.1 Sources 

 

The term resuspension is commonly used to include both suspension of newly generated 

particles and re-entrainment of previously deposited particles into the atmosphere (Nicholson 

1988). Resuspension is a complex process that can be initiated by mechanical disturbances 

such wind, traffic-induced turbulence and tyre stress, and construction activities. The wind-

blown dust is often called 'natural dust' because of its origin from mostly non-urban areas that 

are subject to suspension by the wind (Chow et al. 1999). In non-arid urban environments, 

particulate matter can be made available for resuspension in a variety of ways, including 

application of traction sands or de-icing salts, track-out from construction sites and other 

unpaved areas, vehicle exhaust, tyre and brake wear, oil leaks and spills from vehicles, 

wearing and maintenance of streets, and atmospheric deposition of anthropogenic PM 

emissions (Claiborn et al. 1995). 

 

Road dust is an agglomeration of contributions from several anthropogenic and biogenic 

sources of particulate matter (Rogge et al. 1993). In all road environments, the dust from 

various sources accumulates on road shoulders, near the curbs and along center dividers 

(Etyemezian et al. 2003). Resuspension, deposition, washout of materials on and off the road, 

and generation of new particles constitute a dynamic source and sink relationship in the traffic 

environment (Rogge et al. 1993, Kuhns et al. 2003). Paved and unpaved roads are among the 

largest emitters of particulate matter in many urban areas, and numerous studies have shown 

that traffic-induced resuspension is the predominant source of coarse particles and many 

elements at traffic-influenced sites (Pakkanen et al. 2001b, Ruellan and Cachier 2001, Manoli 

et al. 2002, Sternbeck et al. 2002). 

 

Kupiainen et al. (2003 and 2005) have studied the effects of road sanding on the composition 

and concentrations of urban suspended road dust. They found that concentrations of 

suspended PM10 increased subsequent to application of traction sand. The observed increase 
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was larger when studded tyres were used and when the sand contained more small particle 

size fractions. One interesting finding was that the wear of the pavement was greatly 

increased by the grinding impact of sand under the tyres. This finding was corroborated by a 

subsequent field study showing that only about 10% of the number of all inorganic PM1.5-10 

particles and 17% of the number of all PM1.5-10 mineral particles were directly associated with 

road sanding material (Kupiainen and Tervahattu 2004). Laschober et al. (2004) found that 

less than 5% of vehicular particulate matter emissions (no particle size segregation in 

sampling) were due to resuspension and road abrasion during a traffic tunnel study in Vienna, 

Austria. On the other hand, a Swedish traffic tunnel study revealed that as much as 50% of 

fine PM (0.6-2.5 �m) could be attributed to traffic-induced turbulence at vehicle speeds >75 

km/h (Kristensson et al. 2004). 

 

2.3.2 Impact of resuspension on concentrations of particulate matter 

 

Resuspended dust is a major contributor to ambient particulate matter, especially in the coarse 

particle fraction. According to a European survey, the annual mineral dust load in PM10 varies 

from 13% to 37% in Europe, with an increasing trend moving from rural background sites to 

kerbside sites that are heavily influenced by traffic (Putaud et al. 2004, Van Dingenen et al. 

2004). This proportion is significantly lower compared to proportions found in some arid 

areas, for example in Arizona and Nevada, U.S.A., where fugitive dust sources (paved and 

unpaved roads and construction activities) account for more than 80% of PM10 (Gertler et al. 

1995, Chow et al. 1999). A comprehensive report on fugitive dust emissions and a 

bibliography of pertinent literature has been recently prepared by Watson and Chow (2000). 

 

Wind-blown natural dust can contribute to high concentrations of coarse and fine particles 

measured at sites located hundreds or even thousands of kilometres from the source area. 

Contribution from major desert dust events to PM have been reported in numerous studies 

conducted in Europe (Pio et al. 1996, Querol et al. 1998, Rodriguez et al. 2001, Ryall et al. 

������ �� ��	
�����
��������Koçak et al. 2004), North-America (Claiborn et al. 2000, Owega 

et al. 2004), Asia (Chun et al. 2001, Chen et al. 2004) and Australia (Chan et al. 1999). 

Southern Mediterranean countries experience several transient episodes (2-4 days) of 

transported Saharan dust each year, leading to levels exceeding 25 �g/m3 and 10-15 �g/m3 in 

daily PM10 and PM2.5 concentrations, respectively (Rodriguez et al. 2002, Rodriguez et al. 

2004). 
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The effect of seasonal phenomena on soil related fine and coarse particles has been reported 

from different regions around the world (Magliano et al. 1999, Chueinta et al. 2000, Yatin et 

al. 2000, Mugica et al. 2002, Kim et al. 2003). In Finland, resuspension of road dust is a 

major source of particulate matter especially during the spring, but also during late autumn 

(Kukkonen et al. 1999). In addition to several reports from Finland (Hosiokangas et al. 1999, 

Pakkanen et al. 2001b, Oravisjärvi et al. 2003, Ward and Ayres 2004), seasonal patterns in 

resuspension of road and soil dust have been reported from various locations around the 

northern hemisphere (Fukuzaki et al. 1986, Monn et al. 1995, Kantamaneni et al. 1996, Brook 

et al. 1997, Yatin et al. 2000, Kuhns et al. 2003). 

 

2.3.3 Characteristics of resuspended dust 

 

Prominent episodes of resuspended dust have been associated with clear changes in particle 

size distributions, chemical composition, and morphology (Haller et al. 1999, Manoli et al. 

2002). Breed et al. (2002) found that in terms of particle numbers both non-episodic (<50 

�g/m3) and episodic (concentration >50 �g/m3) PM10 samples were dominated by irregularly 

shaped particles, but the higher proportion of spherical particles and lower mean particle size 

in non-episodic PM10 samples were indicative of pronounced contribution of combustion and 

industrial sources. 

 

Chemical composition of resuspended dust varies from location to location due to differences 

in the crustal composition. In addition to natural variation in composition of crustal dust in 

different regions, the composition of resuspended dust may also be altered by enrichment of 

pollution-derived elements in surface soil (Rogge et al. 1993, Yatin et al. 2000, Sternbeck et 

al. 2002, Begum et al. 2004, Conko et al. 2004). Hildemann et al. (1991) have reported that 

fine (<2 �m) paved road dust consists of 27% SiO2, 17% organics, 11% Al2O3, 9% Fe2O3, 

and 4% Ca. In a Swedish study (Swietlicki et al. 1996), it was found that road dust was 

heavily enriched in Cu, Zn, Pb - elements that are all associated with vehicular emissions. 

Lough et al. (2005) have shown that the metallic fractions of PM10 (19% metals) and PM2.5 

(11.6% metals) in road tunnels were dominated by crustal elements (Si, Fe, Ca, Na, Mg, Al 

and K) but were also affected by tailpipe emissions and brake and tyre wear including (Cu, 

Zn, Sb, Ba, Pb and S). By using scanning electron microscopy, it has been shown that metals 

can become adherent to larger natural particles (Mugica et al. 2002). Together these results 

indicate that road dust can act as a repository for elements from anthropogenic sources, and 
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that resuspension could at certain locations contribute to the atmospheric concentration of 

these elements. The plausibility of this theory is supported by studies where it has been shown 

that larger particles are more easily resuspended by wind and traffic, and that deposited 

materials are more likely to become resuspended if they are associated with larger host 

particles (Nicholson and Branson 1990). 

 

Although the majority of resuspended particles are in the coarse fraction, a notable portion is 

in the fine fraction. Mar et al. (2000) reconstructed a soil component in the fine aerosol 

fraction in Phoenix, U.S.A., and found that it contributed 18% to PM2.5. Artaxo et al. (1999) 

obtained a 15% contribution for a geological component in PM2.5 and 64% contribution for 

traffic source in Santiago, Chile. The road dust contribution of 28% to PM3 and 57% to PM10 

was found in Thessaloniki, Greece (Manoli et al. 2002). Several other studies have also 

reported a soil contribution to the fine fraction of PM (Van Borm et al. 1990, Alonso et al. 

1997, Pakkanen et al. 2001b). The proportion of fine particles has two important implications 

on the health effects of resuspended dust episodes; firstly, fine particles can remain in 

suspension much longer than coarse particles and it can result in larger spatial impact by 

resuspended PM, and secondly, the fine fraction of resuspended particulate matter is more 

likely to comprise anthropogenic constituents that are potentially more toxic than the fine 

particles of pure crustal origin. 

 

2.4 Relationship between different particle size fractions 

 

Particles from different sources and emission processes are often distinguished by their 

physical size, as highlighted for total suspended particles (TSP) in Figure 1. Thus, the ratio 

between two fractions of PM is a simple, although crude, indicator of the amount of 

particulate matter from different types of sources. 
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Figure 1. Size distributions of several TSP source emissions (Adapted from Watson and 
Chow (eds.), 2000). 
 

Table 1 summarizes some of the recent studies that have measured two or more PM metrics 

simultaneously and reported their ratios; most commonly, the ratio between PM2.5 and PM10 

has been reported. It is important to bear in mind that the interpretation of the ratio between 

the two fractions depends on methods, location and time (season) of the measurements, which 

������������������������	�����	�������
������	���������
������4) have also compiled a summary 

of reported ratios. 
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Table 1. Reported ratios of PM fractions at different locations. 

Reference Location Season PM2.5/PM10 
Van Dingenen et al. 2004 31 sites in Europe  0.73�0.15 
Harrison et al. 1997 Birmingham, U.K. summer 

winter 
0.50 
0.80 

Marcazzan et al. 2003 Milan, Italy all year 0.73�0.13 winter; 
0.63�0.13 summer 

Marcazzan et al. 2002 Milan, Italy 
Erba, Italy 

winter 
winter 

0.76�0.14 
0.72�0.11 

Ruellan and Cachier 2001 Paris, France summer-
autumn 

0.66 � 0.13 

Van Der Zee et al. 1998 2 sites, The Netherlands winter 0.55 
Manoli et al. 2002 Thessaloniki, Greece all year 0.76 � 0.06 (a 

Cyrys et al. 2003a 3 sites in Europe all year 0.54-0.68 
Laakso et al. 2003 3 sites in Finland all year 0.51-0.54 urban 

0.84 rural 
Houthuijs et al. 2001 25 sites in Europe all year 0.68 (0.55-0.78) 
Gehrig and Buchmann 
2003 

7 sites in Switzerland all year 0.75 - 0.76; 
0.58 kerbside 

���	���������
������ 4 sites in Austria all year 0.70 
Artiñano et al. (in press) Madrid, Spain all year 0.72 
Claiborn et al. 2000 California, U.S.A. - 0.33-0.75 
Magliano et al. 1999 California, U.S.A. winter 0.70-0.80 
Schwartz et al. 1996 Six Cities Study, U.S.A. all year 0.50-0.66 
Mar et al. 2000 Phoenix, U.S.A. - 0.30 
Brook et al. 1997 19 sites, Canada all year 0.38-0.59 urban; 

0.60-0.65 rural 
Lam et al. 1998 15 sites, Hong Kong winter 0.70 
Wei et al. 1999 8 sites, China all year 0.52-0.75 
Ho et al. 2003a 3 sites, Hong Kong winter 0.53-0.73 
Fang et al. 2002 Taiwan - 

 
0.60 pre-dust storm; 
0.46-0.50 dust storm 

Fang et al. 2000 3 sites, Taiwan all year 0.56-0.72 
Chan and Kwok 2001 Hong Kong all year 0.74 

Reference Location Season PM10/TSP 
Röösli et al. 2001 Basel, Switzerland spring-autumn 

winter 
0.74 
0.84 

Monn et al. 1995 7 sites, Switzerland all year 0.75 polluted urban; 
0.57-0.62 rural, suburb 

Reponen et al. 1996 4 sites, Kuopio, Finland winter-spring 0.40-0.70 
Mugica et al. 2002 5 sites, Mexico all year 0.29-0.42 
Fang et al. 2000 3 sites, Taiwan all year 0.44-0.68 
Chan and Kwok 2001 Hong Kong all year 0.62 
NOTE: a) PM3/PM10 ratio 
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An overall PM2.5/PM10 ratio of 0.73 has been reported based on measurements on 31 

European sites (Van Dingenen et al. 2004). The authors concluded that although fairly 

constant ratios were observed at individual measurement sites, no universal ratio could be 

derived that would apply to all sites. Lower than average PM2.5/PM10 ratios were observed for 

kerbside sites compared to background sites due to the larger contribution of resuspended 

road dust in the coarse PM fraction at high density traffic sites. The authors furthermore 

reported an increasing general trend in PM2.5/PM10 ratio with increasing PM10 concentration, 

except at kerbside sites, indicative of predominance of PM2.5 in total PM10 during episodes of 

high concentrations of anthropogenic air pollutants. PM2.5/PM10 ratios obtained from other 

studies in Europe agree rather well with the above 0.73 ratio, and maximum ratios are often 

reported to occur during local pollution episodes that are attributable to combustion sources 

(Marcazzan et al. 2002). North-American studies have reported slightly lower PM2.5/PM10 

ratios compared to the European studies. A large dataset from 19 geographically diverse 

Canadian locations produced a highly variable and site-dependent PM2.5/PM10 ratio that 

ranged between 0.38-0.59 at urban sites and 0.60-0.65 at rural sites (Brook et al. 1997). 

PM2.5/PM10 ratios between 0.33-0.75 and an average ratio of 0.50 based on TEOM (tapered 

element oscillating microbalance) measurements were observed for two measurement periods 

in a semi-arid U.S. town, with a marked decrease in the PM2.5/PM10 ratio and indications of 

an increased PM1-2.5 mass, but not PM1 mass, during dust events (Claiborn et al. 2000). 

 

2.5 Source apportionment of particulate matter 

 

2.5.1 Methods 

 

Source apportionment of particulate matter refers to the quantitative estimation of the 

contributions from different source categories to the concentrations of the measured PM in the 

atmosphere, based on chemical and physical characteristics of the particulate matter and 

temporal covariation of PM components. This procedure can be divided to identification of 

the sources and to apportionment of the measured PM to these sources. Source apportionment 

of urban ambient PM is complicated due to several reasons (APEG 1999); (1) there are 

numerous anthropogenic and natural source categories that contribute to urban primary and 

secondary PM; (2) not all PM emissions are adequately characterized; and (3) the geographic 

impact area(s) of different emissions are highly variable due to the different particle sizes, 

lifetimes of pollutants, varying weather conditions, and atmospheric chemistries. 
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Source apportionment models make use of the chemical composition of PM measured at a 

certain location ('receptor') to resolve the main sources of particulate matter at that site (Kao 

and Friedlander 1995). Particulate matter emissions from specific sources often have unique 

elemental profiles by which the contribution of these sources to the total PM at the receptor 

can be recognised. The most widely applied source apportionment methods have been 

chemical mass balance methods (CMB, mass reconstruction, mass closure) and several types 

of multivariate methods such as multiple linear regression (MLR), factor analysis (FA), 

principal component analysis (PCA), target transformation factor analysis (TTFA), positive 

matrix factorization (PMF), and combinations of the above. Principles, history and recent 

developments in the field of receptor modelling of particulate matter have been reviewed by 

Gordon (1988), Henry (1984, 1997), Seigneur et al. (1999), and Hopke (2003). 

 

Chemical mass balance equations are based on the basic assumption that the measured 

amount of a chemical species in a sample is a simple sum of pollutant contributions affecting 

the sample (Christensen 2004). Other assumptions in CMBs are that all major sources 

affecting the airshed are identifiable, and that the chemical composition patterns of emissions 

from various sources ('source profiles') are known. The profiles should also be sufficiently 

different to facilitate identification of source contributions. Although CMBs have the 

advantage that they do not require many samples, they suffer from the need of quantitative 

and detailed information on the chemical profiles of emissions from all major sources that can 

contribute to PM at the receptor site (Magliano et al. 1999). The CMB method is not suitable 

for apportioning sources of secondary air pollution components, such as sulphate, because 

these components represent only up to a few percent of fine particle emissions though they 

often constitute a major portion of the mass of ambient PM samples due to gas-to-particle 

conversion (Pinto et al. 1998). 

 

Mass closure (mass reconstruction) models are simpler mass balance models that can be used 

for apportionment of particulate matter between predefined sources. These models are based 

on the analysis of a number of chemical components (elements, ions, etc.), which can be used 

as tracers of major aerosol constituents (Andrews et al. 2000, Harrison et al. 2003). The 

estimation of source contributions by this method can be purely deterministic, that is, based 

on summing up the mass of measured and reconstructed chemical components, or it can 

involve some statistical procedures such as regression analysis. 
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Factor-analytic techniques, such as principal component analysis, are based on the idea that 

the time dependence of a chemical species at the receptor site will be similar to that of other 

species from the same source (Chueinta et al. 2000). Correlations of the measured chemical 

and other species are analysed and groups of underlying 'factors' that depict the common 

variability in the analysed dataset are extracted. Since the originally extracted factors are often 

difficult to interpret, the factors are usually transformed by a specific procedure called factor 

rotation. The most commonly used method is known as varimax rotation, which results in 

orthogonal factors that are virtually uncorrelated with each other and often easier to interpret 

than the original factors (Afifi and Clark 1984). The rotated factors are assumed to correspond 

to specific PM sources, or source categories. Since PCA as such does not yield quantitative 

source contributions, the apportionment of particulate matter between the identified source 

categories has to be done separately. This can be done by regressing the measured PM either 

directly on the source tracer elements (Hosiokangas et al. 1999, Oravisjärvi et al. 2003) or on 

factor scores obtained from PCA (Thurston and Spengler 1985, Van Borm et al. 1990, Pio et 

al. 1996, Ames et al. 2000, Marcazzan et al. 2003). 

 

Seinfeld and Pandis (1998) have listed several assumptions on application of PCA to source 

apportionment purposes: 1) the composition of emission sources is constant, 2) chemical 

species used in PCA do not interact with each other and their concentrations are linearly 

additive, 3) measurements errors are random and uncorrelated, 4) the variability of the 

concentrations is dominated by changes in source contributions, 5) the effect of processes that 

affect all sources equally (e.g. atmospheric dispersion) is much smaller than the effect of 

processes that influence individual sources (e.g., wind direction), 6) there are many more 

samples than source types, and 7) the extracted factors and rotations are physically 

meaningful. Some of the limitations of factor-analysis methods include its inability to 

recognise more than (about) eight source categories, and that its ability to discriminate closely 

related sources is rather poor (Henry et al. 1984, Harrison et al. 1997). 

 

2.5.2 European source apportionment studies 

 

Comprehensive chemical speciation in combination with information on size distribution and 

morphology of PM, temporal variation of PM and gaseous pollutants, and meteorology allows 

for identification of PM sources. Numerous European studies have pointed to sources of 

urban particulate matter chiefly via a physico-chemical characterization of PM (Harrison et al. 
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1997, Pakkanen et al. 2001a, Pakkanen et al. 2001b, Visser et al. 2001, Koistinen et al. 2004). 

The number of European studies that have apportioned particulate matter (TSP, PM10 or 

PM2.5) to the identified source categories by using statistical methods is still rather limited 

compared to the number of studies conducted in the U.S. 

 

Table 2 lists a number of European studies that have used multivariate statistical methods to 

obtain information on sources of particulate matter. In most of these studies, four or five 

major source categories have been detected. These categories include natural sources, such as 

soil dust and sea salt spray, and anthropogenic sources, such as vehicular emissions, 

secondary PM, industry, refuse incineration, oil and coal combustion, and residential 

emissions related to heating and wood combustion. Traffic, secondary particulate matter, and 

soil or street dust were the predominant sources in most of the studies. Not surprisingly, the 

effect of crustal particles was more important in the PM10 fraction compared to PM2.5, 

although the crustal source was also detected in most PM2.5 studies. A straightforward 

comparison of the results from these studies is not feasible, however, due to differences in 

methods, measurements sites and interpretation of the identified source components. 

 

Table 2. A summary of European receptor modelling studies. 

Reference Study site Method(s) * Target PM fraction(s) 

Van Borm et al. 1990 Antwerp, Belgium PCA, MLR PM2.5 
Pio et al. 1996 Portugal PCA, MLR PM0.95 & PM0.95-10 
Harrison et al. 1997 Birmingham, U.K. PCA, MLR PM2.1 & PM2.1-10 
Pinto et al. 1998 Teplice, Czech Rep. CMB PM2.5 
Hosiokangas et al. 1999 Kuopio, Finland FA, MLR PM10 
Marcazzan et al. 2001 Milan, Italy PCA, MLR PM2.5 & PM10 
Querol et al. 2001 Barcelona, Spain PCA, MLR PM2.5 & PM10 
Manoli et al. 2002 Thessaloniki, Greece PCA, MLR PM3 & PM10 
Marcazzan et al. 2003 Milan, Italy PCA PM2.5 & PM10 
Samara et al. 2003 Thessaloniki, Greece CMB PM10 
Oravisjärvi et al. 2003 Raahe, Finland FA, MLR PM2.5 
Yli-Tuomi et al. 2003 Kevo, Finland ME TSP 
Salvador et al. 2004 Madrid, Spain FA, MLR PM10 
Querol et al. 2004 Spain PCA, MLR PM10 
* PCA principal component analysis; MLR multiple linear regression; CMB chemical mass 
balance; FA factor analysis; ME multilinear engine 
 

The results of the few previous efforts that have been made to elucidate sources of fine 

particulate matter in Helsinki are shown in Table 3. Based on correlation analysis, Pakkanen 

et al. (2001b) have identified a number of distinct groups (sources) of chemical constituents in 
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PM2.3 (long-range transported, sea salt, oil combustion, organic anions); a crustal source was 

detected for the coarse particle fraction. The composition of PM2.3 in their study agrees well 

with the reported PM2.5 composition of residential outdoor samples (Koistinen et al. 2004). A 

46% average local contribution to PM2.3 in Vallila, Helsinki, has been reported based on 

particle size distribution comparisons between urban (Vallila) and rural sites (Pakkanen et al. 

2001a). Ojanen et al. (1998) have estimated that approximately 60% of PM2.3 in Vallila 

originates from long-range sources. The rest of PM2.3 (40%) was reported to comprise mostly 

traffic-related particulate matter (elemental and organic carbon, nitrate) and resuspended 

crustal material. 

 

Table 3. Results from previous studies on composition and sources of fine particulate matter 
in Helsinki, Finland. 

Site and period 
(reference) 

PM fraction 
(average) 

Component mass 
(�g/m3) 

% 
(of PM) 

Urban background 
Vallila, Helsinki 
Apr 1996 - Jun 1997 
(Pakkanen et al. 2001b) 

PM2.3 
(11.8 �g/m3) 

SO4 
NO3 
NH4 
Sea salt 
Crustal 
Other (carbon. + H2O) 

2.5 
1.4 
1.1 
0.4 
1.4 
5.1 

21 
12 
9 
3 

12 
43 

Residential outdoor 
Helsinki 
Oct 1996 - Dec 1997 
(Koistinen et al. 2004) 

PM2.5 
(10.0 �g/m3) 

SO4 + NO3 + NH4 
Combustion particles 
Crustal particles 
Salt 

4.6 
3.5 
1.6 
0.3 

46 
35 
16 
3 
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3 AIMS OF THE STUDY 

 

The overall objective of this study was to add to current knowledge on the characteristics and 

sources of urban ambient particulate matter. 

 

The specific aims of the study were to 

 

1. characterize determinants, elemental composition and concentrations of particulate 

matter in the urban atmosphere, 

 

2. investigate the characteristics and determinants of resuspended road dust as a specific 

urban air quality problem in subarctic urban environments, and 

 

3. determine and compare major sources of ambient fine particulate matter (PM2.5) in 

different European urban sites. 
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4 MATERIALS AND METHODS 

 

4.1 Study areas and measurement periods 

 

This thesis is based on data collected during three epidemiological studies conducted in four 

European cities between 1995-1999. The field measurements were conducted in Kuopio and 

Helsinki (Finland), Amsterdam (The Netherlands) and Erfurt (Germany). In Helsinki (original 

publications I, III, IV and V), the measurement of PM2.5 and particle counts took place at a 

monitoring site located in a small park about two kilometres northeast of the city centre 

(Pekkanen et al., 2000). Gaseous pollutants (NO, NO2, CO, SO2 and O3) were monitored on a 

municipal network site located 40 m from the PM site. Distances of the municipal site and the 

PM site to a major north-south street running on eastern side of the site (about 14,000 

vehicles/day on weekdays) were 10 m and 50 m, respectively. Since the vast majority of 

buildings were connected to the central heating network, local heating was not a major source 

of air pollution near the sampling site. Meteorological parameters were measured 50 m above 

ground level at a meteorological station located approximately 1.5 km from the air pollution 

monitoring site. Due to the maritime location and rather flat terrain of Helsinki, air pollutants 

generated in the city area are often diluted efficiently by winds blowing in from the sea and 

other less polluted areas surrounding the city. Data were collected from 29 October 1996 to 

28 April 1997, and from 2 November 1998 to 30 April 1999. 

 

Kuopio (II) is a town in eastern Finland with approximately 90,000 inhabitants. The air 

quality measurements were conducted in a small park close to the town centre, at a 

monitoring station belonging to the environmental office of the municipality. The 

measurement site was located next to a park area alongside a two-story office building, and 

about 40 meters from the nearest busy street on which the average daily traffic density was 

about 14,000 cars per 24 hours on weekdays, 11,000 cars on Saturdays and 9000 on Sundays. 

Meteorological data were obtained from a station located 1 km south of the air pollution 

monitoring site and at a height of 50 meters from the ground. The elevation difference 

between the meteorological station and the air quality monitoring station was approximately 

25 m. Measurements were carried out for 36 days between March 19 and April 23, 1995. 

 

In Amsterdam (IV), the measurements of particulate matter were conducted on the roof of a 

nursing home at the height of 7.7 m from the ground (1.7 m above the roof) in the southeast 
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part of the city, 10 km from the inner city of Amsterdam (727,000 inhabitants). No major 

sources of air pollution were located in the close vicinity of the PM measurement site. There 

was a gas-fired power plant 5.5 km north of the site and the nearest major street with a traffic 

count of 10,900 cars per day ran 250 m southwest of the site. Data on gaseous air pollution 

were available from an urban background site that was located in the northern part of the city 

15 km away from the PM site. The Royal Dutch Meteorological Institute delivered hourly 

data on meteorological variables from the Schiphol international airport that is located 25 km 

west from the air pollution site(s). Altitude differences in Amsterdam are very small and play 

no role in determining local air pollution concentrations. 

 

In Erfurt (IV), PM measurements were done in a small park next to parking facilities for 

approximately 20 cars. Sampling inlets for PM2.5 and particle counters were installed outside 

a mobile laboratory at the height of 1.7 m and 4 m from ground level, respectively. The site 

was situated 2 km south of the inner city of Erfurt (210,000 inhabitants). Concentrations of 

gaseous pollutants were measured at this site, except for CO which was measured 2 km away 

by the local monitoring network. One major road from the downtown heading south ran 40 m 

east of the measurement site with 22,000 vehicles passing per day, including heavy-duty 

traffic. The only major stationary emission source was a power plant that was located 6 km 

south of the site. Meteorological data in Erfurt were obtained from two different sites. Wind 

speed and direction were measured at an official meteorological station (German Weather 

Service) located about 6 km west from the PM site, whereas temperature and relative 

humidity were measured at the PM measurement site. The city of Erfurt is located in a valley 

and is mostly surrounded by ridges rising up to 100-200 m except in the north, where several 

high buildings are likely to reduce air movements in the city area. Therefore, temperature 

inversions, which are frequent during winter, can cause elevated levels of locally generated air 

pollutants within the city. 

 

4.2 Sampling equipment and methods 

 

Table 4 summarizes the measurement methods used for sampling and analysing the elemental 

composition of particulate matter in the four different field studies. 
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Table 4. Summary of methods used for measurements of particulate matter. 

Measurements of particulate 
matter 

Method References 

PM1 (I), PM2.5, PM10 (I-V) 

PM10 (Helsinki and Amsterdam 
1998-99) 

Harvard impactor 

-attenuation (ESM Eberline FH 
62 I-R; FAG Eberline FH-62 I-N) 

Marple et al. 1987 

Total Suspended Particles 
(II) 

High volume sampler EPA standard NAAQS 40 
CFR 50 

Black carbon 
(II) 

Aethalometer (Magee AE-9 
AethalometerTM) 

Hansen et al. 1984 

Absorption coefficient 
(I, III-V) 

Filter reflectance (EEL 43 smoke 
stain reflectometer) 

ISO 1993 

Particle number concentration 
(I-V) 

Condensation particle counter 
(CPC) 

 

Particle size distribution, 
Finland (I-V) 

Electrical aerosol spectrometer   Tuch et al. 2000, Mirme et 
al. 2002 

Particle size distribution, 
Amsterdam (IV) 

Differential mobility analyser + 
CPC + optical particle 
spectrometer 

Khlystov et al. 2001 

Particle size distribution, 
Erfurt (IV) 

Differential electrical mobility 
particle analyser + CPC + optical 
particle spectrometer 

Tuch et al. 2000, Khlystov 
et al. 2001 

PM2.5 elemental composition 
(II) 

ICP-MS (Perkin-Elmer 8 SCIEX 
ELAN-500) 

Jalkanen and Häsänen 1996 

PM2.5 elemental composition 
(IIIa) 

ED-XRF (X-Lab 2000, SPECTRO 
Analytical Instruments, Germany) 

Mathys et al. 2001 

PM2.5 elemental composition 
(IIIb-V) 

ED-XRF (Tracor Spectrace 5000 
system, Tracor X-ray, CA, USA) 

Samek et al. 2002, Janssen 
et al. (submitted) 

 

 

The PM2.5 and PM10 Harvard impactors used in this study are similar to those described by 

Marple et al. (1987), except that they have only one impaction stage. The PM1 impactor (I) 

was constructed from two stacked nozzles and had an airflow rate of 23 l/min compared to 10 

l/min of the PM2.5 and PM10 impactors. During 1998-99 in Helsinki and Amsterdam, PM10 

was monitored continuously using -attenuation particulate monitors (Thermo Electron 

Eberline). In the impactor sampling, 37 mm diameter polytetrafluoroethylene filters of 2 �m 

pore-size were used as the sampling medium. The filters were weighed before and after 

sampling in air-conditioned rooms using a microbalance with 1 µg accuracy. For all PM 

fractions, particles above the desired size range, determined in terms of aerodynamic 

diameter, were collected on porous impaction plates impregnated with silicon oil, which were 

cleaned and saturated with oil on a daily basis in order to prevent particle bounce. Airflow 

was controlled using glass critical orifices for the PM10 and PM2.5 impactors and an adjustable 

valve for the PM1 impactor. The sampling flow was measured at the beginning and end of 

every 24-hour sampling period with calibrated rotameters in Amsterdam (IV), Helsinki (I, III-

V) and Kuopio (II), and continuously using a gas meter in Erfurt (IV). 
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After weighing of the PM filters, their reflectance was measured using an EEL model 43D 

smoke stain reflectometer (I, III-V). The ISO 9835 standard “Ambient air - Determination of 

a black smoke index” (ISO 1993) was applied to the calculation of the absorption coefficients 

of the PM filters. Roorda-Knape et al. (1998) have found a good correlation between the 

results of the traditional Black Smoke method (�g/m3) and reflectometric analysis performed 

on PM10 sample filters collected at the same location at the same time (R2=0.94; N=40). 

Reflectance measurements of filters from both Amsterdam and Erfurt were conducted in the 

Netherlands (IV). Black carbon (II) concentrations were measured with a computer-controlled 

aethalometer (Magee AE-9 AethalometerTM) (Hansen et al. 1984) based on a continuous 

measurement of optical attenuation resulting from the deposit accumulating on the filter. 

 

In Helsinki (I, III-V) and Kuopio (II), size-segregated particle number concentrations were 

measured using an electrical aerosol spectrometer (EAS) which measures the particle size 

distribution in the size range 0.01-10 �m solely by an electrical method employing unipolar 

diffusion charging in the size range 0.01-0.5 �m in one analyser and a strong electrical field 

charge in the range 0.3-10 �m in the other (Mirme et al. 2002). In Amsterdam and Erfurt (IV), 

measurements were done using integrated spectrometer units consisting of a particle mobility 

analyser, a condensation particle counter and an optical particle spectrometer (Tuch et al. 

2000, Khlystov et al. 2001).  

 

Data on concentrations of gaseous air pollutants and meteorology were obtained from existing 

monitoring networks operated by the local authorities. More detailed information about the 

equipment can be found in the original publications and in Pekkanen et al. (2000).  

 

4.3 Analyses of elemental composition (I-V) 

 

Elemental composition of PM10 and PM2.5 samples from Kuopio (II) were analysed at the 

Geological Survey of Finland using a Perkin-Elmer 8 SCIEX ELAN-500 ICP-MS instrument. 

The procedure of inductively coupled plasma mass spectrometry has been described 

elsewhere (Jalkanen and Häsänen 1996). Every second PM2.5 sample from the Helsinki 1996-

97 measurement period (IIIa) was analysed for elemental composition using energy-

dispersive X-ray fluorescence spectrometry (ED-XRF). The analysis was performed using X-

Lab 2000 (SPECTRO Analytical Instruments, Germany 1998) in the Institute for Mineralogy 
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and Petrography, University of Basel (Switzerland). A detailed description of the analysis 

method is presented elsewhere (Mathys et al. 2001). PM2.5 samples from Amsterdam, Erfurt 

and Helsinki 1998-99 were also analysed using ED-XRF. Analyses of all filter samples were 

performed with an automated Tracor Spectrace 5000 system (Tracor X-ray, Sunnyvale, CA, 

USA) in the Micro and Trace Analysis Centre of the University of Antwerp, Belgium 

(http://www.uia.ac.be) (Samek et al. 2002). 

 

4.4 Source apportionment (III-V) 

 

Source identification and source apportionment were done for PM2.5 from all sites except 

from Kuopio. Elemental composition and air pollution data were analysed using principal 

component analysis (PCA) in order to identify the main source categories of PM2.5. The 

extracted principal components were interpreted as source categories contributing to PM 

concentrations at the sampling site. The identification of source categories was undertaken by 

examination of the profiles of the principal components, i.e., loadings of the elements and 

other variables on the varimax rotated (orthogonal) principal components. 

 

Estimates of daily source-specific PM2.5 concentrations at the measurement site were obtained 

by regressing the measured daily PM2.5 on daily principal component scores. Selection of 

elements to PCA was done based on the percentage of detected samples. Other variables 

(NOX, SO2, CO, Abs2.5, particle counts NC0.01-0.1 and NC0.1-1.0) were included one by one and 

in several different combinations to find optimal and the most plausible source apportionment 

models. Several criteria were used in selecting the optimal models: in terms of source 

identification (PCA), we required identification of major sources with physically reasonable 

principal components whose eigenvalues were larger than 1 after varimax rotation. In terms of 

source apportionment (multiple linear regression), we required positive regression coefficients 

for all sources, a positive and moderate model intercept, and a high model R2. An introduction 

to the basics of the PCA methodology and calculations used in this work is given elsewhere 

(Thurston and Spengler 1985). 
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4.5 Quality considerations 

 

4.5.1 Measurement sites 

 

As listed above, the measurement equipment for all pollutants and other variables were not 

located at the same site in any of the four cities. This was due to limited resources available 

for the field studies, both in terms of measurement equipment and personnel. Therefore the 

data for meteorological variables and also for gaseous pollutants were mostly obtained from 

the nearest existing network stations that were sometimes not located in close proximity to the 

main air pollution monitoring site. The distance between measurement stations within a city 

may pose a problem regarding investigations of very localized phenomena, but for many of 

the pollutants considered in this study, the daily variations are rather similar across larger 

areas. Also, wind direction data obtained from a site that has been specifically designed for 

producing meaningful results that are more representative of larger areas, have actually 

proved better than data taken from the street level (I). In Amsterdam, a high correlation (0.86) 

between daily values of NOX (measured at a site located 15 km from the PM site) and Abs2.5 

(PM site) suggests that their diurnal concentration variations were similar within a larger area 

and probably determined mainly by local meteorology. 

 

There are also differences in the air pollution sites between the cities, since it was not possible 

to find exactly similar measurement sites from all cities regarding the distance to nearby 

streets or the sampling height. The distance of the site from a source will affect the measured 

concentrations of pollutants (but perhaps will not have as great an impact on variations) that 

exhibit strong concentrations gradients as a function of distance from the source. This may 

apply to some elements, ultrafine particle number, and nitrogen oxides. 

 

4.5.2 Sampling of particulate matter 

 

Each measurement contains a degree of uncertainty due to the limits of measurement 

equipment and the people using the equipment. The major sources of error concerning the 

sampling and analyses of particulate matter samples include 1) artifacts or contamination of 

samples, 2) loss of collected aerosol species during sampling or after sampling, 3) sample 

handling, transport and storage, 4) modification of samples during analyses, and 5) errors in 

data handling. In order to control and minimize the overall uncertainty caused by these 
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factors, the sampling of PM and weighing of filters were carried out according to a standard 

operation procedure to assure high quality of sample processing. Comparability of weighing 

and reflectance results between Amsterdam, Erfurt and Helsinki centres was ascertained by 

using a common study protocol (standard operating procedures available at 

http://www.ktl.fi/ultra) and by performing round-robin tests for reference samples collected in 

each centre. 

 

The PM filters were weighed before and after sampling in air-conditioned rooms using a 

microbalance with 1 µg accuracy. In works I and IIIa, the blank and sample filters were 

weighed before and after sampling, always after a 24 h conditioning period at a constant 

temperature of 21 ± 0.4 ºC and a relative humidity of 38 ± 4%. Static charges within the 

analytical microbalance were removed by placing a radioactive ionizing unit (Am-241) in the 

weighing chamber and passing the filters over a similar ionizing unit prior to weighing. The 

estimated overall accuracy of measurements, for example, in the PM2.5 results was ±0.6 

�g/m3. In works IIIb-V, the sample filters were stabilised at controlled relative humidity 

(range 30-40%) and temperature (range 19-24 �� � ���� ��� 
����� ��� ��!��� "�	��� ��� ��	#�	�#�

(Pekkanen et al. 2000). The effect of changes in atmospheric pressure between pre- and post-

sampling weighing on the results was controlled for by using buoyancy correction (Koistinen 

et al. 1999). Since the humidity control in the weighing room was unreliable in work II, the 

effect of humidity on the filter weights was eliminated by means of a correction factor 

corresponding to the change in weight of a set of control filters, stored permanently in the 

weighing room and weighed every time alongside the sample filters. Their weight change was 

observed to be linearly dependent on the relative humidity of the weighing room. 

 

In I and IIIa, the samples were accepted only if the end flow was over 8 lpm for the PM10 and 

PM2.5 samplers and 21 lpm for the PM1 sampler. The estimated relative errors in the 

rotameters used to measure sampling air flow in Helsinki were found to be about 2% when 

the calibration air flow was within the accepted limits specified for the field sampling. Field 

blank filters were taken during the measurement periods to determine the detection limit for 

the methods used. The detection limits for PM2.5 during the 1998-99 study in Amsterdam, 

Erfurt and Helsinki were 2.1, 0.23 and 0.77 �g/m3, respectively (de Hartog et al., in press). 

Estimated from duplicate samples, the precisions of PM2.5 measurements expressed as median 

coefficient of variation (CV) were 1.9%, 2.5% and 7.8% in the three cities. In Kuopio, only 

two field blank filters and no duplicate filters were collected and, therefore, no meaningful 
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estimates on detection limits and precision can be made. The accuracy of the impactor PM 

measurement depends largely on the loss of material from the sample associated with the 

concentrations of volatile and semi-volatile compounds, which were not determined in this 

study. However, the overall uncertainty of the impactor method can be estimated to be of the 

�����������$��%� �	�
�����"��	������� ���� -attenuation method with a gravimetric reference 

method (LVS-PM10 -FH 95 KF, ESM Andersen) has shown a very good agreement between 

the two methods, although the -attenuation method gave slightly higher concentrations, 

especially during days of high relative humidity and low temperature (Salminen and Karlsson 

2003). 

 

During the measurements of PM filter absorbance (Abs2.5), the reflectometer was calibrated 

using a pre-selected clean control filter taken from the same batch as the PM sample filters. 

This calibration was done at the beginning of each measurement session and repeated also 

during the measurement session to ensure comparable and reproducible results. The detection 

limits (precision as median coefficients of variation) for Abs2.5 during the 1998-99 study were 

1.5 m-1·106 (2.9%) in Amsterdam and 0.80 m-1·106 (4.7%) in Helsinki (de Hartog et al., in 

press). Quality control filters from Erfurt were not available for this analysis. Regardless of 

the excellent precision, the overall uncertainty of the reflectometric method as a measure of 

elemental carbon can be estimated to be around 25% (Sillanpää et al., submitted). 

 

A side-by-side comparison of the electrical aerosol spectrometer used in Finland and the 

mobile aerosol spectrometer used in Germany was performed in the size range from 0.01 to 

0.5 �m (Tuch et al. 2000). The results showed that the systematic differences between the 

instruments were within 10% and the correlation around 0.98 in the particle size range 0.01-

0.5 �m. The results from a side-by-side comparison of all three spectrometers used in the 

different countries also showed excellent correlation (0.98) and geometric mean ratios ranging 

from 1.06 to 1.23 for ultrafine and accumulation mode particles in ambient air conditions 

(Mirme et al. 2002). 

 
 
4.5.3 Elemental analyses 

 

In the XRF analyses of 1996-97 PM2.5 samples from Helsinki, the calibration was based on 35 

standards applied for 36 elements on different media (Mathys et al. 2001). No field duplicate 
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samples were available from Helsinki 1996-97 to determine precision of the elemental 

analyses, but based on earlier analysis of similar samples, the precision varied from 2% to 

30% depending on the element (Mathys et al. 2001). After the publication of III, the 

laboratory in Basel reported that they had found an error in their calculations and delivered 

new XRF data. The elements that were most affected were Na and Si whose average 

concentrations were increased by twofold compared to the original values. The effect on 

source apportionment in the Helsinki 1996-97 results was in the order of only a few percent, 

however. The same sources of PM2.5 were identified with very similar average contributions, 

and the Spearman rank correlations of recalculated source components with the original 

components (III) were >0.93.  

 

Calibration of the ED-XRF system used to analyse PM2.5 samples from 1998-99 (Amsterdam, 

Erfurt and Helsinki) was based on thin film reference standards (Micromatter, Seattle, WA, 

USA) and evaluated by regularly analysing US EPA standard filter No's 1821 and 1829. The 

accuracy varied between 1% and 28% depending on the element and its concentration on the 

filter. Based on homogeneity tests run by the laboratory in Antwerp, the analytical precision 

of the method itself was about 4%, also depending on the element and concentration. The 

detection limits were defined for each element and sample individually, based on the 

uncertainty (standard deviation) obtained from three consecutive measurements of the sample. 

A number of field blanks were also analysed, and their median concentration was subtracted 

from the sample concentrations for each element. Based on the coefficient of variation in the 

field duplicate samples, the precision of PM2.5 elemental analysis was markedly better in 

Amsterdam (2.9-50% depending on the element) compared to Helsinki (2.5-84.6%) (Janssen 

et al., submitted). The reason for the poorer precision in Helsinki cannot be confirmed, but it 

may be related to the fact that in Helsinki the duplicates were collected after the field 

campaign and during seven consecutive days when the ambient PM concentration was 

relatively low. Furthermore, precision of simultaneously collected indoor and personal 

duplicate samples was markedly better in Helsinki compared to outdoor samples. Quality 

control filters from Erfurt were not available to determine the precision for the Erfurt 

elemental samples. The overall uncertainty related to the elemental analysis of PM2.5 samples 

was increased due to the poor precision, but can be estimated to be 30% or better for most 

elements. 
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The detector in the ED-XRF system became defective and was replaced before the analyses of 

outdoor PM2.5 samples from Erfurt (1998-99). Therefore, 5 field blank filters, which had been 

collected during the 1998-99 in Helsinki using personal PM2.5 monitors, were re-analysed in 

the same laboratory with the new detector. Comparison of the new and the original results 

indicate quite large differences in the reported values for most analysed elements (Janssen et 

al., submitted). This suggests that comparability of the results from Helsinki and Amsterdam 

with the results from Erfurt may suffer from the change of the XRF detector during the 

analyses series. The magnitude of the effect with respect to the outdoor samples containing 

higher concentrations of analytes is difficult to estimate, however. 

 

4.5.4 Data management and statistical tools 

 

Data acquisition and handling were carried out according to the study protocols. Raw data on 

manually operated measurement equipment were first entered on printed field forms and 

subsequently, typed into computer files which were checked for possible typing errors. Data 

from computer controlled measurement device were recorded into raw data files that were 

checked and combined to the final datasets, which were used in the statistical analyses. 

Outliers were not excluded systematically based only on any mathematical or statistical 

procedure, but were rather excluded on a case by case basis after plausibility checks. This 

procedure included both a statistical part (screening of outliers based on standard deviation 

and mean of a given variable) and a more subjective part (for example, retaining a peak 

elemental concentration for an element if it coincided with a high concentration for another 

element that probably originated from the same source). Data management procedures have 

been described in more detail in the original publications (I-V) and by Pekkanen et al. (2000) 

for III-V. For gaseous air pollutant data, daily average values were calculated from the raw 

data, which had first been cleaned of erroneous data points by the network operators 

according to their own data management guidelines. SAS/STAT� statistical software (SAS 

Institute Inc. 1999) Version 8.02 and statistical software package Statistica for Windows 5.0 

(StatSoft Inc. 1996) were used for statistical procedures and calculations. 



 42

5 RESULTS 

 

5.1 Concentrations of PM 

 

Descriptive statistics of the measured parameters of particulate matter in the four study sites 

and three different measurement periods are summarised in Table 5. PM2.5, PM10 and PM2.5-10 

concentrations in Helsinki were comparable during 1996-97 and 1998-99. In Kuopio, PM 

concentrations were higher than in Helsinki and very close to those measured in Amsterdam 

and Erfurt. Note that the measurements in Kuopio were made during the spring and for a 

significantly shorter period compared to the other studies. Amsterdam and Erfurt yielded 

similar statistics for PM2.5 but differed in PM10 with high median concentration in 

Amsterdam. The concentration of coarse particles (PM2.5-10, calculated as difference between 

PM10 and PM2.5 concentrations) in Erfurt was very low compared to the other sites, which is 

also reflected in the high PM2.5/PM10 ratio compared to the other cities. PM2.5/PM10 ratios at 

other sites are more comparable. The average PM1/PM2.5 ratio in Helsinki during 1996-97 

varied from 0.57 (spring) to 0.63 (winter). Resuspended dust episodes occurring in the spring 

in Helsinki had a clear effect on the PM2.5/PM10 ratio but not on the PM1/PM2.5 ratio. 

 

The number concentrations of ultrafine particles (NC0.01-0.1) were somewhat higher in Kuopio 

than in Helsinki. In Helsinki, there was no marked change in ultrafine particle concentration 

between 1996-97 and 1998-99. Erfurt had the highest concentration of ultrafine particles, 

especially regarding the maximum concentrations. The slightly higher concentration of 

particles in the accumulation size range (NC0.1-1.0) during the latter study in Helsinki is 

consistent with the difference in PM2.5 concentrations. The median concentration of 

accumulation mode particles (NC0.1-1.0) was clearly lowest in Kuopio compared to all other 

sites. In contrast to ultrafine particles, accumulation particle numbers were higher in 

Amsterdam than in Erfurt. 

 

In Helsinki, absorption coefficient of PM2.5 filters (Abs2.5) increased notably from 1996-97 to 

1998-99. During 1996-97, absorption coefficients of PM2.5 and PM10 samples were quite 

similar but the absorption coefficients of PM1 samples were clearly lower. Abs2.5 was lower in 

the Amsterdam study than in the other simultaneously conducted studies, but still higher than 

during the 1996-97 campaign in Helsinki. All statistics show that Erfurt had clearly the 

highest absorption coefficients of the three major cities. 



PM2.5 (µg/m3) N Mean Std th5 % Median 95th % Max
Kuopio 1995 36 17.7 12.9 4.35 14.3 44.4 54.6
Helsinki 1996-97 173 9.70 5.21 3.80 8.40 20.5 38.3
Helsinki 1998-99 164 12.8 6.74 5.17 10.6 25.7 39.8
Amsterdam 1998-99 224 19.9 13.2 6.07 16.8 47.0 82.3
Erfurt 1998-99 157 22.3 17.4 6.10 16.3 62.3 104

PM10 (µg/m3) N Mean Std Median Max
Kuopio 1995 36 32.5 29.2 5.66 25.3 93.7 122
Helsinki 1996-97 173 16.5 9.63 6.90 13.9 34.7 73.7
Helsinki 1998-99 (1 164 19.3 9.33 8.21 17.3 36.0 67.4
Amsterdam 1998-99 (1 194 36.4 16.7 17.8 32.1 70.0 112
Erfurt 1998-99 150 26.7 19.6 8.40 19.9 68.9 104

PM2.5-10 (µg/m3) N Mean Std Median Max
Kuopio 1995 36 14.8 16.6 0.77 8.25 50.4 67.1
Helsinki 1996-97 168 6.97 6.84 1.40 4.70 22.4 49.3
Helsinki 1998-99 (1 164 6.55 5.73 0.83 4.77 19.0 37.0
Amsterdam 1998-99 (1 194 15.3 7.70 3.23 14.7 28.8 45.3
Erfurt 1998-99 150 3.93 5.71 -1.30 2.91 13.4 51.3

PM2.5 / PM10 N Mean Std Median Max
Kuopio 1995 36 0.63 0.16 0.43 0.60 0.90 0.92
Helsinki 1996-97 168 0.61 0.19 0.29 0.64 0.87 0.95
Helsinki 1998-99 (1 164 0.68 0.18 0.36 0.70 0.92 1.02
Amsterdam 1998-99 (1 194 0.56 0.19 0.25 0.56 0.88 0.98
Erfurt 1998-99 150 0.86 0.17 0.58 0.88 1.08 1.48

NC0.01-0.1 (1/cm3) N Mean Std Median Max
Kuopio 1995 36 17600 8860 8410 15000 36200 40400
Helsinki 1996-97 165 15300 6610 7440 14500 28200 46500
Helsinki 1998-99 164 16800 9220 5940 14700 35800 50300
Amsterdam 1998-99 209 17300 6000 7370 17300 28100 37200
Erfurt 1998-99 157 20900 11800 7430 18700 40900 96700

95th %

95th %

95th %

95th %

th5 %

th5 %

th5 %

th5 %

NC0.1-1.0 (1/cm3) N Mean Std Median Max
Kuopio 1995 36 451 203 172 414 777 907
Helsinki 1996-97 165 984 497 439 890 1920 2790
Helsinki 1998-99 164 1390 679 665 1190 2870 3780
Amsterdam 1998-99 195 2110 1100 797 1870 4240 6410
Erfurt 1998-99 157 1760 1170 591 1460 4730 6850

Abs (1/m * 106) (2 N Mean Std Median Max2.5

Helsinki 1996-97 172 13.3 6.02 6.21 11.6 26.1 40.4
Helsinki 1998-99 164 20.1 8.14 10.1 18.9 35.6 49.2
Amsterdam 1998-99 223 16.8 9.21 5.81 14.9 33.8 54.7
Erfurt 1998-99 156 24.6 14.1 8.12 20.3 51.1 78.0

95th %

95th %

th5 %

th5 %

Table 5. Descriptive statistics of the daily values of particulate matter (PM), particle
number concentrations (NC) and PM2.5 filter absorption coefficient (Abs2.5).

1) PM10 monitored continuously; 2) not measured in Kuopio.

43
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5.2 Elemental composition of PM 

 

Descriptive statistics of the chemical components of PM2.5 in Helsinki, Amsterdam and Erfurt 

are presented in Table 1 (III and IV). Note that the number of cases in Helsinki data was 

significantly lower for the 1996-97 campaign (N = 83), since only every second filter sample 

was analysed for elemental composition. 

 

In Helsinki (III), median concentrations of several elements were clearly different during the 

two measurement periods. During the first campaign in 1996-97, concentrations of Ca, Fe and 

Ni were mostly below the detection limits, whereas during the second campaign in 1998-99 

these elements were readily detected. As for the elements that were routinely detected, the 

concentration differences were most prominent for Al and Si which had 5-fold higher 

medians, and for Pb and V which exhibited 2-fold lower medians during 1996-97 compared 

to 1998-99. 

 

We also found that median concentrations of all elements but Fe differed in Helsinki, 

Amsterdam and Erfurt (IV). Similarly to the Helsinki comparison (III), there were several 

elements (Al, Si, Ti, V, Mn, Ni, Br) that were readily detected in one or two cities but poorly 

detected in the others, reflecting clear differences in the concentrations of these elements 

between the cities. With regard to the better-detected elements, the concentration of Cu in 

Helsinki was low compared to Amsterdam and Erfurt. The Cl concentration was clearly 

higher in Amsterdam than in Erfurt or Helsinki. Erfurt had the lowest median concentration of 

S and highest median concentration of Ca and Zn. 

 

Since the duration of the measurement campaigns was slightly different depending on the 

city, we compared concentrations of elements also for the period of five winter months 

(November 2 - March 31) when sampling was in progress in all three cities. The general 

pattern of differences in elemental concentrations remained similar during the truncated 

period; however, median concentrations of elements and PM's were generally higher 

compared to the complete periods. The percentage increase was >20% for Cl, Ni, Cu, Zn and 

Abs2.5 in Amsterdam, >15% for Cl, Cu and Pb in Erfurt, and >10% for Mn in Helsinki. The 

median concentrations of a few elements decreased by more than 5% (S in Amsterdam, V in 

Erfurt, Al, Si and Fe in Helsinki). 
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5.3 Sources of urban ambient PM 

 

5.3.1 Source identification 

 

The results from the two sampling periods in Helsinki are presented in III and V, and the 

results from Amsterdam and Erfurt in IV. In Helsinki, five source categories were identified 

for both 1996-97 and 1998-99 study periods (see Figure 1 in III, and Table 1 in V). The 

identified PM2.5 sources in Helsinki were 1) local traffic and miscellaneous combustion 

sources, 2) long-range transported and secondary particulate matter, 3) crustal source, 4) oil 

combustion and 5) salt. These five source components explained 76% and 82% of the total 

variance of the analysed data in 1996-97 and 1998-99, respectively. 

 

In Amsterdam, six major sources of PM2.5 could be identified, five of which were interpreted 

as being similar to those in Helsinki (IV, Figure 1). In addition, a component that was 

attributed to emissions from industrial activities was identified. The percentage of total 

variance in the analysed data that was explained by the extracted principal components varied 

from 90.6% to 91.6% depending on the PCA solutions. 

 

Four source categories were identified in Erfurt. However, interpretation of the extracted 

principal components was not straightforward (IV, Figure 2). The first identified principal 

component was interpreted as combustion emissions mainly from local traffic, and the second 

component as secondary particulate matter. The major contributor to the third component was 

suspected to be resuspended soil and street dust around the measurement site. The fourth 

source was emissions from industrial combustion processes and incineration. 

 

5.3.2 Source apportionment 

 

Source apportionment by multiple linear regression showed that the contribution of long-

range transported air pollution to PM2.5 in Helsinki was rather stable with an average 

contribution of 51% during 1996-97 and 50% during 1998-99. The contribution of the other 

identified sources differed between the two campaigns (III, Figure 3), most prominently for 

oil combustion, crustal source, and sea salt. 
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Source apportionment results for Amsterdam and Erfurt (IV) were presented in a different 

scheme compared to that of the earlier study conducted in Helsinki only (III). Mass 

contributions of the identified source categories in Amsterdam and Erfurt were presented as 

averages of five plausible models that were selected from a larger group of tentative models. 

There are several distinct features that stand out from the comparative PM2.5 source 

apportionment results from the three European cities (Figure 2; Table 2 in IV). First, traffic 

related combustion contributed more to PM2.5 in Amsterdam and Erfurt compared to Helsinki. 

Second, the relative contribution of secondary particulate material, or long-range transported 

air pollution, was highest in Helsinki and on the other hand, very similar in Amsterdam and 

Erfurt. Third, the percentage of crustal material in PM2.5 was significantly higher in Erfurt 

than in either Helsinki or Amsterdam. Fourth, the salt component in Helsinki was obviously 

affected by another interfering source component during 1998-99. 

 

 

 

Figure 2. PM2.5 source contributions in Helsinki, Amsterdam and Erfurt. 
 
Secondary particles and local combustion (mostly traffic) made a 65% aggregate contribution 

to average total PM2.5 in Amsterdam and Erfurt, and 73-81% contribution in Helsinki. The 
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relative impact of both of these source categories on average PM2.5 was almost equal in 

Amsterdam and Erfurt, whereas in Helsinki, long-range transported and secondary particles 

were clearly the most important determinants of ambient PM2.5 during both study periods. In 

terms of mass concentration, however, the contribution of secondary particles was very 

similar in all cities while average concentrations of traffic-related PM2.5 were much higher in 

Erfurt and Amsterdam. 

 

Correlations of the source-specific PM2.5 with some of the measured parameters are tabulated 

in Appendix 1. The strong correlation of PM2.5 with long-range transported and secondary PM 

shows the major role of this source component in the variations of PM2.5 concentrations. The 

crustal source component had a moderate negative correlation with relative humidity in all 

cities, and a positive correlation with temperature in Amsterdam and Erfurt. As expected, 

coarse particles were positively correlated with the crustal source component. The diluting 

effect of local winds was also apparent from the correlation between local combustion and 

wind speed. 

 

Based on examination of mean and standard deviation, short-term variability in the measured 

PM2.5 was smaller than variability in any of the specific source categories at any measurement 

site.  Time trend plots of source-specific PM2.5 in the three cities (Appendix 2) indicate that 

seasonal phenomena do play a role in controlling the concentrations of PM2.5 from some of 

the source categories. The estimation of seasonality is difficult, however, since the 

measurements did not span all of the seasons in any of these studies. Thus, not all seasons and 

meteorological conditions have been covered in this examination. 

 

Concentrations of PM2.5 associated with long-range transported air pollution and secondary 

particulate matter seemed to follow smooth and transient variations in concentration, which 

were seemingly not related to seasonal cycles. The traffic-dominated source component 

increased to some degree during the coldest months in Helsinki and Erfurt, but in Amsterdam 

this pattern was not apparent. The crustal, or soil, component followed a seasonal trend in 

Helsinki with lower values in the mid-winter and ascending values towards the spring. In 

Amsterdam and Erfurt, this pattern was not visible, although in Erfurt the concentrations were 

higher during March compared to the autumn values. PM2.5 related to salt seemed to be 

elevated during winter in both Helsinki and Amsterdam. PM2.5 from the rest of the identified 
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sources - oil combustion and industrial processes - appeared to be dominated by sporadic high 

concentrations rather than seasonal trends. 

 

The results from multivariate source apportionment from Helsinki in 1998-99 were compared 

to results from mass closure (V), where major chemical components of PM are reconstructed 

from the measured trace elements. The modelled concentrations of particulate matter related 

to long-range transboundary air pollution from PCA-MLR and secondary ammonium sulphate 

from mass closure, were quite close to each other (V, Table 2) and the correlation coefficient 

between the modelled mass concentrations was quite high (r = 0.88). On the other hand, 

correlation coefficients of the combustion-related source categories (PCA-MLR: local 

combustion and traffic, oil combustion; Mass Closure: residual PM2.5) estimated from the two 

methods were poor  (r = 0.25-0.45), suggesting that these components represent different 

aspects of PM2.5 at this measurement site. The medians of the contribution of the crustal 

source were similar for both methods and correlation was high (r = 0.90), although the two 

methods predicted the very high and very low concentrations of crustal particulate matter 

differently. The correlation of the contributions of the salt source was quite high (r = 0.83) 

between the different methods but the estimated mass concentrations differed. 
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6 DISCUSSION 

 

6.1 Characteristics of particulate matter 

 

6.1.1 Concentrations and determinants 

 

The European Commission has set a strict PM10 limit value of 40 �g/m3 (annual average) that 

has to be met by the year 2005 (European Communities Council Directive 1999/30/EC), and 

the lower annual PM2.5 limit of 20 �g/m3 has been recommended by the European Committee 

for Standardization (CEN). The mean values of PM10 in Amsterdam, and PM2.5 in Erfurt and 

Amsterdam measured in this study are very close to these limit values. It is important to note, 

however, that our measurements did not cover a whole year. Average PM2.5 concentrations 

measured in Kuopio and Helsinki were notably lower in comparison to values reported from 

most other European sites. The average concentrations in Helsinki were close to values found 

at Central European rural sites (Van Dingenen et al. 2004) and corresponded to 20-30% of the 

average concentrations found in Eastern European sites (Houthuijs et al. 2001). 

 

Hoek et al. (1997) have reported a daily mean PM10 concentration of 18 �g/m3 at an urban site 

in Kuopio during two winter months in 1993-94. This value is much lower than our results 

from Kuopio, but close to our results from Helsinki. The difference in mean values from 

Kuopio arises mostly from contribution of resuspended dust to our measurements since these 

were conducted intentionally during the most intense street dust events in the spring. 

 

Average PM2.5/PM10 ratios in Kuopio, Helsinki and Amsterdam were comparable to the ratios 

reported earlier from other European studies (Van Dingenen et al. 2004). The high 

PM2.5/PM10 ratio and the low concentration of PM2.5-10 particles indicate that in Erfurt, the 

majority of PM10 particles originate from traffic and other combustion sources, such as coal 

combustion, that emit primarily fine particles. As the measurement equipment was identical in 

all cities, the remaining other possible explanations for the higher ratio in Erfurt are a 

consistently too low sampling volume or a frequent overloading of the impactor plate 

resulting in particle bounce, both of which could increase the effective cut-point of the PM2.5 

impactor. Neither of these explanations are very plausible, however, since the PM2.5 

concentrations were not extremely high and the sampling flow was routinely checked with 
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calibrated equipment to detect possible leaks in the system. Maximum PM2.5/PM10 ratios are 

often associated with local pollution episodes that are associated to combustion sources 

(Marcazzan et al. 2002) and Erfurt is especially prone to experience local pollution episodes 

due to the special topography of the district. The low PM2.5/PM10 ratio in Amsterdam may be 

attributable to high concentrations of sea salt and sodium nitrate particles in the coarse 

fraction (Clarke et al. 1999). However, the composition of PM10 was not analysed in this 

study. 

 

Changes in relative concentrations of PM10, PM2.5 and PM1 (I) and source apportionment 

results (III) suggest that resuspended dust episodes affected the PM2.5 fraction, as has been 

observed in previous studies (Claiborn et al. 2000). On the other hand, resuspended dust 

episodes occurring in the spring had a clear effect on the PM2.5/PM10 ratio but not on the 

PM1/PM2.5 ratio in this study, suggesting that in terms of the variation of particle mass, 

monitoring of PM1 did not significantly add to the information content already obtained from 

monitoring of PM2.5. 

 

Ruuskanen et al. (2001) have reported concentrations and absorption coefficients of PM2.5 and 

number concentrations of ultrafine (0.01-0.1 �m) and accumulation mode (0.1-0.5 �m) 

particles from Helsinki, Erfurt and Alkmaar (The Netherlands) during winter 1996-97. The 

data from Helsinki are the same that have been used in this thesis. PM2.5 concentration and 

absorption coefficient in Erfurt were almost twice as high during winter 1996-97 compared to 

1998-99 (Table 5). The simultaneous reduction in these parameters from 1996-97 to 1998-99 

suggests that combustion sources have a major role in determining concentrations of PM2.5 in 

Erfurt. The number concentration of accumulation mode particles in Erfurt was higher during 

1996-97 compared to 1998-99, making the relative difference between Helsinki and Erfurt 

even larger during 1996-97 in comparison to the 1998-99 study. Apart from higher PM2.5 

concentrations, the reported values from Alkmaar during 1996-97 (Ruuskanen et al. 2001) 

were comparable with the results from Amsterdam in this study. 

 

In the samples from Helsinki 1996-97, the absorption coefficients of PM2.5 and PM10 were 

quite similar while those of PM1 were clearly lower. It has been shown also in other data that 

the absorbance measurement of the PM2.5 captures virtually all of the absorbance in total 

PM10 (Cyrys et al. 2003a). The clear difference between absorption coefficients of PM1 and 

PM2.5 samples, on the other hand, suggests that the PM fraction between 1-2.5 �m contains a 
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substantial amount of dark coloured carbonaceous material. An assessment on the relationship 

between elemental carbon and absorbance made by Cyrys et al. (2003a) highlighted the need 

for site-specific calibration of the absorbance method, since the agreement between these 

methods may depend on local characteristics. This suggests that in the present study, although 

comparable as such, the absorption coefficients may not give directly comparable results with 

respect to the concentrations of elemental carbon in the urban air. 

 

6.1.2 Elemental composition 

 

In Helsinki, the median concentrations of some elements, especially Al, Si, Pb and V, were 

notably different between 1996-97 and 1998-99, while PM2.5 concentrations were 

approximately the same. Similarly, concentrations of many elements in Helsinki 1996-97 

were notably different from those observed in Amsterdam and Erfurt during 1998-99. During 

1996-97 in Helsinki, the concentrations of Ca, Fe and Ni were mostly below the detection 

limits, whereas during 1998-99 these elements were present in readily detectable 

concentrations. Notable changes in mass contributions from sources of these elements or 

source profiles between the two sampling periods could partly explain the differences. 

However, the average elemental composition of, for example, crustal PM2.5 is not likely to 

change so extensively within two years at the same site. One possible explanation for the 

differences could be that the elemental analyses of the PM2.5 samples from 1996-97 and 1998-

99 were carried out in different laboratories. 

 

The higher PM2.5 values in Amsterdam and Erfurt compared to Helsinki were not 

systematically reflected in higher elemental concentrations in Amsterdam or Erfurt in the 

1998-99 campaigns. Thus, the difference in total PM2.5 must be associated with various 

organic and inorganic components of PM2.5 that were not directly measured in our study. 

Concentrations of Cu, Zn and Br that are emitted mainly by anthropogenic sources were 

slightly lower in Helsinki than in Amsterdam and Erfurt. This is not surprising since Central-

European cities are surrounded by greater population densities and more industrial sources 

and these will exert a more constant effect on the ambient PM concentration. On the other 

hand, the Al concentrations were much higher in Helsinki, this is possibly related to 

wintertime sanding of streets. The low concentration of Al and hence the low number of 

samples above the XRF detection limit, especially in Erfurt, in contrast to Si is peculiar since 

these elements are thought to originate mainly from soil dust (aluminosilicates). Also V and 
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Ni were rarely detected in Erfurt, which could be due to more irregular contribution of oil 

combustion to ambient PM2.5 compared to Amsterdam and Helsinki, where closeby harbours 

and ship traffic constitute a constant source of oil combustion emissions. 

 

Our results from elemental analyses of Amsterdam PM2.5 samples are well comparable with 

the results based on ED-XRF analyses of filters from semi-continuous sampling performed by 

The National Institute for Public Health and the Environment (RIVM) in 1998-99 on two sites 

in Amsterdam (Visser et al. 2001). The ratios of the mean concentrations of elements at our 

site and the two RIVM sites ranged from 0.60 to 1.30. The elemental concentrations in Erfurt 

were systematically higher (ratio 1.3-2.8) in comparison to the results from a previous study 

conducted in Erfurt during 1997-98 (Cyrys et al. 2003b). These differences could be due to 

the different sampling period ���� 	����!������	��� ���&� �� �!�-off Harvard impactor in this 

��!��� ���� �� �� �!�-off cascade impactor in Cyrys et al. 2003b), different filter media 

(polytetrafluoroethylene vs. polypropylene) and different methods used for elemental analyses 

(ED-XRF vs. particle induced X-ray emission analysis). 

 

In Helsinki, the results of our elemental analyses were rather similar to previous results from 

1996-97 (Pakkanen et al. 2001b) with less than two-fold concentration differences (ratio 0.54-

1.8) despite different sampling (PM2.3'� ��(� �� �!�-off virtual impactor with 

polytetrafluoroethylene filters and 10-stage Berner low-pressure impactor with greased 

polycarbonate films) and analytical methods (ICP-MS, instrumental neutron activation 

analysis, particle induced X-ray emission analysis) used in these two studies. 

 

In this study, the average concentrations of most elements in fine particulate matter were 

either lower or at the same level compared to several other locations (Harrison and Yin 2000). 

However, such a straightforward comparison of the elemental concentrations will not be very 

informative without detailed information on each measurement location. 

 

6.2 Sources of fine particulate matter 

 

6.2.1 Identification of sources 

 

Two aspects emerged from the comparison of the identified source categories in the three 

cities. First, oil combustion and sea salt components were extracted in Helsinki and 
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Amsterdam but not in Erfurt. Second, sources with same basic interpretation could be 

identified both in Helsinki and Amsterdam, with the exception of an additional industrial 

component in Amsterdam. The fact that a specific industrial source component was not 

identified in Helsinki may well reflect the lower number of significant industrial sources in 

the vicinity of this measurement site. 

 

The key element useful in the identification of the long-range transboundary air pollution 

component was S, most of which probably was associated to secondary sulphate aerosols 

formed from sulphur dioxide emissions from coal combustion. Sulphate aerosol is also 

generated within the marine sulphur cycle, but the effect of the marine sulphate fraction on 

the total sulphate observed in this study is probably very small. In Helsinki, for example, 

practically all of the sulphate is attributable to long-range transported air pollution (Ojanen et 

al. 1998). In the present work, P, K, Zn, Pb, Br were also associated with this source 

component in the studied cities. The presence of P and S in the same source component in 

Erfurt (P was not analysed from other cities) supports the above conclusion, since phosphate 

is emitted during combustion of coal (Lee 2001). However, the low concentration of S and the 

absence of local large-scale coal combustion in Erfurt suggests that the majority of the 

secondary PM originated from mid- to long-range transported air pollution. Zn, Pb, Br have 

been linked to incineration and/or traffic in numerous studies (Chang et al. 1988, Olmez et al. 

1988, Huang et al. 1994, Ramadan et al. 2000). Zn and Pb have also been linked to long-range 

transported particulate matter in a previous study in Helsinki (Pakkanen et al. 2001a). 

 

The local traffic and combustion source category was identified chiefly based on high 

loadings of nitrogen oxides, ultrafine particles and the absorption coefficient. In addition, Cu, 

Zn, Fe, Mn, Br (in Erfurt) and accumulation mode particles were related to this component. 

The source profile of the traffic-related emissions component was very similar in Amsterdam 

and Helsinki. Cu in traffic environments may originate from diesel emissions (Swietlicki et al. 

1996) or from wearing of vehicle brakes (Sternbeck et al. 2002, Laschober et al. 2004). 

Consistently, a wind direction analysis of Cu concentrations in Helsinki indicated a presence 

of a widespread source of Cu rather than any specific point source(s) near the measurement 

site. Zn can be traced to tyre wear particles (Hildemann et al. 1991, Swietlicki et al. 1996, 

Adachi and Tainosho 2004) and has been proposed a potential marker for traffic related 

emissions (Huang et al. 1994). Fe and Mn are crustal elements, which may have been present 
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in dust resuspended by traffic. Fe is also present in brake dust (Hildemann et al. 1991) and 

heavy-duty diesel emissions (Ramadan et al. 2000). 

 

The soil source was straightforwardly identified based on common crustal elements such as 

Al, Si, Ca, Fe and Ti. The higher impact of the crustal component in Erfurt compared to 

Amsterdam and Helsinki was in agreement with the high concentration of Ca found in Erfurt. 

Calcium has been identified as a soil element in Erfurt based on its low enrichment factor 

(Cyrys et al. 2003b), but it has also been related to vehicular emissions in other studies (Cadle 

et al. 1997, Kleeman et al. 2000). The crustal PM2.5 component correlated better with PM2.5-10 

than with PM2.5 in all cities, emphasizing the true association of this source component with 

emissions of mechanically generated coarse particles. Apart from high loadings of Ca and 

other common crustal elements Si, Ti and Fe, there was a moderate loading of ultrafine 

particle counts (NC0.01-0.1) and Cu to this component in Erfurt. These loadings suggest that 

this source component might be partly attributable to both direct and indirect emissions from 

traffic, i.e. exhaust and brake wear emissions and resuspension of street dust. 

 

In Amsterdam, the interpretation on the crustal component was done based on the high 

loading of Ca. However, Ca is also emitted from cement production, iron and steel plants, and 

coal combustion in domestic and industrial boilers (Lee and Pacyna 1999). The PCA 

component including Ca was not associated with any specific wind direction, suggesting that 

Ca was not emitted by a single major point source in or near Amsterdam. Furthermore, there 

would have probably been a correlation of Ca with other tracers if this PCA component was 

to represent an other than a crustal source. 

 

Oil combustion source was identified based on V and Ni, which are markers for heavy oil 

combustion (Olmez et al. 1988), and SO2. The presence of gaseous phase SO2 in this 

component suggests that V and Ni were emitted by mesoscale sources such as ships in 

harbours and along the coast, municipal district heating power plants and industrial power 

plants using heavy oil. It has been recognised that emissions from ships can be a significant 

source of gaseous pollutants and particulate matter at certain locations (Colvile et al. 2001, 

Isakson et al. 2001, Cooper 2003, Saxe and Larsen 2004). 

 

Wind direction analyses showed that during both 1996-97 and 1998-99 in Helsinki, the bulk 

of the highest PM contributions from heavy oil combustion occurred when the wind was in a 
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southeasterly direction, i.e., blowing in from harbours and shipping channels in the vicinity of 

the measurement site. In Amsterdam, highest concentrations of PM2.5 from oil combustion 

arrived at the site during winds from the southwest and west, sweeping over the Rotterdam 

area that has a number of large oil refineries close to the harbour and the coast of the North 

Sea. In the Netherlands, inland shipping via canals is a considerable source of particulate 

matter. Therefore, this form of transportation could also contribute to the oil combustion 

component. Although not extracted in this study, oil combustion has been identified as a 

potential source of fine particulate matter in Erfurt based on particle induced X-ray emission 

analyses of PM2 samples collected during an earlier study in that city (Cyrys et al. 2003b). 

 

Identification of the sea salt source in Helsinki and Amsterdam was based on loadings Cl and 

Na, although the high loading of Pb in Helsinki 1998-99 data complicated identification of 

this component (data on Na was not available for 1998-99). Evaporation of Cl from the 

sample can be significant (Pakkanen 1996, Yao et al. 2001) and affect both the concentration 

of Cl in the sample and its correlations with other elements. However, the high correlation of 

Na and Cl in Helsinki during 1996-97 suggests that Cl alone can also be used as a marker for 

sea salt particles. 

 

In Amsterdam and Erfurt, the source category identified as industrial activities and/or 

incineration was associated mainly with Cl, Zn, K, Br, Mn and Pb, which have been linked to 

various metallurgical and industrial processes (Ramadan et al. 2000, Chow et al. 2004) as 

well as waste incineration (Olmez et al. 1988, Sweet et al. 1993). Separating various industrial 

pollution sources from each other is an extremely difficult task in source apportionment due 

to the diversity of the emissions. In the present work, the identification was attempted without 

prior information on the location and the composition of the process and fugitive emissions 

from these sources, which incorporates more uncertainty to the source analysis. 

 

The set of variables available for source identification using principal component analysis 

were almost similar in all three cities. In addition to elemental tracers, we also included 

ultrafine and accumulation mode particle counts, PM2.5 filter absorption coefficients and 24-

hour average concentrations of gaseous pollutants (NOX, SO2, CO) in PCA in an attempt to 

facilitate the interpretation of the principal components. The tracers and source profiles in 

PCA that were used in the identification of source categories were generally similar in all 

studies and cities. 
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Ultrafine (NC0.01-0.1) and accumulation mode (NC0.1-1.0) particles were useful markers for 

particulate matter related to local traffic and long-range transboundary air pollution, 

respectively. In Amsterdam, however, the attempts to include particle number concentrations 

in source apportionment analyses failed due to a strong negative correlation between the 

secondary PM component and ultrafine particle concentrations. The absorption coefficient 

(Abs2.5) was associated with both the local combustion (traffic) and long-range transported air 

pollution source components, which is expected since both are affected by various 

combustion sources emitting considerable amounts of elemental carbon (Morawska and 

Zhang 2002). 

 

NOX turned out to be a valuable marker for local traffic related emissions at our measurement 

sites. In fact, separation of the traffic related PM2.5 fraction from other combustion-dominated 

sources without non-elemental markers proved very difficult, especially in Amsterdam and 

Erfurt. The correlation of SO2 with V and Ni in Helsinki and Amsterdam suggests that most 

of SO2 measured at these sites had been emitted by oil combustion source(s) with only a 

lesser contribution from other sources. 

 

NOX and SO2 were the most critical and Abs2.5 the least critical component for obtaining 

physically reasonable source apportionment results based on sensitivity analyses on data from 

Helsinki by using different combinations of alternative source markers (NOX, SO2, particle 

counts, Abs2.5) in the analyses along with elemental concentrations. In all, inclusion of 

concentrations of gaseous pollutants, particle counts, and absorption coefficient in the 

analyses was valuable with regard to both source identification and source apportionment of 

PM2.5. The usefulness of these alternative markers would be limited, however, at sites where 

more than one source can have a major effect on the variation of the marker concentrations. 

 

6.2.2 Source apportionment 

 

The estimated contribution of long-range transported air pollution to average PM2.5 in Vallila, 

Helsinki, varied between 50% (III) and 58% (V). These estimates are very comparable with 

those of Ojanen et al. (1998), who have reported a 60% proportion of long-range transported 

PM2.3 in Vallila. Based on ion-sum modelling, Karppinen et al. (2004) have arrived at a 

somewhat higher (64-76%) contribution of long-range transport to the measured outdoor 

PM2.5 concentration in urban Helsinki. In previous studies, the local fraction of PM2.3 (40-
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46%) in Vallila has been associated with mostly traffic-related particulate matter (elemental 

and organic carbon, nitrate) and resuspended crustal material (Ojanen et al. 1998, Pakkanen et 

al. 2001a). 

 

In the present work, the summed contribution of three source components of local nature 

(local combustion and traffic, oil combustion, crustal particles) varied from 41% to 45%. 

Koistinen et al. (2004) have reported a 51% aggregate fraction for combustion particles and 

crustal particles; however, their estimate for combustion particles was also influenced by non-

local sources. The 12% contribution of crustal particles in Helsinki during 1996-97 found in 

this study is similar to the previously reported values of 12% (Pakkanen et al. 2001b) and 

16% (Koistinen et al. 2004). 

 

Ojanen et al. (1998) have estimated that during 1996-97, 39% of the total PM2.3 mass in urban 

Helsinki consisted of long-range transported sulphate (SO4), nitrate (NO3) and ammonium 

(NH4). In the current data from Helsinki (III), this percentage would result in 3.8 �g/m3 

(1996-97) and 5.0 �g/m3 (1998-99) shares of the total PM2.5 mass due to these three 

components. Furthermore, it has been estimated that annual mean concentration of long-range 

transported primary PM2.5 over the southern parts of Finland is 2 �g/m3 based on 1990 

emission inventories for Europe (ApSimon et al. 2000). This 2 �g/m3 fraction is equivalent to 

40% (1996-97) and 31% (1998-99) of the estimated mass of long-range transported and 

secondary PM2.5 in Helsinki in this study (III). When applied to the current study, the above 

estimates (Ojanen et al. 1998, ApSimon et al. 2000) produce 5.8 �g/m3 (1996-97) and 7.0 

�g/m3 (1998-99) PM2.5 contributions from the long-range transported and secondary source 

component. These estimates are only slightly higher than the 4.9 �g/m3 or 51% (1996-97) and 

6.4 �g/m3 or 50% (1998-99) shares obtained in the current study. 

 

The contribution of the crustal source component in Amsterdam was rather large, considering 

that only Ca, whose concentration in Amsterdam was not particularly high, was associated 

with this component and no other typical crustal elements such as Al and Si were routinely 

detected. This could be explained by a distinctive composition profile of the resuspended dust 

near the measurement site in Amsterdam. The different composition profile could be a 

consequence of more widespread use of road structures made of concrete in Amsterdam 

compared to the other cities. A higher PM2.5/PM10 ratio for fugitive dust from cement-related 
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dust (34%) than for unpaved road dust (20-26%) has been reported (Vega et al. 2001). This 

difference in size distribution of fugitive dust from different types of sources could partly 

explain the higher crustal PM2.5 contribution in Amsterdam compared to the other centers, 

since the crustal component in Amsterdam was identified based solely on the high loading of 

Ca which is strongly associated with cement and paved road dust (Vega et al. 2001, Ho et al. 

2003b). 

 

The salt source accounted for 2% and 7% of the average PM2.5 in Helsinki 1996-97 and 1998-

99, respectively. The character of the salt component is somewhat different for 1996-97 and 

1998-99, which probably resulted in different average mass contributions for this source 

component. Reanalyses of the 1998-99 data (V) resulted in a 2.4% salt percentage. The 

potential pre- and post-sampling evaporation of chloride from the sea salt fraction may have 

resulted in a somewhat lower salt concentration estimate than would have been found without 

any evaporation. However, our results are in accordance with those reported by Ojanen et al. 

(1998) who have reported a 3% average sea salt contribution to PM2.5 in Helsinki. In 

Amsterdam, the salt component contributed only 2% to the PM2.5. This percentage is both low 

and surprisingly close to that found in Helsinki, considering that the Atlantic has a much 

higher salinity compared to the Baltic Sea and that large parts of the Baltic are also covered 

with ice during winter months. In addition, the median Cl concentration in Amsterdam was 

three times higher than in Helsinki. Evaporation of chloride from the sea salt particles could 

have complicated the estimation of the true sea salt contributions to PM2.5 if the correlation of 

Cl with other sea salt components were affected. Unfortunately, it was not possible to 

evaluate this effect since there were no other markers available for sea salt in addition to Cl. 

 

The average PM2.5 contribution from the industrial source category was very similar in 

Amsterdam and Erfurt. Industrial processes were not identified as a separate source category 

in Helsinki, probably due to low number of industrial sources in the vicinity of the 

measurement site and, subsequently, low ambient concentrations of fingerprint elements that 

could be used to identify and separate industrial emissions from the more dominant source 

categories in the principal component analysis. 

 

The higher ratio of secondary PM2.5 and traffic-related PM2.5, and the lower average of total 

PM2.5 in Helsinki compared to Amsterdam and Erfurt, reflect the lower population density 

and lower emission density of important precursor gases from traffic, energy production 
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facilities and industrial activities in Finland. This difference between the Scandinavian 

countries and Central European countries has been reported for concentrations of particulate 

matter (Hoek et al. 1997), NO2 and SO2 (Pacyna et al. 1991), and elemental carbon (Hamilton 

and Mansfield 1991). The negative correlation of traffic-related PM2.5 with temperature and 

wind speed demonstrates the poor dilution of locally generated air pollutants during stagnant 

meteorological conditions. 

 

6.2.3 Comparison of methods 

 

There are few published comparative source apportionment studies using different methods 

on the same data. Chan et al. (1999) obtained a good agreement of source contributions by 

using target transformation factor analysis with multiple linear regression (TTFA-MLR) and 

chemical mass balance (CMB). The feasibility of two different multivariate methods for 

source identification has been compared by Morandi et al. (1991) and Huang et al. (1999). 

The dataset analysed in the first of these studies (Morandi et al. 1991) was rather similar with 

the datasets from the three cities in the present work, comprising 24-hour PM15 samples from 

137 days. The authors reported the largest differences in the results between the compared 

methods for source types contributing less than 1 �g/m3 to the measured PM concentration. 

The experiment by Huang et al. (1999) proved that different techniques could be modified to 

produce very similar results by 1) choosing the elements carefully, 2) trying various numbers 

of factors, and 3) using log-transformations of the data. The methods compared in the two 

studies (Morandi et al. 1991, Huang et al. 1999) were more closely related to each other than 

the ones compared in this work (V). Huang et al. (1999) also did not estimate possible 

differences between the two methods in terms of source contributions. 

 

The problems that are associated with using fundamentally different source apportionment 

methods are illustrated in the comparative study (V), where two different methods were 

applied to the same dataset. The main conclusion from this comparison was that only the most 

distinct and easily interpretable source categories, such as crustal source and sea salt, were 

apportioned similar amounts of PM2.5 by the two methods (PCA-MLR and mass closure), 

whereas apportionment results of the long-range transported and secondary particles, and the 

combustion-related component were rather difficult to compare. The current results suggest 

that source reconstruction possibly underestimates the total amount of PM2.5 associated with 

the crustal source, since for example resuspended organic material is not taken into account in 
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the mass closure equations. On the other hand, if emissions from other source(s) correlated 

with emissions from the soil, particulate matter from this source could have been identified as 

being attributable to the crustal source component in the PCA-MLR process. The mass of 

ammonium sulphate estimated in the mass closure was very close to the mass of the total 

long-range transported particulate matter estimated by the multivariate method. However, 

these results highlighted an apparent discrepancy between the estimated amounts of long-

range transported PM and secondary PM, since the long-range transported air pollution 

component as estimated based on S (sulphate aerosols) by PCA-MLR inherently consists of 

also other secondary inorganic compounds - mainly ammonium nitrate - and various primary 

and secondary carbonaceous compounds (Kim et al. 2003). 

 

6.2.4 Plausibility of source analysis 

 

The lack of unique and source-specific markers complicates the separation of collinear 

sources from each other, especially when their emissions have similar elemental profiles and 

some association with the same wind direction or other meteorological factors. The major 

cause of variability in ambient measurement data is often meteorology, not variations in 

sources (Henry et al. 1984). This results in correlated observations due to the common effect 

of meteorology on all source contributions at the receptor site, which impedes separation of 

sources (Ames et al. 2000). In addition, the varimax rotation results in unrealistic non-

correlating source components due to forced orthogonality of the extracted components. 

Hence the source components can be biased due to the greater influence of local meteorology 

than actual source contributions. In this study, this problem was most prominent in Erfurt, 

where several elements had moderate to high loadings on more than one extracted principal 

component. These problems in PCA were probably associated partly with the topographical 

and meteorological characteristics in Erfurt leading to accumulation of pollutants in the area 

and subsequent covariation of pollution components from several sources. Very similar 

problems have recently been reported from a PM2.5 source apportionment study in Milan, 

Italy, where the authors were able to extract only two principal components with eigenvalues 

>1 (Marcazzan et al. 2003). 

 

Another problem was encountered in apportioning the PM2.5 to source categories whose PM2.5 

contributions at the measurement sites were highly variable and clearly regulated by 

meteorological factors such as wind direction and atmospheric mixing. In Amsterdam and 
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Erfurt, the estimated contributions from industrial emissions varied substantially between the 

alternative source apportionment models, i.e., models with different groups of analysed 

variables. The observed large variability between contributions of sources that have a minor 

effect on the total PM mass corroborates the earlier finding by Morandi et al. (1991), who 

have reported large differences in results from comparative multivariate source apportionment 

analysis for source types which make only minor contributions to the total PM. Thus, the 

uncertainty associated with results on such PM sources can be significant, emphasizing the 

need for using more than one modeling method as a means for validating the source 

apportionment results, especially in complex urban airsheds. 

 

Using positive matrix factorization, Hedberg et al. (2005) have found that when the numbers 

of included samples were decreased, the uncertainty of the modelled source contributions 

were increased most significantly for the industrial and combustion source types. In the 

present study, the correlation of the estimated daily source-specific PM concentrations 

obtained from the alternative models was high, irrespective of the variability in the modelled 

source contributions. This suggests that the results presented in this work are usable for 

epidemiological time series studies. However, the different elemental profiles of the source 

components makes it more difficult to compare the source categories, especially between 

Erfurt and the other two cities. 

 

There is some evidence that particles from crustal sources exhibit a bimodal frequency 

distribution, possibly indicating contributions from several different sources that have similar 

chemical profiles (Kao and Friedlander 1995). Since we have no size-fractionated elemental 

data within the PM2.5 component, we cannot validate this finding in our data. However, PCA 

results from Erfurt, in particular, suggest that the crustal source component was possibly 

mixed together with a local combustion component. Complications in separating the 

combustion and resuspension components related to traffic have been reported by several 

authors (Van Borm et al. 1990, Begum et al. 2004). The interrelation and mixing of particles 

can complicate separation of also other sources in source apportionment, especially when 

multivariate statistical methods are used (Morawska and Zhang 2002). 
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6.3 Resuspension 

 

The main processes producing crustal PM in urban areas are the wear and damage to the road 

paving by vehicles and maintenance, and translocation of soil from unpaved areas to the 

streets. In addition, turbulent wakes by vehicles may suck some particulate matter lying off 

the road back onto parts of the road used by vehicles (Moosmuller et al. 1998). In countries 

like Finland where wintertime sanding of streets and studded tyres are used, resuspension 

potentials are further increased (Kupiainen et al. 2003, Kupiainen et al. 2005). In Japan, 

studded tyres have been banned largely because it was reported that their use was contributing 

to increased PM levels during winter and spring (Fukuzaki et al. 1986). In Finland, the 

majority of cars are equipped with studded tyres during winter, but in addition, road sanding 

is widely used especially in urban areas. It has been shown that sanding of a dry road results 

in a rapid though transient increase of road dust emission potentials for PM10 (Kuhns et al. 

2003). 

 

Natural dust events are dependent on high wind speeds, whereas resuspension due to traffic 

and other anthropogenic activities are thought to depend mostly on the humidity of surfaces, 

not so extensively on wind speed (Nicholson 1988). In this study, the crustal source 

component had a moderate negative correlation with relative humidity in all cities, and a 

positive correlation with temperature in Amsterdam and Erfurt, suggesting that resuspension 

of dust was inhibited during moist conditions and promoted by warm weather. This 

conclusion is supported by Kuhns et al. (2003) who have found that emissions from unpaved 

roads increased consistently with the number of days since the last precipitation. On the other 

hand, creation of spray droplets can evoke resuspension of particles also during humid 

conditions (Nicholson 1988). 

 

A U-shaped function of coarse (PM2.5-10) particles with wind speed has been reported in the 

U.K. (APEG 1999) consistent with our findings in Kuopio (II). This phenomenon can be 

interpreted as a twofold effect of wind speed with inefficient dilution of traffic-induced coarse 

particles during light winds and increasing wind-induced resuspension with high winds, 

resulting in a U-shaped dependence of PM concentration on wind speed. The same 

phenomenon was seen in Birmingham, UK, where PM10 was separated into two components 

in PCA: firstly to a traffic-related pollution component characterized by PM2.5, NOX, PM10 

and negative loading of wind speed, and secondly, to a factor representing coarse-particle 
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episodes, characterized by high loadings of PM10 and wind speed (Harrison et al. 1997). Apart 

from the concentrations of coarse particles noted during the first study period in Helsinki, 

there was no clear indication for a similar twofold association of fine or coarse PM 

concentrations with wind speed in the 1998-99 periods. On the contrary, concentrations 

tended to decrease with increasing wind speed. These results suggest that resuspension caused 

by traffic is the main source of crustal particles in urban environments. Therefore, the present 

results (II) on the positive association of wind speed and coarse particle concentrations should 

be verified with larger data and in other urban locations. 

 

In this study, it has been shown that the resuspended portion of PM can be associated with 

high concentrations of anthropogenic elements. Microscopic analysis of particles has revealed 

that metals and small spherical combustion-related particles with a high content of carbon can 

become adherent to larger natural particles (Mugica et al. 2002). It has also been reported that 

larger particles are more readily suspended compared to small particles, and that the depletion 

of resuspendable material from road surfaces occurs most rapidly for large particles 

(Nicholson 1988). Since a significant portion of deposited particulate material on a road can 

be resuspended by passage of only a few vehicles, it is likely that the amount of resuspended 

PM is controlled mainly by the rate of import of new material onto the road surface. 

Nicholson and Branson (1990) have suggested that moist conditions would induce this kind of 

particulate import and result in increased resuspension after the road surface has become dry. 

Thus, these findings support the hypothesis that large crustal particles may act as carriers for 

smaller anthropogenic particles and resuspended dust episodes may result in elevated 

concentrations of elements originating mainly from anthropogenic sources in urban ambient 

air. 

 

Resuspension has been acknowledged to be a major source of ambient particulate matter, and 

emissions of road dust constitute a severe urban air quality problem also in many Finnish 

municipalities. It has been suggested that minimizing the deposition of material onto 

roadways and maximizing the removal of resuspendable material already on the roads by road 

cleaning equipment constitute the most efficient ways to control the amounts of road dust 

emissions (Kuhns et al. 2003). However, it has also been reported that street sweeping may 

not be an efficient way to reduce emissions (Chow et al. 1990), and that it may actually 

increase PM emissions immediately after sweeping, possibly due to redistribution of particles 

trapped in the holes and cracks of the road, spreading them across the road surface (Kuhns et 
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al. 2003). However, sweeping removes all visible sand from the roads, thereby reducing the 

total amount of sand depot by preventing the accumulation of the sand to the curbsides. In 

addition, it has been shown that sanding material enhances the wear and damage of the 

pavement (Kupiainen et al. 2003, Kupiainen et al. 2005). Thus, as a whole, sweeping will 

reduce the future resuspension potential of the road environment, especially if combined with 

subsequent washing of streets, and this will have a beneficial effect on air quality over the 

long term. 

 

6.4 Suggestions for future research 

 

Several issues related to sources and characteristics of particulate matter that will require 

further research were recognised during the course of this work. There is a need to set up a 

formal European enterprise that would (1) construct a comprehensive database on the work 

done so far on emissions, characterization and source apportionment of PM, (2) compile an 

accessible database on tracers and elemental profiles for various emission sources, (3) 

enhance the use of source apportionment techniques in European air pollution research. 

Taking these steps would result in accumulation of data that could be used in close 

collaboration between scientists from different disciplines to reduce the current uncertainties 

regarding the relative health relevance of particulate matter from this multitude of sources. 

 

The present work has several more specific implications for future research linked to the 

points listed above. This work has revealed the need for further characterization of the fine 

and coarse particles during resuspended dust episodes, including the quantification of 

potentially detrimental components such as transition metals and biogenic material adhering 

to the resuspended particles. Also the health relevance of the peak PM concentrations during 

these episodes should be investigated further. A simple and affordable, yet specific, 

measurement technique to be used in long-term monitoring of traffic-related PM emissions 

should be developed and introduced to complement the currently used PM10 and PM2.5 

measurements. As an alternative, the continuation and even wider use of Black Smoke (or 

absorption coefficient) measurements as an indicator of mainly traffic-related particulate 

matter should be considered. Finally, the uncertainties in the current estimates of population 

and personal exposures to particulate matter from specific sources should be reduced through 

application of (more than one) source apportionment methods in future exposure and 

epidemiological studies on PM. 
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7 CONCLUSIONS 

 

This thesis had three aims, and the main conclusions regarding the first stated aim of 

characterizing the determinants, elemental composition and concentrations of particulate 

matter in the urban atmosphere are: 

 Between-city and within-city differences in the concentrations of many trace elements in 

PM2.5 were observed in this study. These differences were considered to be related to 

specific local and regional sources affecting the measurement sites, though possibly also 

to differences in the laboratory analyses of elemental composition of particulate matter. 

 Elemental concentrations in PM2.5 in the three major cities were rather similar to the 

previously reported values from the same cities. 

 Monitoring of PM1 did not significantly add to the information content already obtained 

from monitoring of PM2.5. In contrast, the clear seasonal variation in the PM2.5/PM10 ratio 

indicates that these indices represent quite different aspects of urban particulate matter. 

 

The main conclusions regarding the second aim of investigating the characteristics and 

determinants of resuspended road dust as a specific urban air quality problem are: 

 Apart from their obvious effect on the concentrations of typical crustal elements, the 

resuspended road dust episodes can temporarily increase the concentrations of elements 

from anthropogenic sources as well as concentrations not only of coarse but also of fine 

particulate matter, which may have implications for the health effects of the resuspended 

dust. 

 The elevated PM concentrations caused by resuspension of road dust exhibited seasonal 

trends only in Finland, which is obviously due to the more pronounced seasonal 

differences in weather conditions in Finland compared to Central Europe. 

 The prevailing mechanism of resuspension in urban settings seems to be traffic-induced 

turbulence rather than high wind speed. 
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The main conclusions regarding the third aim of determining and comparing major sources of 

ambient fine particulate matter (PM2.5) in different European urban sites are: 

 The major source categories of urban PM2.5 in the three cities were secondary and long-

range transport particles and traffic-related emissions, followed by the less influential 

crustal, oil combustion, sea salt and industrial source categories. 

 The relative impact of both secondary particles and local combustion on average PM2.5 

was almost equal in two Central European cities. The mass concentration of the long-

range transported PM fraction - containing both secondary and other particles - was very 

similar in all three cities, highlighting the great importance of this PM fraction as a 

determinant of ambient PM2.5 concentrations in Helsinki. Knowledge on the relative 

importance of different sources on PM levels across different areas will help in targeting 

emission control measures against specific sources. 

 Despite the differences in elemental concentrations, very similar source profiles were 

observed in Amsterdam and Helsinki for most major PM2.5 source categories. In Erfurt, 

the source profiles were less well-defined and fewer sources of PM2.5 could be identified 

with PCA compared to the other two cities. This problem in Erfurt was attributable to 

stronger intercorrelations of air pollution components caused by specific local topography 

and meteorology. 

 Principal component analysis in combination with multivariate linear regression proved to 

be a useful tool for extracting sources PM2.5 from complex urban PM mixtures, although 

the variability of the source apportionment estimates for some sources was rather large. 

The power of PCA to resolve sources was clearly improved when nitrogen oxides and 

other gases, particle number concentrations and absorption coefficients were included to 

the source analysis in addition to the elements. In all, the results obtained in this work 

were convincing enough to be used in epidemiological studies investigating the health 

effects of fine particulate matter from different sources. 

 The results obtained from the comparison of two source apportionment methods were 

partially contradictory, especially regarding the most complex source types. The choice of 

variables also had a clear effect on the outcome of source apportionment analysis with 

principal component analysis. These results suggest that any source apportionment results 

should preferably be confirmed by using at least two different methods. 
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APPENDIX 2. Time trends of source-specific PM2.5 in Helsinki 1996-97, Helsinki 1998-99, 

Amsterdam 1998-99 and Erfurt 1998-99. 
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