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ABSTRACT 

Alzheimer’s disease (AD), usually occurring after 60 years of age, is the most common form of dementia 
and its incidence is higher in women than men. It has been suggested that the decline in the levels of 
gonadal hormones in postmenopausal women might contribute to this gender difference. In the 1990’s, it 
was claimed that the estrogen replacement therapy (ERT) given to postmenopausal women perhaps would 
be able to alleviate the cognitive symptoms of AD and delay the onset of AD, even prevent the disease. 
The majority of the epidemiological studies on ERT at that time and the early 2000’s did indicate that 
ERT was able to improve cognitive abilities in postmenopausal women and decrease the incidence of AD. 
However, some recent studies have challenged this view and even suggested that ERT could increase the 
prevalence of AD. 
 
While the contribution of ERT on cognitive performance and pathogenesis of AD in women is still not 
clear, animal models provide a means to examine the basic effects of estrogen on brain functions. Indeed, 
a number of animal studies using different methodological approaches have shown that estrogen 
modulates neuronal morphology in the hippocampus, a brain area important for certain forms of memory 
and also the locus of extensive neuronal damage in AD. Estrogen has also been reported to enhance 
synaptic functions in the hippocampus and modulates several neurotransmitter systems. Further, in cell 
cultures, estrogen has been shown to decrease the amount of beta amyloid (Aβ), a major histopathological 
hallmark of AD. 
 
In this study, we wanted to examine the effects of ERT on cognitive performance in female mice in two 
different memory tasks, the radial arm maze (RAM) and the T-maze. The postmenopausal state was 
mimicked by ovariectomy (OVX). First, we assessed the effects of ERT in young adult animals, in which 
we compared two different modes of treatment, tonic and phasic. Our intention was to examine if 
alternations in acetylcholine and monoamine metabolism or the mRNA levels of estrogen receptors or 
aromatase enzyme in the hippocampus might contribute to the possible effects of ERT on cognition. 
Second, we explored the effects of OVX and ERT in aged mice in the same memory tasks. Finally, the 
same question was assessed in transgenic mice (AP mice) with an AD-like pathology, carrying mutations 
in two genes encoding for amyloid precursor protein (APP) and presenilin 1 (PS1). These AP mice 
display a progressive accumulation of Aβ and exhibit the formation of amyloid plaques, another hallmark 
of AD. Therefore, we also wished to determine whether ERT could affect the Aβ metabolism in these 
mice. 
 
In young adult OVX mice, long-term tonic ERT improved the acquisition of RAM and T-maze. The same 
treatment induced changes in serotonin turnover and mRNA levels of estrogen receptor alpha and 
aromatase enzyme, suggesting that these changes may contribute to the observed behavioral effects. The 
effects of ERT on cognitive performance in aged OVX mice after long-term estrogen deprivation were 
similar, but notably smaller. Also, in OVX AP mice of different ages, the effects of ERT were strikingly 
similar, but clearly not dependent on Aβ pathology. In summary, our results suggest that long-term ERT 
may have beneficial effects on some forms of memory in adult, aged and transgenic mice with AD-like 
pathology, if started sufficiently early after estrogen deprivation. In contrast, these results do not support 
the view that ERT could slow down or prevent the underlying amyloid pathology.  
 
 
National Library of Medicine Classification: WT 155, WP 522, QY 58 
 
Medical Subject Headings: Alzheimer Disease; Alzheimer Disease/epidemiology; Estrogen Replacement 
Therapy; Estrogens; Female; Hippocampus; Learning; Memory; Mice; Mice, Transgenic; Models, 
Animal; Ovariectomy 





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                        If you don’t live it, 

it won’t come out of your horn. 

          Charlie Parker 
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1. INTRODUCTION 

 

When this study was started at the end of the 1990’s, estrogen replacement therapy 

(ERT) was being promoted as a potential therapeutic strategy for delaying the onset or 

even preventing Alzheimer’s disease (AD) in postmenopausal women. This idea was 

supported by several studies suggesting that ERT was associated with reduced risk for 

AD and cognitive decline in postmenopausal women (Baldereschi et al. 1998, Paganini-

Hill and Henderson 1994, Paganini-Hill and Henderson 1996, Resnick et al. 1997, Tang 

et al. 1996, Waring et al. 1999). However, this claim has been strongly questioned by 

some recent studies, especially by the large Women’s Health Initiative (WHI) study 

which reported that ERT actually increased the incidence of dementia in addition to 

having other detrimental physiological effects in postmenopausal women (Shumaker et 

al. 2003). It has to be stated that both the earlier studies describing beneficial effects 

with ERT and the WHI study suffer from methodological pitfalls that make it 

impossible to take a definitive stand on this subject. 

 

During the last two decades, studies with experimental animals have yielded a 

considerable amount of information in favor of the beneficial effects of estrogen on 

cognition. Perhaps the strongest evidence is the observation that estrogen is capable of 

increasing the density of the dendritic spines of pyramidal neurons in the female rat 

hippocampus (Gould et al. 1990, Woolley et al. 1990), a brain area crucial for several 

memory types. Estrogen has also been reported to increase the activity of the 

cholinergic system (Luine et al. 1975) which is severely affected in AD, and it also 

seems to have many neurotrophic effects in the brain (Toran-Allerand et al. 1999).  

 

In a variety of animal studies, conducted mainly with young or middle-aged rats and 

mice, in which the postmenopausal state has been mimicked by ovariectomy (OVX), 

estrogen treatment has been shown to improve some forms of learning and memory, 

most often spatial working memory (Bimonte and Denenberg 1999, Daniel et al. 1997, 

Daniel and Dohanich 2001, Fader et al. 1999, Miller et al. 1999). Furthermore, estrogen 

treatment appears to be effective in improving learning and memory also in aged female 

rodents (Frick et al. 2002, Gibbs 2000b, Markham et al. 2002, Markowska and 
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Savonenko 2002). However, some other studies have reported no treatment effect 

(Luine and Rodriguez 1994, Singh et al. 1994) or even impaired spatial learning 

(Fugger et al. 1998) in estrogen-treated OVX rodents. Although estrogen might not be 

effective in the treatment of established AD, it could be able to slow down the 

underlying pathology during its early stage. One possible mechanism could be the 

inhibition of brain beta amyloid (Aβ) accumulation. Plaques rich in Aβ are a central 

hallmark of AD and indeed, in cell cultures, estrogen has been shown to reduce the 

formation of Aβ (Jaffe et al. 1994, Xu et al. 1998).  

 

In this study, we wanted to evaluate the effects of ERT on cognitive performance in 

young adult and aged female mice. We also wished to determine if changes in 

hippocampal neurotransmitters and estrogen receptor contents would be affected by 

estrogen treatment. In addition, we were interested to examine if estrogen could have 

any impact on learning and memory in transgenic mice with AD-like pathology and 

also, if this pathology could be affected by estrogen treatment. 
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2. REVIEW OF LITERATURE 

 

2.1. Estrogen and general physiology 

2.1.1. Structure and biosynthesis of estrogen 

Estrogens are lipid-based reproductive hormones belonging to the group of steroids, a 

large group of molecules, all derived from a sterol precursor, cholesterol. There are 

three different forms of estrogens: estradiol, estriol and estrone. Estradiol, also termed 

as 17β-estradiol or E2, is the most potent of the estrogens and whenever estrogen is 

mentioned in its singular form throughout this thesis, this refers to estradiol. In general, 

estriol has approximately 10 % of the physiological potency of estradiol while estrone 

has only about 1 % of estradiol’s potency (Johnson and Everitt 1995). In females, 

estrogen is mainly synthesized by the ovaries and during gestation also by the 

fetoplacental unit. Estrogen is released into the blood circulation from these sites. In 

addition, local estrogen biosynthesis occurs in various tissues throughout the body, and 

this occurs in both sexes (Simpson et al. 1999). Regardless of where the estrogen 

biosynthesis takes place, the biochemical synthetic pathways are usually very similar. 

 

 
 

Figure 1. Estrogen biosynthesis.  

 

The cholesterol needed for estrogen synthesis is mostly produced by the liver but also 

can originate from other tissues. Cholesterol is converted to pregnenolone, this process 

being catalyzed by a P-450 enzyme. From pregnenolone, the estrogen can be 

synthesized via two different pathways: conversion of pregnenolone first either to 

progesterone or to 17α-hydroxypregnenolone (Fig. 1). Finally, the estrogens are formed 
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either from androstenedione (for estrone) or from testosterone (for estradiol) via the 

help of another P-450 enzyme, the aromatase complex enzyme (P-450Arom). 

 

2.1.2. Estrogen’s mechanisms of action and estrogen receptors 

Estrogen exerts its actions in cells and thereby tissues by binding to certain structures in 

the cell membranes or by activating intracellular receptors that activate specific 

signaling pathways. To date two such receptors that can be found in different tissues 

throughout the body have been characterized in both genders (Kuiper et al. 1998), 

estrogen receptor alpha (ERα) and beta (ERβ). The latter receptor was first identified in 

rat (Rattus norvegicus) prostate in 1995 and was thus named ERβ to differentiate it from 

the so called classical estrogen receptor, which ever since has been called ERα (Kuiper 

et al. 1996). 

 

Both ERα and ERβ belong to the family of nuclear receptors which are ligand-regulated 

transcription factors (Pettersson and Gustafsson 2001). ERs regulate gene expression by 

binding to specific ER response elements (ERE) or via interactions between other 

transcription factors (Paech et al. 1997). ERα and ERβ are very similar in the sequence 

of their DNA-binding domains and therefore their affinity and specificity of binding 

EREs are also similar (Matthews and Gustafsson 2003). Their ligand binding domains 

are significantly different, but they bind to estrogen with nearly identical affinities 

(Matthews and Gustafsson 2003). The activating functions of ERs are mediated by two 

different transcription activating functions (AFs): an N-terminal activating function 

(AF-1) that is independent of ligand activation and a ligand-binding domain (LBD) –

based ligand-dependent activating function (AF-2) (Nilsson et al. 2001). The AFs are 

responsible for the estrogen-mediated transcription and the promoter- and cell-

specificity. Although both ER subtypes have highly similar mechanisms of action, there 

are differences in their transcriptional functions and therefore they might regulate 

different cellular pathways (Matthews and Gustafsson 2003).  

 

The two different receptor subtypes differ also in tissue specificity and functional 

characteristics. Although both receptors can be localized more or less throughout the 

body, one of the two is often predominant in any given tissue. ERα is expressed to a 
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high or moderate degree in uterus, testis, pituitary gland, ovaries, kidneys and 

epididymis, whereas ERβ is abundant in prostate, ovaries, lungs, bladder, brain, bones, 

uterus and testis (Kuiper et al. 1998). The functional differences between the two 

subtypes are not fully understood. For example, if ERα is inactivated, the uterus shows 

very little response to estrogen (Korach et al. 2003), and when there is no estrogen 

stimulation, the uterus does not grow (Simpson 2004). When ERβ is inactivated, the 

uterus is abnormally large i.e. the uterine response to estrogen is intensified (Weihua et 

al. 2000). Therefore it seems that since ERα is the dominant receptor in uterus, loss of 

ERβ would be unlikely to affect the uterine response to estrogen stimulation. In the 

tissues in which ERβ is dominant, such as the ovary and certain parts of the brain, 

estrogen is mainly responsible for maintenance of structure or function of the tissue, but 

does not have a proliferating effect as it does in the uterus. Further, an experiment using 

cell lines has shown that, in the presence of ERα, estrogen elicits proliferation, but in 

the presence of ERβ, it inhibits proliferation (Strom et al. 2004); thus, the estrogenic 

effect seems to depend significantly on which receptor subtype is activated. 

 

The discovery of the ERβ in 1995 led to speculation about other mechanisms via which 

estrogen could exert its cellular effects. Indeed, subsequently many such alternative 

mechanisms have been found: different estrogen-binding proteins, alternative splicing 

variants of classical ERs and presumably even new genes. One such receptor, called as 

ERχ, has been identified, but so far only in a teleost fish (Hawkins et al. 2000). 

Furthermore, the rapid actions of estrogen (Kelly and Levin 2001) that clearly could not 

be achieved via activation of the nuclear ERs and subsequent gene transcription are 

evidence in favor of non-genomic pathways. One of these mechanisms could be ERs 

close to the plasma membrane. Indeed, both ERα and ERβ in addition to the ERα 

variant ER-46, have been localized to the plasma membrane (Chambliss et al. 2002, Li 

et al. 2003b, Razandi et al. 2002). Additionally, novel ERs have been found close to the 

plasma membrane that do not belong to ERα or ERβ (Nadal et al. 2000) or G protein 

coupled receptors (Filardo et al. 2000). And so that story should not remain too simple, 

a recent report by Toran-Allerand and her co-workers (2002) has described yet another 

different receptor, tentatively named as ER-X, a developmentally regulated, plasma 

membrane-associated receptor. The characteristics and functional roles of many of the 
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novel ERs (and partly of the classical ERα and ERβ) are only beginning to be 

understood. 

 

2.1.3. Regulation of estrogen secretion 

Estrogen has a self-evident role in reproduction and other sexual functions. The female 

reproductive status is regulated by the ovarian cycle, menstrual cycle in women and the 

estrous cycle in animals. A complete ovarian cycle is the interval between two 

consecutive ovulations. In humans, the menstrual cycle usually starts to appear at the 

time of puberty, around 11-15 years of age. During each cycle, one of the primordial 

follicles resting in the ovaries matures and develops into the so called Graafian follicle. 

The estrogens are secreted by the Graafian follicles and thus the blood estrogen levels 

are high during the phase preceding ovulation (the follicular phase). The mature follicle 

then bursts and the egg cell is released at the half way point of the cycle (about 14th day) 

and finds its way to the oviduct where possible fertilization takes place. At the same 

location where the follicle was situated the yellow body of the ovary (corpus luteum) is 

formed and this starts to secrete both estrogens and progesterone. In fact, about 95 % of 

all estradiol secreted during the cycle is derived from the corpus luteum. The 

postovulatory period (luteal phase) is still dominated by progesterone secreted by the 

corpus luteum. If the egg cell does not become fertilized, the corpus luteum undergoes 

atrophy, causing the uterine mucosa to become thinner and weaker and ultimately to 

shed its lining prior to the start of a new menstrual cycle. 

 

Different species of rodents have quite different estrous cycles, but the cycles of rats 

and mice are very similar. In mice (Mus musculus) the time of puberty varies 

extensively, depending on the strain and rate of growth. The onset of puberty is 

determined by the maturation of egg cells in the ovaries. Usually this happens around 

days 28-49 after birth, with the first estrous cycle being observed one or two days later. 

A female mouse is at the peak of its fertility between three and ten months of age 

(Hafez 1970). A laboratory mouse is a polyestrous animal, meaning that it has several 

estrous cycles during the year and the cycles follow one another without a break. The 

same is not true for mice living in wild, since their breeding seasons are usually 

concentrated in the period spring to autumn. However, irrespective of whether the 



23 

mouse lives in a laboratory or in the wild, the estrous cycle lasts for four to five days. 

The estrous cycle of a mouse is divided into four different stages: proestrus, estrus, 

metestrus and diestrus in that chronological order. The basic physiology of the estrous 

cycle of the mouse is very similar to the menstrual cycle of human females, except for 

the duration (see Fig. 2.). One major difference between the two species is that in mouse 

the corpus luteum is inactive after the follicle has burst unless mechanical stimulation of 

the uterine cervix occurs, which would subsequently be followed by a plug being 

formed from the liquids ejected by the mating male. This plug would then activate the 

corpus luteum until the embryo was attached. If the fertilization does occur, then the 

corpus luteum secretes prolactin and progesterone until the embryo has attached, and if 

not, a pseudo pregnancy will follow, lasting for 13 days. Pregnancy in the mouse lasts 

for 19-21 days (Hafez 1970). 

 

 
Figure 2. Comparison of the estrous cycle of the rodent (A) and the menstrual cycle in 

humans (B) (Adapted from Staley and Scharfman (2005)). 
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2.1.4. Peripheral estrogen effects 

In addition to the impact on the ovarian cycle, estrogen and other sex hormones exert a 

wide range of other effects on the reproductive organs. In the uterine tube, estrogen 

promotes the progression of the egg cell whereas progesterone has opposite effects. 

Estrogen is also responsible for strengthening of the uterine mucosa after the ovarian 

cycle is over and it activates different glands to secrete, thus helping the egg cell to 

become attached should the fertilization have occurred. If the attachment of the embryo 

does take place, progesterone secretion increases, creating favorable conditions for the 

embryo. In general, estrogen affects the development of the reproductive organs already 

before puberty and promotes their maintenance after that time, as well as being involved 

in the secondary sex characteristics of females. The ovaries form an interactive 

hormonal regulation system with the pituitary gland and hypothalamus, such that the 

ovaries affect the functions of the other two sites via a so-called negative feedback 

mechanism. Thus, estrogen works in close interaction with other hormones. In addition 

to their effects on the reproductive organs, estrogens are critically important for the 

development of the mammary glands as well as for maintaining the shape and firmness 

of the skin in females. Also, estrogen has positive effects on liver metabolism and the 

maintenance of bone structure and function. Estrogen also influences the heart and other 

circulatory organs. Further, estrogen contributes to certain forms of cancer, e.g. breast 

cancer and certain cancers occurring in the reproductive organs. Additionally, estrogen 

has effects on the central nervous system (CNS) and thus, the brain. 

  

2.2. Estrogen and brain 

2.2.1. Estrogen receptors in the brain 

Given the functional differences between ERα and ERβ,  and the different contributions 

of separate brain areas to different functions, it would appear to be crucial to determine 

the spatial distribution of the ER subtypes in the brain in order to reveal the mechanisms 

behind estrogen-induced effects on brain functions.. In general, it seems that both ER 

subtypes are rather similarly expressed throughout the brain, but in some brain areas 

one subtype is more dominant or even the only one expressed. The distribution of the 

two ER subtypes in both mouse and rat brain is summarized in Table 1. Only certain 

central brain areas related to cognitive functions are presented in the table and also the 
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ventromedial nucleus in the hypothalamus, a region important in the regulation of 

reproductive physiology and behavior. It can be observed that there are similarities but 

also differences in ER subtype distribution between the two rodent species, which also 

may be attributable to the different methodological approaches used in the studies. 

 

 HC Caudate 
putamen 

VMN Medial 
septum 

Cortex 

Mouse brain      
ERα ++ ++ ++ - + 
      
ERβ + + - + ++ 
      
Rat brain      
ERα + NA ++ + + 
      
ERβ ++ NA - + +++ 
      
 

 

Table 1. Distribution of ERα and ERβ in the specific areas of the rodent brain. The data 

were collected from Mitra et al. (2003) for mouse brain (immunohistology) and from 

Shughrue et al. (1997) for rat brain (in situ hybridization). Abbereviations: HC, 

hippocampus; VMN, ventromedial nucleus of the hypothalamus; NA, not available. (+, 

small; ++, moderate; +++, high expression; -, no expression)  

 

In addition to the genomic effects of estrogen in the brain, mediated through 

intracellular ERs, emerging evidence favors the existence of non-genomic effects and 

thus presumably membrane-related receptors may also occur in the brain. For example, 

within a time range of seconds to minutes, estrogen has been reported to induce rapid 

neuronal electrophysiological changes (Foy et al. 1999) and to activate several signaling 

cascades (Aronica et al. 1994, Singh et al. 1999). Interestingly, estrogen can affect 

transcriptional modulation by activating membrane-associated ER which in turn 

activates second messenger signaling pathways (Katzenellenbogen 1996). These effects 

are believed to be derived from modulation of intracellular signal transduction 

pathways, e.g. ERK/MAPK pathway (extracellular-signal-regulated kinase / mitogen-

activated protein kinase) (Aronica et al. 1994, Singh et al. 1999). In addition to the 

circulating estrogen, as for many other steroid hormones, estrogen can be locally 



26 

synthesized in the brain (Stoffel-Wagner 2001, Zwain and Yen 1999). Aromatase, a 

crucial factor in local estrogen biosynthesis, is an enzyme that converts androgens to 

estrogens and which can be synthesized in neurons and astrocytes. It has been shown 

that adult hippocampal neurons synthesize estrogens in vitro and this synthesis is clearly 

attenuated by inhibition of aromatase activity (Prange-Kiel et al. 2003). Thus, the 

neurons in the CNS may receive estrogen either from its local biosynthesis from 

testosterone or from the periphery via the blood circulation. 

 

2.2.2. Estrogen, neuroprotection and neuronal plasticity  

The literature on estrogen’s neuroprotective effects consists mainly from data of its 

antioxidant, defensive and neurone-sparing actions. Estrogen has been shown to have 

antioxidant effects against several free radical generators in many tissues and cell types 

(Behl et al. 2000). For example, estrogen can reduce β-amyloid (Aβ), haloperidol, and 

H2O2 -induced intracellular peroxides and attenuate the lipid peroxidation evoked by 

Aβ, glutamate toxicity or FeSO4 exposure (Green et al. 2000). Perhaps the best known 

biochemical mechanism for the neuroprotective effect of estrogen is mediated via the 

MAPK-ERK1 pathway (Singh et al. 1999, Singer et al. 1999). It is likely that the 

MAPK pathway is not sufficient to account for all of estrogen’s neuroprotective effects, 

though, since another candidate that might mediate estrogen’s actions hand in hand with 

MAPK could be the Akt/protein kinase B pathway which acts by increasing the 

expression of an anti-apoptotic protein bcl-2, that in turn might be mediated via cAMP 

response element-binding protein (CREB) -dependent mechanisms (Pugazhenthi et al. 

2000). 

 

Possibly the most basic form of neuronal plasticity at the morphological level, in which 

estrogen has been shown to have positive effects, is the filopodial outgrowth, which 

occurs within minutes of estrogen exposure (Brinton 1994). These newly developed 

filopodia are an early sign of dendritic spines that will subsequently mature (Harris 

1999). In their seminal paper, Woolley and McEwen (1994) observed that the number 

of dendritic spines in pyramidal neurons in the CA1 area of the hippocampus fluctuated 

according to the phase of the estrous cycle - and the amount of circulating estrogen and 

progesterone - in female rat. Namely, when estrogen levels are at their highest, the 
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number of dendritic spines also peak, while the progesterone levels seem to have an 

opposite relationship with dendritic spines. Further, the estrogen-induced effects proved 

to be dependent on glutamatergic N-methyl D-aspartate (NMDA) receptor activation. 

Not only did estrogen increase the amount of dendritic spines but it also elevated the 

number of synaptic connections (Woolley et al. 1997). Further proof for the hypothesis 

that estrogen-induced synaptic strengthening in the hippocampus is mediated via 

glutamatergic NMDA-dependent activation, was provided by an electrophysiological 

experiment, in which Rudick and Woolley (2001) observed that the NMDA-receptor, 

but not the AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) -

receptor, mediated sensitivity to synaptic input was increased by estrogen treatment. 

However, the estrogen-mediated increase in neuronal excitability is obviously not due 

to enhanced glutamatergic functions alone, since Murphy and Segal (1996) described 

estrogen’s potency to modulate also the inhibitory GABAergic (gamma-aminobutyric 

acid) interneurons. Furthermore, estrogen treatments have been shown to increase 

neuronal excitability in various experimental models, such as hippocampal long-term 

potentiation (LTP) both in vitro (Bi et al. 2000, Foy et al. 1999) and in vivo (Cordoba 

Montoya and Carrer 1997) and hippocampal seizure susceptibility (Buterbaugh and 

Hudson 1991). Estrogen’s ability to increase neuronal excitability has also clinical 

relevance. For example, some women suffer catamenial epilepsy, in which the seizure 

frequency or severity changes across the menstrual cycle. An increase in seizure 

severity has been observed at the mid-cycle when the ovarian hormones peak but also 

during the late luteal phase when the ovarian hormone levels start to decline (Herzog et 

al. 1997). 

 

Modulation of neuronal excitability depends not only on estrogen’s direct effects on 

cortical neurons but presumably also on its effects on different modulatory 

neurotransmitter systems, such as the cholinergic, serotonergic, noradrenergic and 

dopaminergic systems. In fact, estrogen’s effects on the cholinergic system were among 

the first findings to indicate that gonadal hormones could possess actions outside their 

reproductive functions (Luine et al. 1980). The neurons of the cholinergic basal 

forebrain that project to cortex and hippocampus are believed to have a significant role 

in several cognitive functions. Experiments with rats have indicated that ovariectomy 
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(OVX) followed by short-term or long-term estrogen replacement therapy (ERT) 

increases the levels of choline acetyltransferase (ChAT), the rate limiting enzyme in 

acetylcholine formation, in the projection areas of the cholinergic basal forebrain 

(McEwen and Alves 1999, Singh et al. 1994). Moreover, the ChAT mRNA levels of the 

cholinergic basal forebrain seem to fluctuate during the rat estrous cycle (Gibbs and 

Aggarwal 1998). Possible mediators of the trophic effects of estrogen on cholinergic 

basal forebrain are nerve growth factor and brain-derived nerve growth factor (Gibbs 

and Pfaff 1992, Gibbs 2000b) which are produced in the hippocampus and retrogradely 

transported to basal forebrain cholinergic areas (Knipper et al. 1994). 

 

Most of the serotonergic neurons in the brain are situated in or close to the Raphe nuclei 

in the brain stem (Jacobs and Azmitia 1992). The serotonergic system takes part in the 

regulation of many of the brain functions, including mood, aggression and cognitive 

processes (Bethea et al. 1998, Higley and Linnoila 1997, Rubinow et al. 1998). 

Increasing evidence, both from human and animal studies, suggests that estrogen has 

close interactions with the serotonergic system and thereby with the cerebral functions 

listed above. In view of the well known effects of serotonin on mood regulation, it is 

interesting that depression seems to be two to three times more prevalent in women than 

in men (Shively and Bethea 2004). Furthermore, ERT in peri- or postmenopausal 

women has been associated with improved mood and well-being, whereas ERT 

combined with progestin treatment has been reported to increase irritability and 

dysphoria (Genazzani et al. 2002). One possible mechanism to account for estrogen’s 

effects on the serotonergic system could be inhibition of serotonergic neurons via 

5HT1A autoreceptors (Bethea et al. 2002). 

 

In addition to its actions on the cholinergic and serotonergic systems, estrogen also acts 

on catecholaminergic neurons. Noradrenergic system, emerging from the brain stem 

locus coeruleus, is known to have a role in vigilance, attention, cognitive processes and 

depression (Aston-Jones and Cohen 2005). Estrogen treatment has been shown to up-

regulate both α- (McEwen 1980) and β-adrenergic (Vacas and Cardineli 1980) 

receptors in OVX female rats. Similarly to many of the effects of estrogen on the CNS, 

its effects on the noradrenergic system seem to depend on the balance between estrogen 
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and progesterone, since treatment with estrogen alone inhibits the synaptic reuptake of 

noradrenaline (NA) (Janowsky and Davis 1970) whereas estrogen combined with 

progesterone increases the reuptake (McEwen 1980). The dopaminergic system is 

known to be involved in executive functions and its disruption can lead to psychosis. In 

humans, estrogen can reduce the symptoms of tardive dyskinesia induced by L-dopa 

(Villeneuve et al. 1980). On the other hand, estrogen treatment in animal models has 

been reported to have different effects on the dopaminergic system depending on the 

brain area. For example, estrogen inhibits dopamine (DA) release in the median 

eminence (Cramer et al. 1979), but increases its release and turnover in the striatum 

(McEwen 1980) and downregulates striatal DA1 and DA2 receptors (Tonnaer et al. 

1989). However, the mechanisms underlying the effects of estrogen on dopaminergic 

receptors are still largely unknown. 

 

2.3. Estrogen and memory 

In his book David Sweatt (2003) defined learning as acquisition of an altered behavioral 

response to a stimulus in the environment and memory as processes via which the 

learned information is stored. Recall, on the other hand, is understood as the event when 

this altered behavior is manifested. However, these definitions are not comprehensive, 

since learning may take place irrespective of whether any behavior related to the issue 

learned will ever be expressed or not. However, within the framework of this thesis 

these definitions are applicable as they permit an objective demonstration of learning in 

humans and animals. 

 

Questions about the locus for learning and memory in the brain have undoubtedly 

challenged the imaginations of scientists for ages. The first answers to these questions 

appeared as late as the 1950’s, when a patient called H.M., as well as some other similar 

cases, was reported to suffer of a profound amnesia following a bilateral resection of the 

hippocampus and adjacent structures in the medial temporal lobe (Scoville and Milner 

1957). After the operation, H.M. was unable to form any new memories in normal 

every-day living. For example, he could not remember what he had had for breakfast or 

even that he had just eaten, nor could he remember the doctor he had spoken to five 

minutes previously. In contrast, he was able to communicate normally, and he was as 
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intelligent as before the operation. His memory for about three years before the 

operation had also partially disappeared, from that time he could only recall some trivial 

incidents. But his memory for the time before that time was well preserved. H.M. was 

able to learn motor skills, performing even very complex tasks. Thus, the observations 

from H.M. together with other unfortunate patient cases, led scientists to appreciate that 

there must be different neural systems serving different kinds of learning and memory: 

the hippocampus together with certain other medial temporal lobe structures were 

recognized as being crucial for forming declarative memories, although not being the 

site for the memory storage, and that there must also exist other neural systems 

contributing to procedural learning. The neural systems for both declarative and 

procedural memory in particular will be briefly described in the next chapters. 

 

2.3.1. Different memory systems 

Memory can be divided into two major classes: long-term memory (LTM) and short-

term memory (STM) (see Figure 3 for the taxonomy tree of different memory systems). 

LTM is further divided mainly into declarative and procedural memory and also STM 

consists two sub-categories, sensory memory and working memory. Characteristics of 

LTM will be first described in more detail. 

 

 
 

Figure 3. A taxonomy of the mammalian long-term memory systems. The taxonomy 

lists the brain structures thought to be especially important for each form of declarative 

and nondeclarative (procedural) memory. (Adapted from Squire (2004)). 
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2.3.1.1. LTM: Declarative memory 

Declarative memory, also called explicit memory and which is further divided to 

episodic and semantic memory, is understood as a conscious memory for facts and 

events (Squire et al. 1993), requiring a “conscious” recollection, although this definition 

at least philosophically perhaps is not applicable for animals. Declarative memory is 

also fast but not always reliable, since a retrieval error might occur. It is a flexible 

memory, having access to several other memory systems (Squire et al. 1993). Thus, 

declarative memory is able to process and store the comparisons and relations between 

learning events and the items related to the learning events (Eichenbaum et al. 1992). 

Due to the multiple relations within the learned event, this representation is accessible 

in various different circumstances, also in situations different from the actual learning 

occasion, giving declarative memory its flexible nature (Eichenbaum et al. 1992). 

 

As already mentioned, there are two types of declarative memory, episodic and 

semantic memory. Whereas episodic memory is a memory for personal events, having 

both spatial and temporal characteristics, semantic memory is a general knowledge 

about the world (Squire et al. 1993). For example, if I remember visiting my friend two 

days ago and eating there a steak and drinking wine, that is an episodic memory, but if I 

know that Helsinki is the capital city of Finland, that is a semantic memory. There is a 

connection between the two, though, since when creating semantic memories we often 

use our episodic memory. As in the case of H.M., amnesiacs with medial temporal lobe 

damage, have great difficulties in forming new episodic and semantic memories. Also, 

patients with damage mainly in their right frontotemporal regions experience difficulties 

in the retrieval of episodic memories (Kroll et al. 1997), while patients with damage in 

the corresponding area in the left hemisphere are unable to recollect their semantic 

memories (Markowitsch 1995). 

 

2.3.1.2. LTM: Procedural memory 

The properties and neural mechanisms for procedural memory markedly differ from 

those of declarative memory. Procedural memory (also called non-declarative or 

implicit memory) consists of four subtypes: skills and habits, priming, classical 
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conditioning and non-associative learning (habituation and sensitization). Procedural 

memory differs from declarative memory in the sense that it does not require conscious 

recall and also the learning process is more or less unconscious. It is also considered to 

be inflexible, since it can be used only in the same situation in which it was created, 

without having the relational and associative nature of declarative memory 

(Eichenbaum et al. 1992). Here it is reasonable to concentrate on procedural memory in 

terms of motor skills and habits, usually expressed through performance. For instance, 

once you have learned well how to sew, you can perform the task while you are 

watching television without having to concentrate all the time on the subtle motor 

movements of your fingers. The motor functions needed to accurately execute sewing, 

are not stored in muscles, however, but in the nervous system – and in a complicated 

way. This memory type utilizes certain brain areas such as cerebellum and basal 

ganglia. Also, patients suffering from Huntington’s disease and Parkinson’s disease 

which are characterized by severe pathology in the striatal areas, are reported to be 

impaired in tasks requiring procedural learning (Saint-Cyr et al. 1988). These 

observations underline the importance of the involvement of two different striatal 

nuclei, caudate nucleus and putamen, in procedural learning. 

 

2.3.1.3. Working memory 

Short-term memory is differentiated into two different categories, working memory and 

sensory memory. Whereas sensory memory is associated with implicit learning, 

working memory is an explicit memory, requiring conscious, active processes. 

According to the model proposed by Baddeley (2003), human working memory consists 

of three different systems, a central executive system and two systems for memory 

storage: the visuo-spatial sketchpad for storage of visual information and the 

phonological loop for verbal storage. The brain sites involved in these latter two 

processes have been proposed to be right and left temporoparietal lobes, respectively, 

and the frontal lobes for the central executive system (Baddeley 2003). In every-day 

life, working memory is needed for example in a situation you check a phone number in 

the book and “keep it in mind” for as long as you dial the number. For this short period 

of time the number is kept in your working memory but is lost from there within 

seconds after you have dialed the number. 
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2.3.1.4. Declarative memory in rodents 

Why should one wish to study memory in rodents? The rationale for this question 

obviously is that useful animal models are needed to reveal the mechanisms of learning 

and memory and the results obtained can be extrapolated to humans e.g. in pathological 

states. However, when an animal model is used, one should bear in mind the special 

characteristics, especially those that are comparable to processes occuring in humans. 

Next the properties of rodent models of cognition will be briefly described and some 

attempts will be made to compare their analogies to humans. 

 

The three main brain areas composing the declarative or hippocampal memory system 

are: 1) cerebral cortex, 2) the parahippocampal region, mediating connections between 

the cortex and hippocampus, and 3) the hippocampus (Eichenbaum 2000). In Fig. 4, 

these brain areas are visualized both in primates and rodents for comparison. The neural 

connections within this circuit are thought to function such that information, for 

example sensory information from corresponding sensory area or information from 

association areas, flows from the cerebral cortex to the two medial temporal lobe 

structures, wherein it is processed in two stages, modified and then sent back to the 

original site in the cortex. Eichenbaum (2002) proposed that the parahippocampal 

region is responsible for segregating the separate neuronal representations, of sensory or 

other modalities, transferred from cerebral cortex, and for keeping them in a “memory 

buffer” for a time frame of a few minutes, a gap between short- and long-term memory. 

During this gap, the hippocampus makes comparisons and relations between the given 

items and already established representations, then modulates them. Finally these 

representations are transferred back to the cerebral cortex via the parahippocampal 

region. These two processes together form the declarative memory. The difference 

between the functions of parahippocampal region and the hippocampus can be obtained 

from studies showing that the former is critical for certain types of recognition memory 

while the latter is essential for formation of memory of more complex relational aspects, 

contributing to the declarative memory. 
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Figure 4. The anatomy of the hippocampal memory system. (Adapted from 

Eichenbaum (2000)). 

 

Following the findings in patient cases like H.M. (Scoville and Milner 1957), who 

experienced severe amnesia after temporal lobe damage, the first attempts were made to 

create animal models of amnesia. In rodents, the most widely used method was to 

induce a lesion to the hippocampus combined with varying damage to the brain areas 

nearby. It was not until 1970’s, however, that models showing clear impairment in 

learning and memory in rats with hippocampal lesion were successfully created. In 

1978, O’Keefe and Nadel described their new findings, showing that in the rat 

hippocampus there are pyramidal cells, “place cells” that fire only at certain spatial 

locations of the environment (O'Keefe and Nadel 1978). They also found that rats with 

hippocampal lesions were impaired in certain tasks, e.g. those requiring spatial 

navigation, but not impaired in other tasks. These findings indicated that the 

hippocampus has a crucial role in the spatial performance and information processing. 

These findings proved that the hippocampus was able to form “cognitive maps” at least 

for spatial representations, differentiating its role from the processes involved in simple 
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habit learning. Thus, the hippocampus was determined to possess a role in declarative 

memory also in rodents. 

 

In 1982 Richard Morris described the water maze test (the Morris water maze) that 

would become one of the most often used cognitive tasks in rodents (Morris et al. 

1982). This task will be described in greater detail in Methods, but briefly, it consists of 

a circular pool filled with opaque water with an invisible platform just below the 

surface. The animals are given a number of trials and they are anticipated to find the 

platform by using extra maze spatial cues. Morris showed that intact animals learn the 

task quickly, improving their performance, i.e. finding the platform faster after each 

trial, whereas rats with a hippocampal lesion, although finding the platform somewhat 

faster in the later trials, still did not seem to remember the location of the platform, and 

they never learned to swim directly to the platform as the intact rats eventually did 

(Morris et al. 1982). This was confirmed in the subsequent “probe trial” during which 

the platform was removed. The intact animals kept on swimming around the location 

where the platform used to be, but the rats with hippocampal damage exhibited no 

preference for any quadrant of the pool. However, when a clearly visible platform, on 

which the animals could escape, was introduced both intact and lesioned animals 

performed equally well, swimming directly towards the platform and climbing on it, 

meaning that the impairment of the lesioned rats in the “spatial” version of the task was 

not dependent on visual or motor impairment, but selective incompetence for learning 

the spatial location of the platform. 

 

Another widely used memory task, the radial arm maze, introduced by Olton et al. 

(1979), is somewhat different in its nature, but a sensitive task for detecting 

hippocampal dysfunction. The radial arm maze (RAM) is comprised of eight closable 

arms, radial to a central platform in which the animal can be confined between different 

trials. Depending on the version of RAM one, four or all eight of the arms are baited 

and the animal is expected to learn to collect each reward and avoid already visited arms 

by using extra maze spatial cues. Animals are able to remember the arms they have 

already visited within a single training session. Based on this finding, Olton defined 

working memory for rodents as memory allowing the animal to remember the arms it 
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had visited within a single session. According to Olton, working memory can be 

distinguished from reference memory which he claimed was a long-term association 

between different stimuli or a stimulus and response and acquired after repeated trials 

(Olton et al. 1979). The reference memory for RAM consists of aspects like there is 

food at the end of each arm or which of the arms has been baited etc. It is worth noting 

that Olton’s definition for working memory, which is widely held among behavioral 

neuroscientists working with rodents, differs from the concept used in human 

psychology and primate studies. This mixed use of the term “working memory” has 

caused a great deal of confusion. One may argue that the memory of a rodent for the 

visited arms in RAM reflects an episodic encoding of the past events that the animal has 

to remember after variable intervals between the trials (Eichenbaum 2002). This is 

compatible with the studies showing only temporary impairment in this task after 

lesions of the prefrontal cortex, a pivotal brain area for working memory in monkeys, 

but severe impairment in the task in rats after hippocampal lesions (Becker et al. 1980). 

 

Another task developed to study working memory in rodents is a delayed alternation in 

the T-maze task. Briefly, the animal is taught to collect a food reward in one of the arms 

in the T-maze so that after each trial the reward is switched to the opposite arm, i.e. the 

animal has to remember the arm it visited on the previous trial and enter to the other 

arm in the next trial to obtain the reward. Each testing session consists of several trials 

and the inter trial interval increases with the training sessions. Accordingly, to 

successfully complete the task, the animal needs to remember only the arm it visited on 

the previous trial and go to the opposite one. Therefore, until there is an inter-trial 

interval of some tens of seconds, this task requires a memory that shares the same 

characteristics as working memory in humans. Indeed, lesions in the prefrontal regions 

impair the rat’s performance in this task (Brito et al. 1982). Compared to RAM, this 

task is more relevant to study working memory in rodents. 

 

The third example of a behavioral test widely used to study declarative memory in 

rodents is the contextual fear conditioning task. In this task, the animal is placed in an 

operant box and thereafter a tone, lasting for several seconds, is present, followed by a 

mild foot shock through the floor. This procedure is repeated several times. After 
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several trials, the animal becomes conditioned to the tone, waiting for the aversive 

stimulus, the foot shock to appear. The animal’s reaction is measured usually by certain 

behavioral responses characteristic for alert or fearful situation, such as freezing. Thus, 

the animal has learned that a tone will be followed by a foot shock. During the test trial, 

only the tone is presented, which alone causes a freezing behavior response. This 

response has been shown to be mediated by the amygdala and its connections with 

thalamus and cerebral cortex (Sweatt 2003). However, the trained rodent may freeze 

already when put into the operant box even when the tone has not been presented. On 

the other hand, if the animal is put in a different kind of test chamber it does not freeze 

until the conditioned stimulus i.e. the tone is presented. Thus, the behavioral response, 

freezing, depends on the context in which it has been learned on previous trials. It has 

been reported that hippocampal lesions abolish this behavior: the animal does not 

express the contextual fear conditioning (placement in the training chamber) but its 

conditioning to the tone is preserved (Sweatt 2003). Thus, the animal’s capability of 

learning the context, i.e. the same location where the aversive stimulus was earlier 

experienced, is dependent on hippocampal function. This is an example where the 

rodent hippocampus is not only crucial for spatial learning, but also for other forms of 

declarative learning and memory. 

 

2.3.1.5. Procedural memory in rodents 

A classic test to study procedural habit learning in rodents is the position discrimination 

in the T-maze. The maze is a T-shaped apparatus, consisting of a stem arm and two side 

arms. Oliveira et al. (1997) explored the different learning mechanisms allowing rats to 

complete the task. The researchers used two different versions of the task, one having 

spatial cues and the other based on egocentric performance. In both versions of the task, 

rats with a hippocampal lesion and rats with a lesion in caudate-putamen were included. 

At the beginning of each trial, the animal was confined to the stem arm and then it could 

choose between the two side arms, left or right, but only the right arm was rewarded by 

a food pellet throughout the testing. Oliveira et al. (1997) noted that rats with 

hippocampal but not with caudate-putamen lesions were impaired in the spatial version 

of the task, whereas the latter lesion produced impairment in the egocentric version, the 

one requiring simple habit learning, where the rats with hippocampal lesions completed 
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the task as well as the control animals. This example illustrates the distinct contributions 

of the hippocampal and striatal functions on different maze learning strategies. It also 

underlines the importance of caudate-putamen area on stimulus-response based 

learning. 

 

Further information of the role of the striatum on procedural learning has been gathered 

from tasks using operant conditioning. Operant conditioning is a learning paradigm in 

which a voluntary motor response is elicited to a given stimulus, thus differing from 

classical conditioning which is based on merely reflex or unconscious response to a 

stimulus. An example of an operant conditioning is a task in which an animal is taught 

to press down a lever during the presentation of a visual and/or acoustic signal, and is 

then required to hold the lever until a trigger stimulus occurs after an unpredictable 

delay in a time range of some seconds. The trigger stimulus informs the animal that it 

should now release the lever and press a second lever to obtain a food reward. The 

different subregions of striatum seem to contribute differently to performance in this 

kind of task, such that the dorsal striatum is involved in the correct utilization of 

external sensory information for the initiation of conditioned behavior, whereas the 

ventral striatum appears to be mainly concerned with the temporal expectation of the 

impending stimuli that trigger reward-reinforced movements (Florio et al. 1999). 

Furthermore, the dopaminergic innervation to the striatum is believed to play a crucial 

role in this kind of striatal learning (Florio et al. 1999). 

 

The fear conditioning, described in the previous chapter, may be used to study multiple 

different memory systems. As described in the previous chapter, fear conditioning is a 

task used to assess the learning of association between the environment and a mild 

aversive stimulus. This task is relevant for use in rodent models of anxiety disorders. 

The animals are required to learn two facts: the training chamber refers to an aversive 

situation (the contextual conditioning) and that the conditioned stimulus, light or tone, 

predicts the coming foot shock (cued conditioning). The former response, as mentioned 

earlier, is dependent on hippocampal functions, whereas the cued conditioning is 

dependent on associative learning mediated by the amygdala (Sweatt 2003). Thus, the 

cued conditioning is a type of procedural, non-conscious learning. 
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2.3.2. Estrogen and memory in rodents  

Perhaps the first indication of estrogen’s capability in modulating cognitive functions 

was published in the late 70’s by Luine and her coworkers in an experiment showing 

that estrogen treatment given to ovariectomized female rats affected the ChAT levels in 

the basal forebrain (Luine et al. 1980), a brain area later documented to have a role in 

cognitive functions and being also the site of extensive pathology in AD. Since that 

discovery, there has been much research done in this area and the effects of depletion 

and estrogen treatment have been studied in numerous studies in a wide variety of 

cognitive tasks in rodents. The experiments of this thesis were started in 1999 and after 

that time much new information has emerged in this field. For background, a brief 

summary of the reports on estrogen and memory in rodents appearing until the year 

1999 is given here. Reports appearing after that time point are dealt with in the 

Discussion. 

 

It was first documented that the density of dendritic spines in the CA1 area of the 

hippocampus varies during the female rat estrous cycle (Gould et al. 1990). This was 

followed by reports showing that fluctuations in gonadal hormones affect the sensitivity 

of the same area to LTP (Cordoba Montoya and Carrer 1997) and that estradiol 

treatment could enhance LTP (Wong and Moss 1992). Thus, it became of great interest 

to examine whether the gonadal hormones would have an effect also in learning and 

memory, especially in hippocampus-dependent processes. Most of the studies on 

gonadal hormones and memory in rodents have been conducted using rats and most 

often the cognitive tasks have been those measuring spatial learning. The attempts to 

find a correspondence between spatial learning and the aforementioned morphological 

and the functional changes occurring in the hippocampus across the estrous cycle have 

not yielded uniform results. Some studies have found a slight impairment (Galea et al. 

1995, Warren and Juraska 1997) or no difference (Berry et al. 1997) in spatial water 

maze performance in rodents during proestrus, when the estradiol levels are high. 

Similarly, Markus and Zelevic (1997) showed impaired learning in a spatial-context 

conditioning task in proestrus rats. However, a delayed non-match to sample version of 

the radial arm maze found no difference in working memory errors between rats during 
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different stages of the estrous cycle (Stackman et al. 1997). In an interesting study by 

Korol and her co-workers (1996) reported that rats in proestrus preferably use a spatial, 

hippocampal strategy whereas rats in estrus, when the estrogen levels are low, prefer to 

use a response or striatal strategy in one version of plus-maze in which the animal may 

use different learning strategies. 

 

Studies published before the 21st century on estrogen treatment, usually conducted in 

ovariectomized rodents, have also yielded somewhat inconsistent results. A study by 

Korol et al. (1994) showed impaired water maze performance in rats with estrogen 

treatment. On the other hand, some reports have found improved spatial learning in rats 

with a longer duration of estrogen treatment. For example, Daniel et al. (1997) found 

that ERT, administered via silastic capsules and started 30 days before the testing 

decreased working memory errors in RAM in OVX rats. Another report by Luine and 

her colleagues (1998) also showed that working memory but not reference memory 

errors were decreased after 12 days, but not after three days ERT in OVX rats. These 

reports do not support the hypothesis that the estrogen-induced increase in the number 

of CA1 dendritic spines (which is most reliably seen within 48 h after two daily 

estradiol injections) would be correlated with the changes observed in cognitive 

performance. Still, Packard and Heather (1997) found that a single estradiol injection 

given one hour after training and 24 h prior to testing did improve water maze 

performance. Dohanich et al. (1994) showed that in ovariectomized rats, single 

injections of estradiol alone (25 mg) or combined with progesterone (500 mg) reversed 

the scopolamine-induced impairment in T-maze alternation task. Also, acute but not 

chronic estrogen treatment has been shown to increase the dendritic spine density in the 

granule cell layer of the hippocampus, and accordingly, Henderson et al. (1996) found 

that acute but not chronic estrogen treatment improved radial arm maze performance in 

aged rats. 

 

2.3.3. Human studies on estrogen and memory 

There is some evidence that the phase of the menstrual cycle may affect cognitive 

processes also in humans. Most, although not all, studies exploring this question have 

found that women perform better in tasks requiring verbal and fine motor abilities when 
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they are at the midluteal phase of the cycle, i.e. when the levels of both estradiol and 

especially progesterone are high (Carlson et al. 2001, de Moraes et al. 2001, Fillenbaum 

et al. 2001, Matthews et al. 1999, Yaffe et al. 2000). These tasks are sexually 

dimorphic, meaning that women usually perform better in these tasks than men. 

Similarly, an interesting study by Maki et al. (2002) revealed that during the midluteal 

phase, young healthy women performed better in tasks measuring verbal and motor 

skills, compared to their performance during the follicular phase. Further, blood 

estradiol levels were associated positively with good performance in verbal tests, but 

negatively with tests on spatial abilities, that are also considered to be sexually 

dimorphic, but this time in favor of men. Therefore, it is probable that the estrogen 

levels, but not the progesterone levels, may be the key factor in mediating the changes 

in cognitive performance in different stages of the menstrual cycle. 

 

As is also the case in rodents, studies on the effects of hormone replacement therapy 

(HRT) on cognitive performance in healthy postmenopausal women have yielded 

controversial results. A meta-analysis of 10 randomized controlled trials and eight 

cohort studies showed that healthy postmenopausal women suffering from 

postmenopausal symptoms who were given HRT had improved verbal memory, motor 

speed, vigilance and reasoning, whereas this effect was not seen in women receiving 

HRT but not suffering from postmenopausal symptoms (LeBlanc et al. 2001). The 

results of the large Women’s Health Initiative (WHI) study indicated that HRT started 

after the age of 65 years seemed to have a slight deteriorating effect on cognitive 

abilities in postmenopausal women, especially in those already suffering of cognitive 

problems (Espeland et al. 2004). 

 

2.4. Estrogen, aging and Alzheimer’s disease 

2.4.1. Menopause 

Menopause is a period when the menstrual cycles become irregular and eventually end. 

It usually occurs around 45 to 55 years of age. The amount of the ovarian follicles 

decreases during a woman’s reproductive life, and subsequently the levels of follicle 

stimulating hormone (FSH) increase (Lee et al. 1988). Subsequently, when the follicle 

cohort declines below a critical level, cycle changes start to occur. Levels of inhibin, a 



42 

peptide decreasing the secretion of FSH, decline as a result of the decreased follicle 

pool (Burger et al. 1998), further increasing the FSH content (Sherman and Korenman 

1975). The next phase in the progress of menopause is characterized by anovulatory 

cycles accompanied by elevated estrogen production (Santoro et al. 1996). When three 

consecutive cycles have been missed, a woman has reached the late phase of 

menopausal transition (MT) (WHO Scientific Group 1996) and usually the very last 

menstrual cycle occurs within four years after this event (Taffe et al. 1997). The 

perimenopause is associated with certain symptoms, not directly related to ovarian 

function. Hot flushes are one of the typical symptoms at this phase (Santoro 2002). In 

the early MT, a woman may suffer from menstrual migraines (Lipton et al. 1999) and 

irritability which tends to occur though less frequently, in the late MT (Bromberger et 

al. 2001). Excessive or very minimal menstrual bleeding (Johannes and Crawford 

1999), vaginal dryness and night sweats (Dennerstein et al. 2000), depression 

(Campbell and Whitehead 1977) and subjective experience of loss of general wellbeing 

(Santoro 2002) all belong to the symptomatology of MT. 

 

In general, animals do not undergo menopause, the primates being the only exception. 

However, also in rodents, especially under laboratory conditions, similar physiological 

changes as seen in postmenopausal women can be observed and sometimes these 

animals are called estropausal. In the C57BL/6J strain of mice, the onset of the 

physiological state corresponding to menopause occurs around 13-15 months of age, 

when the mice become acyclic and experience lengthening of the cycle; the normally 

predominant 4-day cycles switch to predominantly 5-day cycles and later to even longer 

cycles (Felicio et al. 1984). The plasma estrogen levels are reduced and the preovulatory 

estrogen and progesterone pulses even become absent in these mice with lengthened 

cycles (Flurkey et al. 1982, Nelson et al. 1981). Experimental studies suggest that 

neuroendocrine changes play a crucial role in age-related changes of cyclicity and 

hormonal levels, although some of the changes are believed to originate from changes in 

ovarian functions. Neuroendocrine changes are thought to account for the major 

decrease of estrogen levels, whereas the aged ovary may be responsible for the decrease 

in the pre-ovulatory estrogen pulse (Felicio et al. 1986, Nelson et al. 1992). 
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Most often when using rodents, the postmenopausal state has been mimicked by 

ovariectomy (OVX), the removal of the ovaries, this being performed in either young or 

middle-aged females. This operation leads to a depletion of endogenous estrogen. 

Although ovariectomy is clearly not a perfect model of menopause, it has many 

advantages. First, when conducted on young or middle-aged rodents ovariectomy 

provides a tool to study the physiological responses of estrogen depletion alone, 

divorced from the aging process that naturally is related to perimenopausal age, and also 

to changes that estrogen depletion and aging might produce by interacting with each 

other. Another plus of this model is that it achieves a state that resembles the 

postmenopausal state. Namely, even at the age of 20 months, and even though no 

estrous cycles can be observed, the ovaries of an intact mouse might be functional to 

some extent and secrete low levels of estrogen, which is not the case in postmenopausal 

women. Furthermore, mice at the age of 20 months or older are also at a considerably 

high risk of experiencing a natural death, which complicates all experiments with aged 

animals. However, in order to have a rodent model of postmenopausal state which best 

mimics the situation in women, the animals should be aged, but even so, ovariectomy 

would be a rational experimental procedure to assure that the animals in use are at the 

same level in terms of their endogenous estrogen status. 

 

2.4.2. Estrogen replacement therapy 

Although naturally occurring, the postmenopausal state could be understood as a 

deficiency in the hormonal milieu and this deficiency has been tried to be restored with 

HRT, which consists of estrogen alone or combined with progesterone. Here the term 

ERT will be used whenever the treatment consists of estrogen alone and HRT if the 

treatment includes also progesterone. In industrial countries, peri- and postmenopausal 

women have used these therapies even in the absence of symptoms related to MT. The 

motives for the ERT or HRT have often been their hypothetical protective effects 

against cardiovascular diseases and osteoporosis. However, since chronic treatment with 

estrogen alone is known to increase the risk of uterine cancer, the prescriptions usually 

consist of HRT (Shapiro 2004). About 2/3 of menopausal women suffer from 

menopausal symptoms but only one of every three seek a medical cure for their 

symptoms (Prelevic et al. 2005). Typically these symptoms can be classified mainly in 
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two categories, vasomotor or psychosomatic, such as hot flushes and sweats. The 

symptoms are most pronounced during first few years after menopause, lasting for more 

than five years in about one fourth of women (Prelevic et al. 2005). ERT is reported to 

be effective against hot flushes in approximately 90 % of women (Shanafelt et al. 2002) 

and in general, subjects using HRT have reported of improved quality of life and well-

being (Blumel et al. 2003).  

 

Perhaps the most convincing and best documented positive effects that ERT produces 

on physiology of postmenopausal women are its effects against bone mass loss. ERT 

protects from bone mass loss, but only for as long as the therapy is continued and the 

reduced fracture risk induced by ERT is restored to the pre-ERT level five years after 

the treatment has been terminated (Delmas 2002). ERT’s beneficial effects on bone 

mineralization in postmenopausal women seem to depend on the dose and modes of 

administration. In general, daily doses of 0.625 mg conjugated equine estradiol (CEE), 

2 mg of 17β-estradiol or 2 mg of oral estradiol valerate and, in addition, the 

supraphysiological levels of estradiol seem to provide the optimal response (Lindsay et 

al. 1984, Selby and Peacock 1986). 

 

Another suggested indication for ERT in postmenopausal women is its protective effect 

against cardiovascular diseases. Based on epidemiological studies especially from the 

early- and mid- 90’s HRT was claimied to reduce the death rate and morbidity of 

coronary heart disease (CHD) by approximately 50 % in healthy postmenopausal 

women (Barrett-Connor 1991, Barrett-Connor and Bush 1991) and also in those already 

suffering from CHD (Henderson et al. 1991). Following these positive reports, HRT 

became one of the most common medications for postmenopausal women in industrial 

countries. However, these positive views for HRT have been challenged by more recent 

studies (Cherry et al. 2002, Clarke et al. 2002, Gami et al. 2003, Herrington et al. 2000, 

Hodis et al. 2003, Hulley et al. 1998, Viscoli et al. 2001) and in particular, the large 

clinical trials of WHI published in 2002 (Rossouw et al. 2002), which showed an 

increased risk of stroke, breast cancer, CHD and venous thromboembolism in 

postmenopausal women taking CEE combined with medroxyprogesterone acetate. 

Thus, long-term HRT probably cannot be recommended as a primary or secondary 
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prevention against CHD in postmenopausal women. The same is apparently true for 

stroke, since in addition to the WHI study (Rossouw et al. 2002) a few other recent 

studies have found an increased risk of stroke in women using HRT (Grady et al. 2002, 

Viscoli et al. 2001) and also a recent meta-analysis of several trials found a 29 % 

increase in the risk of stroke, especially ischemic stroke, in women using HRT (Bath 

and Gray 2005). Also, the large ERT study of WHI had to be stopped due to the 

increased risk of non-fatal stroke in women treated with estrogen alone (Anderson et al. 

2004). In the mid 90’s, some publications suggested that HRT might increase the risk of 

venous thromboembolism and pulmonary embolism (Daly et al. 1996, Grodstein et al. 

1996, Jick et al. 1996) and these findings were confirmed later by the WHI study 

(Rossouw et al. 2002) reporting about two times higher risk of VTE in women using 

HRT. 

 

ERT’s impact on breast cancer has been widely debated. There is evidence that 

endogenous as well as exogenous estrogen affect the risk of breast cancer (Pike et al. 

1993). A meta-analysis of several epidemiologic trials has shown that HRT indeed 

increases the risk for breast cancer (Collaborative Group on Hormonal Factors in Breast 

Cancer 1997) and this generalization was further clarified by the WHI study (Rossouw 

et al. 2002). These harmful effects of HRT start to occur mainly after about four years 

since the start of the treatment. Interestingly, estrogen combined with progestin seems 

to pose a greater risk for breast cancer than estrogen treatment alone (Beral and Million 

Women Study Collaborators 2003, Li et al. 2003a). It seems that HRT has beneficial 

effects in some forms of cancer, however, since the WHI study (Rossouw et al. 2002) 

was the first to show that CEE+progesterone treatment leads to a decreased incidence of 

colon cancer and later another meta-analysis of 18 different studies confirmed this 

finding by detecting a decrease in colon and rectum cancers in HRT users (Gambacciani 

et al. 2003), with longer treatment proving to be more beneficial. This benefit occurred 

in the users of both estrogen alone or combined with a progestin (Newcomb and Storer 

1995). 

 



46 

2.4.3. Epidemiologic studies on estrogen and Alzheimer’s disease 

Alzheimer’s disease is an age-associated, neurodegenerative disease and the most 

common cause of dementias, usually occurring after 65 years of age. The incidence of 

AD increases after about 60 years of age, being 1 % among 60-64 years old and already 

about 40 % among individuals 85 years or older (von Strauss et al. 1999). The diagnosis 

of AD which is given after the findings of autopsy is based on the assessment of plaque 

frequency (Khachaturian 1985), neurofibrillary pathology stageing (Braak and Braak 

1991) or both (Heyman et al. 1990). The neuropathological changes develop 

progressively, starting from the medial temporal lobes, first in the entorhinal cortex, 

hippocampus and subiculum. At later stages of the disease, the pathology extends to 

other cortical areas, especially association areas, but also to deeper structures of the 

brain such as the brain stem monoaminergic nuclei and cholinergic basal forebrain 

(Geula 1998, Price and Sisodia 1998). 

 

Although a definite diagnosis of AD can not be given before affirmation of the AD-like 

neuropathological findings at autopsy, there are certain criteria for the diagnosis of 

probable AD based on clinical findings. The most prominent clinical feature of AD is a 

progressive loss of cognitive abilities. The cognitive decline typically begins by 

weakening of recent memory, whereas remote memories remain vivid. The memory 

deficit concerns selectively declarative memory, while procedural memory remains 

preserved (Forstl and Kurz 1999), presumably reflecting the severity of pathological 

features of AD, e.g. neuronal loss, especially in cortical and hippocampal areas 

(Cummings et al. 1998). Later on, as the disease progresses, the clinical symptoms 

include also language impairment, agnosias and apraxias and also visual and spatial 

deficits (Rossor et al. 1996), apparently reflecting the progression of the 

neuropathological changes to the associative cortex. 

 

AD is more prevalent in women than in men, by about 1.6 fold, even taking into 

account the fact that women live longer than men (Gao et al. 1998). The gender 

difference seems to be most prominent among patients over 85 years of age (Fratiglioni 

et al. 2000). This fact has provoked researchers to speculate that reproductive hormones 

or the postmenopausal loss of hormones might be involved in this gender difference. In 
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the 90’s altogether 12 case-control and cohort studies were conducted to investigate the 

possibilities of using ERT to prevent AD in postmenopausal women. In ten of these 

studies, women using ERT were found to have a significantly smaller risk of developing 

AD, compared to non-users (Sherwin 2002). Also, two meta-analyses, with somewhat 

different criteria and involving several observational studies, have found 29-34 % 

decreased risk of AD in the women using ERT compared to non-users (LeBlanc et al. 

2001, Yaffe et al. 1998). However, recently published large randomized, double-blind, 

placebo-controlled trials of the WHI found that CEE combined with progestin seemed 

to even increase the risk of probable dementia and not to prevent mild cognitive 

impairment in women of 65 years or older (Shumaker et al. 2003). The results of the 

WHI study on estrogen treatment alone (CEE) proved to be very similar; ERT did not 

reduce the risk of dementia or mild cognitive impairment (Shumaker et al. 2004).  

 

The effects of ERT on the clinical course of AD were also investigated extensively in 

80’s and 90’s, but almost all of these studies suffer from several drawbacks in terms of 

selection criteria of the patients and other biases etc. More recently, more carefully 

executed clinical trials have been conducted. For example, two quite recent prospective, 

multicenter trials found no clinically beneficial effects of ERT on women with probable 

AD, neither with 12-month (Mulnard et al. 2000) nor with 4-month treatment 

(Henderson et al. 2000). Still, some studies have found positive effects with ERT in AD 

patients, e.g. on attention and verbal memory (Asthana et al. 1999) but in this particular 

study the sample size was a mere 12 patients, this same drawback being encountered in 

many of the published studies. 

 

Whereas HRT was claimed to have preventive effects against AD, especially in the 

studies published at 80’s and 90’s, recent epidemiological trials have reported opposite 

effects. There are some fundamental differences between the studies that might account 

for their discrepant findings. First, in many of the studies conducted in the 80’s and 

90’s, there are several confounding factors that might have skewed the results. Many 

studies have been based on population samples, not on placebo-controlled trials and 

therefore the study groups have contained natural biases for the use of HRT. For 

instance, usually women taking HRT were healthier and better educated compared to 
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non-users (Cauley et al. 1990) and these factors per se have been generally recognized 

as being protective factors against AD. Thus, the protective effects of HRT found in 

these studies might be biased by these issues. The recent negative findings of HRT on 

the incidence on AD (Shumaker et al. 2003, Shumaker et al. 2004) seemingly did not 

suffer from the problem of biased study groups, but instead these studies were 

conducted in women already 65 years of age or older, long after the perimenopause, a 

period of life commonly found to be most critical for initiation of HRT to gain its 

beneficial effects. In addition, in the WHI trials (Shumaker et al. 2003, Shumaker et al. 

2004), the HRT consisted either of CEE alone or CEE combined with progesterone. 

CEE, which is a compound extracted from horse urine, contains several forms of 

estrogens and estradiol. CEE is a very common form of estrogen in the HRT provided 

in USA but, for example in Europe, CEE containing HRT preparations are very rare. In 

Europe, the estrogen used in HRT is mainly natural, synthetic estradiol. The difference 

between the different forms of estrogen preparations will need to be evaluated in future 

studies. 

 

Studies examining the effects of ERT on cognition in AD patients have yielded mixed 

results. Several studies have reported that ERT improves cognitive performance, 

especially verbal memory in AD patients (Asthana et al. 1999, Henderson 1997, 

Resnick and Maki 2001), but some recent studies have not found any beneficial effect 

(Henderson et al. 2000, Mulnard et al. 2000, Thal et al. 2003, Wang et al. 2000). 

 

2.4.4. Estrogen and the pathophysiology of Alzheimer’s disease 

The etiological background of AD remains unknown (Smith 1998). The most widely 

accepted theory about AD pathophysiology is the so called Aβ cascade hypothesis 

(Selkoe 2003). This is based on the findings that all known mutations linked with 

familial, early-onset AD, including amyloid precursor protein (APP), presenilin 1 or 2 

(PS1, PS2) mutation, increase the production or aggregation of Aβ (Selkoe 1997).  

 

Aβ is derived from its precursor protein APP by proteolysis and is expressed in very 

small quantities under normal physiological conditions (Haass et al. 1992), but an 

abnormal APP metabolism will lead to increased production of Aβ, a phenomenon 
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characteristic of AD pathology (Selkoe 1997). APP is a transmembrane domain protein, 

expressed throughout the body (Selkoe 1999), having three different isoforms of 695, 

751 and 770 residues in humans, the first of these being the most common form 

expressed in the brain. APP can be metabolized along two different pathways, either via 

the α-secretase pathway or the β-secretase pathway (Hardy 1997). These two pathways 

are illustrated in Fig 5. The deposition of Aβ42 is thought to be an early sign of AD, 

followed later by the deposition of Aβ40 (Jarrett et al. 1993). The neurotoxicity of 

aggregated Aβ is based on its ability to induce activation of the microglia and astrocytes 

surrounding the Aβ depositions causing them to release cytokines and acute-phase 

proteins (McGeer and McGeer 1995) leading to an inflammatory responses in the 

neurons nearby. Other neurotoxic effects of Aβ have also been reported, such as 

disruption of calcium homeostasis (Joseph and Han 1992) and oxidative damage 

(Thomas et al. 1996). It has been suggested that Aβ accumulation might also accelerate 

or induce tau phosphorylation and subsequently the formation of neurofibrillary tangles 

(Selkoe 2001). In summary, these effects may lead to observed synaptic and neuronal 

loss observed in AD (Selkoe 2001). 
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Figure 5. Schematic diagrams the APP protein with the two pathways that process APP. 

(A). APP has a single membrane-spanning domain (TM), and a 17-residue signal 

peptide at the N terminus. The diagram illustrates two APP alternate splice forms, 

APP695 and APP770. (B) α-secretase cleaves APP after residue 687, resulting in the 

secretion of the soluble ectodomain of APP (sAPP-α) into the medium and retention of 

carboxy-terminal fragment C83 in the membrane. The C83 fragment can undergo 

cleavage by γ-secretase at residue 711 or residue 713 to release the p3 peptides. (C) 

Alternatively, β-secretase can cleave APP after residue 671, resulting in the secretion of 

the slightly truncated sAPP-β, and the retention of C99, which can be further cleaved by 

γ-secretase at residue 711 or residue 713 to release the Aβ40 or Aβ42 peptides. 

(Adapted from Selkoe (1999)). 
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One of the neurotransmitter systems most profoundly affected in AD is the cholinergic 

system. Loss of cholinergic neurons in the basal forebrain and decreased acetylcholine 

(ACh) levels are characteristic findings in AD brains (Whitehouse et al. 1982). As 

already mentioned, OVX decreases and estrogen increases the amount of ChAT in the 

rodent brain (Luine et al. 1975). Thus, some of the proposed benefits of estrogen on 

decreasing the incidence or alleviating the symptoms of AD have been claimed to be 

attributable to its effects on cholinergic function. Interestingly, in a post-mortem study 

examining the brains of AD patients, Ishunina and Swaab (2001) found an upregulation 

of ERα in nucleus basalis of Meynert, a crucial brain area in human brain cholinergic 

system.  

 

Another pathological feature of AD which can be modulated by estrogen, is the Aβ 

accumulation. In cell culture models, estrogen has been shown to promote the 

production of the non-amyloidogenic form of APP (sAPP) and to reduce the production 

of Aβ (Jaffe et al. 1994, Xu et al. 1998). Furthermore, even a 50 % increase in Aβ levels 

induced by OVX in guinea pigs, has been partially restored by treatment with estrogen 

for 10 days (Petanceska et al. 2000). In a double transgenic mouse line, i.e. mice with 

mutations in both APP and PS1 and having elevated brain Aβ levels, OVX has been 

found to elevate Aβ levels 3-4 months after the operation (Zheng et al. 2002) and a 50 

% increase was found in Aβ levels in another APP transgenic mice 5 months after OVX 

(Levin-Allerhand and Smith 2002) whereas OVX lasting for 6-8 weeks had no effects 

on brain Aβ levels in the mice of the same strain (Levin-Allerhand et al. 2002). 

Estrogen treatment, on the other hand, has had more uniform effects on Aβ levels. In the 

study by Zheng et al. (2002) the increased Aβ levels in brain of OVX mice were 

partially or fully reversed and similar results were obtained in the study of Levin-

Allerand et al. (2002). Thus, these results indicate that the failure in endogenous 

estrogen production might lead increased levels of brain Aβ and thus to an increased 

risk of developing AD, whereas the estrogen treatment might have a protective effect 

under these conditions.  
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In addition to estrogen’s abilities on modulating Aβ metabolism and the cholinergic 

system, estrogen has been shown to have effects on other characteristics of AD 

pathology, such as oxidative stress and other neuroprotective effects, and these effects 

have been briefly described above (see chapter 2.2.2.). 
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3. AIMS OF THE STUDY 

 

Alzheimer’s disease is more common in women than in men, and it has been proposed 

that the decreasing levels of estrogen in postmenopausal women might have a role in 

this phenomenon. Further, it has been suggested that estrogen treatment might have 

beneficial effects on cognitive performance in postmenopausal women and also that it 

might be able to delay the onset of AD or ameliorate its symptoms. 

 

We wanted to investigate these properties in an experimental mouse model of AD and 

to shed light on some effects of estrogen on cognitive performance. 

 

The specific aims of this study were: 

I) To examine the cognitive effects of long-term, tonic estrogen treatment on two 

cognitive tasks, utilizing two different kinds of memory in adult, ovariectomized mice. 

Also, we wanted to determine the effects of estrogen treatment on the levels of 

hippocampal neurotransmitters. 

 

II) To evaluate whether different modes of estrogen treatment, i.e. tonic vs. phasic 

treatment, would lead to different outcomes in the same tasks as in (I) and whether 

changes in the levels of hippocampal aromatase (CYP 19), ERα and ERβ expression 

would correlate with the cognitive performance. 

 

III) To test whether aging and long-term estrogen depletion could attenuate the 

beneficial effect of estrogen on memory.  

 

IV) To evaluate the effects of long-term tonic estrogen treatment on cognitive 

performance and amyloid beta accumulation in female mice carrying mutated human 

APP and PS1 genes.  
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4. MATERIALS AND METHODS 

 

4.1. Animals 

The strain, gender and age of the mice used in these experiments were as follows: 

Study I: female C57BL/6J (n = 95, weight 20-40g, 7 months of age, Kuopio, Finland) 

and male C57BL/6J mice (n = 26, weight 30-40g, 10 months of age, Kuopio, Finland). 

Study II: female C57BL/6J mice (n = 82, weight 20-40g, 5 or 11 months of age, 

Kuopio, Finland) 

Study III: female C57BL/6J mice (n = 112, weight 22-36g, 7, 11 or 24 months of age, 

Kuopio, Finland) 

Study IV: female APPswe and PS1(A246E) double transgenic mice (AP mice) and 

wild-type C57BL/6J littermates (n = 225, weight 20-40g, 6, 9, 12 or 17 months of age, 

Kuopio, Finland) 

 

The double transgenic AP mice were generated from matings between APPswe and 

PS1(A246E) transgenic mice that were generated by Borchelt et al. (1997) at Johns 

Hopkins University (Baltimore, MD, USA) and are now bred locally in the National 

Laboratory Animal Center of the University of Kuopio.  

 

The mice were individually housed in a controlled environment (temperature 21°C, 

humidity 50-60%, lights: 7:00 –19:00). Food was available ad libitum, except during 

behavioral testing in the radial arm maze and T-maze, when the mice were food 

deprived to 85–90% of their free feeding body weight. Water was freely available at all 

the times. The studies were conducted according to guidelines set by the Council of 

Europe (Directive 86/609) and Finnish guidelines, and approved by the State Provincial 

Office of Eastern Finland. 

 

4.2. Procedures for surgical operations and estrogen treatment 

The ovariectomy was conducted under anesthesia (pentobarbital + chloral hydrate 

(50/50); 36 mg/kg, i.p.). An incision was made in the back and the ovaries were 

removed and the muscles and skin were stitched. The sham animals were given only the 

incision on the skin, but the ovaries were not touched. The estrogen treatment was 

conducted using minipellets containing 0.18 mg of 17β-estradiol (Innovative Research 

of America, Sarasota, FL, USA), releasing estradiol for 90 days (I-IV) or via daily i.p. 
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injections of 17β-estradiol (20µg), diluted in sesame oil (II). The pellets were implanted 

s.c. in the upper neck under anesthesia (pentobarbital + chloral hydrate (50/50); 36 

mg/kg, i.p.). The non-treated control animals were given only an incision in the skin. 

After each experiment the mice were sacrificed by cervical dislocation and the uterine 

weights were measured for female mice. 

 

4.3. Behavioral testing 

4.3.1. Radial arm maze (I-IV) 

The 8-arm radial arm maze (RAM) was located in a dimly lit room with a rich 

environment of extra-maze cues. The RAM (Crusio et al. 1987) had a central platform 

(diameter 20 cm) and 8 arms (30 cm x 6 cm), which all have walls (6 cm high) made of 

transparent plexiglas. The 8 arms were separated from the central platform with 

guillotine doors. A 2 cm high opaque plastic sheet located 7 cm from the distal end of 

each arm prevented the mouse from seeing the food reward. To prevent the use of 

olfaction as a guide to the baited arm, the stock of rice cereal used as rewards was 

placed behind a perforated wall 3.5 cm from the distal end of the arm. The mice were 

first familiarized with the RAM by letting them explore it freely, all arms open for 10 

min on two days, during which time the food reward was available at the end of each 

arm. The task itself was a simplified version of the Jarrard’s (1978) 4 baited, 4 non-

baited arms RAM task. The RAM version used in this study (1 baited, 7 non-baited 

arms) makes a distinction between reference memory errors as initial visits to non-

baited arms and working memory errors as subsequent visits to non-baited arms during 

the same trial. After familiarization, the mice were trained to enter one baited arm of the 

maze and to avoid the remaining seven non-baited arms. The baited arm remained the 

same throughout the testing. Each trial began with the placement of the mouse on the 

center platform with all doors closed. After 5 s, all doors were opened. Each trial was 

completed when the mouse reached the end of the baited arm and returned to the center 

platform after consuming the food reward. A 30 s intertrial interval was introduced 

before the start of the next trial. The mice were given eight daily trials (each consisting 

of the total number of arm visits required until the mouse found the food reward) and 

trained for five days. The number of reference and working memory errors were 

recorded separately. Earlier findings in our laboratory indicate that mice first learn to 

avoid re-entering the same arms, and only slowly learn to prefer the baited arm. 
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Furthermore, in this task, dorsal hippocampal lesions in mice increase the number of 

working memory errors but not reference memory errors (Rissanen 1999). 

 

4.3.2. T-maze (I-IV) 

The T-maze consisted of a stem (38 cm x 7 cm) and two arms (35 cm x 7 cm). A sliding 

door separated the first 11 cm of the stem as the starting compartment, and a door at the 

each arm separated the arm from the stem 8.5 cm from the intersection. The walls were 

painted black and were 14 cm high to encourage the use of an egocentric response 

strategy. The source of illumination was an incandescent light located above the stem of 

the maze. The mice were first familiarized to the T-maze for two days by letting them 

freely explore it for 10 min until they repeatedly located and ate the rewards (rice 

cereals) at both arms of the maze. After two days of pretraining, testing was conducted 

as follows. In the initial trial of the first testing day, both arms of the maze were 

rewarded to test the spontaneous turning preference of the animal. After this trial, the 

arm that the mouse had not spontaneously selected was rewarded for 15 consecutive 

trials. A 1-min intertrial interval was introduced between the trials during which time 

the animal was confined in the starting compartment. At the beginning of each trial, the 

animal was given 5 s to leave the starting compartment. If this did not happen, the 

mouse was encouraged to start by gently pushing it with a paintbrush (encouraged 

start). The rewarded arm remained the same for all three days of testing. The following 

parameters were recorded: the number of correct choices and the number of trials that 

the mouse had to be encouraged to start. Previous studies in our lab indicate that a 

fimbria-fornix lesion does not affect performance in this task, so we use it as a control 

memory task that should be independent of hippocampal functioning (Liu et al. 2002). 

 

4.3.3. Morris water maze (IV) 

We used a black plastic circular pool, diameter 120 cm, and a black painted stainless 

steel square platform; 14 x 14 cm, 1.0 cm below the water line. The platform was 

located in one of the four quadrants halfway between the wall and pool center. The 

starting locations, which were labeled North, South, East and West, were located 

arbitrarily on the pool rim. The timing of the latency to find the submerged platform 

was started and ended by the experimenter. A computer connected to an image analyzer 

(HVS Image, Hampton, UK) monitored the swim pattern. Mice were placed in the 

water with their noses pointing towards the wall at one of the starting points in a 
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random manner. If the mouse failed to find the platform within the maximum time, it 

was placed there by the experimenter. Mice were allowed to stay on the platform for 10 

s. A 30 s recovery period was allowed between the training trials. The temperature of 

the water was kept constant throughout the experiment (20.0 ± 0.5 °C). The training 

schedule consisted of 7 consecutive days of testing. During the two first days of testing, 

the mice were trained with a visible platform for five 50 s trials per day. During visible 

platform training, the platform location was changed after each trial. During the 5 

following days of testing, the mice were trained with the hidden platform for five 50 s 

trials per day. The platform location was kept constant during this period of training. 

After the fifth trial on the seventh day, the platform was removed and the mice were 

allowed to swim for 50 s. During the platform training trials, the swim speed, path 

length and latency to find the platform were measured. Because of the significant 

treatment effect on swim speed, only path length was used in the statistical analyses. 

During the spatial probe trial, the time spent in the target quadrant in which the platform 

had previously been located was measured. The spatial version of the task is sensitive 

for detecting hippocampal learning whereas the cued version is used as a control task, 

detecting possible motor or visual dysfunctions. 

 

4.4. Other measurements 

4.4.1. Neurochemistry (I) 

After all behavioral testing, the mice were sacrificed by cervical dislocation and the 

body and uterus weights were measured. The brains were removed and dissected on ice 

for later neurochemical measurements. The hippocampal noradrenaline (NA), 5-

hydroxytryptamine (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), dopamine (DA), and 

dihydroxyphenylacetic acid (DOPAC) levels were determined using high-performance 

liquid chromatography (HPLC) with electrochemical detection as previously described 

(Jakala et al. 1992). The hippocampal ChAT activity levels were measured using a 

radiochemical method as described earlier (Fonnum 1975). 

 

4.4.2. Expression analyses 

The reverse transcription polymerase procedure was performed using TaqMan® Reverse 

Transcription Reagents Kit (Applied Biosystems) to generate cDNA in a 25 µl reaction 

volume from 0.5 µg of total RNA. Relative quantifications of mouse CYP19, ERα and 

ERβ were calculated using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as 
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the endogenous control. Real-time quantification of CYP19, ERα and ERβ gene 

expressions were carried out using ABI PRISM® 7000 Sequence Detection System with 

FAM dye-labeled fluorescent assays (Assays-On-Demand™ Gene Expression Products, 

Applied Biosystems), and the endogenous control gene, GAPDH with VIC dye-labeled 

TaqMan® Rodent GAPDH Control Reagents kit (Applied Biosystems). Amplifications 

were performed in singleplex reactions with 10 to 40 ng cDNA in a 15 µl reaction 

volume with PCR cycling from 40 to 44 cycles. The amplification of GAPDH was 

performed with 50 nM GAPDH primers and 200 nM GAPDH probe. 

 

4.4.3. Serum estradiol levels (II) 

For the measurement of serum estradiol levels, the blood samples were collected from 

the femoral vein and finally by cardiac puncture. The serum was separated by 

centrifugation and stored at –20°C until estradiol measurement. The serum estradiol 

concentrations were measured using commercial RIA kits (Wallac Delfia; Perkin Elmer, 

Turku, Finland) as described in Rulli et al. (2002). 

 

4.4.4. Aβ40 and Aβ42 ELISAs (IV) 

The hippocampi were homogenized in guanidine buffer (5.0 M guanidine-HCl/50 mM 

Tris-HCl, pH 8.0) in proportion to their weight. The samples and Aβ-peptides used as 

standards were prepared to contain 0.5 M guanidine-0.5% BSA-1 mM AEBSF in the 

final composition. The levels of Aβ40 and Aβ42 were quantified using the Signal 

Select™ Beta Amyloid ELISA Kits for human Aβ (BioSource International Inc.) 

according to the manufacturer’s protocol. The Aβ40 and Aβ42 levels were standardized 

to brain tissue weight and expressed as ng (Aβ)/g (brain tissue).  

 

4.5. Experimental design 

Study I 

10-month-old male (n = 26) and 7-month-old female (n = 95) C57BL/6J mice were used 

in this study. The female mice were sham-operated (SHAM) or ovariectomized (OVX) 

at the age of 3 months. Two groups from both SHAM and OVX mice were treated with 

subcutaneous estrogen pellets, which were implanted 7 days (SHAM/OVX + 7 days E) 

or 40 days (SHAM/OVX + 40 days E) before behavioral testing was started at the age 

of 7 months. One group of male mice received estrogen pellets 7 days before behavioral 
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testing at the age of 10 months, while the control male group was left intact. The mice 

were tested in RAM and the position discrimination task in the T-maze. After the 

behavioral tasks were completed, the mice were sacrificed and the hippocampi were 

removed for the measurement of the monoamines. 

 

Study II 

This study consists of two experiments, referred to as Experiment I and Experiment II. 

In both experiments the mice were ovariectomized (OVX) at the age of three months. 

The OVX mice received estrogen treatment for the last five weeks of their lifetime and 

the control groups of OVX mice were given a placebo treatment. The estrogen was 

administered either via daily injections (i.p., one hour prior to behavioural testing) (n = 

11) (Experiment I) or via subcutaneously implanted estrogen pellets (n = 10) 

(Experiment II). The mice were tested in RAM and the position discrimination task in 

the T-maze. The mice were killed at the age of 4.5 months in Experiment I and at the 

age.of 11 months in Experiment II. The serum estradiol levels were measured using the 

DELFIA kit in an additional group of OVX mice with similar estrogen treatments as in 

Experiment I and II. For reverse transcription polymerase chain reaction (RT-PCR) 

analysis, the brain was removed and hippocampi were dissected. Brain samples were 

frozen in liquid nitrogen and then stored in -70ºC until RNA extraction. 

 

Study III 

Female (n = 112; 7, 11 or 24 months of age when tested) C57BL/6J mice were used in 

this study. This study consisted of two experiments, Experiment I and Experiment II. In 

Experiment I, the mice (n = 38) were either OVX or sham-operated (SHAM) at the age 

of 5 months. At the age of 23 months, i.e. 18 months after the operation, half of the 

OVX (OVX+E, n = 14) and SHAM (SHAM+E, n = 6) mice were treated with estradiol 

containing minipellets, while the other half was left untreated (OVX-group, n = 11; 

SHAM-group, n = 7). Treatment with estrogen pellets was started 40 days before the 

behavioral testing and continued throughout the testing. The animals were tested in 

RAM and T-maze at age of 24 months. The effects of estrogen treatment on maze 

learning in 24-month-old OVX mice in this study were compared to the earlier results 

Study I.  
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Experiment II consisted of only SHAM and OVX mice tested at different ages (7, 11 

and 24 months of age) and concomitantly after different OVX durations (4, 8 and 19 

months, respectively): 7-month-old mice from Study I, (SHAM: n = 28, OVX: n = 14, 

OVX duration 4 months), 11-month-old mice (SHAM: n = 16, OVX: n = 16, OVX 

duration 8 months) and 24-month-old mice from Experiment I (SHAM: n = 7, OVX: n 

= 11, OVX duration 19 months). The performance of the mice in RAM was compared 

in Experiment II. 

 

Study IV 

Four age groups (3-6, 6-9, 9-12, and 14-17 months of age) AP and control mice were 

used. Behavioral analyses were performed for the three youngest age groups (3-12 

months), histological analyses for two age groups (9-12 and 14-17 months) and 

biochemical analyses for all four age groups. All the control mice were sham-operated 

(SHAM), whereas the AP mice were either sham-operated or ovariectomized (OVX) at 

the age of 3 months. In the behaviorally tested age groups, half of the AP OVX mice 

(AP OVX+E) and in the oldest group (14-17 months), half of the AP SHAM mice (AP 

SHAM+E) received estrogen treatment for the last 3 months of their lifetime. 

Accordingly, the following treatment groups were used: 3-12 months old mice: control 

SHAM, AP SHAM, AP OVX and AP OVX+E; 14-17 months old mice: control SHAM, 

AP SHAM, AP SHAM+E and AP OVX. The estrogen was administered via 

subcutaneously implanted estrogen pellets. The behavioral testing in T-maze, water 

maze and RAM was started two months after the initiation of estrogen treatment in AP 

OVX mice and one month before the mice were killed at the age of 6, 9 or 12 months. 

The AP mice were used for behavior (n = 167), for brain Aβ biochemistry (n = 143) 

and/or histology (n = 75). For biochemical measurements, the A/P mice were killed by 

cervical dislocation, the brain was removed and the hippocampi were dissected. Brain 

samples were then frozen in liquid nitrogen and stored at -70ºC until hippocampal Aβ40 

and Aβ42 levels were determined using ELISA. The histological amyloid plaque 

measurements were performed on AP mice at the ages of 9 (age of appearance of first 

amyloid plaques) and 17 (age of abundant amyloid deposition) months. At the age of 9 

months, the mice (n = 25) were transcardially perfused. At the age of 17 months (n = 

50), the mice were killed by cervical dislocation, and one hemibrain was immersed in 

paraformaldehyde, while the other hemibrain was dissected to frozen samples. 
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4.6. Statistical analyses 

All statistical analyses were carried out using SPSS for Windows software (versions 8.0 

- 11.5, SPSS Inc., USA). The effects of mouse age, surgery, estrogen treatment, mouse 

genotype and their interactions with behavioral measures (RAM, T-maze and water 

maze) were analyzed using univariate analysis of variance (ANOVA) or General Linear 

Model for repeated measures (rmANOVA). The neurochemical variables, body and 

uterus weights and Aβ levels were analyzed with t-test or ANOVA. The correlations 

between behavioral measures and neurochemical variables, ER contents or Aβ levels 

were analyzed with either Pearson’s or Spearman’s correlation analysis. 
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5. RESULTS 

 

5.1. Effects of ovariectomy and estrogen treatment on maze learning and 

hippocampal neurotransmitters 

5.1.1. Findings in the memory tasks 

In RAM, the female mice improved their performance during training days as measured 

by the decrease in the number of reference and working memory. The numbers of 

working and reference memory errors were higher in OVX than in SHAM (I, Fig. 

1B,E). The rmANOVA also revealed an overall estrogen treatment effect on both 

reference and working memory errors and there was an operation by treatment 

interaction in working memory errors (I, Fig. 1B,E). A further comparison of working 

memory errors individually in the OVX and SHAM groups revealed a significant 

difference between treatment groups among OVX mice and a marginally significant 

treatment effect in SHAM (I, Fig. 1). The subsequent contrast analysis indicated that in 

the OVX group, the mice receiving 7 days of estrogen treatment made less working 

memory errors than non-treated mice, and the mice given 40 days of estrogen treatment 

made less errors than non-treated mice and mice with 7 days of treatment. The male 

mice improved their performance over the training days as well, as measured in a 

decrease in the number of reference and working memory errors. The rmANOVA also 

revealed an overall estrogen treatment effect and day by treatment interaction in 

working memory errors. The estrogen main effect on working memory errors was 

largely due to a group difference on the first training day, which was confirmed by t-test 

on the individual training days (I, Fig. 1F). 

 

In the T-maze, the female mice improved their performance over the training days as 

measured by an increase in the number of correct choices. The rmANOVA showed an 

overall estrogen treatment effect and operation by treatment interaction. An individual 

analysis of the OVX and SHAM groups revealed a significant difference between the 

treatment groups in the number of correct choices among OVX mice (I, Fig. 2A,B). The 

subsequent contrast analysis indicated that in the OVX mice both the short- (7 days) and 

long-term (40 days) estrogen treatments increased the number of correct choices 

compared to no treatment. The ANOVA revealed an overall estrogen treatment effect 

on the number of encouraged starts and an operation by treatment interaction. An 

individual analysis of the OVX and SHAM groups revealed a significant difference 
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between treatment groups in encouraged starts among OVX mice. The numbers of 

encouraged starts for different groups are displayed in I, page 27. The male mice 

improved their performance over the training days as measured by an increase in the 

correct choices. The analysis also revealed a day by treatment interaction in correct 

choices (I, Fig. 2C), which was due to a different slope of the learning curves of the 

treatment groups. There was no difference in the number of encouraged starts between 

treatment groups. 

 

5.1.2. Neurochemistry 

The effects of operation, treatment and their interaction on hippocampal neurochemistry 

in female mice are summarized in Table 1 (I). In the male mice, there was no difference 

in the hippocampal ChAT activity between estrogen-treated and non-treated male mice. 

When the neurochemical parameters were used as covariates in the rmANOVA of T-

maze and RAM data, no significant effects for covariates were found (data not shown). 

 

5.2. Effects of estradiol on spatial learning, hippocampal aromatase, and estrogen 

alpha and beta mRNA levels 

5.2.1. Findings in the memory tasks 

The animals improved their performance in RAM during the testing days as measured 

by the decreased number of both working memory errors and reference memory in both 

Experiment I and Experiment II. There were no differences between the groups in 

working memory errors either in Experiment I (Fig. 6A) or Experiment II (Fig. 6D). 

With respect to reference memory errors, there were no differences between the groups 

in Experiment I (Fig. 6B), but in Experiment II the mice receiving tonic ERT 

outperformed the OVX mice (Fig. 6E).  

 

The animals improved their performance in the T-maze during the testing days as 

measured by the decreased number of errors in Experiment II, whereas in Experiment I 

no improved performance could be detected. In Experiment I, there was a non-

significant trend toward better performance in OVX mice compared with mice treated 

with phasic ERT (Fig. 6C), whereas in Experiment II there were no differences between 

the groups  (Fig. 6F). 
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Figure 6. Effects of ovariectomy (OVX) and estrogen treatment on RAM and T-maze 

performance. Lines represent means of daily number of errors and ± SEMs over five 

testing days in RAM (working memory errors: AD; reference memory errors: BE) and 

over three testing days in T-maze (T-maze errors: CF); ** < 0.01. 

 

5.2.2. CYP19, ERα and ERβ expression 

In Experiment I, the phasic ERT decreased significantly CYP19 expression by 51% and 

ERα expression by 47%, whereas the small change in ERβ expression was not 

significant (II, Fig. 2A). In Experiment II, the tonic ERT increased significantly CYP19 

expression by 69%, ERα expression by 86% and ERβ expression by 51% (II, Fig. 2B). 

In Experiment I, the phasic ERT decreased the ERα/ERβ ratio by 42% compared with 

the OVX  group, but the ratio remained almost the same in OVX mice with or without 

tonic ERT (Experiment II). The correlations between measures of maze learning and 

hippocampal CYP19, ERα and ERβ gene expressions were also examined (II, Tables 3 
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and 4). The only significant correlation was found in Experiment II between RAM 

reference memory errors and ERα expression (II, Table 4), such that few reference 

memory errors in the RAM correlated with high levels of hippocampal ERα gene 

expression. 

 

5.3. Effects of long-term ovariectomy and estrogen treatment on maze learning in 

ures for RAM performance in Experiment I, the three-way ANOVA with 7- 

, the three-way ANOVA revealed significant estrogen and age by 

 

aged mice 

In the meas

and 24-month-old mice combined revealed significant estrogen, operation, and age by 

operation interaction effects on the numbers of reference memory errors. Moreover, the 

age by treatment interaction also approached significance. When the working memory 

errors were analyzed, significant estrogen, age by operation and age by treatment 

interaction effects were found. Since age was a significant factor in all interactions, we 

continued the analysis separately for each age group. The analysis for the 7-month-old 

mice was previously published in (I) and is only summarized for comparison in Fig. 7. 

Among the 24-month-old mice, estrogen treatment decreased the number of reference 

memory errors similarly in SHAM and OVX groups (Fig. 7A) but had no effect on 

working memory errors in the RAM (Fig. 7B). An operation main effect was found on 

working memory errors, such that the sham-operated mice (SHAM and SHAM+E 

groups) performed worse than the OVX mice (OVX and OVX+E groups) (Fig. 7B). 

  

In the T-maze

treatment interaction effects and an almost significant effect of operation were found. 

We continued the analysis separately for each age group. The analysis for the 7-month-

old mice was previously published in (I) and is only summarized for comparison in Fig. 

7. In the 24-month-old mice, estrogen treatment and operation had no effect on number 

of correct choices in the T-maze (Fig. 7C). However, the treatment by operation 

interaction approached significance due to the improved performance of OVX+E mice 

and the slight impairment of SHAM+E mice. Whereas estrogen treatment had a major 

impact on maze learning in 7-month-old mice, its effects in 24-month-old animals were 

only marginal. 
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ffects of estrogen treatment on RAM and T-maze performance in 7-m

 

Figure 7. E onth-

ld and 24-month-old mice. The female OVX mice were treated with s.c. estrogen o

pellets (0.18 mg of 17β-estradiol) for 40 days (OVX + E and SHAM + E) before 

testing. Results are group means ± SEMs. The Y-axis scores for the RAM task are the 

total number of errors during 5 days, while those for the T-maze task are the total 

number of correct choices during 3 days. # significantly different from the OVX group, 

t-test (# P < 0.05, ## P < 0.01, ### P < 0.001); * significantly different from the SHAM 
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group (* P < 0.05, ** P < 0.01, *** P < 0.001). The dashed line represents chance level 

in reference memory errors. 

 

In the aging study (Experiment II), the numbers of reference and working memory 

.4. Effects of estrogen treatment on spatial learning, hippocampal Aβ 

rom all behaviorally tested age groups showed no 

 the combined data of the water maze, the ANOVA showed that AP SHAM mice had 

errors were higher in OVX than in SHAM mice (III, Fig. 2). However, the ANOVA 

also revealed a highly significant operation by age interaction in working memory errors 

and marginally significant interaction in reference memory errors. Individual analysis of 

separate age groups showed that OVX increased the number of reference and working 

memory errors significantly only among 7-month-old mice but not among 11- and 24-

month-old mice (III, Fig. 2A,B). While ovariectomy had a major effect on maze 

learning in 7-month-old mice, its effects in 11- and 24-month-old animals were only 

marginal. 

 

5

accumulation and plaque formation in AP mice 

5.4.1. Findings in the memory tasks 

The analysis of pooled T-maze data f

overall difference in the number of correct choices between control and AP SHAM 

mice. Moreover, there was no genotype by age interaction (IV, Figs. 1A–C). However, 

a significant treatment effect and a treatment by age interaction were found. The 

subsequent post-hoc test revealed that AP OVX + E mice made significantly more 

correct choices than AP OVX mice. The treatment by age interaction likely derives 

from the finding that at the older ages (9 and 12 months; IV, Figs. 1B–C), the AP OVX 

mice performed worse than the other two groups, whereas at 6 months (IV, Fig. 1A), the 

three groups performed rather similarly. 

 

In

longer escape distances than control mice in both visible and hidden platform tasks (IV, 

Figs. 2A–C). In the visible platform task, no treatment effect was found on escape 

distance, whereas in the hidden platform task, the treatment effect and the treatment by 

age interaction approached significance. These effects are most likely derived from the 

robust impairment of the OVX group at 6 months of age (IV, Fig. 2A) and their slight 

impairment at 9 months of age (IV, Fig. 2B) since the groups behaved similarly at 12 

months of age (IV, Fig. 2C). The spatial memory impairment in AP mice was confirmed 
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by the probe test revealing that AP SHAM mice spent less time in the target quadrant 

compared to control mice at the age of 12 but not at 6 or 9 months (Fig. 8A). However, 

there was no treatment effect on probe trial performance. At the age of 12 months, the 

spatial search bias of AP mice (all three treatment groups pooled) correlated negatively 

with both hippocampal total Aβ40 and Aβ42 levels (Fig. 8B). There was no difference 

between the genotypes in the swim speed (data not shown). In the visible platform 

subtest, no treatment effect was found on the swim speed (data not shown), whereas 

during hidden platform training, the treatment effect was significant (data not shown). 

The post-hoc test revealed that the AP OVX + E group was significantly slower than the 

AP SHAM group and nonsignificantly slower than AP OVX group. 

 

 
 

igure 8. (A) Effects of genotype (control, CO vs. A/P), ovariectomy, and estrogen F

treatment on the probe trial performance of water maze. In time spent in target quadrant, 

the control mice performed better than A/P SHAM mice at the age of 12 months (# p = 

0.011). Results are group means ± SEMs (the dashed line represents chance level). (B) 
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At the age of 12 months, the spatial search bias of A/P mice correlated negatively with 

both hippocampal total Aβ40 (r = -0.36, p = 0.02) and Aβ42 levels (r = -0.39, p = 0.01). 

 

The number of working memory errors in the RAM was not affected by genotype (IV, 

Figs. 4A–C). However, control mice made more reference memory errors than AP 

SHAM mice (IV, Figs. 4D–F). There was no genotype by age interaction effect on the 

RAM performance. In the pooled analysis of all age groups, the treatment effect was 

significant for the reference memory errors and approached significance for working 

memory errors. These treatment effects are largely due to the superior performance of 6- 

month-old AP OVX + E mice compared to the two other groups (IV, Figs. 4A, D). 

 

5.4.2. Hippocampal Aβ40 and Aβ42 levels and amyloid plaque counts 

In AP mice, the amyloid levels increased dramatically with age. The 17-month-old AP 

SHAM mice had about 50 times higher hippocampal Aβ40 and 40 times higher Aβ42 

levels than 6-month-old AP SHAM mice. The hippocampal Aβ40 and Aβ42 levels were 

below the detection level in all control mice at all ages. In the pooled data of all age 

groups, ovariectomy did not influence hippocampal levels of Aβ40 or Aβ42 when A/P 

SHAM and OVX mice were compared (IV, Table 1). No treatment by age interaction 

was found, indicating that there was a similar increase of Aβ40 and Aβ42 levels during 

aging in the SHAM and OVX groups. The comparison between AP OVX and estrogen-

treated mice (both OVX + E and SHAM + E) revealed no effect of estrogen on the 

hippocampal levels of Aβ40 or Aβ42 (IV, Table 1). Moreover, the age-related increase 

in Aβ40 and Aβ42 levels was similar in OVX and estrogen-treated groups (no treatment 

by age interaction). Also, the separate t-tests between SHAM versus OVX and OVX 

versus OVX + E groups did not reveal differences in the Aβ40 and Aβ42 levels at any 

age. Finally, there were no differences in the Aβ40 and Aβ42 levels between SHAM 

and SHAM + E mice at 17 months of age (IV, Table 1). 

 

The 17-month-old AP SHAM mice had about 15 times more hippocampal amyloid 

plaques than the 9-month-old AP SHAM mice. There were no differences in the plaque 

counts between the treatment groups (SHAM, OVX, and estrogen treatment) at the age 

of 9 or 17 months. Amyloid plaque counts between SHAM and SHAM + E mice at the 

age of 17 months did not differ (IV, Table 1). 
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6. DISCUSSION 

 

6.1. Methodological considerations 

6.1.1. The animal model 

Traditionally rats have been used most often in behavioral assessment of learning and 

memory in rodents. During recent years use of mice has become more and more 

common, due to the increasing numbers of different kinds of gene manipulated mouse 

lines, offering tools to examine molecular mechanisms of leaning and memory, as well 

as the pathological hallmarks of neurological diseases. When the studies of this thesis 

were started, the goal was to accumulate basic knowledge of the possibilities of 

estrogen treatment to modulate the cognitive processes and characteristics in normal 

mice and the mice carrying AD-like pathology, namely the double transgenic APPswe 

and PS1(A246E) mice. These mice have elevated levels of the fibrillogenic Aβ42 in the 

brain and they develop amyloid plaques from the 9 months of age (Borchelt et al. 1997). 

The plaque formation starts from the subiculum, hippocampus and caudal cortex and 

then extends to other cortical areas, thus resembling the neuropathological changes 

occurring in early AD (Braak and Braak 1991). Therefore, the obvious choice was to 

first characterize the properties of estrogen treatment on cognition in normal mice, in 

order to appropriately evaluate the potency of estrogen on the same characteristics in 

transgenic mice. 

 

6.1.2. Evaluation of ovariectomy and estrogen treatment 

The objective and advantages of using OVX as a model for postmenopausal state in 

rodents have already been described above (see chapter 2.4.1.). Briefly, this operation 

leads to depletion of endogenous estrogen and, when performed on young or middle-

aged rodents, ovariectomy represents a tool to study the physiological responses of 

estrogen depletion only, separated from those of the aging process that naturally are 

related to perimenopausal age. On the other hand, the postmenopausal state in women 

obviously includes the possible contributing of aging in cognition. Therefore, we 

wanted to examine the effects of OVX and ERT on learning and memory also in aged 

mice (III). 

 

The continuous ERT produced by the s.c. estradiol pellets (I-IV) was chosen to 

resemble the chronic transdermal estrogen administration in postmenopausal women 
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ranging from weeks to months. For comparison, the phasic ERT (II) was chosen to 

reveal the effects of a treatment analogous to ’phasic’ orally administered ERT. It is 

essential to acknowledge here that most often HRT in women consists of estrogen 

combined with progesterone. However, treatment with estrogen alone is not uncommon, 

and the aim of thesis was to determine the contribution of estrogen alone to cognitive 

performance. 

 

6.1.3. Choice for hippocampal neurochemistry and ER and aromatase expression 

As described above, estrogen has been shown to modulate the cholinergic and 

monoaminergic systems in the brain. Therefore, our aim was to elucidate the 

contribution of estrogen depletion and ERT to the measures of the metabolites of these 

neurotransmitter systems in the hippocampus and correlate them with the behavioral 

measures (I). To date, limited data is available about the contribution of the different ER 

subtypes, ERα and ERβ on learning and memory. In this study, the interest was on 

whether the gene expression measures of hippocampal ERs would correlate with the 

measures of learning in the RAM and T-maze. For gene expression measurements, we 

chose to take samples from the hippocampus, as this is the brain site (in addition to 

hypothalamus and cholinergic basal forebrain) with the largest reported number of 

estrogen receptors and which is most responsive to estrogen manipulation, and often the 

only target that has been evaluated as well. In addition to the ER measurements, we 

were interested to examine the effects of different kinds of estrogen manipulation also 

on hippocampal aromatase expression since brain is capable of synthesizing estrogen 

also locally. A key player in estrogen biosynthesis is the aromatase enzyme that is 

encoded by the cytochrome P450 19 (CYP19) gene, an enzyme converting androgens to 

estrogens. This enzyme is synthesized in neurons and astrocytes. Thus, we wanted to 

determine whether the effects of estrogen treatment could be mediated indirectly via 

local estrogen biosynthesis. 

 

6.1.4. Choice of the memory tasks 

The one-arm-baited version of RAM used in this study is not a commonly used version 

of the task. Most often four out of eight arms of RAM are baited to make the distinction 

between visits to never baited arms and re-entries to once baited arms. However, based 

on our previous study, the four-arms-baited RAM proved to be difficult for mice to 

learn, requiring several weeks of training (Ikonen and Riekkinen 1999). To allow 
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testing of same mice in more than one task during a one-month test period, we decided 

to modify the task so that it could be completed within a week. The working memory 

component of RAM is sensitive to hippocampal damage (Rissanen 1999), so this task 

was used as a hippocampal task, although including also the reference memory 

component which is presumably dependent on non-hippocampal, probably striatal 

functioning. 

 

The position discrimination in the T-maze was chosen as a control task that, unlike 

RAM (I-IV) and water maze (IV), did not rely on the hippocampus for successful task 

completion. This task represents a typical reponse habit learning task, in which lesions 

to caudate-putamen have been shown to impair the performance (Oliveira et al. 1997). 

 

The Morris water maze (IV) is a spatial memory task, consisting of two different 

components, the cued learning and the spatial learning. The cued version of the task is 

used as a control for the spatial version and evaluates the possible visual or motor 

impairments of the subject. The spatial task, in contrast, is based on the animal’s ability 

to navigate to the platform using the spatial cues in the testing environment and it is a 

task which demands intact hippocampal functioning. Thus, it is a task reflecting the 

animal’s ability to learn spatial relations and can be understood as a task detecting 

memory of a declarative nature. 

 

6.2. Effects of ovariectomy and estrogen treatment on learning and memory in 

normal mice 

The attempt to evaluate the effects of estrogen on such a complex phenomenon as 

learning and memory is a demanding task. First of all, estrogen alone exerts its effects 

throughout the body, and the effects on brain alone are very extensive. Therefore, the 

possible contribution of all the physiological effects – in addition to those related 

directly to learning and memory per se – possibly affecting the performance in the tests 

measuring learning and memory, must be carefully taken into consideration. 

 

The main findings with the normal mice examined in this study were the contrasting 

effects of ovariectomy and estrogen treatment on maze learning. Ovariectomy impaired 

and estrogen treatment improved acquisition of the RAM task, not only in OVX mice 

but also in SHAM female and male mice. However, estrogen treatment improved 
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acquisition of the T-maze task only in OVX mice. This improvement induced by the 

estrogen treatment was even more pronounced in the mice with the longer, 40-day 

treatment than in the mice with the shorter, 7-day treatment. Also, five weeks of tonic 

ERT via the pellet implant decreased the amount of reference memory errors in RAM, 

whereas five weeks of daily injections of estrogen (20 microg) slightly impaired the 

performance in the T-maze. 

 

Based on lesion studies, some, but not all, of estrogen effects found in the present study 

could be mediated by the hippocampus. Acquisition of the 1/8 RAM task employed in 

the present study as well as the more widely used 4/8 RAM task (Jarrard 1978) consists 

of two learning processes. The animal learns to avoid arms that remain nonbaited across 

days (as measured by so-called reference memory errors) and to avoid re-entries into 

visited arms (as measured by so-called working memory errors). In the 1/8 RAM task, 

mice learn quickly to avoid reentries into the same arms and seldom make working 

memory errors after the first 2 days of task acquisition. On the other hand, mice learn 

quite slowly to go straight to the only baited arm and visit on average three other arms 

before the baited one even on the fifth day of training. Like in the 8/8 and 4/8 -baited 

versions of the RAM, the number of working memory errors are increased by dorsal 

hippocampal lesion in mice in the 1/8 RAM (Rissanen 1999). On the other hand, 

hippocampal lesions in mice also have been shown to increase reference memory errors 

in the RAM version with 3/8 or 4/8 constantly baited arms but not with the 1/8 baited 

version employed in the present study (Cho and Jaffard 1995, Rissanen 1999). On the 

contrary, a previous study in our lab (Liu et al. 2002) showed that a fimbria-fornix 

lesion slightly improved acquisition of position discrimination in the T-maze. 

Therefore, the beneficial learning effects of chronic estrogen treatment are likely to be 

mediated also through other brain areas in addition to the hippocampus. One brain area 

possibly involved is the striatum, since damage to the dorsal striatum has been found to 

increase the number of reference memory errors in rats in the RAM (Colombo et al. 

1989). Furthermore, position discrimination in T-maze, which can be considered as an 

egocentric memory task, requires intact functioning of the striatum (Oliveira et al. 

1997). 

 

There is some evidence that the preference for the strategy to complete a memory task 

may differ depending on the blood estrogen levels in female rodents (Korol and Kolo 
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2002). Many spatial tasks can be resolved by either a hippocampal dependent place 

strategy or a striatum dependent response strategy. The 1/8 RAM employed in this 

study presumably gives the animal an opportunity to complete the task successfully by 

using either one, whereas the T-maze task is more clearly a procedural, response 

learning task. Therefore, an attempt to couple the somewhat different findings in RAM 

and T-maze with each other could lead to a more comprehensive view of the effects of 

estrogen on cognition. Korol and her colleagues (2004), using a rotated T-maze task 

allowing the use of either a spatial or response strategy, found that rats with high 

estrogen levels outperform the estrogen deprived controls in tasks requiring an 

allocentric place strategy, whereas rats with low or very low estrogen levels prefer to 

use the procedural response strategy. Sava and Markus (2005) using a water maze task 

with either distant or local cues near the goal in the pool, examined the different 

learning capabilities of rats during different stages of the estrous cycle. They noted that 

the rats during estrus depend more on the cue near the goal whereas rats in proestrus use 

also the more distant cues when navigating to the goal. Thus, the dependence on the 

local cue could suggest the use of a response learning strategy whereas the use of a 

wider range of cues could be evidence for a spatial strategy. Together, these examples 

would suggest that the hippocampus may be more sensitive to estrogenic manipulation 

than the striatum. 

  

According to our measurements, after two weeks of pellet implantation the serum 

estradiol levels were 136 pg/ml and five weeks after the implantation 65 pg/ml on 

average (II, Table 4). This implies that, in contrast to the information given by the 

manufacturer (IRA, Sarasota, FL, USA), these pellets do not deliver estradiol at a 

constant level, but the amount of delivered estradiol is higher at the beginning of the 

treatment and slowly declined towards the end of the treatment. However, the serum 

estradiol concentrations in the OVX mice treated with estradiol-pellets in this study 

appeared to be at the level of the proestrus stage in normal intact mice (Grasso and 

Reichert 1996). Thus, this can be interpreted as a high physiological concentration, 

since during the estrus stage, the serum levels have been reported to be approximately 

25 pg/ml. Thus, when extrapolated to the study by Korol and Kolo (2002) it could be 

argued that the OVX mice having continuous ERT in our study should be using 

preferably the spatial, hippocampal strategy when performing the memory task. Indeed, 

this is the case in terms of the hippocampus-based working memory component in 
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RAM, since especially the longer, 40 day ERT improved the performance compared to 

control mice. The results of this study in terms of the T-maze and RAM reference 

memory component of RAM performance of the pellet treated mice, are not in 

agreement with the results by Korol and Kolo (2002). Namely, in this study, chronic 

ERT decreased the number of reference memory errors in RAM and also improved the 

T-maze performance, factors presumably dependent merely on enhanced procedural 

learning. However, one striking difference between the studies can be found in the form 

of estrogen administration. Korol and Kolo used two daily estradiol injections, 

administered 21 days after OVX, 48 and 24 hours prior to testing. This kind of acute 

treatment may cause very different effects on cognitive performance than the chronic 

treatment used in our study. Indeed, Galea et al. (2001) found that long-term treatment 

with daily 10 µg injections of estradiol, given to OVX rats four hours prior to testing, 

impaired not only hippocampus dependent learning, as indicated by the increased 

number of working memory errors in RAM, but also a striatum-based cued win-stay 

task. Their injection protocol produced blood estrogen levels of about 120 pg/ml, which 

is almost twice the level occurring in proestrus. Interestingly, our study is partly in 

agreement with the study of Galea et al., since the OVX mice receiving phasic ERT via 

daily injections of 20 mg were non-significantly impaired in the T-maze and the blood 

estrogen levels in these mice were also very high (~1200 pg/ml) around the time of 

testing. 

 

Collectively, the difference between tonic and phasic ERT on maze learning in the 

present study is largely in agreement with previous studies. ERT administered via the 

pellet decreased significantly the number of reference memory errors in the RAM and 

also tended to improve maze learning in general compared with OVX controls. In 

contrast, estrogen injection proved to be ineffective and a 20-microg injection of 

estrogen even impaired the T-maze performance of OVX mice. Rissanen et al. (1999), 

employing a similar pellet ERT as used in this study, also found that this kind of ERT 

improved the performance of OVX mice in Morris water maze, another spatial memory 

task. In contrast, Fugger et al. (1998) using ERT at 20 microg injections reported no 

improvement in the same water maze task. Furthermore, Miller et al. (1999) found that 

OVX mice treated with an estrogen pellet performed better in a spontaneous alternation 

in T-maze, compared with OVX mice. Collectively, these studies suggest that not only 
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the estrogen dose, but also the pattern of administration can have a major impact on the 

effects of estrogen on learning and memory. 

 

6.3. Estrogen, hippocampal neurotransmitters and memory 

In this study, we showed that in mice ovariectomy per se leads to decreased 

hippocampal ChAT activity when compared to sham-operated mice. However, it was 

somewhat surprising that estrogen treatment had no effect on hippocampal ChAT 

activity in either OVX or sham-operated mice. This result is partly in contrast with 

earlier data showing that estrogen treatment increases the number of ChAT-

immunoreactive neurons in certain areas of the basal forebrain in both OVX mice 

(Miller et al. 1999) and OVX rats (Gibbs 1997). The OVX time before estrogen 

treatment in our study was unusually long, 4 months (in the 7-day treatment groups), so 

it is possible that the cholinergic system had become less responsive to estrogen after 

such a long duration of OVX. On the other hand, our results with the 40-day treatment 

are concordant with a study showing that continuous, long-term (4 weeks or 6 months) 

estrogen treatment given to OVX female rats had no effect on hippocampal ChAT 

activity or high affinity choline uptake (Gibbs 2000a). Furthermore, the fact that no 

effect of estrogen treatment on ChAT activity was detected in males is consistent with 

previous reports (Luine and McEwen 1983, Luine 1985). In the present study, 

ovariectomy led to decreased levels of hippocampal NA and DOPAC but not DA. As 

far as NA is concerned, this finding is in agreement with an earlier study in which 

ovariectomy was reported to reduce the hippocampal NA and DA levels in C57BL/6 

mice (Toriizuka et al. 1999). In rats, however, 27-day estrogen treatment given to OVX 

animals had no effects on the hippocampal NA and DA levels (Luine et al. 1998). In 

contrast to some earlier reports (Archer et al. 1988, Pisa et al. 1988) we found no 

significant correlation between the hippocampal NA, DA, or DOPAC and behavioural 

performance in the RAM or T-maze. On the other hand, DA or DOPAC levels in the 

basal ganglia have been reported to correlate with position discrimination in the T-maze 

(Taghzouti et al. 1985, Tanila et al. 1994).  

 

With respect to the hippocampal neurotransmitters, the serotonergic system was most 

clearly affected by the estrogen treatment. The concentrations of hippocampal 5-HT and 

5-HIAA appeared to depend on the duration of the estrogen treatment and ovarian 

status. In sham-operated mice, the 7-day estrogen treatment led to an increase in the 5-
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HIAA/5-HT ratio, whereas the ratio after the 40-day treatment returned to a level 

between the values of these two groups. However, in OVX mice, the 7-day estrogen 

treatment caused a notable, though nonsignificant, decrease in the hippocampal 5-

HIAA/5-HT ratio. Furthermore, in the OVX mice, the 40-day estrogen treatment led to 

a decrease in the hippocampal 5-HT while a less significant decrease was observed in 

the sham-operated mice after the 7 days treatment. Ovariectomy has been reported to 

affect the hippocampal 5-HIAA/5-HT ratio in rats so that after 2 weeks but not 4 weeks 

after OVX there is a decrease in the ratio (Zhang et al. 1999). The different effect of 

estrogen on serotonin turnover in sham-operated vs OVX mice may be mediated by the 

presence vs absence of progesterone. Namely, in rats, levels of progesterone have been 

found to correlate negatively with hippocampal 5-HT concentrations during pregnancy 

(Glaser et al. 1990). However, Luine et al. (1998), who measured brain monoamines in 

nontreated OVX rats and OVX rats treated with estradiol for 28 days, found no 

treatment effects on the hippocampal 5-HT levels. The differences in the levels of 

hippocampal monoamines between the Luine et al. study in rats and our study in mice 

could be explained by the different durations of the estrogen treatment and OVX. 

Although depletion of brain serotonin does not affect performance in the RAM working 

memory task, performance of the same task correlates with hippocampal 5-HT levels 

(Luine et al. 1990). Further, although hippocampal damage does impair acquisition of 

the position discrimination task in the T-maze, task performance correlates with the 

hippocampal 5-HIAA levels in aged female rats (Tanila et al. 1994). However, we did 

not find any significant correlation between maze learning performance and the 

serotonergic parameters. 

 

6.4. Estrogen, hippocampal ERα and ERβ expression and memory 

Correlations between measures of gene expression and spatial learning revealed 

interesting details (II, Tables 3 and 4). In a measure of spatial learning, shown to be 

sensitive to estrogenic manipulation in this study (the reference memory component of 

the RAM) the correlations between cognitive performance and ERα expression were 

significant; i.e. the fewer reference memory errors the mice made, the higher the ERα 

expression in the hippocampus. Notably, this effect was significant only in OVX mice 

and OVX mice treated with tonic ERT. On the other hand, no significant correlations 

were found between behavioral measures and ERβ expression. These observations seem 
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to disagree with the findings in ERα and ERβ knockout mice. Indeed, Fugger et al. 

(1998) claimed that ERα activation would impair spatial navigation in the water maze 

in female mice, whereas Rissman et al. (2002) reported that ERβ was required for 

female mice to optimally complete the same task. However, when comparing those 

results with the present findings, it should be borne in mind that the water maze task 

used in the abovementioned studies is believed to rely on unimpaired hippocampal 

function, whereas the reference memory component of RAM is also strongly dependent 

on striatal memory functions (Oliveira et al. 1997). In this light, it is interesting to note 

that the dominant ER subtype in the female C57BL/6J hippocampus is ERα (Mitra et al. 

2003). Still, the studies conducted with ERα or ERβ knockout mice should be 

interpreted cautiously, since the lack of one of the ER subtypes throughout the brain 

may affect indirectly performance in the cognitive task by changing noncognitive 

behaviors. 

 

Given the possibilities for choosing either a hippocampal or a striatal strategy to 

complete RAM, it is possible that the OVX mice receiving continuous, stable estrogen 

treatment switched to using the place (i.e. hippocampal) strategy, which could account 

for the decreased number of reference memory errors compared with non-treated OVX 

mice. Therefore, the correlation between RAM learning and ERα mRNA expression in 

the hippocampus could reflect a direct interaction between these two parameters. 

Nevertheless, this does not necessarily mean that the critical site of action is exclusively 

the hippocampus, as ERα expression may simultaneously be elevated in several other 

brain structures. One good additional candidate target for estrogen actions is the 

cholinergic projections from the basal forebrain to the hippocampus and cortex. These 

projections are necessary for estrogen-mediated effects on hippocampal connectivity 

(Lam and Leranth 2003), and there is evidence that estrogen can influence the 

cholinergic projections and this effects can vary as a function of estrogen dose and 

regimen (Gibbs and Aggarwal 1998). Furthermore, a considerable proportion of the 

cholinergic neurons projecting to the hippocampus express ERα (Miettinen et al. 2002). 

 

The findings of this study indicate that ERT not only affects brain by directly delivering 

estrogen across the blood–brain barrier, but also indirectly regulates the estrogen 

synthesis in the brain by modulating the aromatase gene expression. Furthermore, 
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estrogen has been reported to stimulate aromatase enzyme activity without affecting 

mRNA levels, pointing to posttranscriptional effects of estrogen on aromatase activity 

levels (Roselli et al. 1997). Whether the direct estrogen delivery to the brain or the 

modulation of aromatase activity is more important for the outcome of ERT remains to 

be explored in further studies. 

 

6.5. Estrogen, aging and memory 

Long-term (40 days) estrogen treatment in aged, 24-month-old female mice had varying 

effects on maze learning depending on the memory task. It decreased the number of 

reference memory errors in the win-stay RAM task, but had no effect on the number of 

working memory errors, and marginally improved performance of OVX mice in the 

position discrimination task in the T-maze. These estrogen effects were in the same 

direction (towards improved performance) but much less robust than observed in young 

female mice in this study, suggesting that old age ora a long time period without the 

ovarian hormones makes the brain less responsive to estrogen. A comparison of these 

results with our findings in 7-month-old female mice that were subjected to exactly the 

same treatment protocol and behavioral tests (I, II) reveals interesting age-related 

changes in the effects of ERT and OVX. In the young adult female mice, long-term (40 

days) estrogen treatment reduced both reference and working memory errors in sham-

operated and OVX mice (I). In contrast, in aged female mice, the estrogen-induced 

improvement was significant only in the reference memory component of the task. In 

addition, the effect of OVX on maze learning was age-dependent. Thus, it seems that 

both long-term ovariectomy and long-term estrogen treatment lose some of their 

beneficial effects as the female mice reach the post-estropausal age. 

 

A study using 5- and 22–24-month-old mice found that in both age groups, estrogen 

treated OVX mice were improved in an object recognition test, a non-spatial recognition 

memory task (Vaucher et al. 2002). In that study the OVX was conducted and the of s.c. 

estradiol capsules were implanted 21 days prior to behavioral testing. Also in contrast to 

the lack of estrogen effect on working memory in our 24-month-old mice, Miller et al. 

(1999) reported that 25-month-old OVX mice treated with 17β-estradiol for 30 days 

showed improved performance compared to non-treated OVX mice in spontaneous 

alternation in the T-maze, a working memory task. However, the mice used by Miller et 

al. (1999) and Vaucher et al. (2002) had been ovariectomized for only 3 or 4 weeks, 
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whereas in our study the mice had been ovariectomized for as long as 19 months before 

behavioral testing. In addition, we used a slightly longer duration of estrogen treatment 

(40 days). Furthermore, the behavioral tasks used in this study require food deprivation 

whereas the spontaneous alternation task used by Miller et al. (1999) and the object 

recognition test (Vaucher et al. 2002) do not, which together with differences in OVX 

and ERT durations, might account for the discrepant findings. Frick et al. (2002) found 

that daily s.c. injections of 5 mg of β-estradiol-3-benzoate, started 5 days before Morris 

water maze testing, improved the performance of aged (27–28-month-old) intact female 

mice in the spatial version of the task. These findings are in agreement with this study in 

terms of ERT-induced improvement of SHAM-mice in the reference memory 

component of RAM since the Morris water maze can also be considered as a spatial 

reference memory task. Thus, the spatial reference memory of intact post-estropausal 

mice can be improved by estrogen delivered in a variety of treatments, regimens and 

durations. 

 

Gibbs (2000b) investigated the cognitive effects of long-term ovariectomy and different 

durations of continuous estrogen (E2) or weekly estrogen plus progesterone (E2 + P) 

treatments in a delayed matching-to-position (DMP) task in the T-maze in aged rats. 

The rats were OVX at the age of 13 months and tested at the age of 22–25 months. The 

E2 or E2 + P treatment started immediately or 3 months after OVX significantly 

improved the performance of OVX rats. However, the hormone therapies had no effect 

on DMP performance if the treatments were started after a long OVX duration (10 

months). Previously, Gibbs (1999) has also shown that young OVX rats having 2 

months of continuous estrogen treatment were improved in the DMP task. The aged rats 

with the hormone treatment starting 10 months after ovariectomy and 6–8 weeks before 

the DMP testing are comparable to the estrogen treated mice in this study. In summary, 

these results, together with our findings, suggest that estrogen treatment might have a 

beneficial effect on working memory also in aged OVX rodents but only if the estrogen 

treatment has been started shortly after OVX.  

 

Partly dissimilar effects of OVX and ERT on working memory errors in the RAM task 

between young adult and aged mice may indicate that by 24 months of age, general age-

related degenerative changes had rendered the hippocampus unresponsive to estrogen. 

Recent findings support this assumption also at the synaptic level. For example, 
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estrogen treatment increases the density of hippocampal dendritic spines in young OVX 

rats but this effect is no longer observed in aged OVX rats (Adams et al. 2001). It has 

been hypothesized that in aged rats, the decreased responsiveness of the hippocampus to 

estrogen treatment is attributable to the reduced number of synaptic ERα (Adams et al. 

2002). Conversely, the relatively similar OVX and ERT effects on both T-maze 

performance and reference memory errors in RAM in both young adult and aged mice 

may indicate that the striatum remains responsive to estrogen until a much higher age 

than the hippocampus. Indeed, chronic estrogen treatment has been shown to reverse 

OVX-induced decrease in locomotor activity and striatal dopamine release in adult 

Sprague–Dawley rats (Ohtani et al. 2001). Furthermore, in aged OVX mice MPTP (1-

methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced striatal dopamine depletion could 

be reduced by estrogen treatment (Miller et al. 1998). Therefore, it is possible that in 

aged mice, estrogen treatment might enhance dopamine-mediated striatal functions 

leading to improved performance in some cognitive tasks, presumably in certain aspects 

of spatial reference memory.  

 

One interesting finding in this study was the somewhat surprising uterine response to 

estrogen treatment in sham operated and OVX mice. In contrast to findings with 7-

month-old female mice in this study (I), the estrogen-induced uterine growth in aged 

mice was more pronounced in sham-operated than in OVX mice. This increased 

responsiveness is probably due to the fact that in aged mice the number of uterine 

estrogen receptors is increased compared to young mice (Xu and Clark 1990). Whereas 

in 7-month-old female mice the improved RAM performance correlated with increased 

uterine weights (I), no such correlation was found in the aged mice of this study. This 

correlation suggests that in young adult mice, the responsiveness of the brain to 

estrogen may be related to overall physiological responsiveness to estrogen. 

Conversely, it seems that brain and peripheral responses to estrogen become decoupled 

at the post-estropausal age in female mice. Given the findings in this study (II) showing 

that tonic, long-term ERT increases the hippocampal aromatase expression in young 

adult mice, it is tempting to postulate that the different balance between brain and 

peripheral estrogen effects in aged mice compared to young mice (II) could be 

explained by a decline in the aromatase activity in the aged female brain. Examining 

this question would be interesting in future studies by evaluating the aromatase 

expression and behavioral outcome using animals of different ages.  
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Yet another interesting finding between the study with 24-month-old mice and our 

previous one with 7-month-old mice (I) was that the pooled group of aged OVX mice 

(OVX and OVX + E groups) performed better in the working memory component of 

the RAM compared to the pooled group of sham-operated mice (SHAM and SHAM + E 

groups), whereas among the 7-month-old mice the difference between OVX and sham-

operated groups was in the opposite direction, i.e. the sham-operated mice outperformed 

the OVX mice. This poses the question of whether OVX conducted at an early age 

contributes differently on learning and memory in young mice compared to mice that 

are closer to their estropausal age. 

 

To address this question we tested another pre-estropausal group of OVX and sham-

operated mice without ERT (11 months of age with OVX duration of 8 months) in the 

RAM and compared these mice with the OVX and sham-operated mice of 7 and 24 

months of age. From this experiment we found that the effect of OVX on the number of 

reference and working memory errors was highly age-dependent. Notably, this 

difference was mainly due to impaired performance of the OVX group of 7-month-old 

mice, whereas there were no differences between OVX and sham-operated groups in 

either 11-month-old or 24-month-old mice. The difference in the OVX effect between 

7- and 11-month-old mice (with OVX duration of 4 vs. 8 months, respectively) 

indicates that the impairment in spatial memory induced by an early-age OVX can be 

observed in young adult mice but diminishes when the mice approach their estropausal 

age. It might also indicate that the long duration of ovariectomy rather than aging per se 

was one of the factors that made the OVX mice resemble more the sham-operated mice 

of advanced age, even though the mice were tested at different ages. This observation is 

consistent with the findings of Frick et al. (2000) showing that spatial reference memory 

impairment occurs earlier in females than in males, suggesting a role for declining 

estrogen levels (or lack of cycling estrogen levels) in this phenomenon. It is also in 

agreement with the observation of Gibbs (2000b) that the brain response to estrogen 

treatment declines between 3 and 10 months after ovariectomy. Therefore, ERT begun 

early after estropause may alleviate or prevent impairment in spatial learning in aging 

females, but may well be less effective when started at a late post-estropausal age. 
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6.6. Estrogen, Aβ accumulation and memory in AP mice 

The present study investigated the effects of long-term estrogen deprivation (3–14 

months) and estrogen treatment (3 months) on brain Aβ levels, amyloid plaque counts, 

and cognitive functions in transgenic AP mice. Neither an overall analysis across all 

ages nor separate analyses at each age point showed any significant effect of 

ovariectomy or estrogen treatment on hippocampal Aβ levels or amyloid plaques. In 

behavioral testing, estrogen treatment in ovariectomized AP mice dramatically 

improved position discrimination in the T-maze and decreased the number of reference 

memory errors in the RAM. However, estrogen treatment had only a marginal effect on 

the performance of the AP OVX mice in the cued and spatial versions of water maze 

(WM). These results show that the estrogen treatment in a transgenic mouse model of 

AD improves performance in the same learning and memory tasks as in the normal 

C57BL/6J mice. However, the estrogen effects in these mice appeared to be unrelated to 

Aβ-induced cognitive deficits. These results do not support the concept that estrogen 

treatment decreases the risk or alleviates the symptoms of AD by inhibiting the 

accumulation of Aβ or formation of amyloid plaques. 

 

The present results showing unaltered brain Aβ levels after long-term ovariectomy (3–

14 months) are clearly in conflict with some previous studies. There are several factors 

that may explain the discrepancy between the studies. Differences in the genetic 

background of the mice are an unlikely explanation since the mice used in the studies of 

Levin-Allerhand et al. (2002) and Levin-Allerhand and Smith (2002) had the very same 

APPswe transgene construct in the same strain (C57BL/6) as used in our study. In 

contrast, the age at ovariectomy and the duration of ovariectomy appear to have a major 

impact on the results. Namely, the most impressive effects of long-term ovariectomy 

(3–4 months) on Aβ levels (50–130% increase) were seen in mice ovariectomized at the 

age of 4–5 weeks (Levin-Allerhand and Smith 2002, Zheng et al. 2002), whereas a 

similar duration of ovariectomy increased Aβ levels only by 20–30% in mice 

ovariectomized after sexual maturity (Zheng et al. 2002). However, it seems that 

estrogen depletion for 6–8 weeks has no effect on amyloid levels even if the 

ovariectomy is done at a very young age (4 weeks) (Levin-Allerhand et al. 2002). Based 

on previous studies, at least 10 weeks of estrogen depletion are needed to detect any 

increase in Aβ levels (Levin-Allerhand and Smith 2002, Petanceska et al. 2000, Zheng 
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et al. 2002). However, in this study, Aβ levels were not increased even in mice which 

had been ovariectomized for as long as 14 months. Therefore, based on the present and 

previous results, it can be argued that long-term estrogen depletion (>3 months) may 

increase Aβ production during the early stages of amyloid pathology, but has no effect 

on the aggregation, rapid accumulation, and deposition of Aβ into plaques at later 

stages. From this perspective, the results presented here do not support the hypothesis 

that the increased risk of AD in women 20 years after menopause can be attributed to 

faster production of Aβ as a result of to the estrogen depletion. However, a definite 

answer to this question may only be found using postmortem neuropathological 

analyses in female AD patients that have participated in controlled trials with or without 

ERT. 

 

In accordance with our previous studies in male AP mice (Liu et al. 2003, Puoliväli et 

al. 2002), female AP mice showed a task-specific memory impairment. They were 

impaired in WM, but interestingly, outperformed control mice in the reference memory 

component of RAM and performed similarly in the T-maze. One explanation for the 

task differences might be that our T-maze and RAM tasks rely on different memory 

functions than the WM task. Thus, fimbria-fornix transection (rendering the 

hippocampus dysfunctional) in mice has no effect on the position discrimination 

learning in the T-maze or on the total number of errors in the current win-stay version of 

the RAM task (Liu et al. 2002), which leads us to assume that performance in these 

tasks, excluding working memory component of RAM, relies mainly on brain functions 

distinct from the hippocampus, presumably the striatum (Oliveira et al. 1997). On the 

other hand, mice with fimbria-fornix lesions are impaired in both the hidden and visible 

platform versions of the WM (Liu et al. 2002), evidence in favor of the dependence of 

this task on hippocampal function. Thus, the observed pattern of task-specific 

impairment is fully consistent with the known pathology in the AP mice: a marked and 

early accumulation of amyloid plaques in the dorsal hippocampus but few plaques in the 

striatum (Liu et al. 2002). In addition, consistent with earlier findings in male mice (Liu 

et al. 2003, Puoliväli et al. 2002), we also found that the WM retention deficit in female 

AP mice correlated with the levels of hippocampal Aβ42, favoring a direct link between 

hippocampal Aβ accumulation and WM spatial memory impairment in our mice. 
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Long-term estrogen treatment in ovariectomized AP mice dramatically improved 

position discrimination in the T-maze. This improvement was most prominent in the 9- 

and 12-month-old mice, i.e. after longer durations of OVX. Furthermore, it was more 

attributable to impaired performance of OVX mice than an improvement of OVX + E 

mice compared to SHAM mice. In addition, estrogen treatment decreased the number of 

reference memory errors in the RAM. These results are in agreement with our findings 

in 7-month-old C57BL/6J mice, where chronic (40 days) estrogen treatment improved 

the performance of OVX mice in both position discrimination in the T-maze and the 

same win-stay version of the RAM as used in the present study (I). However, unlike in 

ovariectomized C57BL/6J mice (I), estrogen treatment did not significantly decrease 

working memory errors in AP OVX mice in the present study. Chronic estrogen 

treatment had only marginal effect on the performance of the AP OVX mice in the cued 

and spatial versions of WM. This finding appears to be in conflict with a previous study 

on WM acquisition reporting improved learning in the hidden and in the cued versions 

of the task after 2 weeks of estrogen treatment in ovariectomized C57BL/6J mice 

(Rissanen et al. 1999). However, the present water maze data are in agreement with the 

Rissanen et al. (1999) study in that ovariectomized 6-month-old AP mice were 

dramatically impaired in spatial navigation compared with sham-operated AP mice. 

Interestingly, whereas only long-term ovariectomy appears to impair position 

discrimination in the T-maze, impairment in spatial navigation is present only shortly 

after the ovariectomy and declines with time. These contrasting time-dependent effects 

of OVX are also consistent with the concept that these two tasks tax different memory 

systems. 

 

The present study revealed an almost complete diametric dissociation between the effect 

of AP genotype and estrogen treatment in different learning tasks. The most consistent 

learning impairment in sham-operated AP mice compared to sham-operated control 

mice appeared in the hidden platform version of the WM, in which no estrogen effect 

was found. Conversely, the estrogen treatment effect was most dramatic in the position 

discrimination task in the T-maze, in which the AP genotype had no effect, and in the 

reference memory component of win-stay RAM task, in which the AP mice even 

outperformed the control mice. This leads to the conclusion that the effects of Aβ 

accumulation and estrogen treatment on learning and memory do not interact. The 

separation of these effects can occur either at the molecular level, so that Aβ and 
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estrogen affect different intracellular signaling pathways, or alternatively at the systems 

level, so that their influence is modulated via separate neural circuits. The current 

findings suggest that the effects of estrogen are most pronounced in tasks relying mainly 

on striatal functions (Oliveira et al. 1997), whereas amyloid pathology in AP mice 

primarily affects hippocampal functions. 

 

The present study was designed to represent the situation in clinical trials with 

postmenopausal women at a risk of AD or with patients already suffering from AD. We 

observed that long-term estrogen treatment did not inhibit or decrease hippocampal Aβ 

accumulation, and did not restore the hippocampal dysfunction in WM, apparently 

induced by increased Aβ accumulation in the hippocampus of AP female mice. 

However, the amyloid pathology in AP mice did not prevent estrogen from having 

similar beneficial effects on certain learning and memory functions mediated through 

other brain structures, as it has in normal C57BL/6J mice (I). Our results suggest that 

ERT in patients with already diagnosed AD is likely to be ineffective, and thus are in 

agreement with recent placebo-controlled clinical trials failing to show any cognitive 

improvement in female AD patients after prolonged ERT (Henderson et al. 2000, 

Mulnard et al. 2000, Thal et al. 2003, Wang et al. 2000). Extrapolated to humans, this 

study further emphasizes the risk of assessing possible effects of estrogen on the 

pathophysiology of AD based on its effects on cognition alone. On the other hand, 

whereas estrogen replacement may not offer a way to slow down the amyloid-induced 

neuronal dysfunction, it may still have beneficial effects on cognitive performance of 

AD patients, at least by preventing some, albeit mild, cognitive impairment due to the 

sudden decline in the estrogen levels after the menopause. 
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7. CONCLUSIONS 

 

The results of this study demonstrate that in adult female mice chronic estrogen 

treatment improves acquisition of different maze tasks that tax different brain areas and 

systems and this also occurs to a certain degree in male mice. Estrogen treatment 

influenced also the hippocampal serotonin turnover (I). 

 

This study also demonstrated that the pattern of estrogen delivery may dramatically 

change the ERT effect on the brain. Tonic ERT had beneficial memory effects and 

increased the level of CYP19 and ER alpha gene expression, whereas phasic ERT 

though having the same peripheral effect had the opposite influence on the brain. This 

finding indicates that ERT not only affects the brain by directly delivering estrogen 

across the blood–brain barrier, but also indirectly regulates the estrogen synthesis in the 

brain by modulating the aromatase gene expression. This finding suggests that effects 

on the brain of peroral estrogen may also differ from the effect of transdermal estrogen 

in humans (II). 

 

The effects of ERT on cognitive performance in aged mice were in the same direction 

(towards improved performance) but much less robust than those seen in young female 

mice, suggesting that old age or a long time duration without exposure to ovarian 

hormones makes the brain less responsive to estrogen. Therefore, ERT begun early after 

estropause may alleviate or prevent impairment in spatial learning in aging females, but 

be less effective if started at a late post-estropausal age (III). 

 

In female AP mice, ERT improved the performance in the same learning and memory 

tasks as in the normal mice. However, the estrogen effects in these mice appeared to be 

unrelated to the Aβ-induced cognitive deficits. These results do not support the claim 

that estrogen treatment decreases the risk or alleviates the symptoms of AD by 

inhibiting the accumulation of Aβ or the formation of amyloid plaques (IV). 
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