Optimization of lentiviral vector production for scale-up in fixed-bed bioreactor
Files
Self archived version
published versionDate
2018Author(s)
Unique identifier
10.1038/gt.2017.91Metadata
Show full item recordMore information
Self-archived item
Citation
Valkama AJ. Leinonen HM. Lipponen EM. Turkki V. Malinen J. Heikura T. Ylä-Herttuala S. Lesch HP. (2018). Optimization of lentiviral vector production for scale-up in fixed-bed bioreactor. GENE THERAPY, 25, 39-46. 10.1038/gt.2017.91.Rights
Abstract
Lentiviral vectors (LVs) are promising tools for gene therapy. However, scaling up the production methods of LVs in order to produce high-quality vectors for clinical purposes has proven to be difficult. In this article, we present a scalable and efficient method to produce LVs with transient transfection of adherent 293T cells in a fixed-bed bioreactor. The disposable iCELLis bioreactors are scalable with a large three-dimensional (3D) growth area range between 0.53 and 500 m2, an integrated perfusion system, and a controllable environment for production. In this study, iCELLis Nano (2.67–4 m2) was used for optimizing production parameters for scale-up. Transfections were first done using traditional calcium phosphate method, but in later runs polyethylenimine was found to be more reliable and easier to use. For scalable LV production, perfusion rate control by measuring cell metabolite concentrations in the bioreactor leads to higher productivity and reduced costs. Optimization of cell seeding density for targeted cell concentration during transfection, use of low compaction fixed-bed and lowering the culture pH have a positive effect on LV productivity. These results show for the first time that iCELLis bioreactor is scalable from bench level to clinical scale LV production.
Link to the original item
http://dx.doi.org/10.1038/gt.2017.91Publisher
Springer NatureCollections
- Terveystieteiden tiedekunta [1781]