Skip to main contentSkip to search and navigation

UEF eREPOSITORY

    • English
    • suomi
  • English 
    • English
    • suomi
  • Login
View Item 
  •   Home
  • Artikkelit
  • Terveystieteiden tiedekunta
  • View Item
  •   Home
  • Artikkelit
  • Terveystieteiden tiedekunta
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Humanin skeletal muscle protein levels increase after resistance training in men with impaired glucose metabolism

Thumbnail
Files
Article (180.9Kb)
Self archived version
published version
Date
2016
Author(s)
Gidlund Eva-Karin
von Walden Ferdinand
Venojärvi Mika
Risérus Ulf
Heinonen Olli J
Norrbom Jessica
Sundberg Carl Johan
Unique identifier
10.14814/phy2.13063
Metadata
Show full item record
More information
Research Database SoleCris

Self-archived article

Citation
Gidlund Eva-Karin. von Walden Ferdinand. Venojärvi Mika. Risérus Ulf. Heinonen Olli J. Norrbom Jessica. Sundberg Carl Johan. (2016). Humanin skeletal muscle protein levels increase after resistance training in men with impaired glucose metabolism.  Physiological Reports, 4 (23) ,  e13063. 10.14814/phy2.13063.
Rights
© Authors
Licensed under
CC BY http://creativecommons.org/licenses/by/4.0/
Abstract

Humanin (HN) is a mitochondrially encoded and secreted peptide linked to glucose metabolism and tissue protecting mechanisms. Whether skeletal muscle HN gene or protein expression is influenced by exercise remains unknown. In this intervention study we show, for the first time, that HN protein levels increase in human skeletal muscle following 12 weeks of resistance training in persons with prediabetes. Male subjects (n = 55) with impaired glucose regulation (IGR) were recruited and randomly assigned to resistance training, Nordic walking or a control group. The exercise interventions were performed three times per week for 12 weeks with progressively increased intensity during the intervention period. Biopsies from the vastus lateralis muscle and venous blood samples were taken before and after the intervention. Skeletal muscle and serum protein levels of HN were analyzed as well as skeletal muscle gene expression of the mitochondrially encoded gene MT‐RNR2, containing the open reading frame for HN. To elucidate mitochondrial training adaptation, mtDNA, and nuclear DNA as well as Citrate synthase were measured. Skeletal muscle HN protein levels increased by 35% after 12 weeks of resistance training. No change in humanin protein levels was seen in serum in any of the intervention groups. There was a significant correlation between humanin levels in serum and the improvements in the 2 h glucose loading test in the resistance training group. The increase in HN protein levels in skeletal muscle after regular resistance training in prediabetic males may suggest a role for HN in the regulation of glucose metabolism. Given the preventative effect of exercise on diabetes type 2, the role of HN as a mitochondrially derived peptide and an exercise‐responsive mitokine warrants further investigation.

Subjects
exercise   human   humanin   impaired glucose regulation   skeletal muscle   
URI
https://erepo.uef.fi/handle/123456789/6055
Link to the original item
http://dx.doi.org/10.14814/phy2.13063
Publisher
Wiley-Blackwell
Collections
  • Terveystieteiden tiedekunta [1330]
University of Eastern Finland
OpenAccess
eRepo
erepo@uef.fi
UEF Open Science
Accessibility in eRepo
Service provided by
the University of Eastern Finland Library
Library web pages
Twitter
Facebook
Youtube
Library blog
 sitemap
Search

Browse

All of the ArchiveResource types & CollectionsBy Issue DateAuthorsTitlesSubjectsFacultyDepartmentFull organizationSeriesMain subjectThis CollectionBy Issue DateAuthorsTitlesSubjectsFacultyDepartmentFull organizationSeriesMain subject

My Account

Login
University of Eastern Finland
OpenAccess
eRepo
erepo@uef.fi
UEF Open Science
Accessibility in eRepo
Service provided by
the University of Eastern Finland Library
Library web pages
Twitter
Facebook
Youtube
Library blog
 sitemap