Skip to main contentSkip to search and navigation

UEF eREPOSITORY

    • English
    • suomi
  • English 
    • English
    • suomi
  • Login
View Item 
  •   Home
  • Artikkelit
  • Terveystieteiden tiedekunta
  • View Item
  •   Home
  • Artikkelit
  • Terveystieteiden tiedekunta
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape

Thumbnail
Files
Article (799.6Kb)
Self archived version
published version
Date
2016
Author(s)
Ried JS
Jeff M J
Chu AY
Bragg-Gresham JL
van Dongen J
Huffman JE
Ahluwalia TS
Cadby G
Eklund N
Eriksson J
Esko T
Feitosa MF
Goel A
Gorski M
Hayward C
Heard-Costa NL
Jackson AU
Jokinen E
Kanoni S
Kristiansson K et al
Unique identifier
10.1038/ncomms13357
Metadata
Show full item record
More information
Research Database SoleCris

Self-archived article

Citation
Ried JS. Jeff M J. Chu AY. Bragg-Gresham JL. van Dongen J. Huffman JE. Ahluwalia TS. Cadby G. Eklund N. Eriksson J. Esko T. Feitosa MF. Goel A. Gorski M. Hayward C. Heard-Costa NL. Jackson AU. Jokinen E. Kanoni S. Kristiansson K et al. (2016). A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape.  Nature Communications, 7, 13357. 10.1038/ncomms13357.
Rights
© Authors
Licensed under
CC BY http://creativecommons.org/licenses/by/4.0/
Abstract

Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain >99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analysed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways.

Subjects
Genome-wide association studies   Statistical methods   
URI
https://erepo.uef.fi/handle/123456789/6143
Link to the original item
http://dx.doi.org/10.1038/ncomms13357
Publisher
Springer Nature
Collections
  • Terveystieteiden tiedekunta [1324]
University of Eastern Finland
OpenAccess
eRepo
erepo@uef.fi
OpenUEF
Service provided by
the University of Eastern Finland Library
Library web pages
Twitter
Facebook
Youtube
Library blog
 sitemap
Search

Browse

All of the ArchiveResource types & CollectionsBy Issue DateAuthorsTitlesSubjectsFacultyDepartmentFull organizationSeriesMain subjectThis CollectionBy Issue DateAuthorsTitlesSubjectsFacultyDepartmentFull organizationSeriesMain subject

My Account

Login
University of Eastern Finland
OpenAccess
eRepo
erepo@uef.fi
OpenUEF
Service provided by
the University of Eastern Finland Library
Library web pages
Twitter
Facebook
Youtube
Library blog
 sitemap