Show simple item record

dc.contributor.authorGong, Jinnan
dc.contributor.authorWang, Ben
dc.contributor.authorJia, Xin
dc.contributor.authorFeng, Wei
dc.contributor.authorZha, Tianshan
dc.contributor.authorKellomäki, Seppo
dc.contributor.authorPeltola, Heli
dc.date.accessioned2018-04-04T11:03:02Z
dc.date.available2018-04-04T11:03:02Z
dc.date.issued2018
dc.identifier.urihttps://erepo.uef.fi/handle/123456789/6215
dc.description.abstractWe used process-based modelling to investigate the roles of carbon-flux (C-flux) components and plant–interspace heterogeneities in regulating soil CO2 exchanges (FS) in a dryland ecosystem with sparse vegetation. To simulate the diurnal and seasonal dynamics of FS, the modelling considered simultaneously the CO2 production, transport and surface exchanges (e.g. biocrust photosynthesis, respiration and photodegradation). The model was parameterized and validated with multivariate data measured during the years 2013–2014 in a semiarid shrubland ecosystem in Yanchi, northwestern China. The model simulation showed that soil rewetting could enhance CO2 dissolution and delay the emission of CO2 produced from rooting zone. In addition, an ineligible fraction of respired CO2 might be removed from soil volumes under respiration chambers by lateral water flows and root uptakes. During rewetting, the lichen-crusted soil could shift temporally from net CO2 source to sink due to the activated photosynthesis of biocrust but the restricted CO2 emissions from subsoil. The presence of plant cover could decrease the root-zone CO2 production and biocrust C sequestration but increase the temperature sensitivities of these fluxes. On the other hand, the sensitivities of root-zone emissions to water content were lower under canopy, which may be due to the advection of water flows from the interspace to canopy. To conclude, the complexity and plant–interspace heterogeneities of soil C processes should be carefully considered to extrapolate findings from chamber to ecosystem scales and to predict the ecosystem responses to climate change and extreme climatic events. Our model can serve as a useful tool to simulate the soil CO2 efflux dynamics in dryland ecosystems.
dc.language.isoEN
dc.publisherCopernicus GmbH
dc.relation.ispartofseriesBIOGEOSCIENCES
dc.relation.urihttp://dx.doi.org/10.5194/bg-15-115-2018
dc.rightsCC BY http://creativecommons.org/licenses/by/4.0/
dc.titleModelling the diurnal and seasonal dynamics of soil CO2 exchange in a semiarid ecosystem with high plant-interspace heterogeneity
dc.description.versionpublished version
dc.contributor.departmentSchool of Forest Sciences, activities
uef.solecris.id51773766en
dc.type.publicationTieteelliset aikakauslehtiartikkelit
dc.rights.accessrights© Authors
dc.relation.doi10.5194/bg-15-115-2018
dc.description.reviewstatuspeerReviewed
dc.format.pagerange115-136
dc.relation.issn1726-4170
dc.relation.issue1
dc.relation.volume15
dc.rights.accesslevelopenAccess
dc.type.okmA1
uef.solecris.openaccessOpen access -julkaisukanavassa ilmestynyt julkaisu


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record