Show simple item record

dc.contributor.authorNissi, Mikko J.
dc.contributor.authorTóth, Ferenc
dc.contributor.authorWang, Luning
dc.contributor.authorCarlson, Cathy S.
dc.contributor.authorEllermann, Jutta M.
dc.date.accessioned2016-06-13T07:43:28Z
dc.date.available2016-06-13T07:43:28Z
dc.date.issued2015-07-13
dc.identifier10.1371/journal.pone.0132167
dc.identifier.citationNissi MJ, Tóth F, Wang L, Carlson CS, Ellermann JM (2015) Improved Visualization of Cartilage Canals Using Quantitative Susceptibility Mapping. PLoS ONE 10(7): e0132167. doi:10.1371/journal.pone.0132167fi_FI
dc.identifier.issn1932-6203
dc.identifier.urihttps://erepo.uef.fi/handle/123456789/63
dc.descriptionArticle
dc.description.abstractPurpose Cartilage canal vessels are critical to the normal function of epiphyseal (growth) cartilage and damage to these vessels is demonstrated or suspected in several important developmental orthopaedic diseases. High-resolution, three-dimensional (3-D) visualization of cartilage canals has recently been demonstrated using susceptibility weighted imaging (SWI). In the present study, a quantitative susceptibility mapping (QSM) approach is evaluated for 3-D visualization of the cartilage canals. It is hypothesized that QSM post-processing improves visualization of the cartilage canals by resolving artifacts present in the standard SWI post-processing while retaining sensitivity to the cartilage canals. Methods Ex vivo distal femoral specimens from 3- and 8-week-old piglets and a 1-month-old human cadaver were scanned at 9.4 T with a 3-D gradient recalled echo sequence suitable for SWI and QSM post-processing. The human specimen and the stifle joint of a live, 3-week-old piglet also were scanned at 7.0 T. Datasets were processed using the standard SWI method and truncated k-space division QSM approach. To compare the post-processing methods, minimum/maximum intensity projections and 3-D reconstructions of the processed datasets were generated and evaluated. Results Cartilage canals were successfully visualized using both SWI and QSM approaches. The artifactual splitting of the cartilage canals that occurs due to the dipolar phase, which was present in the SWI post-processed data, was eliminated by the QSM approach. Thus, orientation-independent visualization and better localization of the cartilage canals was achieved with the QSM approach. Combination of GRE with a mask based on QSM data further improved visualization. Conclusions Improved and artifact-free 3-D visualization of the cartilage canals was demonstrated by QSM processing of the data, especially by utilizing susceptibility data as an enhancing mask. Utilizing tissue-inherent contrast, this method allows noninvasive assessment of the vasculature in the epiphyseal cartilage in the developing skeleton and potentially increases the opportunity to diagnose disease of this tissue in the preclinical stages, when treatment likely will have increased efficacy.fi_FI
dc.language.isoenfi_FI
dc.publisherPublic Library of Science (PLoS)fi_FI
dc.relation.ispartofseriesPLOS ONE
dc.relation.urihttps://doi.org/10.1371/journal.pone.0132167
dc.rightsCC BY 4.0 http://creativecommons.org/licenses/by/4.0/
dc.subjectCartilagefi_FI
dc.subjectSwinefi_FI
dc.subjectData visualizationfi_FI
dc.subjectImaging techniquesfi_FI
dc.subjectData acquisitionfi_FI
dc.subjectFemurfi_FI
dc.subjectIn vivo imagingfi_FI
dc.subjectMagnetic resonance imagingfi_FI
dc.titleImproved Visualization of Cartilage Canals Using Quantitative Susceptibility Mappingfi_FI
dc.typehttp://purl.org/eprint/type/JournalArticle
dc.description.versionPublisher's pdf
dc.contributor.departmentFaculty of Science and Forestry
uef.solecris.id34843276
eprint.statushttp://purl.org/eprint/status/PeerReviewed
dc.type.publicationinfo:eu-repo/semantics/article
dc.rights.accessrights© Authors
dc.relation.doi10.1371/journal.pone.0132167
dc.description.reviewstatushttp://purl.org/eprint/status/PeerReviewed
dc.relation.articlenumbere0132167
dc.relation.issn1932-6203
dc.relation.issue7
dc.relation.volume10
dc.rights.accesslevelopenAccess


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record