Show simple item record

dc.contributor.authorKellomäki, Seppo
dc.contributor.authorStrandman, Harri
dc.contributor.authorHeinonen, Tero
dc.contributor.authorAsikainen, Antti
dc.contributor.authorVenäläinen, Ari
dc.contributor.authorPeltola, Heli
dc.date.accessioned2018-05-04T10:16:52Z
dc.date.available2018-05-04T10:16:52Z
dc.date.issued2018
dc.identifier.urihttps://erepo.uef.fi/handle/123456789/6573
dc.description.abstractWe investigated how climate change affects the diameter growth of boreal Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) H. Karst.), and silver birch (Betula pendula Roth) at varying temporal and spatial scales. We generated data with a gap-type ecosystem model for selected locations and sites throughout Finland. In simulations, we used the current climate and recent-generation (CMIP5) global climate model projections under three representative concentration pathways (RCPs) forcing scenarios for the period 2010–2099. Based on this data, we developed diameter growth response functions to identify the growth responses of forests under mild (RCP2.6), moderate (RCP4.5), and severe (RCP8.5) climate change at varying temporal and spatial scales. Climate change may increase growth primarily in the north, with a clearly larger effect on birch and Scots pine than Norway spruce. In the south, the growth of Norway spruce may decrease largely under moderate and severe climate change, in contrast to that of birch. The growth of Scots pine may also decrease slightly under severe climate change. The degree of differences between tree species and regions may increase along with the severity of climate change. Appropriate site-specific use of tree species may sustain forest productivity under climate change. Growth response functions, like we developed, provide novel means to take account of climate change in empirical growth and yield models, which as such include no climate change for forest calculations.
dc.language.isoEN
dc.publisherMDPI AG
dc.relation.ispartofseriesForests
dc.relation.urihttp://dx.doi.org/10.3390/f9030118
dc.rightsCC BY http://creativecommons.org/licenses/by/4.0/
dc.subjectboreal forest
dc.subjectbroadleaves
dc.subjectclimate change
dc.subjectconifers
dc.subjectdiameter growth
dc.subjectforest calculation
dc.subjectgap-type model
dc.subjectgrowth response function
dc.titleTemporal and Spatial Change in Diameter Growth of Boreal Scots Pine, Norway Spruce, and Birch under Recent-Generation (CMIP5) Global Climate Model Projections for the 21st Century
dc.description.versionpublished version
dc.contributor.departmentSchool of Forest Sciences, activities
uef.solecris.id54192332en
dc.type.publicationTieteelliset aikakauslehtiartikkelit
dc.rights.accessrights© Authors
dc.relation.doi10.3390/f9030118
dc.description.reviewstatuspeerReviewed
dc.relation.articlenumber118
dc.relation.issn1999-4907
dc.relation.issue3
dc.relation.volume9
dc.rights.accesslevelopenAccess
dc.type.okmA1
uef.solecris.openaccessOpen access -julkaisukanavassa ilmestynyt julkaisu


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record