Skip to main contentSkip to search and navigation

UEF eREPOSITORY

    • English
    • suomi
  • English 
    • English
    • suomi
  • Login
View Item 
  •   Home
  • Artikkelit
  • Luonnontieteiden ja metsätieteiden tiedekunta
  • View Item
  •   Home
  • Artikkelit
  • Luonnontieteiden ja metsätieteiden tiedekunta
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Nongrowing season methane emissions - a significant component of annual emissions across northern ecosystems

Thumbnail
Files
Article (1.513Mb)
Self archived version
final draft
Date
2018
Author(s)
Treat, Claire C
Bloom, Anthony A
Marushchak, Maija E
Unique identifier
10.1111/gcb.14137
Metadata
Show full item record
More information
Research Database SoleCris

Self-archived article

Citation
Treat, Claire C. Bloom, Anthony A. Marushchak, Maija E. (2018). Nongrowing season methane emissions - a significant component of annual emissions across northern ecosystems.  GLOBAL CHANGE BIOLOGY, [First published 22 Mar 2018], 10.1111/gcb.14137.
Rights
© John Wiley & Sons Ltd
Licensed under
CC BY-NC-ND https://creativecommons.org/licenses/by-nc-nd/4.0/
Abstract

Wetlands are the single largest natural source of atmospheric methane (CH4), a greenhouse gas, and occur extensively in the northern hemisphere. Large discrepancies remain between “bottom‐up” and “top‐down” estimates of northern CH4 emissions. To explore whether these discrepancies are due to poor representation of nongrowing season CH4 emissions, we synthesized nongrowing season and annual CH4 flux measurements from temperate, boreal, and tundra wetlands and uplands. Median nongrowing season wetland emissions ranged from 0.9 g/m2 in bogs to 5.2 g/m2 in marshes and were dependent on moisture, vegetation, and permafrost. Annual wetland emissions ranged from 0.9 g m−2 year−1 in tundra bogs to 78 g m−2 year−1 in temperate marshes. Uplands varied from CH4 sinks to CH4 sources with a median annual flux of 0.0 ± 0.2 g m−2 year−1. The measured fraction of annual CH4 emissions during the nongrowing season (observed: 13% to 47%) was significantly larger than that was predicted by two process‐based model ensembles, especially between 40° and 60°N (modeled: 4% to 17%). Constraining the model ensembles with the measured nongrowing fraction increased total nongrowing season and annual CH4 emissions. Using this constraint, the modeled nongrowing season wetland CH4 flux from >40° north was 6.1 ± 1.5 Tg/year, three times greater than the nongrowing season emissions of the unconstrained model ensemble. The annual wetland CH4 flux was 37 ± 7 Tg/year from the data‐constrained model ensemble, 25% larger than the unconstrained ensemble. Considering nongrowing season processes is critical for accurately estimating CH4 emissions from high‐latitude ecosystems, and necessary for constraining the role of wetland emissions in a warming climate.

URI
https://erepo.uef.fi/handle/123456789/6596
Link to the original item
http://dx.doi.org/10.1111/gcb.14137
Publisher
Wiley
Collections
  • Luonnontieteiden ja metsätieteiden tiedekunta [1109]
University of Eastern Finland
OpenAccess
eRepo
erepo@uef.fi
OpenUEF
Service provided by
the University of Eastern Finland Library
Library web pages
Twitter
Facebook
Youtube
Library blog
 sitemap
Search

Browse

All of the ArchiveResource types & CollectionsBy Issue DateAuthorsTitlesSubjectsFacultyDepartmentFull organizationSeriesMain subjectThis CollectionBy Issue DateAuthorsTitlesSubjectsFacultyDepartmentFull organizationSeriesMain subject

My Account

Login
University of Eastern Finland
OpenAccess
eRepo
erepo@uef.fi
OpenUEF
Service provided by
the University of Eastern Finland Library
Library web pages
Twitter
Facebook
Youtube
Library blog
 sitemap