Polarimetric purity and the concept of degree of polarization
![Thumbnail](/bitstream/handle/123456789/6747/15306189231399813712.pdf.jpg?sequence=4&isAllowed=y)
Files
Self archived version
published versionDate
2018Author(s)
Unique identifier
10.1103/PhysRevA.97.023838Metadata
Show full item recordMore information
Self-archived item
Citation
Gil, Jose J. Norrman, Andreas. Friberg, Ari T. Setälä, Tero. (2018). Polarimetric purity and the concept of degree of polarization. Physical Review A, 97 (2) , 023838. 10.1103/PhysRevA.97.023838.Rights
Abstract
The concept of degree of polarization for electromagnetic waves, in its general three-dimensional version, is revisited in the light of the implications of the recent findings on the structure of polarimetric purity and of the existence of nonregular states of polarization [J. J. Gil et al., Phys Rev. A 95, 053856 (2017)]. From the analysis of the characteristic decomposition of a polarization matrix R into an incoherent convex combination of (1) a pure state Rp, (2) a middle state Rm given by an equiprobable mixture of two eigenstates of R, and (3) a fully unpolarized state Ru−3D, it is found that, in general, Rm exhibits nonzero circular and linear degrees of polarization. Therefore, the degrees of linear and circular polarization of R cannot always be assigned to the single totally polarized component Rp. It is shown that the parameter P3D proposed formerly by Samson [J. C. Samson, Geophys. J. R. Astron. Soc. 34, 403 (1973)] takes into account, in a proper and objective form, all the contributions to polarimetric purity, namely, the contributions to the linear and circular degrees of polarization of R as well as to the stability of the plane containing its polarization ellipse. Consequently, P3D constitutes a natural representative of the degree of polarimetric purity. Some implications for the common convention for the concept of two-dimensional degree of polarization are also analyzed and discussed.