Show simple item record

dc.contributor.authorPyorälä, Jiri
dc.contributor.authorLiang, Xinlian
dc.contributor.authorVastaranta, Mikko
dc.contributor.authorSaarinen, Ninni
dc.contributor.authorKankare, Ville
dc.contributor.authorWang, Yunsheng
dc.contributor.authorHolopainen, Markus
dc.contributor.authorHyyppä, Juha
dc.date.accessioned2018-11-09T10:50:44Z
dc.date.available2018-11-09T10:50:44Z
dc.date.issued2018
dc.identifier.urihttps://erepo.uef.fi/handle/123456789/7163
dc.description.abstractState-of-the-art technology available at sawmills enables measurements of whorl numbers and the maximum branch diameter for individual logs, but such information is currently unavailable at the wood procurement planning phase. The first step toward more detailed evaluation of standing timber is to introduce a method that produces similar wood quality indicators in standing forests as those currently used in sawmills. Our aim was to develop a quantitative method to detect and model branches from terrestrial laser scanning (TLS) point clouds data of trees in a forest environment. The test data were obtained from 158 Scots pines ( Pinus sylvestris L.) in six mature forest stands. The method was evaluated for the accuracy of the following branch parameters: Number of whorls per tree and for every whorl, the maximum branch diameter and the branch insertion angle associated with it. The analysis concentrated on log-sections (stem diameter >15 cm) where the branches most affect wood's value added. The quantitative whorl detection method had an accuracy of 69.9% and a 1.9% false positive rate. The estimates of the maximum branch diameters and the corresponding insertion angles for each whorl were underestimated by 0.34 cm (11.1%) and 0.67° (1.0%), with a root-mean-squared error of 1.42 cm (46.0%) and 17.2° (26.3%), respectively. Distance from the scanner, occlusion, and wind were the main external factors that affect the method's functionality. Thus, the completeness and point density of the data should be addressed when applying TLS point cloud based tree models to assess branch parameters.
dc.language.isoenglanti
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.ispartofseriesIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
dc.relation.urihttp://dx.doi.org/10.1109/JSTARS.2018.2819598
dc.rightsCC BY 3.0
dc.subjectbranch
dc.subjectforestry
dc.subjectLiDAR
dc.subjectmodeling
dc.subjectwood procurement
dc.subjectwood quality
dc.titleQuantitative Assessment of Scots Pine (Pinus SylvestrisL.) Whorl Structure in a Forest Environment Using Terrestrial Laser Scanning
dc.description.versionpublished version
dc.contributor.departmentSchool of Forest Sciences, activities
uef.solecris.id58355185en
dc.type.publicationTieteelliset aikakauslehtiartikkelit
dc.relation.doi10.1109/JSTARS.2018.2819598
dc.description.reviewstatuspeerReviewed
dc.format.pagerange3598-3607
dc.relation.issn1939-1404
dc.relation.issue10
dc.relation.volume11
dc.rights.accesslevelopenAccess
dc.type.okmA1
uef.solecris.openaccessHybridijulkaisukanavassa ilmestynyt avoin julkaisu
dc.rights.copyright© Authors
dc.type.displayTypearticleen
dc.type.displayTypeartikkelifi
dc.rights.urlhttps://creativecommons.org/licenses/by/3.0/


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record