Skip to main contentSkip to search and navigation

UEF eREPOSITORY

    • English
    • suomi
  • English 
    • English
    • suomi
  • Login
View Item 
  •   Home
  • Artikkelit
  • Terveystieteiden tiedekunta
  • View Item
  •   Home
  • Artikkelit
  • Terveystieteiden tiedekunta
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The effect of co-amorphization of glibenclamide on its dissolution properties and permeability through an MDCKII-MDR1 cell layer

Thumbnail
Files
Article (2.215Mb)
Self archived version
final draft
Date
2019
Author(s)
Sormunen, Henri
Ruponen, Marika
Laitinen, Riikka
Unique identifier
10.1016/j.ijpharm.2019.118653
Metadata
Show full item record
More information
Research Database SoleCris

Self-archived article

Citation
Sormunen, Henri. Ruponen, Marika. Laitinen, Riikka. (2019). The effect of co-amorphization of glibenclamide on its dissolution properties and permeability through an MDCKII-MDR1 cell layer.  International journal of pharmaceutics, 570, 118653. 10.1016/j.ijpharm.2019.118653.
Rights
© Elsevier B V
Licensed under
CC BY-NC-ND https://creativecommons.org/licenses/by-nc-nd/4.0/
Abstract

Co-amorphous mixtures have been demonstrated to represent a promising approach for enhancing the dissolution of poorly water-soluble drugs. However, little is known of their permeability properties, especially through biological membranes, or about the relationship between their dissolution and permeability. In the present study, co-amorphous glibenclamide (GBC) mixtures with two amino acids, arginine (ARG) and serine (SER), in molar ratios of 1:1 were prepared by cryomilling. Their dissolution and permeability properties were studied in side-by-side diffusion chambers using cell layers containing Madine Darby kidney cells overexpressing P-glycoprotein (Pgp) transporters (MDCKII-MDR1), as Pgp may influence the absorption of GBC. Furthermore, two other compounds, the flavonoid quercetin (QRT) which is a Pgp inhibitor and the surfactant, sodium lauryl sulfate (SLS), were used as excipients to investigate if they improved either passive or active diffusion of GBC. In addition, amorphous QRT and a co-amorphous mixture of GBC and QRT (1:1) were characterized with respect to their solid-state properties and physical stability. It was demonstrated that co-amorphous GBC mixtures exhibited superior dissolution properties over the corresponding physical mixtures and amorphous GBC. Furthermore, the co-amorphous GBC-ARG-SLS mixture exhibited a 9-fold increase in permeating through the MDCKII-MDR1 cell layer as compared to the corresponding physical mixture. There was a correlation between the dissolution and permeability area under curve (AUC) values, evidence that the main mechanism behind the improved permeability of co-amorphous mixtures was their improved dissolution. The simultaneous dissolution/permeation testing with side-by-side diffusion chambers and MDCKII-MDR1 cells proved to be a feasible method for evaluating the dissolution/permeation interplay of amorphous compounds.

Subjects
amino acid   co-amorphous   dissolution   MDCKII-MDR1   permeability   stability   
URI
https://erepo.uef.fi/handle/123456789/7763
Link to the original item
http://dx.doi.org/10.1016/j.ijpharm.2019.118653
Publisher
Elsevier BV
Collections
  • Terveystieteiden tiedekunta [1324]
University of Eastern Finland
OpenAccess
eRepo
erepo@uef.fi
OpenUEF
Service provided by
the University of Eastern Finland Library
Library web pages
Twitter
Facebook
Youtube
Library blog
 sitemap
Search

Browse

All of the ArchiveResource types & CollectionsBy Issue DateAuthorsTitlesSubjectsFacultyDepartmentFull organizationSeriesMain subjectThis CollectionBy Issue DateAuthorsTitlesSubjectsFacultyDepartmentFull organizationSeriesMain subject

My Account

Login
University of Eastern Finland
OpenAccess
eRepo
erepo@uef.fi
OpenUEF
Service provided by
the University of Eastern Finland Library
Library web pages
Twitter
Facebook
Youtube
Library blog
 sitemap