Skip to main contentSkip to search and navigation

UEF eREPOSITORY

    • English
    • suomi
  • English 
    • English
    • suomi
  • Login
View Item 
  •   Home
  • Artikkelit
  • Luonnontieteiden ja metsätieteiden tiedekunta
  • View Item
  •   Home
  • Artikkelit
  • Luonnontieteiden ja metsätieteiden tiedekunta
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Nearest neighbor imputation of logwood volumes using bi-temporal ALS, multispectral ALS and aerial images

Thumbnail
Files
Article (1.485Mb)
Self archived version
final draft
Date
2019
Author(s)
Räty, Janne
Packalen, Petteri
Maltamo, Matti
Unique identifier
10.1080/02827581.2019.1589567
Metadata
Show full item record
More information
Research Database SoleCris

Self-archived article

Citation
Räty, Janne. Packalen, Petteri. Maltamo, Matti. (2019). Nearest neighbor imputation of logwood volumes using bi-temporal ALS, multispectral ALS and aerial images.  Scandinavian journal of forest research, 34 (6) , 469-483. 10.1080/02827581.2019.1589567.
Rights
© Informa UK Limited
Licensed under
All rights reserved
Abstract

We examine the nearest neighbor (NN) imputation of species-specific logwood volumes using airborne laser scanning (ALS) data and aerial images. We compare different remote sensing (RS) data combinations as predictor variables in an area-based prediction of logwood volumes using separate training and validation data. We include multispectral leaf-on ALS data, bi-temporal leaf-off ALS data and aerial images in the analyses. Two response configurations are used in the NN imputations: (1) simultaneous imputation in which species-specific logwood volumes are response variables, and (2) separate imputation by tree species in which the attributes of one tree species at a time are response variables. Although an unrealistic alternative in practical implementation, the combination of leaf-on and leaf-off ALS metrics as predictors proved to be the most successful RS data combination, according to the RMSE values associated with the predicted species-specific and dominant logwood volumes. The results showed that older leaf-off ALS data perform well in combination with leaf-on ALS data. In general, predictive performance was better with simultaneous imputation than with separate imputation by tree species. Our finding promotes an awareness of how best to utilize various RS data in future forest inventories.

Subjects
area-based approach   bi-temporal ALS   diameter distribution   logwood volume   multispectral ALS   nearest neighbor imputation   
URI
https://erepo.uef.fi/handle/123456789/7865
Link to the original item
http://dx.doi.org/10.1080/02827581.2019.1589567
Publisher
Informa UK Limited
Collections
  • Luonnontieteiden ja metsätieteiden tiedekunta [1123]
University of Eastern Finland
OpenAccess
eRepo
erepo@uef.fi
UEF Open Science
Accessibility in eRepo
Service provided by
the University of Eastern Finland Library
Library web pages
Twitter
Facebook
Youtube
Library blog
 sitemap
Search

Browse

All of the ArchiveResource types & CollectionsBy Issue DateAuthorsTitlesSubjectsFacultyDepartmentFull organizationSeriesMain subjectThis CollectionBy Issue DateAuthorsTitlesSubjectsFacultyDepartmentFull organizationSeriesMain subject

My Account

Login
University of Eastern Finland
OpenAccess
eRepo
erepo@uef.fi
UEF Open Science
Accessibility in eRepo
Service provided by
the University of Eastern Finland Library
Library web pages
Twitter
Facebook
Youtube
Library blog
 sitemap