Show simple item record

dc.contributor.authorKarvonen, AM
dc.contributor.authorKirjavainen, PV
dc.contributor.authorTäubel, M
dc.contributor.authorJayaprakash, B
dc.contributor.authorAdams, RI
dc.contributor.authorSordillo, JE
dc.contributor.authorGold, DR
dc.contributor.authorHyvärinen, A
dc.contributor.authorRemes, S
dc.contributor.authorvon Mutius, E
dc.contributor.authorPekkanen, J
dc.date.accessioned2020-01-14T12:39:17Z
dc.date.available2020-01-14T12:39:17Z
dc.date.issued2019
dc.identifier.urihttps://erepo.uef.fi/handle/123456789/7936
dc.description.abstractBackground Early-life indoor bacterial exposure is associated with the risk of asthma, but the roles of specific bacterial genera are poorly understood. Objective We sought to determine whether individual bacterial genera in indoor microbiota predict the development of asthma. Methods Dust samples from living rooms were collected at 2 months of age. The dust microbiota was characterized by using Illumina MiSeq sequencing amplicons of the bacterial 16S ribosomal RNA gene. Children (n = 373) were followed up for ever asthma until the age of 10.5 years. Results Richness was inversely associated with asthma after adjustments (P = .03). The phylogenetic microbiota composition in asthmatics patients' homes was characteristically different from that in nonasthmatic subjects' homes (P = .02, weighted UniFrac, adjusted association, permutational multivariate analysis of variance, PERMANOVA-S). The first 2 axis scores of principal coordinate analysis of the weighted UniFrac distance matrix were inversely associated with asthma. Of 658 genera detected in the dust samples, the relative abundances of 41 genera correlated (r > |0.4|) with one of these axes. Lactococcus genus was a risk factor for asthma (adjusted odds ratio, 1.36 [95% CI, 1.13-1.63] per interquartile range change). The abundance of 12 bacterial genera (mostly from the Actinomycetales order) was associated with lower asthma risk (P < .10), although not independently of each other. The sum relative abundance of these 12 intercorrelated genera was significantly protective and explained the majority of the association of richness with less asthma. Conclusion Our data confirm that phylogenetic differences in the microbiota of infants' homes are associated with subsequent asthma risk and suggest that communities of selected bacteria are more strongly linked to asthma protection than individual bacterial taxa or mere richness.
dc.language.isoenglanti
dc.publisherElsevier BV
dc.relation.ispartofseriesJournal of allergy and clinical immunology
dc.relation.urihttp://dx.doi.org/10.1016/j.jaci.2019.07.035
dc.rightsCC BY-NC-ND https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectasthma development
dc.subjectchildren
dc.subjectdiversity
dc.subjectenvironment
dc.subjectLactococcus species
dc.titleIndoor Bacterial Microbiota and the Development of Asthma by 10.5 years of age
dc.description.versionfinal draft
dc.contributor.departmentSchool of Medicine / Clinical Nutrition
uef.solecris.id64553797en
dc.type.publicationTieteelliset aikakauslehtiartikkelit
dc.rights.accessrights© American Academy of Allergy, Asthma & Immunology
dc.relation.doi10.1016/j.jaci.2019.07.035
dc.description.reviewstatuspeerReviewed
dc.format.pagerange1402-1410
dc.relation.issn0091-6749
dc.relation.issue5
dc.relation.volume144
dc.rights.accesslevelopenAccess
dc.type.okmA1
uef.solecris.openaccessEi


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record