Show simple item record

dc.contributor.authorValverde, JM
dc.contributor.authorImani, V
dc.contributor.authorLewis, JD
dc.contributor.authorTohka, J
dc.contributor.editorPohl, K; Thompson, W; Adeli, E; Linguraru, M
dc.date.accessioned2020-01-22T11:31:06Z
dc.date.available2020-01-22T11:31:06Z
dc.date.issued2019
dc.identifier.urihttps://erepo.uef.fi/handle/123456789/7962
dc.description.abstractWe propose a four-layer fully-connected neural network (FNN) for predicting fluid intelligence scores from T1-weighted MR images for the ABCD-challenge. In addition to the volumes of brain structures, the FNN uses cortical WM/GM contrast and cortical thickness at 78 cortical regions. These last two measurements were derived from the T1-weighted MR images using cortical surfaces produced by the CIVET pipeline. The age and gender of the subjects and the scanner manufacturer are also used as features for the learning algorithm. This yielded 283 features provided to the FNN with two hidden layers of 20 and 15 nodes. The method was applied to the data from the ABCD study. Trained with a training set of 3736 subjects, the proposed method achieved a MSE of 71.596 and a correlation of 0.151 in the validation set of 415 subjects. For the final submission, the model was trained with 3568 subjects and it achieved a MSE of 94.0270 in the test set comprised of 4383 subjects.
dc.language.isoenglanti
dc.publisherSpringer International Publishing
dc.relation.ispartofAdolescent Brain Cognitive Development Neurocognitive Prediction. ABCD-NP 2019
dc.relation.urihttp://dx.doi.org/10.1007/978-3-030-31901-4_7
dc.rightsIn copyright 1.0
dc.subjectartificial neural networks
dc.subjectmachine learning
dc.subjectmagnetic resonance imaging
dc.subjectfluid intelligence
dc.subjectcortical thickness
dc.subjectcortical contrast
dc.titlePredicting Intelligence Based on Cortical WM/GM Contrast, Cortical Thickness and Volumetry
dc.description.versionfinal draft
dc.contributor.departmentA.I. Virtanen -instituutti
uef.solecris.id67975105en
dc.type.publicationArtikkelit tieteellisissä kokoomateoksissa
dc.relation.doi10.1007/978-3-030-31901-4_7
dc.description.reviewstatuspeerReviewed
dc.format.pagerange57-65
dc.relation.isbn978-3-030-31900-7
dc.relation.issn0302-9743
dc.relation.numberinseries11791
dc.rights.accesslevelopenAccess
dc.type.okmA3
uef.solecris.openaccessEi
dc.rights.copyright© Springer Nature Switzerland AG
dc.type.displayTypebook parten
dc.type.displayTypekirjan osafi
dc.rights.urlhttps://rightsstatements.org/page/InC/1.0/


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record