Permafrost nitrogen status and its determinants on the Tibetan Plateau
Files

Self archived version
final draftDate
2020Author(s)
Unique identifier
10.1111/gcb.15205Metadata
Show full item recordMore information
Self-archived article
Citation
Mao, Chao. Kou, Dan. Chen, Leiyi. Qin, Shuqi. Zhang, Dianye. Peng, Yunfeng. Yang, Yuanhe. (2020). Permafrost nitrogen status and its determinants on the Tibetan Plateau. Global change biology, 26 (9) , 5290-5302. 10.1111/gcb.15205.Rights
Licensed under
Abstract
It had been suggested that permafrost thaw could promote frozen nitrogen (N) release and modify microbial N transformation rates, which might alter soil N availability and then regulate ecosystem functions. However, the current understanding of this issue is confined to limited observations in the Arctic permafrost region, without any systematic measurements in other permafrost regions. Based on a large‐scale field investigation along a 1,000 km transect and a laboratory incubation experiment with a 15N pool dilution approach, this study provides the comprehensive evaluation of the permafrost N status, including the available N content and related N transformation rates, across the Tibetan alpine permafrost region. In contrast to the prevailing view, our results showed that the Tibetan alpine permafrost had lower available N content and net N mineralization rate than the active layer. Moreover, the permafrost had lower gross rates of N mineralization, microbial immobilization and nitrification than the active layer. Our results also revealed that the dominant drivers of the gross N mineralization and microbial immobilization rates differed between the permafrost and the active layer, with these rates being determined by microbial properties in the permafrost while regulated by soil moisture in the active layer. In contrast, soil gross nitrification rate was consistently modulated by the soil urn:x-wiley:13541013:media:gcb15205:gcb15205-math-0001 content in both the permafrost and the active layer. Overall, patterns and drivers of permafrost N pools and transformation rates observed in this study offer new insights into the potential N release upon permafrost thaw and provide important clues for Earth system models to better predict permafrost biogeochemical cycles under a warming climate.
Subjects
climate warming frozen nitrogen nitrogen availability nitrogen cycle nitrogen transformation rates permafrost thawLink to the original item
http://dx.doi.org/10.1111/gcb.15205Publisher
WileyCollections
Related items
Showing items related by title, author, creator and subject.
-
Nitrogen balance along a northern boreal forest fire chronosequence
Palviainen M; Pumpanen J; Berninger F; Ritala K; Duan B; Heinonsalo J; Sun H; Köster E; Köster K (Public Library of Science (PLoS), 2017)Fire is a major natural disturbance factor in boreal forests, and the frequency of forest fires is predicted to increase due to climate change. Nitrogen (N) is a key determinant of carbon sequestration in boreal forests ...info:eu-repo/semantics/article
-
Nitrogen and Greenhouse Gas Dynamics in Rivers and Estuaries of Bothnian Bay (Northern Baltic Sea) (Typen ja kasvihuonekaasujen dynamiikka Perämeren joissa ja jokisuistoissa)
Silvennoinen, Hanna (Kuopion yliopisto; University of Kuopio, 2008)info:eu-repo/semantics/doctoralThesis
-
Recovery of nitrogen and phosphorus from human urine using membrane and precipitation process
Pradhan, Surendra K; Mikola, Anna; Heinonen-Tanski, Helvi; Vahala, Riku (Elsevier BV, 2019)The nitrogen (N) and phosphorus (P) contents in human urine have been recovered using struvite precipitation and N-stripping techniques. Struvite precipitation technique recovers mainly phosphorus whereas N-stripping ...Tieteelliset aikakauslehtiartikkelit