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ABSTRACT

In this thesis, novel computational optimization methods for large-
scale inverse problems are proposed. To overcome the difficul-
ties related to the ill-posedness of practical inverse problems dif-
ferent approaches are considered when developing the compu-
tational methods proposed in this thesis. These approaches in-
clude Bayesian inversion, wavelet-based multiresolution analysis
and constrained optimization methods. The performance of the
proposed computational optimization methods are tested in four
studies.

The first study proposes a wavelet-based Bayesian method that
allows significant reduction of the number of unknowns in the in-
verse problem without deteriorating the image quality inside the
region of interest. The inverse problem considered is the recon-
struction of X-ray images from local tomography data.

The second study proposes a sparsity-promoting Bayesian in-
version method that uses Besov B1

11 space norms with wavelet func-
tions to describe the prior information about the quantity of inter-
est. The computation of the maximum a posteriori (MAP) estimates
with B1

11 prior is a non-differentiable optimization problem, there-
fore it is reformulated into a form of a quadratic program (QP) and
a primal-dual interior-point (PD-IP) method is derived to solve the
MAP estimates.

In the third study the PD-IP method is used to reconstruct
discontinuous diffusion coefficients of a coupled parabolic system
from limited observations based on a stability result for the inverse
coefficient problem. In the fourth study PD-IP method is used to
solve Bayesian MAP estimates from sparse angle X-ray tomogra-
phy data. Besov B1

11 space prior with Haar wavelet basis is used to
represent the distribution of the attenuation coefficients inside the
image domain.

This thesis also proposes a novel method for selecting the
Bayesian prior parameter. The method is based on a priori informa-
tion about the sparsity of the unknown function. Based on the test



results the proposed parameter selection rule, as well as the pro-
posed computational optimization methods, seem promising and
adaptable for several practical applications.
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tinen optimointi; laskentamenetelmät; kuvantaminen; tomografia; diffuu-
sio



Acknowledgments

The research work of this thesis was mainly carried out at the De-
partment of Applied Physics of the University of Eastern Finland
on Kuopio campus. I want to thank all those who contributed to
my research work toward this thesis. In particular, I want to thank
the following people.

First, I want to thank my supervisors Associate Professor Ville
Kolehmainen, PhD, and Professor Samuli Siltanen, PhD for their
guidance during this work and for the productive co-operation. I
am also grateful to my supervisor Professor Jari Kaipio, PhD for
giving me the opportunity to work in his research group at the De-
partment of Applied Physics. I want to thank all of my co-authors,
especially Professor Matti Lassas, PhD for the fruitful collaboration.

I wish to thank the official pre-examiners Docent Ozan Öktem,
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ABBREVIATIONS

1D One-dimensional
2D Two-dimensional
CBCT Cone beam computed tomography
CM Conditional mean
CS Compressive sensing
CT Computed tomography
EIT Electrical impedance tomography
FBP Filtered back projection
FS Focal spot
IP Interior-point
KKT Karush Kuhn Tucker
LP Linear programming
MAP Maximum a posteriori
MCMC Markov chain Monte Carlo
ML Maximum likelihood
PC Personal computer
PD Primal-dual
PDE Partial differential equations
PD-IP Primal-dual interior-point
PET Positron emission tomography
QP Quadratic programming
ROI Region of interest
TV Total variation



NOMENCLATURE

1 Vector of all ones
ai,i Reaction coefficients
A Forward matrix
A,AI ,AE Constraint matrices
b, bI , bE Constraint vector
B, B−1, B̃ Wavelet transform matrices
Bs
pq Besov space

c, c1(x), c2(x) Unknown diffusion coefficients
c̃, c̃1(x), c̃2(x) Known diffusion coefficients
cJ0,k Approximation wavelet coefficients
C Positive constant
d QP vector
D(·) Dual objective function
D,D2 Matrices related to time derivatives
E Matrix related to spatial derivative
f Unknown function or unknown vector
F(z) Objective functional
F Mapping between spaces
g Primal variable (vector)
G Diagonal matrix with elements gi
H Matrix
h Integer
h+, h− Non-negative vectors
H Set of indices
i Integer
I Identity matrix
j Wavelet integer related to the scale
J0, J, Jout Number of scaling levels
J Set of indices
k, k′, k1, k2 Wavelet integer related to the spatial locations
� Integer related to the wavelet type
L(R) Lebesgue space



L(·) Lagrangian function
m Measurement vector
M Constant
M Space
n, nm, nz, nw, nr, ns Dimensions of vectors
N Constant
Nt Number of steps in time
Nx Number of steps in space
N Gaussian density
Ni Four-point neighborhood for pixel i
p Besov parameter
P(·) Primal objective function
Pj Orthogonal projection operator
q Besov parameter
Q QP matrix
R Model reduction matrix
r Constant
R

n n dimensional space
s Besov parameter
S, Ŝ Sparsity levels
S Subset of basis indices
t Time variable
T Time constant
T Projection operator
T,T2 1D and 2D periodic spaces
u1, u2,u, ũ1, ũ2, ũ Vectors
u0,i(·) Initial conditions
v Dual variable (vector)
V Diagonal matrix with elements vi
Vj Spaces
w, w̃ Wavelet coefficient vector
wj,k,wj,k′,� Wavelet (detail) coefficients
W Diagonal matrix of weights
Wj Spaces



x, x1, x2 Spatial variables
X Space
y Dual variable (vector)
z Primal variable (vector)
Z Set of integers
α Prior parameter
β Smoothness parameter
γv μ-complementarity
δ Relative error
Δ Search direction
ε Noise vector
η Positive constant
θ Time constant
Θ Domain
κ QP constant
λprimal Primal step length multiplier
λdual Dual step length multiplier
Λ Lower bound for primal variable
μ Central path parameter
ν Integer
π Probability distribution
ρ, ρg Primal feasibilities
σ Standard deviation
τ Dual feasibility
φ(x), φj,k(x) Scaling function (or father wavelet)
ψ(x),ψj,k(x) Wavelet function (or mother wavelet)
ω,Ωc1 ,Ωc2 ,ΩROI Subdomains
Ω Domain
∂Ω Boundary of Ω

Σ Summation
∂t, ∂tt, ∂x Partial derivatives
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1 Introduction

Consider a linear model of the form

m = A f + ε, ε ∼ N (0, σ2 I) (1.1)

where m ∈ R
nm denotes measurements, f ∈ R

n denotes a physical quan-
tity, A ∈ R

nm×n is a matrix describing the relationship between m and f
and ε represents the measurement noise assumed to be additive Gaussian
white noise with a standard deviation σ > 0. The inverse problem related
to (1.1) is the following: recover f from indirect and noisy measurements
m. Inverse problems are typically ill-posed i.e. the problem is non-unique
and even small errors in the data m may cause arbitrarily large errors in
the estimate of f .

Due to the ill-posed nature of inverse problems, a priori information
needs to be incorporated into the model. In a statistical framework this
can be done using Bayesian inversion methods [1–7]. In Bayesian inver-
sion all quantities related to the problem are modelled as random vari-
ables. The randomness reflects the uncertainty concerning their true val-
ues. As a solution to the inverse problem a probability distribution of the
unknown parameters is estimated when data m and all the available a pri-
ori information about f are given. This probability distribution is called
the posterior distribution. Often the inverse problems are large-scale prob-
lems and the corresponding posterior distribution cannot be visualized
directly, therefore, typically a single estimate of this distribution is pre-
sented as a solution. One of the most commonly used single estimates is
the maximum a posteriori (MAP) estimates

fMAP = arg max
f∈Rn

πpost( f |m) ∝ arg max
f∈Rn

π(m| f )πpr( f ),

where π(m| f ) is the likelihood function and πpr( f ) is the prior model.
In Bayesian inversion the prior model πpr( f ) introduces into the model
the information about the unknown f that is known prior to the measure-
ments.

The a priori information can be quantitative or qualitative. In physi-
cal problems, for example, non-negativity is a general quantitative prior
model. A type of qualitative prior information is, for example, that it is
expected that f is sparse or that f has a sparse representation in some
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basis. The sparsity means that f ∈ R
n has ns << n nonzero coefficients.

For example, if f is assumed to contain smooth regions with relatively
few sharp edges it often can be represented more sparsely on a wavelet
basis [8–16]. Thus if the prior model is constructed such that this sparsity
is respected, more accurate finite-dimensional approximations of f can be
computed.

The sparse recovery of f is closely related to the concept of compressive
sensing (CS). The field of CS grew out of the works of Candès, Romberg,
Tao and Donoho [17–22] who showed that a signal, which has a sparse
representation, can be recovered exactly from a small set of linear mea-
surements. Since then the CS has been an active research topic.

In regularization the use of ‖ · ‖1 norms instead of ‖ · ‖2 norms is
known to promote sparsity [17,22–25]. Thus in Bayesian frameworks, one
might consider constructing the prior model such that it contains a norm
of ‖ · ‖1 type such as, for example, a total variation (TV) norm [25] or a
wavelet-based Besov B1

11 norm [26,27] (see also II and IV).
The computation of the Bayesian MAP estimate with TV prior or with

wavelet-based Besov prior is equivalent with the following optimization
problem

fMAP = argmin
f≥0

(
1

2σ2 ‖A f −m‖22 + α‖ f ‖
)
, (1.2)

where α is the prior parameter and ‖ f ‖ = ‖ f ‖TV for the TV prior, ‖ f ‖ =

‖ f ‖B1
11

for the Besov B1
11 prior and the constraint ( f ≥ 0) is related to

the non-negativity prior. In practical applications, when fMAP is a large
dimensional vector, the computation of the MAP estimates from (1.2) is a
large-scale constrained optimization problem.

In a general form the constrained optimization problems can be stated
as

minz F(z)
s.t AI (z) ≥ 0

AE (z) = 0
, (1.3)

where F(z) is the objective functional, AI , AE denote the inequality and
equality constraints, respectively and z is a vector containing the sought
estimate of the unknown. There exist several methods that can be used
to solve (1.3), these include linear programming (LP), such as the simplex
method and the interior point (IP) method, quadratic programming (QP),
such as the active set method, interior point method, gradient projection
method and the augmented Lagrangian method, for example [28–31]. The
choice, of which method to use, depends on the form of the functional
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Introduction

F(z) and on the constraints. Often in problems that arise from practical
applications, the matrices associated in the objective functional F(z) and
in the constraints AI , AE , are large in dimension but sparse. Hence it
is preferable to select such a method that can handle large and sparse
matrices effectively.

One approach that can exploit the sparsity of large matrices is the in-
terior point (IP) method. Furthermore, it has been found that primal-dual
(PD) IP methods have both good theoretical properties and also better
performance in practice than other IP methods (see [29, 31–42], for ex-
ample). Furthermore, [42] shows that primal-dual interior-point (PD-IP)
methods are more efficient for minimizing a sum of norms or sum of abso-
lute values than interior-point methods or other classical methods. Hence
the PD-IP method is considered in this thesis for solving the large-scale
constrained optimization problems encountered in Publications II-IV.

The aims and contents of this thesis

The aim of this thesis is to develop methods that can solve problems of
the form (1.1) in large dimensional settings. Different approaches such as
Bayesian inversion methods, wavelet-based multiresolution analysis and
PD-IP methods were considered when developing the proposed computa-
tional optimization methods. The performance of the developed methods
were tested in the four studies I - IV.

In Publication I Bayesian inversion methods were combined with
wavelet-based multiresolution analysis. The considered problem was the
problem of reconstructing X-ray images from dental local tomography
data. Publication I proposed a method that allowed a remarkable reduc-
tion in the number of unknowns in the problem without deteriorating
the image quality inside the region of interest (ROI). Test cases with both
simulated and experimental data were considered. With the experimental
data ∼ 90% of the unknown coefficients could be reduced leading to a
similar reduction also in the computational time.

Publication II studied a discretization-invariant Bayesian inversion
model. As prior models a Besov B1

11 prior and a total variation (TV) prior
were considered. The method was tested numerically in the context of
a 1D deconvolution task. The computation of Bayesian MAP estimates
either with B1

11 prior or with TV prior is a non-differentiable optimiza-
tion problem. In II this non-differentiable problem was reformulated
into a QP form and a PD-IP method was derived in order to compute
the MAP estimates. According to the results, MAP estimates that were

Dissertations in Forestry and Natural Sciences No 104 3
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computed using the B1
11 prior with Haar wavelets were sparsity promot-

ing, discretization-invariant and edge-preserving. Furthermore, a novel
sparsity-based choice rule for selecting the prior parameter α was pro-
posed. The proposed α-selection method seemed to perform robustly also
under noisy conditions.

Publication III considered an inverse problem of recovering discon-
tinuous diffusion coefficients related to a coupled parabolic system. A
PD-IP method was used to recover these coefficients from limited obser-
vations. The results indicated that with the PD path following IP method
accurate reconstructions of the discontinuous diffusion coefficients could
be computed.

In Publication IV PD-IP method was used to compute Bayesian
MAP estimates with Besov B1

11 prior. The considered problem was a to-
mographic reconstruction problem in 2D in a case where the projection
data was sparsely sampled in the angular variable. The results demon-
strated that the Bayesian MAP estimates performed robustly also when
the number of projections were limited. Publication IV further developed
the α-selection method of Publication II thus reducing the computational
complexity of the method.

This thesis is organized as follows. Chapter 2 presents briefly 1D and
2D wavelets, Besov spaces and the related Besov norm. In Chapter 3
the Bayesian approach is introduced. Also a review on previous studies
where TV and Besov priors have been used in Bayesian framework, is
given. Chapter 4 describes briefly a general QP problem and introduces
the PD path following IP method used in this thesis. Previous studies
where PD-IP methods have been applied to practical inverse problems are
also reviewed in Chapter 4. Chapter 5 reviews the studies and results of
Publications I - IV and Chapter 6 summarizes and concludes the studies
of this thesis.

4 Dissertations in Forestry and Natural Sciences No 104



2 Wavelets and Besov spaces

The interest in the use of wavelets and wavelet analysis has greatly in-
creased since the early 1980’s. Since then wavelets have been used in
various applications including signal processing, image analysis, opera-
tor theory and many other applications. Many classes of functions can be
represented by wavelets in a more compact way making wavelets an excel-
lent tool for data compression and sparse recovery. Wavelets can also be
considered for a time-frequency analysis of non-stationary signals since
they are local both in time and in frequency(scale). Furthermore, wavelets
can be created in such a way that they are suitable for multiresolution
analysis. The multiresolution representation of a function yields a hier-
archical framework for interpreting the information content at different
resolutions.

This chapter gives a short introduction to wavelets by presenting the
one- and two-dimensional (1D and 2D) wavelet functions and the corre-
sponding wavelet expansions. Further, in this chapter Besov spaces and
Besov norms are briefly introduced. The presentation in this chapter fol-
lows the standard references [8–16,43].

2.1 WAVELET FUNCTIONS

In the following only orthonormal wavelets, which have a compact sup-
port and are suitable for multiresolution analysis, are considered.

2.1.1 One-dimensional case

Let ψj,k(x) be a family of functions defined by dilatations and translations
of a single function ψ(x) ∈ L2(R)

ψj,k(x) = 2j/2ψ(2jx− k),

j, k ∈ Z. The function ψ is called the wavelet function (or the mother
wavelet). For the wavelet function we have∫

ψ(x)dx = 0, and ‖ψj,k‖L2 = 1.

Dissertations in Forestry and Natural Sciences No 104 5
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Further, the closure of the linear span of {ψj,k, k ∈ Z} defines the spaces
Wj [8, 9, 11, 13, 15, 16]

Wj := span{ψj,k, k ∈ Z}.

Similarly let φj,k(x) denote the family of functions

φj,k(x) = 2j/2φ(2jx− k),

where j, k ∈ Z. The function φ is called the scaling function (or the father
wavelet) and the closure of the linear spans of {φj,k, k ∈ Z} defines the
spaces Vj [8, 9, 11, 13, 15, 16]

Vj := span{φj,k, k ∈ Z}.

2.1.2 Two-dimensional case

Similarly to the one-dimensional case set

φj,k(x) = 2jφ(2jx− k)

ψj,k(x) = 2jψ(2jx− k)

and define the corresponding spaces

Vj := span{φj,k, k ∈ Z}
Wj := span{ψj,k, k ∈ Z},

where j ∈ Z. To obtain the 2D wavelet functions, the standard tensor
product construction [8, 15] is used in this thesis. For the 2D location
index let k′ = (k1, k2) denote independent translations in the coordinates
x1 ∈ R and x2 ∈ R, respectively. Thus the 2D wavelets are defined as
follows

φj,k′(x1, x2) = φj,k1(x1)φj,k2(x2) (2.1)

ψ1
j,k′(x1, x2) = φj,k1(x1)ψj,k2(x2) (2.2)

ψ2
j,k′(x1, x2) = ψj,k1(x1)φj,k2(x2) (2.3)

ψ3
j,k′(x1, x2) = ψj,k1(x1)ψj,k2(x2) (2.4)
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2.2 MULTIRESOLUTION ANALYSIS

A multiresolution analysis (MRA) consists of a nested set of closed sub-
spaces that satisfy

· · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · · (2.5)

with

(i)
(⋃

j∈Z Vj

)
= L2(R)

(ii)
⋂

j∈Z Vj = {0}

(iii) f (x) ∈ Vj ⇔ f (2x) ∈ Vj+1, j ∈ Z

(iv) f (x) ∈ Vj ⇔ f (x− 2−jk) ∈ Vj, j ∈ Z

(v) Vj+1 = Vj ⊕Wj, Vj⊥Wj

The spaces {Wj} satisfy similar conditions as the spaces {Vj} hence if
f (x) ∈ Wj it follows that f (2x) ∈ Wj+1 and f (x − 2−jk) ∈ Wj, for all
j ∈ Z.

Assume that there exists a function φ ∈ L2(R) such that {φ(x −
k), k ∈ Z} forms a basis of V0. Then together with (iii) it follows that
{φj,k} and {ψj,k} form orthonormal bases of Vj and Wj, respectively. If the
closed subspaces satisfy (2.5) and (i)-(v), then the orthonormal function φ

generates an orthonormal MRA.

2.3 WAVELET EXPANSION

In the following let ψ and φ denote compactly supported scaling and
wavelet functions, respectively, such that their support intersects the in-
terval [0, 1]. Further, let f : [0, 1] → L2(R) and let Pj denote an orthogonal
projection operator onto Vj. By the property (v), the subspaces Vj and Wj
are orthogonal and for J0 < j,

Vj = Vj−1 ⊕Wj−1 = · · · = Vj−J0 ⊕
(
Wj−J0 ⊕ · · · ⊕Wj−1

)
.

Further, the property (i) ensures that limj→∞ Pj fj = f , for all f ∈ L2(R),
thus a function f ∈ L2(R) can be approximated (as closely as desired) by
Pj fj ∈ Vj

Pj fj =
2J0−1

∑
k=0

〈 f , φJ0,k〉φJ0,k +
∞

∑
j=J0

2j−1

∑
k=0

〈 f ,ψj,k〉ψj,k.
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Denoting cJ0,k = 〈 f , φJ0,k〉 and wj,k = 〈 f ,ψj,k〉 the wavelet expansion of a
1D function f is written

f (x) =
2J0−1

∑
k=0

cJ0,kφJ0,k +
∞

∑
j=J0

2j−1

∑
k=0

wj,kψj,k. (2.6)

Similarly in 2D, f : [0, 1]2 → L2(R2) can be expanded using the 2D
scaling and wavelet functions

f (x1, x2) =
2J0−1

∑
k1=0

2J0−1

∑
k2=0

cJ0,k′φJ0,k′ +
∞

∑
j=0

2j−1

∑
k1=0

2j−1

∑
k2=0

3

∑
�=1

wj,k′ ,�ψ
�
j,k′ , (2.7)

where the index � is used to denote the type of wavelet (see (2.1) - (2.4)).

2.4 BESOV SPACES AND BESOV NORM

Besov spaces Bs
pq(M) are function spaces where s ∈ R is a smoothness

parameter and 1 ≤ p, q ≤ ∞ are integrability exponents. Here M de-
notes the appropriate space, for example, R,R2,T or T

2, where T and T
2

denotes the 1D and 2D periodic spaces, respectively. The Besov space is
equipped with a norm defined by

‖ f ‖Bs
pq
= ‖ f ‖Lp(Ω) + | f |Bs

pq
,

where Ω ⊂ M and | f |Bs
pq

is the Besov seminorm. Denoting the rth mod-
ulus of smoothness by

ωr( f , t)p = sup
|h|≤t

‖Δ
(r)
h f ‖Lp(Ω), t > 0, r ∈ N,

where Δ
(r)
h = Δ

(r−1)
h f (x + h) − Δ

(r−1)
h f (x) is the rth forward difference,

the Besov seminorm writes

| f |Bs
pq
=

(
∞

∑
k=1

(
2ksωr( f , 2−k,Ω)p

)q) 1
q

,

with s > 0, 0 < p, q < ∞ [11, 44].
The Besov norm can also be expressed by means of wavelet coeffi-

cients. By choosing a sufficiently smooth wavelet basis, such that the
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mother wavelet ψ and the scaling function φ are smooth enough, a func-
tion f belongs to Bs

pq(M) if and only if [8, 11, 14–16,43]

‖ f ‖Bs
pq(M) =

(
∑

2J0−1
k=0 |cJ0,k|p

) 1
p

+

(
∑

∞
j=J0 2

jq
(
s+ 1

2− 1
p

) (
∑

2j−1
k=0 |wj,k|p

) q
p
) 1

q
(2.8)

is finite. Setting p = q the 1D Besov norm of (2.8) is written

‖ f ‖Bs
pp

=

(
2J0−1

∑
k=0

|cJ0,k|p +
∞

∑
j=J0

2j(ps+
p
2−1)

2j−1

∑
k=0

|wj,k|p
) 1

p

. (2.9)

The corresponding Besov norm in 2D is written

‖ f ‖Bs
pp

=
(

∑
2J0−1
k1=0 ∑

2J0−1
k2=0 |cJ0,k′ |p

+∑
∞
j=J0 2

jp
(
s+1− 2

p

)
∑

2j−1
k1=0 ∑

2j−1
k2=0 ∑

3
�=1 |wj,k′ ,�|p

) 1
p

.
(2.10)
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3 Bayesian inversion

In the Bayesian approach to inverse problems all unknown variables are
modelled as random variables. The randomness models the uncertainty
on the variables true values and it can be expressed in terms of proba-
bility distributions of the quantities. In a Bayesian framework a complete
solution to an inverse problem is a posterior probability distribution of the
unknown quantity, given the measured data and the a priori information.
As general references to Bayesian inversion see [1–7].

3.1 THE POSTERIOR DISTRIBUTION

Consider the problem of finding f ∈ R
n from the measurements m ∈ R

nm

when fand m are related by the model (1.1)

m = A f + ε ε ∼ N (0, σ2 I).

The joint probability density of f and m can be written as

π( f ,m) = π( f |m)π(m) = π(m| f )π( f ) (3.1)

where π( f |m) is the posterior distribution of f given m, π(m| f ) is the
likelihood function describing the measurements, π( f ) is the prior density
representing the a priori information of the unknown and π(m) is the
marginal density of m.

A complete solution to the inverse problem, the posterior distribution,
can be derived from (3.1), thus the posterior distribution writes

πpost( f |m) =
π(m| f )π( f )

π(m)
, (3.2)

where the marginal density π(m) is often considered as a normalizing
constant. Equation (3.2) is known as the Bayes formula.

3.2 POINT ESTIMATES

Practical (real-world) inverse problems are often large-scale problems and
the related posterior distribution is high dimensional and cannot be vi-
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sualized directly. However, different point, spread and interval estimates
can be computed in order to visualize the solution. The maximum a poste-
rior (MAP) estimate

fMAP = arg max
f∈Rn

πpost( f |m)

is one of the most common point estimates. The computation of the
MAP estimate leads to a large-scale optimization problem.

Another commonly used point estimate is the conditional means (CM)
estimate

fCM =
∫

fπ( f |m)d f .

The computation of the CM estimates leads to an integration problem in
a high-dimensional space.

3.3 THE LIKELIHOOD FUNCTION

The construction of the likelihood function π(m| f ) is based on the for-
ward model and on the information about the noise. An additive noise
model (m = A f + ε) with the assumption that the noise is Gaussian white
noise, with a standard deviation σ > 0, is often a feasible choice. Further,
assuming that the noise ε and the unknown f are mutually independent
the likelihood function can be written as

π(m| f ) = πnoise(m− A f ) = C exp
{
− 1
2σ2 ‖A f −m‖22

}
where C is a normalizing constant.

3.4 PRIOR MODELS

In Bayesian inversion the prior model is the way to incorporate a priori
information about f into the inversion process. The challenge of con-
structing a suitable prior model lies in the nature of the prior information.

The prior information is often qualitative, for example it can be ex-
pected that the solution is piecewise regular having only few irregulari-
ties (jumps). Then the prior model should be constructed such that sharp
jumps in the reconstruction are allowed. Also it can be expected that
the unknown function f is sparse or has a sparse representation in some
transformation domain. For instance smooth functions with few local
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irregularities can be represented sparsely on wavelet transformation do-
mains.

This thesis considers two prior models that are adaptable to sparse
representations, namely a wavelet-based Besov space prior model and a
total variation (TV) prior model.

The Besov space prior can formally be written as

πpr( f ) = exp
{
−α‖ f ‖Bs

pq

}
,

where α > 0 is the prior parameter and ‖ f ‖Bs
pq

is the Besov space norm,
which can be expressed by means of wavelet coefficients (see section 2.4).

The Besov priors in Bayesian frameworks have been studied in the
literature. In [45] Besov space priors were used for wavelet denoising.
Wavelet-based Besov priors have been applied to practical tomographic
problems in [46,47]. In [26] Besov B1

11 space prior was studied in the con-
text of discretization-invariant Bayesian inversion. In [26] it was shown
that the use of B1

11 prior yields discretization-invariant Bayesian estimates
in the sense that the estimates behave consistently at all resolutions and
the same prior information can be used regardless of the discretization
level. In [27] Besov prior and wavelets were applied to an inverse problem
of finding diffusion coefficients related to an elliptic partial-differential
equation. In deterministic regularization, in particular in Tikhonov reg-
ularization, Besov norm penalties have been extensively studied in the
literature, see [48–53] for example.

The TV prior model can formally be written as

πpr( f ) = exp {−α‖ f ‖TV} , (3.3)

where ‖ f ‖TV is the TV norm of f .
The TV norm was originally introduced in 1992 by Rudin, Osher and

Fatemi [25] as a regularizer for image restoration. Since then it has been
used extensively. For example TV has been used for image restoration,
denoising, deblurring, image inpainting, signal recovery and tomographic
reconstruction problems both in deterministic and statistic frameworks.
Thus the attempt to survey and to do justice to all of its contributors
would be quite a considerable task and thus falls outside of the scope
of this thesis. Therefore, here we only refer to works that are directly
related to this thesis i.e. where TV prior has been used to recover Bayesian
MAP estimates (see I and II).

Publication I considered a problem of reconstructing an image from
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tomographic data. In [54–59] TV priors were also used when computing
Bayesian MAP estimates from tomographic data. [54–57] considered X-ray
tomography, [58] electrical impedance tomography (EIT) and [59] positron
emission tomography (PET).

In Publication II TV priors were used to compute Bayesian MAP es-
timates in the context of a discretization-invariant Bayesian inversion.
The considered problem was a deconvolution problem. The MAP esti-
mates were recovered using a convex quadratic programming algorithm.
For previous studies with deconvolution problems where TV priors have
been used to compute Bayesian MAP estimates see [60–63], for example.
In [60] MAP estimates were recovered under non-negativity constraint us-
ing a convex programming algorithm. [64] also considered TV priors for
Bayesian inversion. The results of [64] showed that TV priors cannot be
used for discretization-invariant Bayesian inversion.

3.5 COMPUTATION OF THE MAP ESTIMATE

The computation of the MAP estimates using the TV prior (3.3) is equiv-
alent with the following minimization problem

fMAP
TV = argmin

f

(
1

2σ2 ‖A f −m‖22 + α
n−1

∑
i=1

|(E f )i|
)
, f ≥ C

where α is the prior parameter, E denotes the discrete operator related to
the first derivative of f and C is a constant (often C = 0).

The Besov space prior can be derived using the Besov norm of section
2.4, thus the computation of the MAP estimate using Besov space prior
amounts to the following minimization problem

fMAP
Bs
pq

= argmin
f

(
1

2σ2 ‖A f −m‖22 + α‖ f ‖pBs
pq

)
, f ≥ C

where a computationally efficient form of the Besov norm i.e. the power
of p of the Besov norm, has been used.

Denoting the direct and inverse wavelet transforms ((2.6) and (2.7)) by
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w = B−1 f and f = Bw,

respectively1, and choosing the Besov parameters p, q and s such that
p = q = s = 1, the computation of the MAP estimate (with B1

11 prior) is
equivalent to

fMAP
Bs
pq

= argmin
f

(
1

2σ2 ‖A f −m‖22 + α
n

∑
j=1

|WB−1 f |j
)
, f ≥ C

where W is a diagonal matrix containing the powers of 2 weights of for-
mulas (2.9) and (2.10). Note that in 2D W = I when p = q = s = 1 (see
(2.10)).

1 w = B−1 f are the first n wavelet coefficients of f when the wavelets are
ordered into a sequence and re-numbered by an index j ∈ Z
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4 Primal - dual interior -
point method

In constrained optimization the publication of Karmarkar’s study [32] of
interior-point (IP) methods for linear programming in 1984 can be seen as
a turning point in the development of modern IP methods. After that in
1990s primal-dual (PD) IP methods have proved themselves to be very ef-
ficient for several applications; they have good practical performance and
they can be extended to wide classes of problems including linear pro-
gramming (LP), quadratic programming (QP) and sequential QP prob-
lems. Most of the present PD-IP methods, including the one presented
in this thesis, are based on the Mehrotra’s predictor corrector method
published in 1992 [33]. As general references for linear and quadratic
programming see [28–31], for example.

This chapter is organized as follows. The section 4.1 present briefly
a QP problem subject to equality and inequality constraints. The sec-
tion 4.2 presents the primal-dual path following interior-point method
that has been used in Publications II-IV and section 4.3 reviews previ-
ous studies on PD-IP methods related to this thesis. The considered con-
straints in Publications II-IV were linear equality and bounds-on-variable
constraints, hence section 4.2 concentrates on presenting an optimization
problem with quadratic objective function subject to linear equality and
bounds-on-variable constraints. The extension to optimization problems
with inequality constraint and/or nonlinear optimization problems can be
derived using simple extensions to the approach presented in this chapter.

4.1 QUADRATIC PROGRAMMING

An optimization problem that has a quadratic objective function and lin-
ear constraints is called a quadratic program (QP). In a general form the
QP problem can be stated as follows

minz
(
1
2z

TQz+ zTd+ κ
)

s.t. AE z = bE
AIz ≥ bI

(4.1)
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where Q is a symmetric nz × nz matrix, z and d are vectors in R
nz and

the subscripts E and I denote the equality and inequality constraints, re-
spectively. When the matrix Q is positive semidefinite the QP problem is
convex, similarly when the matrix Q is indefinite the QP problem is non-
convex. In this thesis only the case of convex QP problems are considered.
Methods for solving problems of the form (4.1) include active set meth-
ods, conjugate gradient methods, interior-point methods and augmented
Lagrangian methods, for example [28–31].

4.2 PRIMAL-DUAL PATH FOLLOWING INTERIOR-POINT
METHOD

A primal problem with a quadratic objective function and linear con-
straints can be presented as follows

minz P(z)

s.t. Az = b (4.2)

z ≥ Λ

where P(z) =
(
1
2z

TQz+ zTd+ κ
)
is the primal objective function.

To begin the derivation of the interior point method, slack variables
gi, i = 1, . . . , nz are introduced to the inequality constraints thus rewriting
the primal problem (4.2) as

minz Pμ(z, g)

s.t. Az = b (4.3)

z− Λ = g

where the objective function Pμ(z, g) =
(
1
2z

TQz+ zTd+ κ − μ ∑
nz
i=1 log(gi)

)
is the classical Fiacco-McCormick type logarithmic barrier function [65],
with μ > 0. The Lagrangian for this problems is

L(z, g, y, v; μ) = 1
2z

TQz+ zTd+ κ − μ ∑
nz
i=1 log(gi)

+yT(b−Az) + vT(Λ − z+ g)
, (4.4)

where y and v are the Lagrangian multipliers for the constraints Az = b
and x− Λ = g, respectively. The Lagrangian multipliers (y and v) are also
the dual variables of the associated Lagrangian dual problem (or simply
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the dual problem)

maxz D(z, y, v)

s.t. ATy+ v−Qz = b,

v ≥ 0

y free

where D(z, y, v) =
(

κ + bTy+ ΛTv− 1
2z

TQz
)
is the dual objective func-

tion. The dual variable v is complementary to the non-negative primal
variable g, which implies that also v is non-negative. The dual variable y
is associated with the primal equality constraint making y a free variable.

In Lagrangian duality the basic idea is to take the constraints of the
problem into account by augmenting the objective function by a weighted
sum of the constraints. The duality has an important role in the PD-
IP methods since the dual objective function D(z, y, v) provides a lower
bound for the primal objective function P(z). Further, at the optimal point
(z∗, g∗, y∗, v∗) the solution of the primal objective function P(z∗) is equal
to the solution of the dual objective function D(z∗, y∗, v∗), i.e. P(z∗) ≡
D(z∗, y∗, v∗).

4.2.1 The KKT-conditions and the central path

The optimality conditions for the constrained problem can be derived by
stating the conditions for a minimum of (4.4)

∇zL(z, g, y, v; μ) = Qz+ d−ATy− v = 0 (4.5)

∇gL(z, g, y, v; μ) = −μG−11+ v = 0 (4.6)

∇yL(z, g, y, v; μ) = b−Az = 0 (4.7)

∇vL(z, g, y, v; μ) = Λ − z+ g = 0 (4.8)

where 1 is a vector of all ones and G denotes diagonal matrix with ele-
ments gi. Multiplying (4.6) with G the conditions (4.5) - (4.8) yield the first-
order necessary conditions, often referred to as the Karush-Kuhn-Tucker

Dissertations in Forestry and Natural Sciences No 104 19
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(KKT) conditions, for the primal-dual system, namely the conditions

ATy+ v−Qz = d (4.9)

Az = b (4.10)

z− g = Λ (4.11)

GV1 = μ1 (4.12)

where V denotes diagonal matrix with elements vi. Equation (4.9) is called
the dual feasibility, (4.10) and (4.11) the primal feasibilities and (4.12) is
the μ-complementarity. When the matrix Q in (4.9) is positive semidef-
inite these KKT-conditions are both necessary and sufficient optimality
conditions for the QP problem (4.2) [28, 30].

The parameter μ parameterizes the central path, which is followed in
the PD path following IP method. The central path is defined by the tra-
jectory P : P{(zμ, gμ, yμ, vμ)|μ > 0}. For each μ > 0 the associated central
path defines a point in the primal-dual space simultaneously satisfying
the conditions (4.9) - (4.12). As μ → 0 the trajectory P converges to the op-
timal solution of both the primal and dual problems. At the optimal point
(z∗, g∗, y∗, v∗), μ ≡ 0 and P(z∗) = D(z∗, y∗, v∗) and furthermore, the bar-
rier objective function Pμ(z∗, g∗) at the optimal point (x∗,g∗) is equivalent
with the original primal objective function P(z∗) hence the QP problem
(4.2) can be solved by finding a solution to the system (4.9) - (4.12). Writing
the conditions (4.9) - (4.12) in a form of a mapping F : R

3nz+ny → R
3nz+ny

F (z, g, y, v; μ) =

⎡⎢⎢⎣
Qz−ATy− v+ d

Az− b
z− Λ − g
GV1− μ1

⎤⎥⎥⎦ = 0,

applying Newton’s method and assuming (for the moment ) that μ is
fixed, one obtains the following linear system, which yields the search
directions ⎡⎢⎢⎣

−Q 0 AT I
I 0 0 0
I −I 0 0
0 G−1V 0 I

⎤⎥⎥⎦
⎡⎢⎢⎣

Δz
Δg
Δy
Δv

⎤⎥⎥⎦ =

⎡⎢⎢⎣
τ

ρ

ρg

γv

⎤⎥⎥⎦ ,
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where

τ = Qz+ d−ATy− v+ r (4.13)

ρ = Az− b (4.14)

ρg = z− Λ − g (4.15)

γv = v− μG−11+ G−1ΔGΔV (4.16)

The variables Δg and Δv can be eliminated without producing any
off-diagonal entries in the remaining system hence giving a more compact
system i.e. the reduced KKT system[ −(Q+ G−1V) AT

A 0

] [
Δz
Δy

]
=

[
τ − G−1Vρg − γv

ρ

]
(4.17)

with Δg and Δv defined as

Δg = V−1G(γv − Δv)

Δv = γv + G−1V(ρg − Δz).

4.2.2 The predictor-corrector approach

The algorithm used in this thesis, to solve the QP problem, is based on
Mehrotra’s predictor-corrector method [33]. Following the Mehrotra ap-
proach the method presented in this thesis proceeds iteratively starting
from an initial point (z0, g0, y0, v0) through a sequence of points deter-
mined by

zi+1 = zi + λprimalΔz (4.18)

gi+1 = gi + λprimalΔg (4.19)

yi+1 = yi + λdualΔy (4.20)

vi+1 = vi + λdualΔv (4.21)

where λprimal is a step length multiplier for the primal variables z and
g and λdual is a step length multiplier for the dual variables y and v.
The search directions (Δz,Δg,Δy,Δv) are determined using the predictor
corrector method.

The computation of (Δz,Δg,Δy,Δv) in (4.18) - (4.21) can be summa-
rized as follows:

1) Set μ = 0,ΔG = 0 and ΔV = 0 and solve (4.17) in order to compute
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the predictor steps (Δzpre,Δgpre,Δypre,Δvpre)

2) Calculate a value for μ. In this thesis μ is computed using a similar
method first proposed by Vanderbei and Shanno in 1999 [35], thus
μ is computed by the equation

μ = 0.1×min
(
0.05

1− ξ

ξ
, 2
)3 vTg

nz
, (4.22)

where ξ = mini vigi
vTg/nz

3) Compute γv (4.16) with (Δgpre,Δvpre) of step 1) using μ of step 2)
(equation (4.22))

4) Solve (4.17) for (Δz,Δg,Δy,Δv).

4.2.3 Selection of the step length

The PD-IP method of this thesis uses different step length multipliers
λprimal and λdual for the primal (z, g) and dual (y, v) variables, respec-
tively. The unequal step length multipliers for primal and dual variables
are obtained as follows. First the maximal feasible step lengths that en-
force the positivity of the primal variable g and the dual variable v are
computed using a simple ratio test

λmax
primal = min

(
min

Δgi<0

(
− gi

Δgi

)
, 1
)
, i = 1, . . . , nz

λmax
dual = min

(
min

Δvi<0

(
− vi

Δvi

)
, 1
)
, i = 1, . . . , nz,

in order to keep g(i+1) and v(i+1) positive. Then the dual step length
multiplier is obtained by setting: λdual = 0.95× λmax

dual. For the primal step
length multiplier, a backtracking line search is used on interval [0, 0.95×
λmax
primal], such that also the primal constraints, Az = b, x−Λ = g, are taken

into account thus ensuring a progress also towards primal feasibility.

4.3 LITERATURE REVIEW

Since the works by Karmarkar in 1984 [32] and Mehrotra in 1992 [33]
PD-IP methods have been an active research topic. Both theoretical and
practical performances of PD-IP methods have been extensively studied
within various application areas. Thus referring to all of them would be
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quite a considerable task and thus falls beyond the scope of this thesis.
The references given in the following sections refer to the works that are
most closely related to the topic of this thesis.

The references with respect to the publicly available convex QP algo-
rithms are provided section 4.3.1. Section 4.3.2, on the other hand, reviews
a few of the studies where PD-IP methods have been applied to large-scale
inverse problems arising from practical applications.

4.3.1 Algorithms

For standard convex OP problems (4.1) there exist general purpose solvers
such as Matlab R©’s quadprog [66], Scilab R©’s qpsolver [67], MOSEK [68],
CVX [69], CPLEX [70] and LOQO [71, 72], for example. In quadprog
the user may choose between three methods: the trust-region method,
interior-point method or active-set method. In CVX the user can choose
between two modes: the semidefinite programming mode or the geo-
metric programming mode. MOSEK, CPLEX and LOQO use the state-
of-the-art interior-point method. Further, CPLEX and LOQO use the
Mehrothra’s [33] predictor corrector approach.

However, often most of these standard solvers can only solve small
and medium size problems and fail to solve large-scale problems. For
example, the user’s guide of CVX suggests an image size of 50× 50 for
image reconstruction problems. Therefore, in application areas where the
problems arise from real world and are large-scale problems standard
general purpose solvers may fail to work and customized algorithms are
needed1.

4.3.2 Applications

In [36] Johnson and Sofer derived a specialized PD-IP method for 3D emis-
sion tomography reconstruction problem. Within the Bayesian framework
MAP estimates with positivity constrained were recovered using a PD-IP
method. In [74] the authors used PD-IP method to compute maximum
likelihood (ML) estimates from 3D positron emission tomography (PET)
data.

In [40] Borsic et al derived a PD-IP framework to compute electrical
impedance tomography (EIT) reconstructions. As a regularization for the

1As a solver for large-scale nonlinear optimization problems see [73], for ex-
ample
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EIT problem they used TV regularization. In [41] Borsic and Adler de-
rived a PD-IP method that used ‖ · ‖1 norm either in the data fitting term,
or in the regularization term or on both. Reconstructions from EIT data
were computed with a PD-IP method. In [75] an EIT image reconstruc-
tion problem was also considered and a PD-IP method was used to solve
problems with ‖ · ‖1 and mixed norm formulations.

PD-IP methods have also been used for PDE constrained problems.
In [76–83] PD-IP methods were used to solve PDE constrained optimal
control problems. In [84,85] PD-IP methods were applied to optimal con-
trol problems with parabolic constraints.

In [38] Kim et al used PD-IP method for sparse signal recovery prob-
lem of magnetic resonance imaging and Zhang et al for bioluminescene
tomography in [86]. PD-IP methods have also been considered for de-
blurring problems [37], for image restoration problems [39] and for com-
pressed sensing [87].
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This chapter reviews the studies and results of Publications I - IV. In Pub-
lication I the reconstruction problem arose from dental local tomography,
Publication II handled a deconvolution problem, in Publication III the
task was to recover diffusion coefficients related to a coupled parabolic
system and in Publication IV the reconstruction problem originated from
sparse angle X-ray tomography.

5.1 PUBLICATION I: RECONSTRUCTING X-RAY IMAGES
FROM LOCAL TOMOGRAPHY DATA

The motivation of this research stemmed from dental X-ray imaging, in
particular from dental Cone Beam Computed Tomography (CBCT) imag-
ing. Typically in dental CBCT imaging a C-arm with an X-ray source and
a digital detector rotates around the patient’s head collecting 2D projec-
tion images. The CBCT imaging is an example of local tomography. In
local tomography the aim is to reconstruct the distribution of the attenua-
tion coefficients inside the region of interest (ROI) from a set of truncated
projection images [88–92]. For an illustration of the geometry, global vs.
local tomography, see figure 5.1. Compared to the traditional CT scanners
the dental CBCT devices provide higher resolution and lower costs. How-
ever, the dental CBCT produces sparse projection data as opposed to the
global and dense CT data since the projections are truncated and possibly
coarsely sampled in the angular variable. The truncation of the projection
images is typically enforced by limited detector size or by the intention to
minimize the radiation dose to critical organs. The image reconstruction
from such data is an ill-posed inverse problem.

The attenuation coefficients in X-ray tomography have often been rep-
resented by piecewise constant voxel bases, see [93–96] for example. How-
ever, the use of voxel-based models in dental CBCT imaging may become
computationally problematic due to the high resolution requirement; the
dentist needs to see detail of size ∼ 0.1 mm inside the ROI. If, however,
the whole volume Ω, that contains a cross-section of the patient’s head, is
covered with voxels of size 0.1× 0.1× 0.1 mm3, the number of unknowns
in the inverse problem becomes impractically large. One option could be
to cover only the ROI with small enough voxel and not to model the other
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X−ray source

X−ray detector array

Object
Ω

FS

X−ray source

X−ray detector array

Figure 5.1: Global (left) and local (right) tomography. The source and detector panel rotate
around the object along the dotted circle. ΩFS represents the sub domain that is present
in all of the projection images in the local tomography case (FS = Focal spot). Usually the
region of interest is chosen to be ΩFS.

tissues at all; this, however, will typically lead to severe reconstruction
artefacts. Publication I proposed a wavelet-based Bayesian multiresolu-
tion method for local tomography where a Besov space prior was used
for the dental structures.

5.1.1 The wavelet-based Bayesian multiresolution

The basic idea in the wavelet-based multiresolution method is to reduce
the number of unknowns in the inverse problem by using a high resolu-
tion only inside the ROI and a coarser resolution elsewhere in the recon-
struction volume. This can be done by using wavelets to represent the
tissue structures. Thanks to the locality, scaling and shifting properties
of wavelets [8, 10, 11, 13–16,43] this kind of multiresolution representation
can be achieved.

Let f = Bw,w ∈ R
nw denote the full wavelet expansion of an image

f with all the available scales J used over all of the image domain and
let H = {1, . . . , nw} denote the associated indexing of the basis in the
wavelet expansion. Further, let S ⊂ H denote the subset of basis indices
that contains all the scales up to J in ΩROI and the scale up to Jout in
Ω\ΩROI, such that Jout ≤ J. Now the multiresolution representation of
the image f can (formally) be written as

f = B̃w̃, w̃ = Rw ∈ R
nr , B̃ = BRT , nr ≤ nw (5.1)
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where R ∈ R
nr×nw is a model reduction matrix with elements

Ri,h =

{
1 Si = h
0 otherwise

where Si denotes the ith element of S . Note that f ∈ R
n and w ∈ R

nw

with nw ≥ n depending on the chosen wavelet basis and on the boundary
conditions used.

Using equation (5.1) the reduced model for the projection measure-
ments in the multiresolution approach becomes

m = AB̃w̃+ ε ε ∼ N (0, σ2 I). (5.2)

Following section 3.5 the computation of the MAP estimate related to
the reduced model (5.2) is equivalent with the following minimization
problem

w̃MAP = argmin
w̃

(
1

2σ2 ‖AB̃w̃−m‖22 + α‖B̃w̃‖pBs
pq

)
. (5.3)

The minimization of (5.3) in I was realized by using the nonlinear conju-
gate gradient Polak-Ribière method [97].

5.1.2 Materials and methods

Two different test cases of local tomography, corresponding to a dental
CBCT situation in 2D, were considered:

(i) simulated data consisting of 187 projections from a total opening
angle of 187◦ with 1◦ projection interval

(ii) experimental data consisting of 23 projections from sparsely dis-
tributed directions with total opening angle of 187 ◦ with 8.5◦ pro-
jection intervals

In the inverse problem the size of the pixel grid used over the whole
image domain Ω was 256× 256 for the simulated case and 498× 498 for
the experimental case.

The following choices were used for both test cases. Daubechies 6
wavelets were used in the multiresolution model (5.3) and a half-point
symmetric padding was used for the treatment of the boundaries. The
prior parameter α was set to α = 30. The Besov parameters p, q and s
were set to p = q = 1.5 and s = 0.5. In [46] the authors used the same
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choices for p, q and s and demonstrated that such values are well suited
for dental imaging. Furthermore, this parameter selection enables the
use of gradient-based minimization methods in the computations of the
MAP estimates since the functional in (5.3) becomes differentiable.

In Publication I the maximum available numbers of scaling levels J
in ΩROI were used thus giving J = 5 for the simulated case and J = 6
for the experimental case. To evaluate the performance of the multireso-
lution method the number of scaling levels Jout was gradually decreased
and the effect of this decrease on the image quality in ΩROI was stud-
ied. With the simulated data five reconstructions were computed having
Jout = 5, 4, 3, 2, 1 in Ω\ΩROI, respectively. J in ΩROI was set to J = 5
for all of the reconstructions. Corresponding to the experimental data
six reconstructions were computed with Jout = 6, 5, 4, 3, 2, 1 in Ω\ΩROI,
respectively and J = 6 in ΩROI for all of the six reconstructions.

As a reference for the wavelet-based multiresolution method, pixel-
based MAP estimates with total variation (TV) prior were computed.
TV priors were originally introduced for modelling blocky objects [23–25]
and they have been found to perform well for dental structures, see
[54, 57], for example.

In order to use the gradient-based optimization method when com-
puting the MAP estimates with TV prior, an approximate TV was used in
Publication I. The computation of the MAP estimates with the approxi-
mate TV prior is equivalent to the following minimization problem

fMAP
TV = argmin

f

(
1

2σ2 ‖A f −m‖22 + α
n

∑
i=1

∑
ν∈Ni

√
(β + ( fi − fν))

)
, (5.4)

where Ni denotes a four-point neighborhood for pixel i and β is a smooth-
ing parameter. In Publication I the parameter α and β in (5.4) were set to
α = 0.1 and β = 10−4, respectively.

The idea of the multiresolution method for reducing the number of
unknowns by using higher resolution only inside the ROI was extended
analogously to the pixel domain in I. This was done by considering ΩROI
as the whole image domain and neglecting the contribution of tissues in
Ω\ΩROI to the projection measurements. Denoting by J the set of indexes
in ΩROI the pixel-based ROI-only measurement model (i.e. Ω = ΩROI)
was obtained by

m ≈ AROI fROI + ε AROI = A(:,J ), fROI = f (J ). (5.5)
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5.1.3 Results

Simulated local tomography data

The original jawbone phantom that was used to simulate the projection
data is shown on the left in figure 5.2. The size of the original phantom
was 300× 300 pixels. The white circle in figure 5.2 denotes the ΩFS, which
was chosen as the ROI (ΩFS = ΩROI). For each of 187 projections 300
line integrals were chosen leading to a projection data vector m ∈ R

56100.
Additive Gaussian white noise with a standard deviation of 1 % of the
maximum of the computed projections was added to the data.

Figure 5.2 shows reconstructions with the multiresolution model. In
the middle of figure 5.2 is a reconstruction using Jout = J = 5, the resulting
number of unknown wavelet coefficients was 76 990. On the right in
figure 5.2 is a reconstruction using Jout = 1 in Ω\ΩROI and J = 5 in
ΩROI, the resulting number of unknown wavelet coefficients was 14 070.
The corresponding computational times1 for the MAP estimates were 3
minutes 18 seconds for the full wavelet reconstruction (i.e. J = Jout =

5) and 1 minutes 40 seconds for the multiresolution reconstruction with
Jout = 1.

Figure 5.3 presents the ROI details of the original phantom (top left)
and MAP reconstruction with the multiresolution method using Jout = 1
and J = 5 in ROI (top right).

In order to study quantitatively how the image quality is affected
when Jout was decreased, the following relative reconstruction errors were
computed

δΘ =
‖ ftrue − f ‖L2(Θ)

‖ ftrue‖L2(Θ)
× 100% (5.6)

either in the whole image domain (Θ = Ω) or in the ROI (Θ = ΩROI). Ta-
ble 5.2 shows the relative errors both with respect to the original phantom
and with respect to the full wavelet basis reconstruction (i.e. Jout = J = 5).

The bottom row in figure 5.3 presents the reconstructions obtained
using the TV prior as the prior distribution. On the left of the bottom
row is a MAP estimate with TV prior when the whole image domain Ω

is covered with pixels (numbers of unknown pixels was 65 536) and on
the right is a TV reconstruction obtained by using the TV ROI-only model
of equation (5.5), the corresponding number of unknown pixels was 7484.

1 All computations of Publication I were done with a desktop PC (model:
Intel R© Pentium R© 4CPU 3.2 GHz with 4 GB RAM using Matlab R© version
7.2(R2006a)
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Table 5.1: The effect of the number (Jout) of scaling levels outside the ROI on the relative
L2-reconstruction errors (5.6) in the local tomography reconstructions with the multires-
olution model. The number of scaling levels inside the ROI was J = 5 in all cases. nw
denotes the number of unknown wavelet coefficients in the inverse problem. δW indicates
to the reconstruction error when the full wavelet basis reconstruction with Jout = 5 is
used as the reference.

Jout 1 2 3 4 5
nw 14070 15120 18800 31470 76990

δΩ (%) 36.6 36.6 36.4 36.4 36.3
δΩW (%) 4.1 3.9 2.8 1.6 0
δΩROI (%) 24.0 23.9 23.8 23.7 23.7
δΩW

ROI
(%) 0.35 0.28 0.14 0.04 0

The relative reconstruction errors in ΩROI for the MAP estimates with
TV prior were δΩROI = 23, 7% for the full pixel model and δΩROI = 123, 7%
for the ROI-only model.

Figure 5.2: The MAP estimates with the multiresolution model from the local tomography
data of the jawbone phantom (original phantom on the left). The ROI is marked with a
white circle. In all of the reconstructions, the number of scaling levels inside the ROI was
J = 5. The number of the scaling levels outside the ROI was Jout = 1 (middle), and
Jout = 5 (right).

In publications [98, 99] the multiresolution method was further tested
by using only the approximation coefficients cJ0,k in Ω\ΩROI and by
adding extra fillings into the jawbone phantom such that the fillings were
just cut outside of the ROI. Typically such fillings cause severe artefacts in
the reconstructions. The results are presented in figures 5.4 and 5.5.
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Figure 5.3: The ROI details of the MAP estimates. On the top row; the original phantom
(on the left), the MAP estimate with the multiresolution model using Jout = 1 scaling
levels outside the ROI while the number of scaling levels inside the ROI was J = 5 (on the
right). On the bottom row; the MAP estimate with the total variation prior (on the left)
and the MAP estimate with the TV prior when the matrix AROI is used as the forward
model (i.e., the whole image domain Ω = ΩROI) (on the right). (Note that each image has
its own gray scale.)

Experimental local tomography data

The projection radiographs of a jawbone specimen were acquired using
a commercial intraoral X-ray detector Sigma R© and a dental X-ray source
Focus R©. The projection images were collected using a similar CBCT ge-
ometry that is used in the commercial dental CBCT scanners. The mea-
surement geometry of the experimental setup is illustrated in figure 5.6.
One row of the projection images was used for the 2D reconstructions.
The number of data was m ∈ R

15272.

Figure 5.7 shows the multiresolution reconstructions computed from
the experimental data. The ROI is marked by a white circle. On the left of
figure 5.7 is a MAP reconstruction with Jout = J = 6 (number of unknown
wavelet coefficients was 269 310) and on the right is a reconstruction with
Jout = 1 in Ω\ΩROI and J = 6 in ΩROI ( the number of unknown wavelet
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Figure 5.4: The MAP estimates with the multiresolution model from the local tomography
data of the jawbone phantom with fillings. The ROI is marked with a white circle. In all of
the reconstructions, the number of scaling levels inside the ROI was J = 5. The number
of the scaling levels outside the ROI was Jout = cJ0,k (in the middle), and Jout = 5 (on the
right).

Figure 5.5: The ROI details of the MAP estimates of figure 5.4. On the top row; the
jawbone phantom (on the left), a MAP estimate with the multiresolution model using
Jout = cJ0,k outside the ROI while the number of scaling levels inside the ROIwas J = 5
(on the right). On the bottom row; a MAP estimate with the TV prior (on the left) and
a MAP estimate with the TV prior when the matrix AROI is used as forward model (i.e.,
the whole image domain Ω = ΩROI) (on the right).
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Figure 5.6: Left; a photograph of the measurement setup. Right; an illustration of the
measurement geometry for the experiment with the jaw bone specimen.

coefficients was 29130). The corresponding computation times were 14
minutes 54 seconds and 2 minutes 14 seconds, respectively.

Figure 5.7: MAP estimates with the multiresolution model from the measured local tomog-
raphy data of the jaw bone specimen. In all of the reconstructions, the number of scaling
levels inside the ROI was J = 6. The number of the scaling levels outside the ROI was
Jout = 6 (left), and Jout = 1 (right). The ROI is marked with a white circle.

Figure 5.8 shows the ROI details of the MAP estimates. On the left
in figure 5.8 is a MAP estimate with Jout = 1 in Ω\ΩROI and J = 6 in
ΩROI. In the middle is a MAP estimate with the full pixel-based TV model
(5.4) (the number of the unknown pixels was 248 004) and on the right
is a MAP estimate with TV prior using the ROI-only model (5.5) (the
number of the unknown pixels was 19 044). The computation times were
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12 minutes 36 seconds for the full pixel-based TV model and 2 minutes
14 seconds for the multiresolution model.

Figure 5.8: The ROI details of the MAP estimates with the multiresolution model and
with the total variation prior computed from the measured local tomography data of the
jaw bone specimen. The reconstructions from left to right: a MAP estimate with the
multiresolution method with Jout = 1 and J = 6, a MAP estimate with the TV prior and
a MAP estimate with the TV prior using the ROI-only model, respectively. (Note that
each image has its own gray scale.)
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5.2 PUBLICATION II: RECOVERING A SIGNAL FROM 1D
CONVOLUTION DATA

Consider a linear model
m = A f + ε

where m ∈ R
nm is the measurement data vector, A is a linear operator

modelling the measurements, f is a continuous function and ε ∈ R
nm is

the measurement noise. In practice f is the unknown physical quantity
that one wants to estimate. The computational solutions of this inverse
problem are however, based on discrete models for approximating the
continuous function f ∈ X. Hence, instead of studying the linear model
m = A f + ε in a continuous setting, we study the finite computational
model

m = A f(n) + ε, (5.7)

where f(n) = Tn f ∈ X and Tn : X → X is a linear projection operator with
n-dimensional range dim(Tn(X)) = n < ∞. Using Bayesian inversion
methods and following Chapter 3 the Bayesian MAP estimate related to
the inverse problem (5.7) is defined by

πpost( fMAP
(n) |m) = max{πpost( f(n)|m) : f(n) ∈ Tn(X)}. (5.8)

In the Bayesian framework it would be useful in practise if the
Bayesian MAP and CM estimates were discretization-invariant since that
would ensure that the MAP and CM estimates behave consistently at dif-
ferent resolutions. Furthermore, the same Bayesian prior model could be
used regardless of the discretization level. Thus one of the objectives of
Publication II was to derive a discretization-invariant Bayesian inversion
model such that it would also be sparsity-promoting.

In regularization the use of ‖ · ‖1 norms instead of ‖ · ‖2 norms is
known to promote sparsity [17, 23–25, 100]. In particular the TV norm
is widely used in computational inversion. In the Bayesian framework,
a sparsity-promoting approach can be obtained by constructing a prior
model that contains a norm of ‖ · ‖1 type. Publication II considered two
such prior models; the TV prior πpr( f ) = exp(−α ∑

n
i=1 |(Ef )i|), where E
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is a periodic difference matrix defined by

E =

⎡⎢⎢⎢⎢⎢⎢⎣
−1 1 0 0 · · · 0
0 −1 1 0 · · · 0
...

...
0 · · · 0 −1 1
1 · · · 0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎦
and the Besov B1

11 space prior πpr( f ) = exp(−α ∑
n
i=1 |(WB−1f )i|), where

W is a diagonal matrix containing the powers of 2 weights (see section
2.4).

The computation of the Bayesian MAP estimates with TV and B1
11

priors amounts to the following optimization problem

fMAP = arg min
f∈Rn

{
1

2σ2 ‖A f −m‖22 + α
n

∑
i=1

|(Hf )i|
}

(5.9)

where α is the prior parameter, H = E for total variation prior and H =

WB−1 for Besov B1
11 space prior. (Note that the vector fMAP ∈ R

n then
contains the values of the function fMAP

(n) (x), defined in (5.8), at the grid
points.)

This optimization problem is non-differentiable and gradient-based
optimization methods are not applicable. In Publication II the optimiza-
tion problem of (5.9) was reformulated into a QP form and PD-IP method
of Chapter 4 was used to compute the MAP estimates.

5.2.1 PD-IP method for sparsity-promoting Bayesian inversion

The derivation of the PD-IP method starts by reformulating (5.9) into a
QP form. Thus denoting H f = h+ − h−, where h+, h− ≥ 0 the problem
(5.9) becomes

min
f

{
1

2σ2 f
TATA f − 1

σ2 f
TATm+ α1Th+ + α1Th− +

1
2σ2m

Tm
}
, (5.10)
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where 1 is a vector of all ones. Now denoting z =

⎡⎣ f
h+

h−

⎤⎦, Q =

⎡⎢⎣ 1
σ2 ATA 0 0

0 0 0
0 0 0

⎤⎥⎦, d =

⎡⎢⎣ − 1
2σ2 ATm

α1
α1

⎤⎥⎦ and κ = 1
2σ2mTm, the minimiza-

tion of (5.10) becomes

minz

(
1
2
zTQz+ dTz+ κ

)
s.t. Az = 0

z ≥

⎡⎣ −N
0
0

⎤⎦
where A =

[
WB−1 −I I

]
for the B1

11 prior and A =
[
E −I I

]
for the TV prior, I denoting the identity matrix. Based on theory (see [26]
and II) f was unconstrained, i.e. −∞ ≤ f ≤ ∞, however, in practical
computations we cannot set f ≥ −∞ therefore, we set f ≥ −N with
N >> 0 so that the constraint on f was practically ineffective.

5.2.2 Materials and methods

The data used in the numerical computations in Publication II was ac-
quired by taking A of equation (1.1) to correspond to a periodic con-
volution operator and by adding Gaussian white noise with a standard
deviation σ > 0 s.t.

m = (A f )(x) + ε, ε ∼ N (0, σ2 I).

(A f )(x) was evaluated numerically using a finer grid than was used in
any computations of the MAP estimates thus avoiding the inverse crime1.

As a reference method MAP and CM estimates were computed us-
ing TV prior. The discretization-invariance of the MAP and CM estimates
with TV prior were studied in [64]. In [64] the authors showed that the use
of TV priors in Bayesian inversion fails of produce discretization-invariant
MAP and CM estimates. In Publication II new numerical examples illus-

1 The term inverse crime refers to obtaining unrealistically optimistic results. In
practice this means that the discretization level is the same both in the numerical
simulations and in inversion.
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trating this discretization dilemma were provided.
With both the TV and B1

11 models the MAP estimates were computed
using the PD-IP method and the CM estimates were recovered using a
Metropolis-Hastings Markov chain Monte Carlo (MCMC) algorithm. For
more details to the computation of the CM estimates with the MCMC
method see II.

A novel sparsity-based method for the selection of the prior parameter
α was proposed in Publication II. The idea of the sparsity-based choice
rule is that we want to promote estimates that have similar levels of spar-
sity (S) in a given wavelet basis as the a priori estimated sparsity level (Ŝ)
of the unknown. The sparsity-based choice rule can be summarized as
follows:

1) take a finely spaced collection of parameters α such that
0 < α(1) < · · · < α(M) < ∞

with M sufficiently large

2) compute the corresponding MAP estimates
fMAP(α(1)), . . . , fMAP(α(M))

and calculate the numbers of wavelet coefficients S that are nonzero
(S(α(1)), . . . , S(α(M)))

(in practice the absolute values of the wavelet coefficients are taken
to be above a small and positive threshold level)

3) Select α = αi s.t. S(α) ≈ Ŝ, using the data (αi, S(α(i))), i = 1, . . . ,M.
Ŝ denotes the a priori estimated sparsity level of f in the wavelet
domain

In Publication II the α(i)’s ranged in the interval
[
10−5, 108

]
, M = 500

and the small but positive threshold level for the wavelet coefficients was
set to 10−6.

5.2.3 Results

A piecewise linear target function (shown in figure 5.9) was used to sim-
ulate the measurement data such that the measurement vector consisted
of 63 elements. Figure 5.9 shows the realization of the measurements m
(on the right). For the treatment of the boundaries a periodic boundary
condition was used in II.

In Publication II the convergence of estimates with the B1
11 prior were

studied numerically. To that end numerical results were computed using
eight different discretization levels, namely n = [64, 128, . . . , 8192]. The
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Figure 5.9: Left: the piecewise linear target function f . Right: the simulated measurement
vector m ∈ R

63 corrupted by white noise with a relative amplitude of 1%. The coordinate
axis limits are the same in both of the plots.

theoretical existence for the limit limn→∞ fMAP
(n) with B1

11 prior was proven
in II (for more details see II) and the proofs of the existence of the limit
limn→∞ fCM

(n) were given in [26].

Based on theory the Daubechies 7 wavelets would have provided
a valid basis for the B1

11 space but the numerical results showed that
Bayesian estimates using B1

11 prior with Daubechies 7 wavelets failed to
preserve edges in the reconstructions, whereas the use of Haar wavelets
yielded convergent discretization-invariant estimates that were sparse and
edge-preserving, hence Haar wavelets were used in the computations.

The value for Ŝwas determined by computing the numbers of nonzero
wavelet coefficients of the target function (presented on the left in fig-
ure 5.9) in Haar wavelet basis at the level n = 256, thus representing an
optimal case where the number of nonzero wavelet coefficient is exactly
known. The resulting Ŝ was Ŝ = 82.

The proposed α-choice rule was tested using three data sets with dif-
ferent standard deviations for the noise; namely σ = 5%, σ = 1% and
σ = 0.1%. The results with σ = 1% are presented in figure 5.10, this data
was used in further computations. According to the proposed sparsity-
based choice rule with Ŝ = 82 the prior parameter α, determined at the
resolution n = 256, resulted α = 5.39, as illustrated in figure 5.10. With
α = 5.39 the number of nonzero wavelet coefficients in the corresponding
MAP estimate was S(5.39) = 44 (n = 256). The selected α = 5.39 was
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Relative noise amplitude 1% Reconstruction α = 5.39

82

44

10−5 α = 5.39 108

128

256

Figure 5.10: The Sparsity-based choice of the regularization parameter. Left: plots of
numbers of nonzero wavelet coefficients in the MAP estimates computed with various
values of parameter α. Results for ε ∼ N (0, σ2 I) with σ = 1% are presented. Right: the
original function (thin line) and the MAP estimate (thick line) using the selected α.

then used to compute the MAP and CM estimates with B1
11 prior at all

discretization levels (64 ≤ n ≤ 8192). The results are presented in figure
5.11.

In order to study the convergence of the MAP and CM estimates quan-
titatively, relative reconstruction errors were computed with respect to the
estimates computed at the discretization level n = 8192. See table 5.2 for
the results. From the table 5.2 and from the superposition images of fig-
ure 5.11 it can be seen that the Bayesian MAP and CM estimates with B1

11
prior are discretization-invariant.

Also the sparsity of the estimates was studied by counting the percent-
ages of scaled wavelet coefficients α2j/2wj,k that had |α2j/2wj,k| < r with
the prior probability of 10−6. This criterion gave r = 10−6 as the tolerance
for the numerical zero when measuring sparsity. The results are presented
in table 5.2. As can be seen from table 5.2, selecting the prior parameter
α according to the proposed choice rule leads to MAP estimates that are
quite sparse and have roughly the same number of non-zero wavelet co-
efficients for all n.

In [64] it was shown that Bayesian estimates with TV prior are not
discretization-invariant, this was also illustrated in Publication II by com-
puting the MAP estimates with TV prior and by selecting the prior pa-
rameter α in two ways: (i) α = 89 ∀ n and (ii) α = 3.93

√
n. The super-

positions of MAP and CM estimates with α’s as stated in (i) and (ii) are
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Figure 5.11: Superposition of the CM and MAP estimates. Note the quite close agreement
of the estimates over a significant range of discretization levels (64 ≤ n ≤ 8192). This is
due to the convergence properties of the discretization-invariant Besov space prior.

Table 5.2: The relative errors (δMAP/CM) and the sparsities (SMAP/CM) of MAP and
CM estimates with Besov space B1

11(T) prior using Haar wavelet basis. The relative
errors are computed with respect to the estimate at resolution n = 8192 and the numbers
SMAP and SCM present the numbers of nonzero scaled wavelet coefficients α2j/2wj,k in
the estimates computed using 10−6 as a tolerance value.

n 64 128 256 512 1024 2048 4096 8192

δMAP 0.28 0.31 0.23 0.16 0.10 0.07 0.03 0
δCM 0.25 0.25 0.20 0.15 0.11 0.09 0.07 0

SCM 64 128 256 512 1024 2048 4095 8191
SMAP 47 41 44 40 42 41 41 42

presented in figure 5.12. From the figure 5.12 it can be seen how using a
constant parameter α ∈ R leads to convergent MAP estimates and diver-
gent CM estimates. On the other hand, a choice of the form α = α0

√
n is

the only possibility to achieve convergent CM estimates. However, such
a choice leads to MAP estimates converging to zero and to CM estimates
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Figure 5.12: Superposition of the MAP (left column) and CM (right column) estimates
with the TV prior. Top row: Superpositions of the reconstructions using α = 89 ∀n.
Bottom row: Superpositions of the reconstructions using α = 3.93

√
n. The coordinate

axes limits are the same in all of the plots.

that are smooth in the high resolution limit, thus failing to preserve edges.

5.3 PUBLICATION III: RECOVERING DIFFUSION COEFFI-
CIENTS OF A 1D COUPLED PARABOLIC SYSTEM

Consider the following linear parabolic system⎧⎪⎪⎨⎪⎪⎩
∂tu1 − ∂x(c1∂x)u1 = a11u1 + a12u2 in Ω × (0, T),
∂tu2 − ∂x(c2∂x)u2 = a21u1 + a22u2 in Ω × (0, T),
ui(t, x) = 0 on ∂Ω × (0, T), i = 1, 2,
ui(0, x) = u0,i(x) in Ω, i = 1, 2,

(5.11)
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where Ω =]0, 1[, T > 0, c1, c2 ≥ η > 0 are the diffusion coefficients and
ai,h are the reaction coefficients. The diffusion coefficients ci(x), i = 1, 2
are restricted to be time-independent and to belong to a set of positive
piecewise smooth functions in Ω and the coupling coefficients (a12 and
a21) are assumed to satisfy the conditions

|a21| ≥ η > 0 and |a12| ≥ η > 0 in ω,

where ω is a non empty arbitrarily fixed open interval ω ⊂⊂ Ω.
The inverse problem is the following. Determine the discontinu-

ous diffusion coefficients, c1(x) and c2(x), related to the system (5.11),
from the observation data (U2(u0; c)|(t0,T)×ω,U(u0; c)|t=θ), where c =

(c1, c2), u0 = (u0,1, u0,2), t0 ∈ (0, T), θ ∈ (t0, T) and U(u0; c) =

(U1(u0; c),U2(u0; c)).
In the theoretical part of Publication III Carleman estimates for the

inverse problem related to the system (5.11) with observations of only one
component (i.e. U2(u0; c)|(t0,T)×ω) were given. These Carleman estimates
were then used to provide the main stability results for recovering c1(x)
and c2(x) from the observation data (U2(u0; c)|(t0,T)×ω,U(u0; c)|t=θ). For
more details about the theoretical results see III.

In the numerical part of Publication III the discontinuous diffusion
coefficients were recovered using similar PD-IP method as presented in
Chapter 4.

5.3.1 PD-IP method for recovering c1(x) and c2(x)

According to the main theoretical results of Publication III (see Theorem
1.1, Corollary 1 and section 2 in III) the discontinuous diffusion coeffi-
cients c1(x) and c2(x) could be identified simultaneously by solving the
following constrained optimization problem

min
u2

1
2

{
‖∂t(u2 − ũ2)‖2L2((t0,T)×ω) + ‖∂tt(u2 − ũ2)‖2L2((t0,T)×ω)

}
(5.12)

subject to⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂tu1 − ∂x(c1∂xu1) = a11u1 + a12u2 in Ω × (0, T)
∂tu2 − ∂x(c2∂xu2) = a21u1 + a22u2 in Ω × (0, T)

ui(t, x) = 0 on ∂Ω × (0, T)
ui(0, x) = u0,i(x) in Ω

u(θ, x) = ũ(θ, x) in Ω

(5.13)
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with cmin
i ≤ ci ≤ cmax

i , i = 1, 2, θ ∈ [t0, T] and ũ = (ũ1, ũ2), where ũ2
denotes the measurement (i.e. U2(u0; c)|(t0,T)×ω).

Note that the functional in (5.12) depends only on u2 whereas the con-
straints (5.13) depend on both u = (u1, u2) and c = (c1, c2) and the aim is
to recover c = (c1, c2). This implies that (5.13) becomes non-linear in view
of the numerical computations. Thus for the numerical computations a
linearized version of (5.13) was considered having both u = (u1, u2) and
c = (c1, c2) as unknowns in the problem. The linearized version of the
constraints is written

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂tu1 − ∂x(c̃1∂x)u1 − a11u1 − a12u2 − ∂x(c1∂x)ũ1 = −∂x(c̃1∂x)ũ1 in Ωt,
∂tu2 − ∂x(c̃2∂x)u2 − a21u1 − a22u2 − ∂x(c2∂x)ũ2 = −∂x(c̃2∂x)ũ2 in Ωt,
ui(t, x) = 0 on ∂Ω × (0, T), i = 1, 2,
ui(0, x) = u0,i(x) in Ω

u(θ, x) = ũ(θ, x) in Ω

(5.14)
where Ωt = Ω × (0, T). Denoting the unknowns (u1, u2, c1, c2) by a vector

z =

⎡⎢⎢⎣
u1
u2
c1
c2

⎤⎥⎥⎦ ,
the constraints (5.14) are written in a matrix form such that Az = b is
equivalent to (5.14) with b denoting the right-hand side of (5.14).

Now denoting D = ∂t and D2 = ∂tt the functional in (5.12) can be
rewritten as

minz
{

1
2u

T
2 (DTD +DT

2D2)u2 − uT2 (DTD +DT
2D2)ũ2

+ 1
2 ũ

T
2 (DTD +DT

2D2)ũ2
}
.

Further, denoting

Q =

⎡⎢⎢⎣
0 0 0 0
0 DTD +DT

2D2 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ , d =

⎡⎢⎢⎣
0

−(DTD +DT
2D2)

0
0

⎤⎥⎥⎦
and κ = 1

2 ũ
T
2 (DTD +DT

2D2)ũ2 the optimization problem related to equa-
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tions (5.12) and (5.13) becomes

minz

(
1
2
zTQz+ dTz+ κ

)
s.t Az = b⎡⎢⎢⎣
−N
−N
cmin
1
cmin
2

⎤⎥⎥⎦ ≤ z ≤

⎡⎢⎢⎣
N
N

cmax
1
cmax
2

⎤⎥⎥⎦
where the upper and lower bounds for the primal variable z are related
to the following inequalities; 0 < cmin

i ≤ ci ≤ cmax
i < C, C > 0 and

−N ≤ ui ≤ N, i = 1, 2 with some N >> 0 so that the constraints on ui’s
are practically ineffective.

5.3.2 Results

The observation data used in the numerical computations was simulated
by setting T = 1 and adding Gaussian white noise with a standard devi-
ation of 1 % of the maximum of the noiseless measurements to the data.
A more dense grid was used for the generation of the data than was used
in any of the computations.

The problem (5.14) was discretized by using the explicit Euler’s
method for the approximation of the time derivatives and finite differ-
ence (FD) method for the approximation of the spatial derivatives. In the
following Nx and Nt denote the numbers of steps in space and in time,
respectively.

Two different realizations of the discontinuous diffusion coefficients
were considered having different locations of ω’s (ω is a subdomain of
Ω where the observation data U2(u0; c)|(t0,T)×ω is measured). The piece-
wise smooth targets (c̃1(x) and c̃2(x)), as well as the subdomains (ω’s) are
presented in figure 5.13.

For the numerical computations of recovering c1(x) and c2(x), Nx and
Nt were set to Nx = 128 and Nt = 80, respectively. According to the
theory (see III and [101]) the θ ∈ [t0, T] was selected such that the require-
ment |∂xũ(θ, x)| ≥ δ > 0 in Ω\ω was satisfied.

In order to study the results quantitatively relative errors

δci =
‖c̃i(x)− ci(x)‖L2

‖c̃i(x)‖L2
, i = 1, 2
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Figure 5.13: . The target coefficient c̃1(x) and c̃2(x). c̃1(x) is denoted by a solid gray line
and c̃2(x) by a dashed back line. The coordinate axis limits are the same in both of the
plots.

were computed with respect to the true targets.
Figure 5.14 shows the results for the first test case. The relative errors

were δc1 = 0.1541 and δc2 = 0.1127 for c1(x) and c2(x), respectively. The
corresponding results for the second test case are presented in figure 5.15.
The corresponding relative errors were δc1 = 0.1443 and δc2 = 0.0802.

5.4 PUBLICATION IV: RECONSTRUCTION OF 2D X-RAY IM-
AGES FROM SPARSE PROJECTION DATA

In medical X-ray tomography it is necessary to keep the radiation dose to
patients as low as possible but at the same time accurate reconstructions
are needed for the diagnostic and surgical purposes. The radiation dose
can be reduced, for example, by truncating the projection images (which
leads to a local tomography problem) or by reducing the angular sam-
pling rate of the projections. However, both of these procedures lead to
problems that are ill-posed.

In Publication IV the study concentrated on reconstructing X-ray im-
ages from tomographic projection data collected from a full view-angle
but from only few directions. The issue of ill-posedness was tackled by
using Bayesian inversion methods. As the prior model Besov B1

11 space
prior with Haar wavelet basis was considered since it allowed to com-
pute Bayesian MAP estimates that preserved edges, were discretization-
invariant and had sparse representations on the wavelet domain, see [26]
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Figure 5.14: Reconstructions of c1(x) and c2(x). The results for c1(x) are denoted by
black dots and the results for c2(x) are denoted by gray dots. c̃1(x) denoted by a solid
gray line and c̃2(x) by a dashed black line. The relative error for c1(x) and c2(x) are
δc1 = 0.1541 in Ω and δc2 = 0.1127 in Ω, respectively.

and II.

5.4.1 PD path following IP method for 2D image reconstruction
problem with sparse angle data

The computation of the Bayesian MAP estimate in 2D using B1
11 prior

amounts to the following optimization problem

fMAP = argmin
f≥0

{
1

2σ2 ‖A f −m‖22 + α
n

∑
ν=1

|(B−1 f )ν|
}
, (5.15)

where A is a matrix that implements the transformation from the pixel
values to the projection data, f ∈ R

n is a vector that represent the X-
ray attenuation function, m ∈ R

nm is the projection data vector, α is the
prior parameter and B−1 is a matrix that denotes the direct wavelet trans-
form, i.e. w = B−1 f when the wavelets are ordered to a sequence and
re-numbered by an index ν ∈ Z+.
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Figure 5.15: . Reconstructions of c1(x) and c2(x). The results for c1(x) are denoted by
black dots and the results for c2(x) are denoted by gray dots. c̃1(x) is denoted by a solid
gray line and c̃2(x) by a dashed back line. The relative errors for c1(x) and c2(x) are
δc1 = 0.1443 in Ω and δc2 = 0.0802 in Ω, respectively.

Denoting B−1 f = h+ − h−, h+, h− ≥ 0 the minimization of (5.15) can
be similarly reformulated into a QP form as presented in section 5.2. Thus
the MAP estimates can be computed by solving the following constrained
optimization problem

minz

(
1
2
zTQz+ dTz+ κ

)
s.t. Az = 0

z ≥ 0,

where z =

⎡⎣ f
h+

h−

⎤⎦ ,Q =

⎡⎢⎣ 1
σ2 ATA 0 0

0 0 0
0 0

⎤⎥⎦ , d =

⎡⎢⎣ − 1
2σ2 ATm

α1
α1

⎤⎥⎦ , κ =

1
2σ2mTm and A =

[
B−1 −I I

]
.
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5.4.2 Materials and methods

Two different test cases of sparse angle tomography in 2D were consid-
ered; (i) simulated data and (ii) experimental data.

The simulated data was computed using Shepp-Logan phantom. A
Gaussian white noise with a standard deviation of 1% of the maximum
of the noiseless data was added to the projection data. The data was sim-
ulated such that the inverse crime was avoided (see section 5.2 for the
explanation of inverse crime). Five different data sets were considered
consisting of 148, 74, 37, 19 and 13 projections with uniform angular sam-
pling from angular spanning of 180◦.

The experimental data was measured using a custom-build μCT de-
vice supplied by Phoenix-Xray Systems + Service GmbH (Germany). A
walnut was used as a target object. A set of 90 projection images were
acquired over a 180◦ rotation with uniform angular steps of 2◦ between
the projections. For this study only the middle cross-section of the walnut
was selected. From the measured data four data sets were picked con-
sisting of 90, 45, 30 and 15 uniformly sampled projections from a total
opening angle of 180 degrees.

As a reference for the Bayesian method Filtered Back Projection (FBP)
reconstructions were computed. The FBP reconstructions were com-
puted using the Matlab R©’s iradon function with a Hamming window.
In addition reconstruction using Tikhonov regularization were computed
from the simulated data. The X-ray image reconstruction using classical
Tikhonov regularization is equivalent to the following optimization prob-
lem

fTik = min
f∈Rn

(
1

2σ2 ‖A f −m‖22 + αM‖ f ‖22
)
, f ≥ 0. (5.16)

The regularization parameter αM in equation (5.16) was selected using
Morozov’s discrepancy principle. The minimization problem of (5.16) was
solved using similar PD-IP method as presented in section 4.2.

For the selection of the prior parameter α for the Bayesian MAP es-
timates Publication IV proposed a method called S-curve method. The
S-curve method is based on the α-choice rule previously proposed in the
Publication II. The S-curve method of IV can be summarized as follows

1) Take a small collection of α’s ranging on the interval [0,∞] s.t
0 < α(1) < · · · < α(i) < · · · < α(M) < ∞

2) Compute the corresponding estimates
fMAP(α(1)), . . . , fMAP(α(i)), . . . , fMAP(α(M))
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and calculate the numbers of the elements in the set (#{·})
S(α) = #{ν : 1 ≤ ν ≤ n | |(B−1 f (α))ν| > η}

3) Fit a smooth interpolating curve to the data {α(i), S(α(i))}, i ∈ [1,M]

to obtain the S-curve

4) Use the fitted curve to select α s.t.
S(α) = Ŝ,

where Ŝ is the a priori estimated sparsity level of the unknown f .

In Publication IV M and η were set to M = 20 and η = 10−6, re-
spectively. Due to the fact that MAP estimates with Besov B1

11 prior are
discretization-invariant (discussed in Publication II) the selection of the
prior parameter could be done on a coarser grid than was used in the
computations of the final MAP estimates.

The a priori estimates for the sparsity of f , i.e. Ŝ, in the two test cases
were acquired as follows. For the simulated data Ŝ was computed using
Shepp-Logan phantom at resolution 128× 128 with η = 10−6, correspond-
ing to the situation where Ŝ is exactly known. In order to estimate Ŝ in
the experimental data case, three walnuts were split carefully in half and
digital photographs were taken of the halfs. The digital photographs were
then resized into size 128× 128 and values Ŝ1, Ŝ2, Ŝ3 were computed with
a threshold level of η = 10−6. The average of Ŝ1, Ŝ2 and Ŝ3 was then used
as the Ŝ. This corresponded to a situation where Ŝ cannot be known ex-
actly and needs to be estimated. By computing the Ŝ1, Ŝ2 and Ŝ3 of the
photographs we thus simulated the use of high-resolution CT atlases for
the estimation of an approximation of Ŝ.

The performance to the estimates (MAP, FBP and Tikhonov) were
studied as the projection directions were decreased.

5.4.3 Results

The selection of α’s for each data set (five for the simulated data and four
for the experimental) was done on a 128 × 128 grid and the actual re-
constructions were computed on a 256× 256 grid. Figure 5.16 shows the
sparsity-based choice of α for one of the simulated data sets. The data
set presented in figure 5.16 contains 148 uniformly distributed projection
angles. Similarly figure 5.18 shows the α choice rule for one of the ex-
perimental data sets (90 uniformly spaced projection angles from a total
opening angle of 180◦).

In real life when sparse angle data has been measured the prior pa-
rameter α needs to be selected using that data. Therefore in IV the α’s

50 Dissertations in Forestry and Natural Sciences No 104



Review of the Publications

Table 5.3: The relative errors of theMAP ,FBP and Tikhonov reconstructions. The relative
errors are computed with respect to the original Shepp-Logan phantom at resolution 256×
256.

148 74 37 19 13
δMAP 0.10 0.12 0.12 0.13 0.17
δFBP 0.14 0.16 0.27 0.51 0.78
δTik 0.10 0.12 0.13 0.23 0.29

were computed separately for all of the data sets. The chosen α’s for the
MAP estimates with respect to each data sets are denoted in figure 5.19
for the simulated case and in figure 5.21 for the experimental case. The
corresponding MAP, FBP and Tikhonov reconstructions in the simulated
case with data sets consisting of 148, 37 and 13 projection angles, respec-
tively, are presented in figure 5.19. The MAP and FBP reconstructions
computed from the experimental data are presented in figure 5.21.

In order to study the MAP,FBP and Tikhonov reconstruction quanti-
tatively relative reconstruction errors were computed with respect to the
original Shepp-Logan phantom at resolution 256 × 256. The results are
presented in table 5.3.

In IV also the L-curve method was applied to a simulated data set
consisting of 37 projections. The MAP estimates were computed with 400
values of α ranging on interval [10−4, 107]. The resulting reconstruction
with α selected using the L-curve method is presented on the left in figure
5.17. Reconstruction from the same data set with α selected using the S-
curve method and the Morozov discrepancy principle are also presented
in figure 5.17. The results for the L-curve method are presented here only
for one sparse angle data set but the results with other data sets were
similar.

In IV we also studied what would happen if Ŝ, that is used to deter-
mine α, is estimated from X-ray images of healthy subjects and the data
at hand is measured from a subject with anomalies (such as tumor). The
results are presented in figure 5.20.
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Ŝ = 1622
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10−4 107

S-curve Reconstruction

α = 32.64

Figure 5.16: Sparsity-based choice of the prior parameter α. Left: The numbers of nonzero
wavelet coefficients in Bayesian MAP estimates computed with 20 values of α ranging
in the interval [10−4, 107] (denoted by ◦) and a plot of the interpolation curve used to
determine the value of α. Right: The reconstruction (n = 128× 128) using the selected α.

Figure 5.17: . L-curve method, S-curve method and Morozov discrepancy principle applied
to data set with 37 projections. Reconstructions with selected alphas from left to right are:
the MAP estimate with α selected using the L-curve method αL = 33022, the MAP esti-
mate with α selected using the S-curve method α = 15.24 and the Tikhonov reconstruction
with the α selected using the Morozov discrepancy principle αM = 6.68, respectively. The
reconstruction resolution is 128× 128.
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Ŝ = 5936

12000

10−6 107
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α = 0.024

Figure 5.18: Sparsity based choice of α. Left: The numbers of nonzero wavelet coeffi-
cients in Bayesian MAP estimates computed with 20 values of α ranging in the interval
[10−6, 107] (denoted by ◦) and plot of the interpolation curve used to determine the value
of α. Right: The MAP estimate (resolution 128× 128) using the selected value of α.
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Figure 5.19: Sparse-angle tomography reconstructions of the Shepp-Logan phantom. Re-
construction of the FBP (left column),MAP estimates with B1

11 prior (middle column) and
Tikhonov regularization (right column). The number of projections and the values of the
parameters α are. Top row: 148 projections, α = 32.64, and αM = 0.0586. Middle row:
37 projections, α = 15.24 and αM = 0.0092. Bottom row: 13 projections, α = 5.18 and
αM = 0.0176. α denotes the prior parameter selected using the S-curve method and αM
denotes the regularization parameters selected using the Morozov discrepancy principle.
The reconstruction resolution is 256× 256.
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Figure 5.20: Sparse-angle tomography reconstructions of the Shepp-Logan phantom con-
sisting of a tumor. Reconstruction of the FBP (left column), MAP estimates with B1

11
prior (middle column) and the Tikhonov regularization (right column). The number of
projections and the values of the parameters α are. Top row: 148 projections, α = 32.64,
and αM = 0.0586. Middle row: 37 projections, α = 15.24 and αM = 0.0092. Bottom
row: 13 projections, α = 5.18 and αM = 0.0176. α denotes the prior parameter selected
using the S-curve method and αM denotes the regularization parameters selected using the
Morozov’s discrepancy principle. The reconstruction resolution is 256× 256.
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α = 0.024

α = 0.011

α = 0.019

α = 0.015
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Figure 5.21: Sparse angle tomography reconstructions of the walnut data. Reconstruction
using FBP (left column) and MAP estimates with B1

11 prior (right column). The numbers
of equally distributed projections angles and the values of α selected using the S-curve
method are denoted on the right. The reconstructions are computed at resolution 256×
256.
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6 Summary and Conclusions

In several real world problems, a reconstruction of the unknown quantity
needs to be recovered from indirect measurements. The majority of such
problems are also large-scale and ill-posed. To overcome the difficulties
related to such inverse problems, several approaches including Bayesian
methods, wavelet-based methods and constrained optimization methods,
were considered while developing the computational methods proposed
in this thesis. The performances of the proposed computational optimiza-
tion methods were evaluated in the four studies.

Publication I considered the problem of reconstructing images from
local X-ray tomography data. The objective in I was to develop a method
that enables reduction of the number of unknowns in the inverse problem
without degrading the image quality inside the region of interest (ROI). In
I a Bayesian wavelet-based multiresolution method was proposed where
high resolution was used inside the ROI and much coarser resolution
elsewhere in the image domain. The intuition behind the wavelet-based
multiresolution method was the fact that the fine scale details of the tissue
structures outside the ROI cannot be reconstructed well (even in a qualita-
tive sense) from the local tomography data [89, 92], since they are present
only in a few of the projection measurements. The results of Publication
I indicated that by using a coarse wavelet scale in Ω\ΩROI the contribu-
tion of the tissue structures outside ΩROI could be taken satisfactorily into
account. Furthermore, the proposed method yielded similar image qual-
ity in ΩROI as the state-of-the-art pixel-based method while significantly
reducing the degrees of freedom of the inverse problem.

Publication II considered discretization-invariant Bayesian inversion
with Besov B1

11 prior, in particular estimates that preserved edges and
were sparsity-promoting. The computation of the MAP estimates with
B1
11 prior is a non-differentiable optimization problem thus it was refor-

mulated into a QP form and PD-IP method was derived in order to recover
the MAP estimates. Furthermore, Publication II proposed a novel method
for selecting the prior parameter α. The proposed choice rule was based
on a priori information about the sparsity of the unknown function. The
results demonstrated that the use of Haar wavelets with Besov B1

11 space
prior enabled the recovery of discretization-invariant MAP estimates that
preserved sharp edges and had approximately the same level of sparsity
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as the a priori estimated sparsity level of the unknown quantity. Further-
more, the proposed parameter selection rule seemed to work robustly also
in noisy conditions.

In Publication III the object was to recover discontinuous diffusion
coefficients from limited observation data based on a stability result for
the inverse coefficient problem. The diffusion coefficients were related
to a coupled parabolic system of reaction-diffusion type. According to
the main theoretical result of Publication III, the diffusion coefficients
could be recovered by minimizing a quadratic function subject to con-
straints. The constraints included a linearized version of the original cou-
pled parabolic system as well as bounds-on-variable constraints. Hence
the developed PD-IP method was expanded to non-stationary problems
in Publication III. The performance of the method was studied using two
test cases. The results indicated that the PD-IP method allowed to recover
accurate reconstructions of the discontinuous diffusion coefficients.

Publication IV studied the performance of a wavelet-based sparsity-
promoting Bayesian method in the context of sparse angle tomography.
Bayesian MAP estimates with Besov B1

11 prior and Haar wavelet functions
were computed from both simulated and experimental data. The devel-
oped PD path following IP method was used to recover the 2D recon-
structions. As a reference method reconstruction with FBP and Tikhonov
regularization were computed. The results suggested that the MAP esti-
mates with B1

11 prior performed robustly also when the number of pro-
jections was decreased. Further, Publication IV proposed modifications
to the sparsity-based α-choice rule presented in II. The proposed modifi-
cations made the method computationally less complex since now only a
few reconstructions are needed to be computed in order to select a value
for α. The proposed method was called the S-curve method. The pro-
posed S-curve method was compared to the L-curve method. The results
indicated that the proposed S-curve method performs well with sparse an-
gle tomography data while the L-curve method failed to produce useful
results. In addition the performance of the S-curve method was evaluated
with the following test. Supposing that the a priori sparsity level is esti-
mated from a healthy subject, what happens if this estimate is then used
to compute reconstruction from tumor data, will the tumor be detectable?
According to the results it seemed that since wavelets are mostly needed
near the edges of the image, also the edges of the tumor are visible as well
as the other structures.

In many practical applications reconstructions with high resolution
need to be computed from indirect, incomplete and noisy measurements.
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The high resolution requirement means that the number of degrees of
freedom in the inverse problem is large, making the problem computa-
tionally demanding. Furthermore, often several restrictions or constraints
related to the physics have to be taken into account when estimates of
the sought-for quantity are computed. For example, if the solution is re-
quired to be non-negative the computational method used has to be such
that non-negativity of the solution can be enforced. This, however, can be
difficult to do in large-dimensional setting using classical computational
methods. A quadratic programming approach provides a natural plat-
form to enforce different constraints. Furthermore, PD-IP methods have
been found to perform well also with large-scale problems. The results of
this thesis imply that feasible estimates can be computed using tailored
PD-IP methods in the contexts of different large-scale constrained prob-
lems. Also, the use of Besov space prior with wavelet functions within
the Bayesian framework seems promising, enabling for example recovery
of sparsity-promoting and edge-preserving Bayesian MAP estimates. Fur-
ther, within local tomography problems it is possible to reduce the num-
ber of unknowns without a significant loss of image quality inside the
ROI. Such a method could be considered, for example, when developing
the next generation’s low-dose X-ray tomography devices. In conclusion
the methods proposed in this thesis seem promising and suitable for sev-
eral areas of application.
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