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These methods aim at reducing the 
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ABSTRACT

Diffuse optical tomography is a non-invasive imaging modality in
which images of the optical properties of tissues are reconstructed
based on boundary measurements of transmitted near-infrared light.
The reconstructed tomographic images of the optical properties are
linked to physiologically interesting quantities such as blood vol-
ume and oxygenation level. Medical applications of diffuse optical
tomography include breast cancer detection, neonatal brain imag-
ing and functional brain activation studies.

Reconstruction of the tomographic images requires an accurate
and computationally feasible mathematical model for light propa-
gation inside tissues. Light propagation in tissues can be modeled
using the radiative transport equation (RTE). Solving the RTE is
computationally expensive, and therefore it is often approximated
by using the diffusion approximation (DA). However, the DA does
not describe light propagation accurately close to the boundary and
sources or in low-scattering regions such as the cerebrospinal fluid
in the brain.

In this thesis, computational methods for modeling light propa-
gation in tissue-like media are developed utilizing four approaches.
In the first approach, a recently introduced corrected diffusion ap-
proximation is numerically implemented. In the corrected diffu-
sion approximation, an additive correction term is computed for
the DA near the boundary to enhance the accuracy. In the second
approach, Fokker-Planck-Eddington (FPE) approximations are uti-
lized as light transport models. The FPE approximations take into
account forward-peaked scattering analytically, and therefore are
computational less expensive than the RTE. As the third approach,
hybrid models which utilize the FPE and the DA as light trans-
port models in different subdomains are developed. Finally, in the
fourth approach, a RTE based coupled model is developed which is
applicable when the refractive index is not constant inside the tis-
sues. The developed models are numerically approximated using a
finite element method.



The proposed models are tested with numerical simulations and
are compared against the conventional light transport models, the
RTE and the DA. The results show that the corrected DA is more ac-
curate than the DA near the boundary without significant increase
in computation time. In addition, the FPE approximations and the
hybrid FPE-DA models are computationally less expensive than the
RTE and more accurate than the DA especially if the medium con-
tains low-scattering regions. Furthermore, the coupled RTE model
can be utilized when the refractive index is not constant within the
medium.

Universal Decimal Classification: 519.6, 535.3, 535.4
National Library of Medicine Classification: QT 36, WN 195, WN 206

INSPEC Thesaurus: biomedical optical imaging; optical tomography; light
propagation; radiative transfer; light scattering; refractive index; biological
tissues; turbidity; finite element analysis; boundary value problems; com-
putational physics; inverse problems; image reconstruction; simulation;
modelling; numerical analysis; Fokker-Planck equation; Galerkin method

Yleinen suomalainen asiasanasto: kuvantaminen; tomografia; pehmytku-
dokset; optiset ominaisuudet; mallintaminen; numeeriset menetelmät; ele-
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ABBREVIATIONS

1D One-dimensional
2D Two-dimensional
3D Three-dimensional
cDA Corrected diffusion approximation
cFP-DA Coupled Fokker-Planck-diffusion
cFPE-DA Coupled Fokker-Planck-Eddington-diffusion
cRTE Coupled RTE
DA Diffusion approximation
DG Discontinuous Galerkin
DOM Discrete ordinate method
DOT Diffuse optical tomography
FD Frequency domain
FDM Finite difference method
FE Finite element
FEM Finite element method
FP Fokker-Planck
FPE Fokker-Planck-Eddington
FVM Finite volume method
MC Monte Carlo
NIR Near infrared
RTE Radiative transport equation
SDM Streamline diffusion modification
TD Time domain



NOMENCLATURE

Rd d-dimensional real space
Cd d-dimensional complex space
Sd−1 Angular space
L Scattering operator
P Projection operator in the cDA
| · | Absolute value
arg(·) Phase angle
α Vector of radiances in the RTE, FP, or FPE discretization
αcDA Scaled absorption coefficient in the cDA
δ Streamline diffusion parameter
δ(ŝ− ŝ′) Delta function
δ(2)(ŝ− ŝ′) Second order derivative of the delta function
Δŝ Laplace operator in spherical coordinates
ε Asymptotic parameter
f Modulation frequency
Γ(r) Exitance
Γ Interface between sub-domains
Γk,m Interface between the sub-domains Ωk and Ωm

γd Dimension-dependent constant (γ2 = 1/π, γ3 = 1/4)
Is Inward directed diffuse boundary current
κ Diffusion coefficient
κcDA Diffusion coefficient in the cDA
λ Eigenvalue in the plane wave solution
μ Cosine of angle with respect to the inward unit normal
μs Scattering coefficient
μa Absorption coefficient
μ′
s Reduced scattering coefficient

n̂ Outward unit normal
r Position vector
φ(r, ŝ) Radiance
φ0(r, ŝ) Boundary source
Φ(r) Fluence
ΦcDA Interior solution in the cDA
Ω Spatial domain
Ωk Spatial sub-domain k



∂Ω Boundary of the spatial domain
Ψ(r) Test function for fluence
ΨcDA Boundary layer solution in the cDA
ψ(r) Spatial basis function for the radiance
ψ(ŝ) Angular basis function for the radiance
Ωφ RTE, FP, or FPE spatial sub-domain
∂Ωφ Boundary of the RTE, FP, or FPE sub-domain
∂Ωφ,out Outer boundary of the RTE, FP, or FPE sub-domain
ΩΦ DA spatial sub-domain
∂ΩΦ Boundary of the DA sub-domain
∂ΩΦ,out Outer boundary of the DA sub-domain
ω Angular modulation frequency of the input signal
σcDA Scaled scattering coefficient in the cDA
Θ(ŝ, ŝ′) Scattering phase function
ϑ(r) Spatial basis function for the fluence
ξ Scaled coordinate along −n̂
a Vector of fluences in the DA discretization
aFP0 Coefficient in the FP approximation
aFP1 Coefficient in the FP approximation
aFPE0 Coefficient in the FPE approximation
aFPE1 Coefficient in the FPE approximation
acDA Coefficient in the Robin boundary condition in the cDA
A Reflection parameter
bFPE0 Coefficient in the FPE approximation
bFPE1 Coefficient in the FPE approximation
bcDA Coefficient in the Robin boundary condition in the cDA
c Speed of light in the medium
ck Speed of light in the sub-domain Ωk

ŝ Unit vector in the direction of interest
ŝr Direction of reflected radiance
ŝt Direction of radiance before transmission
ŝ⊥ Perpendicular direction
d Dimension of the domain
fcDA Coefficient in the Robin boundary condition in the cDA



gm Angular moment of the scattering phase function of order m
g Scattering anisotropy parameter
H Reflection mapping
i Imaginary unit
K Transmission mapping (Snell’s law)
K−1 Inverse transmission mapping (inverse Snell’s law)
l∗ Transport mean free path
ls Scattering mean free path
nin Refractive index of the medium
nout Refractive index of the exterior
nk Refractive index of the sub-domain Ωk

Ns Number of spatial nodes in the RTE, FP, or FPE discretization
Na Number of angular nodes in the RTE, FP, or FPE discretization
Na,k Number of angular nodes in the sub-domain Ωk

Ns,k Number of spatial nodes in the sub-domain Ωk

NΦ Number of spatial nodes in the DA discretization
Pk Legendre polynomial of order k
R Fresnel reflection coefficient
T Fresnel transmission coefficient
v(r, ŝ) Test function for the radiance
Vn(μ) Eigenvector in the plane wave solution
z Coordinate along −n̂
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1 Introduction

Diffuse optical tomography (DOT) is a biomedical imaging modal-
ity that is used to reconstruct three dimensional (3D) images of
spatially distributed optical parameters. The tomographic images
are reconstructed based on boundary measurements of transmitted
light. The imaging modality has potential applications for example
in detection of breast cancer, neonatal brain imaging and functional
brain activation studies [1, 2]. In DOT, low energy visible or near
infra-red (NIR) light, 650–950 nm in wavelength, is used for imag-
ing tissues. Hence, the method is non-ionizing in contrast to high
energy radiation imaging modalities such as x-ray computed to-
mography (CT) and positron emission tomography (PET).

In the experimental setup of DOT, highly scattering (turbid)
medium is illuminated by a laser beam and the transmitted light
is measured on the boundary of the target. Therefore, the imag-
ing modality is non-invasive. The measurements can be done ei-
ther in time-domain (TD) using pulsed lasers and time resolved
detectors measuring the temporal distribution of photon counts
(temporal point spread function) or in frequency-domain (FD) us-
ing intensity modulated sources and frequency resolved detectors
measuring the amplitude and the phase shift. In continuous wave
(CW) systems, constant or low frequency modulated light sources
are used and only the intensity of light at the boundary is mea-
sured [3]. Moreover, the illumination can be either a narrow col-
limated beam [4, 5] or wide-field illumination with spatial struc-
ture [6–9], and the imaging system can be fiber-optics based in
contact with the target or non-contact using CCD cameras [10–12].
For more details about the instrumentation and hardware of DOT
modalities, see e.g. [3–5, 13–15].

The imaging modality is relatively low-cost compared to other
medical imaging modalities such as magnetic resonance imaging
(MRI). Furthermore, the instrumentation can be portable and no

Dissertations in Forestry and Natural Sciences No 164 1



Ossi Lehtikangas: Approximations and hybrid models for modeling light
propagation in biological tissues

special environment, such as magnetically shielded room in MRI,
is needed. Hence, the modality is suitable for continuous bedside
monitoring of infants and adults [2]. Disadvantages of the modality
include low spatial resolution and poor depth sensitivity due to
strong scattering of NIR light in tissues. Therefore, the accuracy of
structural information of DOT images is lower than in CT and MRI
[2]. However, temporal resolution and contrast between different
tissues types can be quite good and the modality is suitable for
functional imaging in addition to MRI [16–18].

Light propagation in tissues is dominated by scattering over ab-
sorption. Human tissues consist mostly of water and the relatively
low absorption of water at wavelengths which are used in DOT en-
ables imaging of tissues. The most important absorbers are bone
tissue, fat tissue, and oxygenated and deoxygenated haemoglobin.
Since different physiologically interesting molecules, such as oxy-
genated and deoxygenated haemoglobin and cytochrome oxidase,
absorb light at different wavelengths it is possible to distinguish
between them. In particular, haemoglobin provides an indicator of
blood volume and oxygenation level whereas the cytochrome indi-
cates tissues oxygenation level [2]. This difference in spectral de-
pendence of absorption is routinely exploited in non-tomographic
monitoring techniques such as pulse oximetry and near infrared
spectroscopy [2]. In DOT, reconstruction of 3D images of absorp-
tion inside tissues can enable functional imaging of different phys-
iological processes. For example, increased blood volume and oxy-
genation are indicators of increased physiological activity such as a
cognitive task [19, 20].

There are several non-invasive optical imaging modalities which
are similar to DOT. In fluorescence diffuse optical tomography (fDOT),
fluorescent contrast agent is injected into the target, excited with
NIR light at an excitation wavelength and the emitted fluorescent
light is detected at an emission wavelength at the boundary of the
target [12, 21]. Specific fluorescence contrast agents, which target
specific molecules, enable molecular imaging. The reconstructed
quantity is then the position and the strength of the fluorescent
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source inside the target assuming that the optical properties are
known. In fluorescence lifetime imaging (FLIM), not only the source
but also the lifetime of the fluorescent contrast agent is reconstructed.
Similar imaging modality to fDOT is bioluminance optical tomog-
raphy (BDOT) in which images of luciferase activity inside the tar-
get are reconstructed based on boundary measurements of sponta-
neous emission of internal bioluminescence sources. In quantitative
photoacoustic tomography (QPAT), one seeks to estimate concen-
tration of absorbers inside tissues by combining the optical contrast
and ultrasound propagation [22].

Image reconstruction problems in DOT, fDOT and QPAT are
non-linear ill-posed inverse problems. Thus, even small errors in
measurements or modeling can cause large errors in the recon-
structed images. There are no direct methods for the solution of
these problems, and thus they are typically stated as optimization
problems such as regularized output least squares or maximum
a posterior estimate of the posterior distribution in the Bayesian
framework [12, 23, 24]. The iterative solution of these problems re-
quires repetitive solutions of the forward model. Therefore, it is
essential to have a computationally feasible forward model that de-
scribes light propagation in tissues accurately.

Light propagation in tissues can be modeled using the radiative
transport equation (RTE) [1, 25–27]. The RTE takes into account ab-
sorption and multiple scattering due to inhomogeneities in tissues.
The RTE does not have an analytical solution in arbitrary geome-
try and numerical methods are computationally expensive due to
a large number of variables in the RTE. Therefore, the RTE is often
approximated by some computationally less demanding model.

The most often used approximation to the RTE in turbid me-
dia is the diffusion approximation (DA). In the DA framework, one
assumes that light becomes almost isotropic due to strong scatter-
ing. In addition, scattering must be much stronger than absorption.
Due to these limitations, the DA fails to describe light propagation
accurately close to the boundary, sources, and in low-scattering and
non-scattering regions [1,28–30]. A typical low-scattering region en-
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countered in optical imaging of the brain is the cerebrospinal fluid
surrounding the brain and in the ventricles.

In cases when the employed (computational) light transport mo-
del does not take into account all the relevant physical phenom-
ena, significant modeling errors may be caused [23, 31–33]. These
modeling errors can exceed the errors caused by measurement de-
vices [32]. Moreover, the errors may be amplified even more (by
an order of magnitude) when solving the inverse problem lead-
ing to intolerably large errors in the reconstructed tomographic im-
ages. Therefore, developing light transport models which take into
account the relevant physical effects, and developing reliable and
computationally feasible solution methods is crucial for the tomo-
graphic image reconstruction.

Aims and contents of the thesis

In this thesis, computational methods for modeling light propaga-
tion in tissue-like media are developed. The goal of this thesis is to
develop methods which are computationally less expensive to solve
than the RTE but still more accurate than the DA. In this thesis, four
different approaches were taken.

As the first approach, the corrected diffusion approximation
(cDA) is numerically implemented in publication II. The cDA was
introduced in [34] and it is based an asymptotic analysis of the RTE
when scattering is much stronger than absorption. In the cDA, an
additive correction term is computed for the DA near the boundary
to enhance the accuracy.

In tissues, scattering is typically forward dominated and the di-
rection of photons is most likely to change only a little in scattering
events. In the second approach, Fokker-Planck-Eddington (FPE)
approximations [35, 36] are utilized as light transport models. The
FPE approximations take into account forward dominated scatter-
ing analytically when approximating the RTE. As a result, FPE ap-
proximations are computational less expensive than the RTE. In this
thesis, the Fokker-Planck (FP) equation is used as a light transport
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model in publication I, and the FP and Fokker-Planck-Eddington
equations are used in publication III.

In the third approach, hybrid models which utilize the FPE and
the DA as light transport models in different subdomains are devel-
oped in publication III. The FPE approximations are used in those
parts of the domain in which the DA is not valid, such as in low-
scattering regions and near the boundaries, and the DA was used
elsewhere. The models are coupled on the interfaces between the
subdomains. The developed models are numerically approximated
using a finite element method (FEM).

The refractive index is assumed to be constant inside tissues in
the RTE. However, the refractive index can change between differ-
ent tissues types inside the target. As the fourth approach, a RTE
based coupled model which is applicable when the refractive index
is piecewise constant inside tissues is developed in publication IV.
In the coupled RTE (cRTE) model, light propagation in each subdo-
main with constant refractive index is modeled using the RTE and
the equations are coupled using boundary conditions describing
Fresnel reflection and transmission on the interfaces between the
subdomains. The resulting coupled system of RTEs is numerically
approximated using the FEM.

This thesis is organized as follows. In Chapter 2, modeling of
light propagation in tissues is discussed using the RTE and the DA.
Then, the cDA is shortly derived and the forward-peaked scatter-
ing approximations including the FP and FPE are presented. In
addition, the proposed hybrid forward-peaked scattering–diffusion
model is presented. At the end of the chapter, the cRTE model is
derived.

In Chapter 3, the numerical implementations of the models are
described. First, the numerical approximation methods of the light
transport models are reviewed and the numerical implementation
of the cDA is described. Then, the FE approximations of the hy-
brid forward-peaked scattering–diffusion and the cRTE models are
derived.

In Chapter 4, the simulation results of the proposed light trans-
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port models are presented and discussed. The proposed models are
compared to the RTE and DA. In addition, computational load of
the models is investigated.

Finally, the summary of results and the conclusion of the thesis
are given in Chapter 5.

6 Dissertations in Forestry and Natural Sciences No 164



2 Light transport models

Maxwell’s equations describe the propagation of electromagnetic
radiation, such as light, in medium. Solving the Maxwell’s equa-
tions to describe light propagation in tissues is applicable on a mi-
croscopic scale but quickly becomes a tedious task on mesoscopic
and macroscopic scales. Mesoscopic scale is the regime where mul-
tiple scattering starts to dominate and creates a superposition of
an infinite number of wave fronts propagating essentially in every
direction [37]. As a result, accurate spatial information is lost and
wave phenomena become negligible.

Light propagation in random media can be described using
the transport theory. This approach can be derived by investigat-
ing photon conservation within a small volume element of phase
space [38–40]. Within the phase space element, the number of pho-
tons is increased through incoming scattering from other directions
and through internal radiation sources, and decreased through out-
going scattering and absorption events. For the derivation of the
transport theory starting from the Maxwell’s equations, see e.g.
[37, 41–43], and as a high frequency limit (as wavelength tends
to zero) of wave equations using asymptotic analysis and Wigner
transforms, see [44,45]. Applications of the transport theory can be
found in atmospheric and oceanological optics [46], astrophysics
[47], nuclear reactor physics [48] and biomedical optics [26].

The transport theory can be derived using stochastic or deter-
ministic approaches [49]. In light transport modeling, the most of-
ten used stochastic method is Monte Carlo (MC) method. In the
approach, path of individual photons are traced as the photons are
scattered and absorbed within the medium [50, 51]. The photon in-
teractions are modeled using appropriate probability distributions,
such as the exponential distribution, from which samples can be
drawn. Finally, quantities of interest can be computed based on
cumulative contribution of all simulated photons. Several versions
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of MC implementations have been proposed, see e.g. [52–55]. Re-
cently, developments in parallel computing and utilization graphics
processing units have lead into a significant increase in applicabil-
ity of MC methods for modeling light propagation in realistic 3D
objects, see [56–60] and the references therein.

In this thesis, deterministic transport methods are considered.
The basic equation of the transport theory is radiative transport
equation [27, 38, 39]. The RTE is a linear one-speed approximation
to the Boltzmann equation, and thus the energy is assumed to be
preserved in scattering events and the refractive index is assumed
to be constant within the medium. It neglects wave phenomena,
such as diffraction and interference, and treats photons as parti-
cles which propagate along straight lines between scattering and
absorption events.

2.1 RADIATIVE TRANSPORT EQUATION

Let Ω ⊂ Rd be the physical domain, and d = 2,3 be the dimension
of the domain. In addition, let ŝ ∈ Sd−1 denote a unit vector in the
direction of interest on the unit sphere Sd−1. The frequency domain
version of the RTE without internal sources is

iω
c

φ(r, ŝ) + ŝ · ∇φ(r, ŝ) + μaφ(r, ŝ) = μsLφ(r, ŝ), (2.1)

where i is the imaginary unit, ω = 2π f is the angular modulation
frequency of the input signal (the units of Hz), f is the modulation
frequency (the units of Hz), c is the speed of light in the medium
(the units of m/s), φ(r, ŝ) is the radiance (the units of Wm−2sr−1 in
3D and Wm−1rad−1 in 2D), and μs = μs(r) and μa = μa(r) are the
scattering and absorption coefficients of the medium (the units of
m−1), respectively [1, 38, 39]. The inverse of the scattering and ab-
sorption coefficients, which are called the scattering mean free path
ls = μ−1

s and the absorption mean free path la = μ−1
a , describes the

average length between scattering and absorption events, respec-
tively. These quantities are related to the lifetime of the photons
which is the expected value of the exponential distribution.
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The scattering operator LRTE is defined as

Lφ(r, ŝ) = LRTEφ(r, ŝ) = −φ(r, ŝ) +
∫

Sd−1
Θ(ŝ · ŝ′)φ(r, ŝ′)dŝ′, (2.2)

where the scattering phase function Θ(ŝ · ŝ′) is the probability den-
sity for a photon to scatter from direction ŝ′ in direction ŝ. In this
work, the Henyey-Greenstein scattering function [61] is used

Θ(ŝ · ŝ′) =
1

|Sd−1|

1− g2

(1+ g2 − 2gŝ · ŝ′)d/2
, (2.3)

where |Sd−1| is the surface measure of Sd−1 (|S1| = 2π and |S2| =

4π) and g ∈]− 1, 1[ is the anisotropy parameter defining the shape
of the probability distribution. The angular moments of the scatter-
ing phase function are

gm =
∫

Sd−1
(ŝ · ŝ′)mΘ(ŝ · ŝ′)dŝ. (2.4)

In the case of the Henyey-Greenstein phase function angular mo-
ments are gm = gm. In biological tissues, scattering is forward
dominated and the first moment g1 is close to unity [62]. Thus, the
direction of photons is most likely to change only a little in one
scattering event. However, although forward dominated scattering
is the most important scattering mechanism in biological tissues
also large-angle scattering (back-scattering) is possible [63, 64].

In this work, a boundary condition which takes into account
a boundary source and reflection of light due to a mismatch in
refractive indices on the boundary is used

φ(r, ŝ) = φ0(r, ŝ) + Rφ(r,Hŝ), r ∈ ∂Ω, ŝ · n̂ < 0, (2.5)

where φ0(r, ŝ) is the source, R is the Fresnel reflection coefficient
and n̂ is an outward unit normal. The mapping H gives the change
in direction due to reflection (see forward Section 2.6, Eq. (2.39)).
The above choice of the boundary condition ensures an unique so-
lution of the RTE [38]. Quantities of interest include the fluence
defined as an integral of the radiance over angular directions [1]

Φ(r) =
∫

Sd−1
φ(r, ŝ)dŝ, (2.6)
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and the exitance which is the measurable quantity at the boundary

Γ(r) =
∫
ŝ·n̂>0

T(ŝ · n̂)φ(r,K(ŝ))dŝ, r ∈ ∂Ω, (2.7)

where T = 1− R is the Fresnel transmission coefficient and K is a
mapping which gives the change in direction due refraction accord-
ing to the Snell’s law (see forward Section 2.6, Eq. (2.42)).

2.2 DIFFUSION APPROXIMATION

To derive the diffusion approximation to the RTE, the radiance, the
source term, and the phase function are expanded into series using
the spherical harmonics leading to the Pn approximation [1,27]. The
Pn approximation is a coupled system of partial differential equa-
tions. If the series is truncated at first order, the P1 approximation
is obtained. The DA is obtained as a special case of the P1 approx-
imation assuming that the light source is isotropic and scattering
is much stronger than absorption [1]. The DA can also be derived
using an asymptotic analysis when scattering is strong and absorp-
tion is weak [34, 65, 66]. This derivation is reviewed later in Section
2.3 when the corrected diffusion approximation is derived. In the
DA framework, the approximation that is used for the radiance
is [1, 27, 67]

φ(r, ŝ) ≈
1

|Sd−1|
Φ(r)−

d
|Sd−1|

(ŝ · κ∇Φ(r)), (2.8)

where κ = κ(r) is the diffusion coefficient

κ = (d(μa + μs(1− g1)))−1. (2.9)

In the frequency domain, the DA without internal sources is of the
form [1]

−∇ · κ∇Φ(r) + μaΦ(r) +
iω
c

Φ(r) = 0. (2.10)
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The DA can not satisfy the boundary condition (2.5) exactly.
Generally, the boundary condition is approximated with a Robin-
type boundary condition

Φ(r) +
1

2γd
κA

∂Φ(r)
∂n̂

=
Is
γd

, r ∈ ∂Ω, (2.11)

where γd is a dimension dependent constant (γ2 = 1/π, γ3 = 1/4),
and Is is an inward directed diffuse boundary current [68, 69]. The
parameter A takes into account the mismatch in refractive indices
on the boundary and it can be derived from the Fresnel’s law [69,
70].

In addition to the DA, other approximations based on the Pn
approximation include the simplified spherical harmonics method
(SPn) [71], and the telegraph equation (TE) [1]. The SPn method
can be derived either heuristically from the one-dimensional (1D)
version of the Pn approximation or using asymptotic analysis, see
[71, 72]. The advantage of the SPn method is that it yields a set of
coupled diffusion equations with only Laplacian operators. The Pn
method includes also mixed spatial derivatives and therefore it re-
quires more computational resources compared to the SPn [71]. The
drawback of the SPn is that it converges to the solution of the RTE as
n → ∞ only in 1D where the Pn and the SPn equations are identical.
Despite its limitations, the SPn method have been studied and ap-
plied in DOT and BDOT [73–76]. The TE is based on the P1 approx-
imation and it has been applied in few studies, e.g. [77–79]. The SPn
method and the TE typically model light propagation more accu-
rately in highly absorbing and low-scattering regions than the DA.
In the following section, the accuracy of the DA near the boundaries
is discussed leading to the corrected diffusion approximation.

2.3 CORRECTED DIFFUSION APPROXIMATION

Within the DA framework, different forms of the boundary condi-
tions [80–85] and source terms [86–88] have been introduced. The
derivation of the DA as an asymptotic limit of the RTE when scat-
tering is much stronger than absorption was established in the early
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1970’s in the context of neutron transport [65,66]. Later, the bound-
ary conditions of the DA were studied using this asymptotic anal-
ysis [89].

Recently, an asymptotic analysis of the RTE in a steady state case
(ω = 0) leading to the so-called corrected diffusion approximation
(cDA) was presented [34]. The cDA consists of solving a diffusion
equation and an additive correction term at the boundary. This
additive boundary layer solution satisfies 1D RTE in a half space,
and it vanishes rapidly away from the boundary (on the order of
one scattering mean free path) so that the DA approximates the
radiance deep inside the domain.

This approach can overcome some of the limitations of the DA
near boundaries but is not applicable in low-scattering or highly
absorbing regions. A similar correction term can also be derived for
the DA near the sources [90,91]. The analysis can also be applied to
the time or frequency domain problems but in that case additional
correction terms (initial and initial-boundary layers) are needed to
correct for the error made by the DA at short time instances [65].
Next, the cDA is shortly reviewed based on [34] and publication II.

2.3.1 Asymptotic analysis of the RTE

Let 0 < ε � 1 be a small dimensionless parameter and let us define
scaled absorption and scattering coefficients αcDA and σcDA

μa = εαcDA, μs = ε−1σcDA. (2.12)

The parameter ε can be chosen, for example, as the ratio of the total
mean free path l = (μs + μa)−1 to the size of the domain L [92]

ε =
(μs + μa)−1

L
. (2.13)

By substituting Eq. (2.12) into the RTE (2.1) and assuming that ω =

0, we obtain

εŝ · ∇φ(r, ŝ) + ε2αcDAφ(r, ŝ)− σcDALφ(r, ŝ) = 0. (2.14)
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We seek an asymptotic solution of the RTE (2.14) in the limit as
ε → 0+ separated into two parts

φ(r, ŝ) = ΦcDA(r, ŝ) + ΨcDA(r, ŝ), (2.15)

where ΦcDA(r, ŝ) denotes the interior solution and ΨcDA(r, ŝ) the
boundary layer solution.

2.3.2 Interior solution

Expanding the interior solution ΦcDA(r, ŝ) as a power series in ε

ΦcDA(r, ŝ) = Φ0(r, ŝ) + εΦ1(r, ŝ) +O(ε2), (2.16)

it is found that Φ0(r, ŝ) = Φ0(r) and Φ1(r, ŝ) = −dκcDAŝ · ∇Φ0(r)
with Φ0(r) satisfying the diffusion equation

∇ · (κcDA∇Φ0(r))− αcDAΦ0(r) = 0. (2.17)

The diffusion coefficient κcDA = κcDA(r) is defined as

κcDA = (dσcDA(1− g1))
−1 . (2.18)

Note the absence of absorption coefficient in Eq. (2.18) compared
to the diffusion coefficient given by the DA, Eq. (2.9).

2.3.3 Boundary layer solution

To compute ΨcDA(r, ŝ) at a point rb ∈ ∂Ω on the boundary, con-
sider a coordinate system (ρ, z) where ρ is a vector parallel to the
tangent plane at rb and z is the coordinate along −n̂. Then, let
z = εζ, μ = ŝ · (−n̂) and ŝ⊥ = ŝ+ μn̂. The boundary layer solu-
tion ΨcDA(ρ, ζ, ŝ) = Ψ0(ζ, μ) + εΨ1(ζ, μ) +O(ε2) satisfies the one-
dimensional RTE in a half-space

μ∂ζΨcDA(ζ, μ)− σcDALΨcDA(ζ, μ) = 0, ζ > 0, (2.19)

ΨcDA(0, μ) = φ0(rb, μ) + R(μ)Ψ(0,−μ)

−[1− R(μ)]Φ0(rb) + εdκcDAμ[1+ R(μ)]n̂ · ∇Φ0(rb), 0 < μ ≤ 1.
(2.20)
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The boundary layer solution ΨcDA(ζ, μ) must satisfy the asymptotic
matching condition

ΨcDA(ζ, μ) → 0, ζ → ∞. (2.21)

As a result, a Robin boundary condition for Φ0(r) is obtained

acDAΦ0(r) + bcDAκcDAn̂ · ∇Φ0(r) = fcDA, on ∂Ω, (2.22)

with

acDA(rb) = P [1− R(μ)], (2.23)

bcDA(rb) = εdP [μ(1+ R(μ))], (2.24)

fcDA(rb) = P [φ0(rb, μ)], (2.25)

where P is a projection operator derived in [34] and R(μ) is the
Fresnel reflection coefficient. The projection operator P is given
in terms of plane wave solution of the half-space Green’s function.
Once P is available, the coefficients of the Robin boundary condi-
tion (2.22) can be evaluated given the optical coefficients and the
source. Then, the interior solution ΦcDA(r) satisfying the diffusion
equation (2.17) can be computed. Finally, the additive boundary
layer correction ΨcDA(ζ, μ) can be computed from Eq. (2.19) and
the approximation to the radiance on the boundary is obtained as

φ(rb, ŝ) ∼ Φ0(rb)− εdκcDAŝ · ∇Φ0(rb) + ΨcDA(0, μ). (2.26)

2.4 FORWARD-PEAKED-SCATTERING APPROXIMATIONS

The numerical solution of the RTE with forward dominated scat-
tering is challenging due to dense angular discretization needed to
describe scattering accurately. Motivated by that, forward-peaked
scattering approximations have been proposed to approximate the
RTE [35,36, 93–100].

2.4.1 Fokker-Planck approximation

The FP equation can be derived either i) using the Taylor expansion
of the scattering operator L at ŝ ≈ ŝ′ [94], ii) using the asymptotic
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analysis when the scattering mean free path ls is small while the
transport mean free path l∗ = (μs(1− g1))−1 is necessarily not small
[25, 93], or iii) by approximating the eigenvalues of the scattering
operator [35, 36]. In the following, the third approach is shortly
reviewed.

When scattering is forward dominated, one can approximate
the scattering phase function Θ(ŝ · ŝ′) using a linear combination
of the delta function and its even (weak) derivatives [36]. The FP
approximation of the scattering phase function Θ(ŝ · ŝ′) is

Θ(ŝ · ŝ′) ≈ ΘFP(ŝ · ŝ′) = aFP0 δ(ŝ− ŝ′) + aFP1 δ(2)(ŝ− ŝ′), (2.27)

where coefficients aFP0 = 1 and aFP1 = (d− 1)−1(1− g1) can be de-
termined from the eigenvalues of the original scattering operator L
(2.2), δ is the delta function, and δ(2) is the second order derivative
of the delta function [36, 95]. The resulting approximate scattering
operator LFP is

Lφ(r, ŝ) ≈ LFPφ(r, ŝ) =
1

d− 1
(1− g1)Δŝφ(r, ŝ), (2.28)

where Δŝ is the Laplacian operator in spherical coordinates (or
Laplace-Beltrami operator) on the unit sphere Sd−1. The FP equa-
tion is obtained by substituting Eq. (2.28) into RTE (2.1). The exis-
tence, uniqueness and positivity of the solution of the FP equation
was proved in [101].

In tissues, there is a small but important large-angle scattering
component which can not be modeled using only forward domi-
nated scattering. In fact, it has been shown that the FP equation is
not an asymptotic limit of the RTE if the phase function includes
significant the large-angle scattering part which is the case for the
Henyey-Greenstein phase function even with large values of g [93].
If the phase function is sufficiently peaked without the large-angle
scattering part, such as the exponential phase function, then the FP
is a valid asymptotic limit of the RTE [35].
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2.4.2 Fokker-Planck-Eddington approximation

In the presence of both forward dominated and large-angle scat-
tering, (smoothly varying) Legendre polynomials can be used to
approximate the scattering phase function in addition to the delta
function and its even derivatives [36]. The FPE approximation is

Θ(ŝ · ŝ′) ≈ ΘFPE(ŝ · ŝ′) = aFPE0 δ(ŝ− ŝ′) + aFPE1 δ(2)(ŝ− ŝ′)

+
1

|Sd−1|
(bFPE0 P0(ŝ · ŝ′) + dbFPE1 P1(ŝ · ŝ′)),

(2.29)

where Pk is the Legendre polynomial of order k and the coefficients
aFPE0 , aFPE1 , bFPE0 , and bFPE1 can be determined from the eigenvalues
of the original scattering operator [36, 95]. As a result, one obtains
in 2D

aFPE0 =
g2
5
(9− 4g1), (2.30a)

aFPE1 =
g2
5
(1− g1), (2.30b)

bFPE0 = 1−
9
5
g2 +

4
5
g3, (2.30c)

bFPE1 = g1 −
8
5
g2 +

3
5
g3 (2.30d)

and in 3D

aFPE0 = 2g2 − g3, (2.31a)

aFPE1 =
g2 − g3

6
, (2.31b)

bFPE0 = 1− 2g2 + g3, (2.31c)

bFPE1 = g1 −
5g2
3

+
2g3
3

. (2.31d)

The resulting approximate scattering operator is

Lφ(r, ŝ) ≈LFPEφ(r, ŝ) = −(1− aFPE0 )φ(r, ŝ) + aFPE1 Δŝφ(r, ŝ)

+
1

|Sd−1|

∫
Sd−1

(
bFPE0 P0(ŝ · ŝ′) + nbFPE1 P1(ŝ · ŝ′)

)
φ(r, ŝ′)dŝ′.

(2.32)
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The FPE equation is obtained by substituting Eq. (2.32) into RTE
(2.1). It has been shown that the FPE (also called the Boltzmann-
Fokker-Planck) equation is a formal asymptotic limit of the RTE
[102].

2.4.3 Other approximations based on forward-peaked scattering

Other approximations based on forward-peaked scattering include
the delta-Eddington (dE), the generalized Fokker-Planck (gFP), and
the generalized Fokker-Planck-Eddington (gFPE) approximations
[95]. The dE utilizes the delta function for approximating the for-
ward dominated part and the zeroth order Legendre polynomial for
the large-angle part. It was introduced in [103] for calculating radia-
tive fluxes in an absorbing-scattering atmosphere. The dE has been
utilized for modeling light propagation in tissues in [36, 104–107].
The gFP utilizes the higher order derivatives of the delta function
for approximating the phase function and it was introduced for par-
ticle transport with forward dominated scattering in [35, 108, 109].
If the large-angle scattering part using Legendre polynomials is in-
cluded then the gFPE approximation is obtained. A comparison of
the dE, FP, gFP, FPE, gFPE equations for DOT reconstructions was
presented in [95].

2.5 HYBRID MODELS

To combine the computational efficiency of the DA and the accuracy
of the high order approximations, different hybrid models have
been proposed. These hybrid models can overcome some of the
limitations of the DA.

The radiosity diffusion model combines the diffusion theory
with a ray-tracing algorithm and is applicable in highly scattering
medium with non-scattering regions [30, 110]. The hybrid Monte
Carlo-diffusion models can be used in complex heterogeneous me-
dia but often require iterative mapping between the models in order
to take into account back-scattering between the subdomains lead-
ing to computationally expensive problems [29,111–113].
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In the hybrid radiative transport-diffusion models [67,114–117],
light propagation is modelled using the RTE in subdomains in which
the DA is not valid. The DA is used in the rest of the domain and
the models are coupled with boundary conditions on the interfaces
between the subdomains. The variable order spherical harmon-
ics approximation uses different orders of the Pn approximation in
each subdomain depending on the local scattering and absorption
coefficients [118,119].

2.5.1 Coupled transport–diffusion model

In this thesis, the FPE approximations are utilized to approximate
the RTE part of the coupled RTE-DA model [67, 115, 120] in publi-
cation III. In particular, the coupled Fokker-Planck-diffusion (cFP-
DA) and coupled Fokker-Planck-Eddington-diffusion (cFPE-DA) mod-
els for modeling light propagation in tissues are introduced.

In the coupled model, the domain Ω is divided into two dis-
joint subsets Ωφ and ΩΦ. The subdomain Ωφ covers the regions in
which the DA is not valid such as the vicinity of the source and
the boundaries, and regions with low-scattering. Light propaga-
tion in subdomain Ωφ is modelled using either the FP equation,
FPE equation, or RTE depending on the chosen scattering operator.
The DA is used in the subdomain ΩΦ = Ω \ Ωφ which covers the
rest of the domain. The boundaries of the subdomains are denoted
by ∂Ωφ and ∂ΩΦ. Furthermore, the interface of subdomains is de-
noted by Γ = ∂Ωφ ∩ ∂ΩΦ. The external boundaries are denoted by
∂Ωφ,out = ∂Ωφ \ Γ and ∂ΩΦ,out = ∂ΩΦ \ Γ.

The models are coupled through boundary conditions on the in-
terface Γ. The location of the interface Γ should be chosen such that
the radiance is almost isotropic in ΩΦ. Then, the DA is a valid ap-
proximation and the coupling between the models is feasible. Usu-
ally, this criterion can be fulfilled in diffuse media with distances
greater than three transport mean free paths l∗ from the bound-
aries, sources and low-scattering regions. The coupled model can
be written in a general form allowing the use of any scattering op-
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erator L and it takes the form

iω
c

φ(r, ŝ) + ŝ · ∇φ(r, ŝ) + μaφ(r, ŝ) = μsLφ(r, ŝ), r ∈ Ωφ (2.33a)

φ(r, ŝ) = φ0(r, ŝ) + Rφ(r,Hŝ), r ∈ ∂Ωφ,out, ŝ · n̂ < 0, (2.33b)

φ(r, ŝ) =
1

|Sd−1|
Φ(r)−

n
|Sd−1|

ŝ · (κ∇Φ(r)) , r ∈ Γ (2.33c)

−∇ · κ∇Φ(r) + μaΦ(r) +
iω
c

Φ(r) = 0, r ∈ ΩΦ (2.33d)

Φ(r) +
1

2γd
κA

∂Φ(r)
∂n̂

=
Is
γd

, r ∈ ∂ΩΦ,out (2.33e)

Φ(r) =
∫

Sd−1
φ(r, ŝ)dŝ, r ∈ Γ, (2.33f)

where the coupled RTE-DA, FP-DA, and FPE-DA models are ob-
tained by using the corresponding scattering operator Eq. (2.2),
(2.28), or (2.32), respectively.

2.6 RADIATIVE TRANSPORT EQUATION WITH PIECEWISE
CONSTANT REFRACTIVE INDEX

The refractive index is assumed to be constant in the RTE (2.1)
within Ω. However, in practice, the refractive index can change
between different tissues types inside the target. A more gen-
eral version of the RTE which allows spatially varying refractive
index was derived in [121], and more recently was investigated
in [122–130]. This model allows curved photon paths between ab-
sorption and scattering events based on the gradient field of the
refractive index. Therefore, the refractive index is assumed to be a
smooth continuous function such that the gradient is well defined.
However, in biomedical applications the refractive index can have
jumps between different tissue types, such as between skull and
cerebrospinal fluid in the brain, and a smooth function may not
approximate these correctly.

As an alternative, the RTE with piecewise constant refractive in-
dex with Fresnel reflection and transmission between the regions
has been considered. This approach was developed for a one di-
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Figure 2.1: A sketch of subdomains having different refractive indices. The interfaces Γ

between the subdomains are marked with gray color and the outer boundaries ∂Ωout with
black color.

mensional spherically symmetric case in [131, 132] and for multi-
layered media in [133–136]. Furthermore, one dimensional plane
paraller geometry with multilayered media was considered in [137].
This approach was extended to general geometry in publication IV.

Let the refractive index n be a piecewise constant within N dis-
joint subdomains Ωk, k = 1, ...,N. An interface between the sub-
domains Ωk and Ωm with different refractive indices nk and nm is
denoted by Γk,m = ∂Ωk ∩ ∂Ωm as shown in Figure 2.1. Further,
the union of the interfaces of the subdomain Ωk can be written as
Γk = ∪N

m=1,m �=kΓk,m. With these notations, the boundary of the sub-
domain Ωk can be divided into the outer boundary and the union
of the interfaces ∂Ωk = ∂Ωk,out ∪ Γk. Light propagation in each sub-
domain Ωk can be modeled using the RTE and the equations are
coupled using the boundary conditions on the interfaces Γk,m.

2.6.1 Boundary conditions

The boundary condition in the subdomain Ωk on the interface Γk,m

in an inward direction ŝr,k takes into account the reflected radiance
from a direction ŝi,k and the transmitted radiance from the subdo-
main Ωm from a direction ŝt,k as shown in Figure 2.2. The boundary
condition can be written as

φk(r, ŝ) = Rk,mφk(r,H−1
k ŝ) + Tm,kφm(r,K−1

m,k(ŝ)), r ∈ Γk,m, ŝ · n̂k < 0,
(2.34)
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Figure 2.2: Interface Γk,m between the subdomains Ωk and Ωm with different refractive
indices nk and nm. The direction of incoming radiance to the interface is denoted by ŝi , the
direction of reflected radiance by ŝr and the direction of radiance which transmits through
the interface is denoted by ŝt. Outward unit normal is denoted by n̂.

where Rk,m = Rk,m(ŝi,k, n̂k, nk, nm) is the Fresnel reflection coefficient
between the subdomain Ωk and Ωm

Rk,m =
1
2

(
nk cos θk − nm cos θm
nk cos θk + nm cos θm

)2

+
1
2

(
nk cos θm − nm cos θk
nk cos θm + nm cos θk

)2

,

(2.35)

where

cos θk = n̂k · ŝi,k, (2.36)

cos θm =

√
1−

(
nk
nm

)2

(1− (cos θk)2). (2.37)

Further, Tm,k is the Fresnel transmission coefficient between the sub-
domains Ωm and Ωk

Tm,k = 1− Rm,k. (2.38)

Figure 2.3 shows the Fresnel reflection coefficient R and the trans-
mission coefficient T as a function of an incident angle.

The mapping H−1
k is the inverse reflection law giving the initial

direction of the radiance ŝi,k for a given direction of the reflected
radiance ŝr,k. The reflection law can be written in a vector form as
Hk : ŝi,k → ŝr,k

ŝr,k = Hk ŝi,k, (2.39)

Hk =
(
I− 2n̂kn̂

T
k

)
, (2.40)
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Figure 2.3: Fresnel reflection coefficient R (left column) and transmission coefficient T
(right column) between subdomains with refractive indices n1 = 1.4 and n2 = 1.33 (top
row) and refractive indices n1 = 1.33 and n2 = 1.4 (bottom row) as a function of incoming
angle. The critical angle θcrit = sin−1(n2/n1) is marked with a gray vertical line when
total internal reflection occurs.

where I is an identity matrix. The inverse reflection law H−1
k can be

computed

ŝi,k = H−1
k ŝr,k = Hk ŝr,k, (2.41)

since it can be shown that the matrix Hk is a Householder transfor-
mation and thus H−1

k = Hk.
The mapping K−1

m,k is the inverse Snell’s law giving the direction
ŝt,k from which the radiance is transmitted from the subdomain Ωm

into the subdomain Ωk for a given direction ŝr,k. The Snell’s law for
the refraction of the radiance between the subdomains Ωm and Ωk

can be written in a vector form Km,k : (ŝt,k, n̂m, nm, nk) → ŝr,k

ŝr,k =
nm
nk

ŝt,k +
(
cos ϕk −

nm
nk

cos ϕm

)
n̂m, (2.42)
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where

cos ϕm = n̂m · ŝt,k, (2.43)

cos ϕk =

√
1−

(
nm
nk

)2

(1− (cos ϕm)2). (2.44)

The inverse Snell’s law K−1
m,k : (ŝr,k, n̂m, nm, nk) → ŝt,k can be com-

puted as Km,k : (−ŝr,k,−n̂m, nk, nm) → −ŝt,k due to the reciprocity
principle of light propagation.

The boundary condition for the outer boundary in the subdo-
main Ωk takes into account a boundary source φ0,k(r, ŝ) and the
reflection of the radiance due to a mismatch in refractive indices on
the outer boundary

φk(r, ŝ) = φ0,k(r, ŝ) + Rk,outφk(r,Hk ŝ), r ∈ ∂Ωk,out, ŝ · n̂k < 0,(2.45)

where Rk,out = Rk,out(ŝi,k, n̂k, nk, nout) is the reflection coefficient be-
tween the subdomain Ωk and the exterior of the domain Ω with the
refractive index nout.

2.6.2 Coupled system of radiative transport equations

The coupled system of RTEs for N subdomains with different re-
fractive indices can be written as(

iω
ck

+ ŝ · ∇+ μa

)
φk(r, ŝ) = μsLφk(r, ŝ), r ∈ Ωk (2.46a)

φk(r, ŝ) = φ0,k(r, ŝ) + Rk,outφk(r,Hk ŝ), r ∈ ∂Ωk,out, ŝ · n̂k,< 0,
(2.46b)

φk(r, ŝ) = Rk,mφk(r,Hk ŝ) + Tm,kφm(r,K−1
m,k(ŝ)), r ∈ Γk,m, ŝ · n̂k < 0,

(2.46c)

m, k = 1, . . . ,N,

where ck = c0/nk is the speed of light in the subdomain Ωk.
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3 Numerical methods for
light transport models

3.1 REVIEWOF THENUMERICAL SOLUTIONMETHODSOF
THE LIGHT TRANSPORT MODELS

Analytical solutions of light transport models are typically available
only in simple geometries with constant parameters. Therefore, nu-
merical solution methods are often used. For a recent advances in
the analytical solution methods of the RTE, see e.g. [138–143]. An-
other interesting semi-analytical approach is to use the Neumann
series for solving of the RTE [144, 145]. The method is applica-
ble also with heterogeneous parameter distributions. However, it
is computationally expensive in highly scattering medium since the
terms of the Neumann series correspond consecutive orders of scat-
tering events. Therefore, in highly scattering medium, the series
converges slowly. For the analytical solution methods of the DA,
see e.g. [146, 147].

In the numerical solution of light transport models, different
methods have been applied for both the spatial and angular parts of
the solution. The DA has been numerically solved using a number
of ways, see e.g. [148–150]. The most often used numerical solution
method of the DA is the FEMwhich can be considered as a standard
tool. The numerical solution of the RTE has been more challenging.
For the spatial part, a finite difference method (FDM) [28,151–154],
the FEM [115, 153, 155, 156] and a finite volume method (FVM)
[157–159] have been the most commonly applied approaches. The
standard continuous Galerkin FEM is not well suitable for spa-
tial discretization of convection dominated or hyberbolic problems
such as the RTE causing numerical instabilities. Therefore, dif-
ferent modifications of the FEM have been utilized including the
discontinuous Galerkin (DG) [160, 161] and the streamline diffu-
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sion modification (SDM) (similar to an upwind Petrov-Galerkin)
[155, 162, 163]. For the angular part, the discrete ordinate method
(DOM) [28,151,152,156,157,159], the FEM [115,120,153,164,165] and
the Pn-method [118,119,166,167] have been the most often used ap-
proaches. A list of recently used light transport models and their
numerical solution methods is given in Table 3.1.

In this thesis, the FEM is utilized in the numerical solution of the
light transport models. More precisely, the SDM-FEM is utilized for
spatial discretization of the FPE approximations, the hybrid mod-
els and the coupled-RTE model while the standard Galerkin FEM is
used for the angular discretization and for the spatial discretization
of the DA. The FEM was chosen since it can be regarded as a flexi-
ble approach when implementing different boundary conditions in
complex geometries with inhomogeneous parameter distributions.
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3.2 NUMERICAL IMPLEMENTATION OF THE CORRECTED
DIFFUSION APPROXIMATION

In this section, the numerical implementation of the cDA is de-
scribed following publication II and [34]. The implementation con-
sists of computing the Robin boundary condition coefficients for
the DA given by Eqs. (2.23) - (2.25) and the solution of 1D RTE in a
half-space (2.19).

Plane wave solutions of 1D RTE in a half space

Since the boundary condition (2.5) is symmetric with respect to n̂
and the scattering phase function (2.3) is rotationally invariant, the
boundary value problem (2.19) is rewritten as

μ∂ζΨcDA(ζ, μ) + σ̄cDAΨcDA(ζ, μ)−

σ̄cDA

∫ 1

−1
h(μ, μ′)ΨcDA(ζ, μ′)

dμ′

(1− μ′2)1/2
= 0, ζ > 0, (3.1a)

ΨcDA(0, μ) = ψ(μ) + R(μ)ΨcDA(0,−μ), 0 < μ ≤ 1, (3.1b)

where σ̄cDA is a constant scaled scattering coefficient near rb (e.g.
the mean of σcDA near rb). The redistribution function h is defined
as

h(μ, μ′) =
1
2π

1− g2

1+ g2 − 2g(μμ′ − (1− μ2)1/2(1− μ′2)1/2)

+
1
2π

1− g2

1+ g2 − 2g(μμ′ + (1− μ2)1/2(1− μ′2)1/2)
. (3.2)

To solve the boundary value problem (3.1), plane wave solutions
of the form ΨcDA(ζ, μ) = eλζV(μ) are employed. Substituting this
ansatz into Eq. (3.1a), an eigenvalue problem is obtained

λμV + σ̄cDAV − σ̄cDA

∫ 1

−1
h(μ, μ′)V(μ′)

dμ′

(1− μ′2)1/2
= 0. (3.3)

For the properties of such plane wave solutions, see [94, 176].
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To calculate the plane wave solutions numerically, the DOM is
used. In particular, the Gauss-Chebyshev quadrature rule is uti-
lized ∫ 1

−1
f (μ)

dμ

(1− μ2)1/2
≈

π

N

N

∑
j=1

f (μj), (3.4)

with

μj = cos
(

π
2(N − 1− j)− 1
2(N − 1) + 2

)
, j = 1, · · · ,N, (3.5)

where N is the number of quadrature points. Replacing the integral
operation in Eq. (3.1a) with the Gauss-Chebyshev quadrature rule
and evaluating that result at μi, a discrete eigenvalue problem is
obtained

λμiV(μi) + (δcDA + σ̄cDA)V(μi)− σ̄cDA
π

N

N

∑
j=1

h(μi, μj)V(μj) = 0,

i = 1, · · · ,N, (3.6)

where δcDA is a small regularization parameter (e.g. δcDA = 10−8)
equivalent to adding a small amount of absorption. This ensures
that the numerically calculated eigenvalues are real and distinct.

Once Eq. (3.6) is solved numerically, N eigenvalues λn and eigen-
vectors Vn(μi) are obtained. For each pair [λn,Vn(μi)] satisfying
Eq. (3.6), the pair [−λn,Vn(−μi)] satisfies Eq. (3.6) also. As a result,
the eigenvalues are ordered and indexed as

λ−N/2 ≤ λ−N/2+1 ≤ · · · ≤ λ−1 ≤ λ1 ≤ · · · ≤ λN/2−1 ≤ λN/2. (3.7)

Using this indexing the symmetry of the plane wave solutions cor-
responds to λ−n = −λn and V−n(μi) = Vn(−μi). The eigenvectors
are orthogonal according to

π

N

N

∑
i=1

μiVm(μi)Vn(μi) = 0, m �= n. (3.8)

The eigenvectors are normalized as

π

N

N

∑
i=1

μiVn(μi)Vn(μi) =

{
−1 n > 0,

+1 n < 0.
(3.9)
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Boundary condition coefficients

In Eqs. (2.23) - (2.25), the coefficients acDA, bcDA and fcDA are defined
in terms of a projection operator P . This operator is given as an
expansion in terms of plane wave solutions derived in [34]. Let the
discrete projection operator pi for i = N/2+ 1, · · · ,N be defined as

pi = [V1(μi)−
N/2

∑
n=1

y1nVn(μi)]μi (3.10)

where ymn satisfies the N/2× N/2 linear system of equations

N/2

∑
m=1

[Vm(−μi)− R(μi)Vm(μi)]ymn = [Vn(μi)− R(μi)Vn(−μi)],

i = N/2+ 1, · · · ,N. (3.11)

Then, the boundary condition coefficients can be evaluated as

acDA(rb) =
π

N

N

∑
i=N/2+1

pi[1− R(μi)], (3.12)

bcDA(rb) = dε
π

N

N

∑
i=N/2+1

pi[μi + μiR(μi)], (3.13)

fcDA(rb) =
π

N

N

∑
i=N/2+1

piφ0(rb, μi). (3.14)

Boundary layer solution

Once the boundary conditions coefficients are computed, Eq. (2.17)
subject to boundary condition Eq. (2.22) may be solved either ana-
lytically or numerically. In this work, the FEM is used for numerical
approximation of the diffusion equation (2.17). Then, the bound-
ary layer solution ΨcDA(ζ, μ) satisfying boundary value problem
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Eq. (2.19) can be computed as an expansion in plane wave solu-
tions [34]. Let Hij be defined as

Hij =
N/2

∑
m=1

Vm(−μi)

[
Vm(−μj)−

N/2

∑
n=1

ymnVn(μj)

]
μj. (3.15)

Then, the solution at the boundary ΨcDA(0, μi) for the points corre-
sponding to −1 ≤ μ ≤ 1 is given by

ΨcDA(0, μi) =
π

N

N

∑
j=N/2+1

Hij
[
φ0(rb, μj)− [1− R(μj)]Φ0(rb)

+εdκcDAμj[1+ R(μj)]n̂ · ∇Φ0(rb)
]
, i = 1, · · · ,N. (3.16)

Summary of the algorithm

To summarize, the procedure for a numerical solution of the cDA
is given as

1. For a given optical parameters μa and μs, compute the asymp-
totic parameter ε using Eq. (2.13) and scaled optical parame-
ters αcDA and σcDA using Eq. (2.12).

2. Solve the eigenvalue problem (3.6), at the points rb.

3. Solve the matrix y using Eq. (3.11). Evaluate the discrete
projection operator from the Eq. (3.10) and the coefficients
of the Robin boundary condition of the DA from Eqs. (3.12)-
(3.14).

4. Solve the diffusion equation (2.17) subject to the boundary
condition (2.22).

5. Compute the boundary layer correction using Eq. (3.16).

6. Compute the approximation to the radiance φ(r, ŝ) at the points
rb using the Eq. (2.26).
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3.3 FINITE ELEMENT APPROXIMATION OF THE COUPLED
TRANSPORT–DIFFUSION MODEL

First, the finite element (FE) approximation of the coupled transport–
diffusion model (2.33) is derived following publication III and [67,
115, 163]. The FE approximation of the RTE, the FP equation, the
FPE equation, or the DA can be obtained as a special case of the FE
approximation of the general model.

In the FEM, a variational formulation of the original problem is
derived, and then this infinite dimensional problem is discretized
using a suitable set of basis functions. The variational formulation
of the hybrid model (2.33) with the SDM [155, 163] can be written
as

∫
Ωφ

∫
Sd−1

iω
c

φ(r, ŝ)v(r, ŝ)dŝdr−
∫

Ωφ

∫
Sd−1

ŝ · ∇v(r, ŝ)φ(r, ŝ)dŝdr

+
∫

∂Ωφ

∫
Sd−1

(ŝ · n̂)+φ(r, ŝ)v(r, ŝ)dŝdS

−
∫

Γ

∫
Sd−1

1
|Sd−1|

(ŝ · n̂)−Φ(r)v(r, ŝ)dŝdS

+
∫

Γ

∫
Sd−1

n
|Sd−1|

(ŝ · n̂)−(ŝ · κ∇Φ(r))v(r, ŝ)dŝdS

+
∫

Ωφ

∫
Sd−1

μaφ(r, ŝ)v(r, ŝ)dŝdr

−
∫

Ωφ

∫
Sd−1

Lφ(r, ŝ)v(r, ŝ)dŝdr+
∫

Ωφ

∫
Sd−1

δ
iω
c

φ(r, ŝ)ŝ · ∇v(r, ŝ)dŝdr

+
∫

Ωφ

∫
Sd−1

δ(ŝ · ∇φ(r, ŝ))(ŝ · ∇v(r, ŝ))dŝdr

+
∫

Ωφ

∫
Sd−1

δμaφ(r, ŝ)v(r, ŝ)dŝdr

−
∫

Ωφ

δ
∫

Sd−1
Lφ(r, ŝ)(ŝ · ∇v(r, ŝ))dŝdr+

∫
ΩΦ

κ∇Φ(r) · ∇Ψ(r)dr

+
∫

∂ΩΦ,out

2γn

A
Φ(r)Ψ(r)dS−

∫
Γ

κ

(
n̂ · ∇

∫
Sd−1

φ(r, ŝ)dŝ
)

Ψ(r)dS

+
∫

ΩΦ

μaΦ(r)Ψ(r)dr+
∫

ΩΦ

iω
c

Φ(r)Ψ(r)dr
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=
∫

∂Ωφ,out

∫
Sd−1

(ŝ · n̂)−φ0(r, ŝ)v(r, ŝ)dŝdS+
∫

∂ΩΦ,out

2Is
A

Ψ(r)dS,

(3.17)

where v and Ψ are test functions in appropriate Sobolev spaces, δ is
a SDM parameter, and (ŝ · n̂)+ and (ŝ · n̂)− denote the positive and
negative parts of the function (ŝ · n̂).

The FE approximation is obtained by approximating the solu-
tions φ(r, ŝ) and Φ(r) of the variational formulation (3.17) with a
linear combination of the basis functions

φ(r, ŝ)) ≈
Ns

∑
i=1

Na

∑
l=1

αilψi(r)ψl(ŝ), (3.18)

Φ(r) ≈
NΦ

∑
k=1

akϑk(r), (3.19)

and choosing the test functions

v(r, ŝ) = ψj(r)ψm(ŝ), ∀j = 1, ...,Ns, m = 1, ...,Na, (3.20)

Ψ(r) = ϑp(r), ∀p = 1, ...,N, (3.21)

where ψi(r) and ψl(ŝ) are the nodal basis functions of the spatial
and angular discretizations of Ωφ × Sd−1, αil is the radiance at a
spatial node i in an angular direction l, and Ns and Na are the num-
ber of the spatial and angular nodes in subdomain Ωφ, respectively.
Further, ϑk(r) is the nodal basis function of the spatial discretization
of ΩΦ, ak is the fluence at a spatial node k, and NΦ is the number
of spatial nodes in the subdomain ΩΦ. In this work, a piecewise
linear basis is used for both the spatial and angular parts of the ap-
proximation. The FE approximation of the coupled model can be
written in a matrix form(

Aφ D
F AΦ

)(
α

a

)
=

(
bφ

bΦ

)
. (3.22)

where the block-matrices Aφ and AΦ contain the FE approximations
of the models to be coupled, and the matrices D and F contain
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the coupling conditions on the interface Γ. The components of the
matrix equation (3.22) are the following. The block Aφ is

Aφ = A0 + A1 + A2 + A3 + A4, (3.23)

where

A0(h, s) =
iω
c

(∫
Ωφ

ψi(r)ψj(r)dr
∫

Sd−1
ψl(ŝ)ψm(ŝ)dŝ

+
∫

Ωφ

δ
∫

Sd−1
ŝ · ∇ψj(r)ψm(ŝ)ψl(ŝ)dŝψi(r)dr

)
(3.24a)

A1(h, s) =−
∫

Ωφ

∫
Sd−1

ŝ · ∇ψj(r)ψm(ŝ)ψl(ŝ)dŝψi(r)dr

+
∫

Ωφ

δ
∫

Sd−1
(ŝ · ∇ψi(r))(ŝ · ∇ψj(r))ψl(ŝ)ψm(ŝ)dŝdr

(3.24b)

A2(h, s) =
∫

∂Ωφ

ψi(r)ψj(r)dS
∫

Sd−1
(ŝ · n̂)+ψl(ŝ)ψm(ŝ)dŝ (3.24c)

A3(h, s) =
∫

Ωφ

μaψi(r)ψj(r)dr
∫

Sd−1
ψl(ŝ)ψm(ŝ)dŝ

+
∫

Ωφ

δμaψi(r)
∫

Sd−1
(ŝ · ∇ψj(r))ψm(ŝ)ψl(ŝ)dŝdr, (3.24d)

where h = Na(j− 1) +m, s = Na(i− 1) + l, j, i = 1, . . . ,Ns, m, l =
1, . . . ,Na, and h, s = 1, . . . ,NsNa. The matrix A4 depends on the
chosen scattering operator L. In the case of the RTE, L = LRTE, Eq.
(2.2), and

A4(h, s) =
∫

Ωφ

μsψi(r)ψj(r)dr
∫

Sd−1
ψl(ŝ)ψm(ŝ)dŝ

+
∫

Ωφ

δμsψi(r)
∫

Sd−1
(ŝ · ∇ψj(r))ψm(ŝ)ψl(ŝ)dŝdr

−
∫

Ωφ

μsψi(r)ψj(r)dr
∫

Sd−1

∫
Sd−1

Θ(ŝ · ŝ′)ψl(ŝ
′)dŝ′ψm(ŝ)dŝ

−
∫

Ωφ

δμs

∫
Sd−1

(ŝ · ∇ψj(r))ψm(ŝ)
∫
sd−1

Θ(ŝ · ŝ′)ψl(ŝ
′)dŝ′dŝψi(r)dr

(3.25)
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In the case of the FP, Lφ(r, ŝ) = LFPφ(r, ŝ), Eq. (2.28), and

A4(h, s) =
∫

Ωφ

a1,FPμsψi(r)ψj(r)dr
∫

Sd−1
∇ŝψl(ŝ) · ∇ŝψm(ŝ)dŝ

+
∫

Ωφ

δa1,FPμsψi(r)
∫

Sd−1

(
∇ŝψl(ŝ) · ∇ŝ(ŝ · ∇ψj(r)ψm(ŝ))

)
dŝdr.

(3.26)

In the case of the FPE, Lφ(r, ŝ) = LFPEφ(r, ŝ), Eq. (2.32), and

A4(h, s) =
∫

Ωφ

(1− aFPE0 )μsψi(r)ψj(r)dr
∫

Sd−1
ψl(ŝ)ψm(ŝ)dŝ

+
∫

Ωφ

δ(1− aFPE0 )μsψi(r)
∫

Sd−1
(ŝ · ∇ψj(r))ψm(ŝ)ψl(ŝ)dŝdr

+
∫

Ωφ

aFPE1 μsψi(r)ψj(r)dr
∫

Sd−1
∇ŝψl(ŝ) · ∇ŝψm(ŝ)dŝ

+
∫

Ωφ

δaFPE1 μsψi(r)
∫

Sd−1

(
∇ŝψl(ŝ) · ∇ŝ(ŝ · ∇ψj(r)ψm(ŝ))

)
dŝdr.

−
1

|Sd−1|

∫
Ωφ

μsψi(r)ψj(r)dr
∫

Sd−1

∫
Sd−1

(
bFPE0 P0(ŝ · ŝ′) + dbFPE1 P1(ŝ · ŝ′)

)
ψl(ŝ

′)dŝ′ψm(ŝ)dŝ

−
1

|Sd−1|

∫
Ωφ

δμsψi(r)
∫

Sd−1

∫
Sd−1

(
bFPE0 P0(ŝ · ŝ′) + dbFPE1 P1(ŝ · ŝ′)

)
ψl(ŝ

′)dŝ′(ŝ · ∇ψj(r))ψm(ŝ)dŝdr. (3.27)

The DA block AΦ is

AΦ = K+ C+ R+ Z, (3.28)

where matrices K, C, R, and Z are

K(p, k) =
∫

ΩΦ

κ∇ϑk(r) · ∇ϑp(r)dr (3.29a)

C(p, k) =
∫

ΩΦ

μaϑk(r)ϑp(r)dr (3.29b)

R(p, k) =
∫

∂ΩΦ,out

2γn

A
ϑk(r)ϑp(r)dS (3.29c)

Z(p, k) =
iω
c

∫
ΩΦ

ϑk(r)ϑp(r)dr, (3.29d)
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where p, k = 1, ...,NΦ. The elements of the matrices D and F, which
correspond to the interface conditions on Γ, are

D(h, k) = −
1

|Sd−1|

∫
Γ

ϑk(r)ψj(r)dS
∫

Sd−1
(ŝ · n̂)−ψm(ŝ)dŝ

+
d

|Sd−1|

∫
Γ

κ
∫

Sd−1
(ŝ · n̂)−(ŝ · ∇ϑk(r))ψm(ŝ)dŝψj(r)dS,

(3.30)

and

F(p, s) = −
∫

Γ
κ (n̂ · ∇ψi(r)) ϑp(r)dS

∫
Sd−1

ψl(ŝ)dŝ. (3.31)

The source vector bφ is

bφ(h, s) =
∫

∂Ωφ,out

ψj(r)dS
∫

Sd−1
(ŝ · n̂)−φ0(r, ŝ)ψm(ŝ)dŝ, (3.32)

and the vector bΦ is

bΦ(p) =
∫

∂ΩΦ,out

2Is
A

ϑp(r)dS. (3.33)

Often the subdomain division is chosen such that the subdomain
Ωφ includes the source location and the boundary ∂Ω. Then ∂ΩΦ,out =

∅, and thus bΦ = 0. As the solution of the coupled model, the ra-
diance at the nodes of the spatial and angular discretizations in the
subdomain Ωφ and the fluence at the spatial nodes of the subdo-
main ΩΦ are obtained.

The FE approximation of the FP, FPE, RTE, or DA in the whole
domain Ω can be written in the framework of the FE approximation
of the coupled model. In the case of the FE approximation of the
FP, FPE, or RTE Ωφ = Ω and ΩΦ = ∅, and hence AΦ = 0, bΦ = 0,
F = 0, and D = 0 in Eq. (3.22). The FE approximation of the DA
is obtained by choosing ΩΦ = Ω and Ωφ = ∅, and hence Aφ = 0,
bφ = 0, F = 0, and D = 0 in Eq. (3.22). For more details about
the FE approximation of the RTE, FP, and DA see e.g. [115] and
publication I.
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3.4 FINITE ELEMENT APPROXIMATION OF THE RTE WITH
PIECEWISE CONSTANT REFRACTIVE INDEX

In this thesis, the solution of the cRTE (2.46) is numerically ap-
proximated using the FEM. Next, the variational formulation of the
cRTE is derived following a similar procedure as in Section 3.3 and
in publication IV.

Thus, first each of the equations in (2.46a) are multiplied by a
test function vk and integrated over the domain Ωk × Sd−1. Then, by
using the Green’s theorem [180], separating the resulting boundary
integrals over the outer boundary ∂Ωk,out and over the interfaces
Γk,m, and utilizing the boundary conditions (2.46b) and (2.46c), the
variational formulation is obtained. The variational formulation of
the cRTE (2.46) with the SDM [155,162,163] can be written as

N

∑
k=1

( ∫
Ωk

∫
Sd−1

iω
ck

φk(r, ŝ)vk(r, ŝ)dŝdr

−
∫

Ωk

∫
Sd−1

ŝ · ∇vk(r, ŝ)φk(r, ŝ)dŝdr

+
∫

∂Ωk

∫
Sd−1

(ŝ · n̂k)+φk(r, ŝ)vk(r, ŝ)dŝdS

−
∫

∂Ωk,out

∫
Sd−1

(ŝ · n̂k)−Rk,outφk(r,Hk ŝ)vk(r, ŝ)dŝdS

−
N

∑
m=1,m �=k

∫
Γk,m

∫
Sd−1

(ŝ · n̂k)−Rk,mφk(r,Hk ŝ)vk(r, ŝ)dŝdS

−
N

∑
m=1,m �=k

∫
Γk,m

∫
Sd−1

(ŝ · n̂k)−Tm,kφm(r,K−1
m,k(ŝ))vk(r, ŝ)dŝdS

+
∫

Ωk

∫
Sd−1

μaφk(r, ŝ)vk(r, ŝ)dŝdr

−
∫

Ωk

∫
Sd−1

Lφk(r, ŝ)vk(r, ŝ)dŝdr

+
∫

Ωk

∫
Sd−1

δ
iω
c

φk(r, ŝ)ŝ · ∇vk(r, ŝ)dŝdr

+
∫

Ωk

∫
Sd−1

δ(ŝ · ∇φk(r, ŝ))(ŝ · ∇vk(r, ŝ))dŝdr
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+
∫

Ωk

∫
Sd−1

δμaφk(r, ŝ)vk(r, ŝ)dŝdr

−
∫

Ωk

δ
∫

Sd−1
Lφk(r, ŝ)(ŝ · ∇vk(r, ŝ))dŝdr

−
∫

∂Ωk,out

∫
Sd−1

(ŝ · n̂k)−φ0,k(r, ŝ)vk(r, ŝ)dŝdS
)
= 0 (3.34)

where Rk,m and Tm,k are given in Eqs. (2.35) and 2.38), respectively.
The FE approximation is obtained by approximating the solu-

tions φk(r, ŝ) of the variational formulation (3.34) with a linear com-
bination of the basis functions

φk(r, ŝ) ≈
Ns,k

∑
i=1

Na,k

∑
l=1

αk
ilψi,k(r)ψl,k(ŝ), (3.35)

and choosing the test functions

vk(r, ŝ) = ψj,k(r)ψm,k(ŝ), ∀j = 1, ...,Ns,k, m = 1, ...,Na,k, (3.36)

where ψi,k(r) and ψl,k(ŝ) are the nodal basis functions of the spatial
and angular discretizations of Ωk × Sd−1, αk

il is the radiance in spa-
tial nodal point i into angular direction l in the subdomain Ωk, and
Ns,k and Na,k are the number of spatial and angular nodes in the
subdomain Ωk, respectively. Therefore, different number of angu-
lar directions can be used in different subdomains if that is feasible.
In this work, we use a piecewise linear basis for both spatial and
angular parts of the solution. The FE approximation of the coupled
model can be written in a matrix form as⎛
⎜⎜⎜⎜⎜⎜⎜⎝

A1 C1,2 · · · · · · C1,N

C2,1 A2
. . . . . .

...
...

. . . . . . . . .
...

CN−1,1
. . . . . . AN−1 CN−1,N

CN,1 · · · · · · CN,N−1 AN

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎝

α1
...

αN

⎞
⎟⎠ =

⎛
⎜⎝

b1
...
bN

⎞
⎟⎠ ,

(3.37)

where the vector of radiances in the different subdomains is α =

(α1, . . . , αN) = (α1
1,1, ..., α

1
1,Na,1

, ..., α1
Ns,1,Na,1

, ..., αN
Ns,N ,Na,N

)T ∈ C∑
N
k=1 Ns,kNa,k .
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The matrix Ak ∈ CNs,kNa,k×Ns,kNa,k contains the FE approximation of
the RTE in the subdomain Ωk

Ak = A0,k + A1,k + A2,k + A3,k + A4,k, (3.38)

where

A0,k(h, s) =
iω
ck

(∫
Ωk

ψi(r)ψj(r)dr
∫

Sd−1
ψl(ŝ)ψm(ŝ)dŝ

+
∫

Ωk

δ
∫

Sd−1
ŝ · ∇ψj(r)ψm(ŝ)ψl(ŝ)dŝψi(r)dr

)
, (3.39a)

A1,k(h, s) =−
∫

Ωk

∫
Sd−1

ŝ · ∇ψj(r)ψm(ŝ)ψl(ŝ)dŝψi(r)dr

+
∫

Ωk

δ
∫

Sd−1
(ŝ · ∇ψi(r))(ŝ · ∇ψj(r))ψl(ŝ)ψm(ŝ)dŝdr,

(3.39b)

A2,k(h, s) =
∫

∂Ωk

ψi(r)ψj(r)dS
∫

Sd−1
(ŝ · n̂k)+ψl(ŝ)ψm(ŝ)dŝ

−
∫

∂Ωk,out

ψi(r)ψj(r)dS
∫

Sd−1
(ŝ · n̂k)−Rk,outψl(Hk ŝ)ψm(ŝ)dŝ

−
∫

Γk,m

ψi(r)ψj(r)dS
∫

Sd−1
(ŝ · n̂k)−Rk,mψl(Hk ŝ)ψm(ŝ)dŝ,

(3.39c)

A3,k(h, s) =
∫

Ωk

μaψi(r)ψj(r)dr
∫

Sd−1
ψl(ŝ)ψm(ŝ)dŝ

+
∫

Ωk

δμaψi(r)
∫

Sd−1
(ŝ · ∇ψj(r))ψm(ŝ)ψl(ŝ)dŝdr, (3.39d)

A4,k(h, s) =
∫

Ωk

μsψi(r)ψj(r)dr
∫

Sd−1
ψl(ŝ)ψm(ŝ)dŝ

+
∫

Ωk

δμsψi(r)
∫

Sd−1
(ŝ · ∇ψj(r))ψm(ŝ)ψl(ŝ)dŝdr

−
∫

Ωk

μsψi(r)ψj(r)dr
∫

Sd−1

∫
Sd−1

Θ(ŝ · ŝ′)ψl(ŝ
′)dŝ′ψm(ŝ)dŝ

−
∫

Ωk

δμs

∫
Sd−1

(ŝ · ∇ψj(r))ψm(ŝ)
∫

Sd−1
Θ(ŝ · ŝ′)ψl(ŝ

′)dŝ′dŝψi(r)dr,

(3.39e)

where h = Na,k(j − 1) + m, s = Na,k(i − 1) + l (j, i = 1, . . . ,Ns,k,
m, l = 1, . . . ,Na,k, and h, s = 1, . . . ,Ns,kNa,k). Further, the matrix
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Cm,k ∈ RNs,nNa,n×Ns,kNa,k contains the coupling conditions on the in-
terface Γk,m due to the radiance transmitted from the subdomain
Ωm into the subdomain Ωk. Note that the matrix Cm,k is non-zero
only if Ωm and Ωk share an interface Γk,m. The elements of the
matrix Cm,k can be written as

Cm,k(p, s) = −
∫

Γk,m

ψi(r)ψe(r)dS
∫

Sd−1
(ŝ · n̂k)−Tm,kψl(K

−1
m,k(ŝ))ψu(ŝ)dŝ,

(3.40)

where p = Na,n(e − 1) + u, (e = 1, . . . ,Ns,n, u = 1, . . . ,Na,n, and
p = 1, . . . ,Ns,nNa,n). The source vector in the subdomain Ωk is

bk(h) =
∫

∂Ωk,out

ψj(r)dS
∫

Sd−1
(ŝ · n̂k)−φ0,k(r, ŝ)ψm(ŝ)dŝ. (3.41)
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4 Numerical results

In this chapter, the numerical results based on publications I–IV
are reviewed and discussed. The results for the cDA based on pub-
lication II are presented and discussed in Section 4.1. In Section
4.2, the results for the forward-peaked scattering approximations
and the hybrid models are reviewed and discussed. The results are
primarily based on publications I and III, and [181]. The section
also contains some unpublished results. In Section 4.3, the results
for the coupled RTE model with piecewise constant refractive index
are presented and discussed based on publication IV.

4.1 CORRECTED DIFFUSION APPROXIMATION

The cDAwas derived and implemented in a 1D case in [34]. The nu-
merical implementation of the cDA in a 2D case was introduced in
publication II. In this approach, the goal was to utilize the FEM for
the solution of the DA such that the implementation would be ap-
plicable in complex geometries with spatially inhomogeneous pa-
rameter distributions. Moreover, the goal was to derive the method
in a dimension independent form and to describe the method such
that it could be easily implemented in the existing numerical solvers
of the DA which are widely used in the biomedical optics commu-
nity.

In II, the performance of the cDA was tested with 2D simula-
tions. Simulation domain Ω was a circle with radius of 20 mm. Two
types of test cases were considered: a homogeneous medium with
matched refractive indices inside and outside the domain for three
different values of scattering coefficient μs and the same cases with
mismatched refractive indices. Since the cDA was derived for the
steady state case the modulation frequency was f = 0. The results
of the cDA were compared to the FE approximations of the DA and
the RTE.
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The FE mesh for the spatial discretization of the domain con-
tained 4687 nodal points and 9196 triangular elements. For the an-
gular discretization of the RTE, 64 equally spaced angular directions
were used. The same FE mesh was used for all of the models. The
number of spatial and angular nodes was chosen by monitoring the
convergence of the errors of the FE approximations as a function of
number of nodal points. Earlier, the FE approximation of the RTE
has been evaluated against the Monte Carlo method. Therefore, the
FE approximation of the RTE can be considered as a good reference
model and the numerical errors caused by the spatial and angular
discretization are significantly smaller than the errors between the
models.

4.1.1 Matched refractive indices

As the first case, a medium with matched refractive indices on the
boundary was considered. The refractive indices inside and outside
the medium were nin = 1 and nout = 1, respectively. The scatter-
ing coefficient was given three different values μs = 50, 5 and 0.5
mm−1. The absorption coefficient and the anisotropy parameter
were constants, μa = 0.01 mm−1 and g = 0.8, respectively.

The radiances on the boundary (x, y) = (0,−20) mm for μs =
5 mm−1 computed using the cDA, the DA and the RTE are shown
in left image of Figure 4.1. In the case of the DA, the radiance was
approximated using Eq. (2.8). The exitances, computed using Eq.
(2.7) from the cDA, the DA and the RTE solutions, are shown in
Figure 4.2. Furthermore, the relative errors of the exitances of the
cDA and the DA against the RTE are shown in Figure 4.3. The
computation times of the models are given in Table 4.1.

As it can be seen from Figure 4.1, the radiance computed using
the cDA agree relatively well with the RTE and satisfies the vac-
uum boundary condition in inward direction. Note that the RTE
may give small negative or positive values in inward direction due
to numerical reasons. The approximation to the radiance given by
the DA gives negative radiance in inward direction which is unre-
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Figure 4.1: The radiance on the boundary (x, y) = (0,−20) mm computed using the
cDA, the DA and the RTE for μs = 5 mm−1 with matched (left) and mismatched refractive
indices (right).
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Figure 4.2: Logarithm of the exitance on the boundary of the domain computed using the
cDA, the DA and the RTE for different values of μs with matched refractive indices.

alistic. The results show that as scattering becomes large compared
to absorption, the relative error of exitance decreases for the cDA as
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Figure 4.3: Relative error (%) of the exitance on the boundary of the domain computed
using the cDA and the DA for different values of μs with matched refractive indices.

Table 4.1: The computation times of the models for different values of μs.

Computation time (s) Relative computation time

μs (mm−1) cDA DA RTE cDA/RTE DA/RTE

50 8.9 3.3 144.4 0.062 0.023
5 8.8 3.2 134.9 0.065 0.024
0.5 8.6 3.3 135.2 0.064 0.025

the asymptotic theory predicts. The computation times in Table 4.1
show that solving the cDA is comparable with the DA. In addition,
solving either the cDA and the DA is much faster than solving the
RTE. Thus, the cDA models light propagation more accurately than
the standard DA without significant increase in computation time.

4.1.2 Mismatched refractive indices

For the second case, a medium with mismatched refractive indices
on the boundary was considered. The refractive indices inside and
outside the medium were nin = 1.33 and nout = 1, respectively.
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Figure 4.4: Logarithm of the exitance on the boundary of the domain computed using the
cDA, the DA and the RTE for different values of μs with mismatched refractive indices.

Other optical parameters were the same as before. The radiances
on the boundary (x, y) = (0,−20) mm for μs = 5 mm−1 computed
using the cDA, the DA and the RTE are shown in right image of Fig-
ure 4.1. The exitances computed using different models are shown
in Figure 4.4 and the relative error of the exitance is shown in Figure
4.5.

As it can be seen from Figure 4.1, the approximation to the radi-
ance given by the cDA agrees better with the RTE than the approx-
imation given by the DA. The results in Figure 4.5 show that the
relative error of exitance decreases for the cDA when the ratio of
absorption and scattering decreases due to the asymptotic theory
behind the model. For the DA, the relative error can be large close
to the boundary while giving satisfactory results inside the domain.
In addition, decrease in ratio of absorption and scattering does not
ensure decrease in relative error for the DA.
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Figure 4.5: Relative error (%) of the exitance on the boundary of the domain computed
using the cDA and the DA for different values of μs with mismatched refractive indices.

4.2 FORWARD-PEAKED SCATTERING APPROXIMATIONS

In this section, the results for the FP and FPE equations, and the hy-
brid models are reviewed and discussed based on publication I and
III, and [181]. First, the accuracy of the FP and the FPE equations
is evaluated in a homogeneous medium with various optical prop-
erties. Then, the performance of the hybrid models is discussed
including the effect of the coupling interface location and the com-
putational load compared to the RTE.

4.2.1 Homogeneous medium with different optical properties

The effect of the scattering coefficient and the anisotropy param-
eter to the accuracy of the forward-peaked scattering approxima-
tions against the RTE is investigated below. The solution of the RTE
served as a reference for the FP and the FPE. All the models were
solved using the FEM as described in Section 3.3.

The simulation domain Ω was a circle with a radius of 20 mm.
Total of six cases were considered. In the first three cases (cases 1a–
1c), the scattering coefficient was given three values μs = 0.5 mm−1,
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Table 4.2: The scattering coefficient μs, the absorption coefficient μa, the anisotropy param-
eter g, and the reduced scattering coefficient μ′

s of the simulation cases in a homogeneous
medium.

μs(mm−1) μa(mm−1) g μ′
s(mm−1)

Case 1a 0.5 0.01 0.9 0.05
Case 1b 5 0.01 0.9 0.5
Case 1c 50 0.01 0.9 5

Case 2a 5 0.01 0.3 3.5
Case 2b 5 0.01 0.6 2
Case 2c 5 0.01 0.8 1

μs = 5 mm−1, and μs = 50 mm−1, respectively. The anisotropy
parameter and the absorption coefficient were constants in these
cases g = 0.9 and μa = 0.01 mm−1. These values correspond to
a low-scattering, moderate scattering, and highly scattering (dif-
fuse) medium, respectively. In the last three cases (cases 2a–2c), the
anisotropy parameter was varied g = 0.3, g = 0.6, and g = 0.8, and
the other parameters were constants μs = 5 and μa = 0.01 mm−1.
These values correspond to a nearly uniform scattering, forward
dominated scattering, and forward-peaked scattering, respectively.
The optical parameters used in simulations are given in Table 4.2.
The modulation frequency of the input signal was f = 100 MHz.
The source was a highly collimated beam with a Gaussian angular
dependence.

The FE mesh for the spatial discretization of the domain Ω con-
tained 7169 nodes and 14 058 triangular elements. The same spatial
FE mesh was used for all of the models. In the case 1a, the angu-
lar discretization consisted of 32 equally spaced angular directions
for the FP and the FPE equations, and 64 angular directions for the
RTE. In the cases 1b–1c, 16 directions were used for the FP and
the FPE equations, and 32 directions were used for the RTE, re-
spectively. The number of the angular directions was chosen by
monitoring the convergence of the error of the FE approximations
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Figure 4.6: Logarithm of the amplitude (first column) and the phase shift (second column)
of the fluence computed using the RTE (first row), the FP equation (second row) and
the FPE equation (third row) for the case 1a (μs = 0.5 mm−1). The relative errors of the
amplitude and the phase shift for the FP and the FPE equations against the RTE are shown
in the third and fourth columns.

as a function of the number of angular directions.

The fluences computed using the RTE, the FP equation, and the
FPE equation with the different scattering coefficients are shown
in Figures 4.6, 4.7, and 4.8 corresponding to the cases 1a–1c, re-
spectively. Moreover, the fluences computed using the different
anisotropy parameters are shown in Figures 4.9, 4.10, and 4.11.
In addition, the relative errors of the fluences against the RTE are
shown.

When scattering is weak (case 1a, Figure 4.6), the FP equation
gives large errors close to the source since scattering can not be
modeled using an angular diffusion as assumed in the FP equa-
tion. For the angular diffusion to take place, several consecutive
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Figure 4.7: Logarithm of the amplitude (first column) and the phase shift (second column)
of the fluence computed using the RTE (first row), the FP equation (second row) and
the FPE equation (third row) for the case 1b (μs = 5 mm−1). The relative errors of the
amplitude and the phase shift for the FP and the FPE equations against the RTE are shown
in the third and fourth columns.

forward-peaked scattering events are needed. This length scale is
characterized by the transport mean free path l∗, which is in this
case l∗ = 20 mm. As a result, the FP equation gives too smooth
solution in the front of the source and underestimates the fluence
next to the source since it does not allow back-scattering. On the
other hand, the FPE equation agrees relatively well with the RTE
expect next to the collimated Gaussian source. This is due to differ-
ent scattering models used in the RTE and the FPE. This difference
occurs at distances less than one transport mean free path l∗. When
scattering is moderate (case 1b, Figure 4.7), or strong (case 1c, Fig-
ure 4.8), the area next to source where the FP underestimates the
fluence becomes smaller. In these cases, the FPE equation gives al-

Dissertations in Forestry and Natural Sciences No 164 51



Ossi Lehtikangas: Approximations and hybrid models for modeling light
propagation in biological tissues

Figure 4.8: Logarithm of the amplitude (first column) and the phase shift (second column)
of the fluence computed using the RTE (first row), the FP equation (second row) and
the FPE equation (third row) for the case 1c (μs = 50 mm−1). The relative errors of the
amplitude and the phase shift for the FP and the FPE equations against the RTE are shown
in the third and fourth columns.

most the same results as the RTE in the whole domain with the
relative error of less than one per cent.

The results with nearly uniform scattering in Figure 4.9 show
that when the assumption of the forward-peaked scattering is vi-
olated, the FP equation does not approximate the RTE accurately,
as expected. When the anisotropy parameter approaches to unity,
the FP equation agrees increasingly well with the RTE. This is in
agreement with the earlier studies [177]. In this case, the transport
mean free path l∗ becomes large compared to the scattering mean
free path ls which is the asymptotic limit used to the derive the FP
equation [93]. In contrast to the FP equation, the FPE equation al-
lows back-scattering and is applicable also to the cases with nearly
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Figure 4.9: Logarithm of the amplitude (first column) and the phase shift (second column)
of the fluence computed using the RTE (first row), the FP equation (second row) and the
FPE equation (third row) for the case 2a (g = 0.3). The relative errors of the amplitude
and the phase shift for the FP and the FPE equations against the RTE are shown in the
third and fourth columns.
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Figure 4.10: Logarithm of the amplitude (first column) and the phase shift (second column)
of the fluence computed using the RTE (first row), the FP equation (second row) and the
FPE equation (third row) for the case 2b (g = 0.6). The relative errors of the amplitude
and the phase shift for the FP and the FPE equations against the RTE are shown in the
third and fourth columns.
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Figure 4.11: Logarithm of the amplitude (first column) and the phase shift (second column)
of the fluence computed using the RTE (top row) and the FPE (bottom row) for the case 2c
(g = 0.8). The relative errors of the amplitude and the phase shift for the FP and the FPE
equations against the RTE are shown in the third and fourth columns.
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uniform scattering and forward dominated scattering. Hence, the
accuracy of the FPE equation does not depend on the anisotropy
parameter.

4.2.2 Hybrid forward-peaked-scattering–diffusion approximations

The performance of the proposed coupled models was tested with
2D simulations. The solutions of the cFP-DA and cFPE-DA were
compared to the solution of the previously developed cRTE-DA and
the solutions of the FP equation, FPE equation, DA, and RTE. The
solution of the RTE served as a reference for other methods. All
the models were solved using the FEM. The FE approximations of
the coupled models were computed using Eq. (3.22) with the corre-
sponding discretized scattering operator Eq. (3.25), (3.26), or (3.27).
The quantity of interest was the fluence inside the domain and on
the boundary which was computed from the radiance using Eq.
(2.6).

Effect of the coupling interface location

First, the effect of the distance between the coupling interface and
the source to the accuracy of the solutions was investigated. The
simulation domain Ω was a disk with a radius of 20 mm. The
optical properties were: the scattering coefficient μs = 3 mm−1, the
absorption coefficient μa = 0.01 mm−1, and the scattering shape
parameter g = 0.8. The optical properties were chosen such that,
according to theory, light becomes diffuse after propagating a few
millimeters from the source. The modulation frequency of the input
signal was 100 MHz. Refractive indices inside and outside of the
domain were nin = nout = 1, and thus the reflection parameter
A = 1 in Eq. (2.11).

In the coupled models, the spatial domain Ω was divided into
two different subdomains Ωφ and ΩΦ. The subdomain Ωφ con-
tained elements within 2.5 mm from the boundary and within a
fixed distance from the source. These distances were chosen as 3,
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Figure 4.12: Mesh for the coupled model with 6 mm distance between the coupling inter-
face and the source. The FP, FPE or RTE subdomain Ωφ is marked with black and the DA
subdomain ΩΦ with gray.

4, 5, 6, 7, and 10 mm. The subdomain ΩΦ covered the remaining
region. Then, the FE mesh corresponding to each case was cre-
ated. The FE meshes for the spatial discretization of different cases
consisted of 4780-4910 nodes and 9350-9590 triangular elements de-
pending on the location of the interface. The FE mesh with 6 mm
distance between the coupling interface and the source is shown in
Figure 4.12. For the angular discretization of the FP equation and
FPE equation, 16 equally spaced angular directions were used, and
for the RTE 64 directions were used.

The fluences were computed using the models as described in
Section 3.3. Figure 4.13 shows the fluence computed using the
coupled models and the corresponding nodal-wise relative errors
against the RTE with 3 mm distance between the coupling interface
and the source. The fluences and the relative errors computed with
6 mm distance between the coupling interface and the source are
shown in Figure 4.14.

To compare the accuracy of the solutions, the norms of the rel-
ative errors of the fluences were computed. Therefore, 10 232 uni-
formly distributed points inside the domain were taken and the

Dissertations in Forestry and Natural Sciences No 164 57



Ossi Lehtikangas: Approximations and hybrid models for modeling light
propagation in biological tissues

Figure 4.13: Logarithm of amplitudes (first column) and phase shifts (second column) of
fluences computed using the cRTE-DA, cFP-DA, and cFPE-DA (rows from top to bottom
in the respective order) with 3 mm distance between the coupling interface and the source.
Relative errors of amplitudes and phase shifts against the RTE are shown in third and
fourth columns.

norm of the relative error was computed

ΔΦ(%) =
∫

Ω

Φ − ΦRTE

ΦRTE
dr× 100%. (4.1)

The results are shown in Figure 4.15 as a function of distance be-
tween the coupling interface and the source. In addition, the norms
of the relative errors of the FP, FPE, and DA are shown with vertical
lines.

The results for the coupled models show that when the cou-
pling of the models is done too close to the source, when the radi-
ance is not smooth as a function of direction, the relative error is
large not only on the coupling interface but in the whole domain.
On the other hand, when the coupling is made far enough, after
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Figure 4.14: Logarithm of amplitudes (first column) and phase shifts (second column) of
fluences computed using the cRTE-DA, cFP-DA, and cFPE-DA (rows from top to bottom
in the respective order) with 6 mm distance between the coupling interface and the source.
Relative errors of amplitudes and phase shifts against the RTE are shown in third and
fourth columns.

light has become diffuse, the norm of the relative error decreases
for all of the coupled models going under the error level of the DA.
Thus, the coupling should be done such that the coupling condi-
tions, Eqs. (2.33c) and (2.33f), are valid. If this is not the case and
the DA is used too close to the boundary, or near or inside the
low-scattering regions, significant modeling errors can yield [181].
These modeling errors may be amplified even more in the solution
of the inverse problem resulting large errors in the reconstructed to-
mographic images. When the coupling conditions are valid on the
coupling interface, the coupled models give almost as good results
as using the corresponding FP, FPE, or RTE in the whole domain.
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Figure 4.15: Norm of the relative error of the fluence ΔΦ(%) against the distance between
the coupling interface and the source.

Computational load

Next, the computational load of the models was compared. For
the coupled models, the distance between the coupling interface
and the source was 6 mm. The FE matrix sizes, the number of non-
zero elements, and the (sparse) matrix filling ratios were computed,
and the FE matrix assembling times and the FE matrix equation
solution times were recorded. The results are given in Table 4.3.
The computations were done on a workstation with two Intel Xeon
quadracore processors clocked at 2.27 GHz and 48 GB of RAM us-
ing MATLAB R© version 7.10 (R2010a), (The MathWorks, Inc.). The
matrix equation was solved using MATLAB’s function “mldivide”,
which implements the appropriate solver for (complex sparse) ma-
trices using LAPACK.

The FPE approximations have a few advantages in the assem-
bling of the FE matrices over the RTE. In the case of the FP, the
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Table 4.3: The FE matrix sizes, number of non-zero elements, matrix filling ratios, FE
matrix assembling times tmat, relative FE matrix assembling times, FE matrix equation
solution times tsol, and relative FE matrix equation solution times.

Matrix size Non-zeros Filling ratio (%) tmat(min) tmat/tmat,RTE(%) tsol(min) tsol/tsol,RTE(%)

RTE 306 112×306 112 135 327 744 0.144 8.389 - 6.363 -
DA 4783×4783 33 039 0.144 0.060 0.72 0.001 0.02
FP 76 528×76 528 1 585 872 0.027 0.466 5.56 0.208 3.27
FPE 76 528×76 528 8 457 984 0.144 0.851 10.17 0.220 3.45
cRTE-DA 116 266×116 266 47 651 710 0.353 2.087 24.88 0.879 13.82
cFP-DA 31 450×31 450 600 180 0.061 0.209 2.50 0.039 0.61
cFPE-DA 31 450×31 450 3 014 852 0.305 0.278 3.32 0.045 0.70

blocks related to the angular part of the FE matrix are sparse due to
the angular differential operator in contrast to the FPE and RTE in
which the blocks are full. Hence, the assembling of the FE matrices
is fast and the amount of required memory is smaller. Moreover,
the smooth integral operator in the FPE can be computed efficiently
using the matrix outer products of one-dimensional integrals. This
is not the case for the RTE. Since smaller amount of angular direc-
tions are needed for the FP and FPE, the computation times and
the amount of required memory are much smaller compared to the
RTE. This feature is important especially in 3D. In addition, us-
ing the coupled models reduces the computation time even more.
The computation times of the coupled FP-DA and FPE-DA are al-
most ten times lower for the matrix assembling and almost twenty
times lower for the matrix equation solution than that of the cou-
pled RTE-DA. Thus, using the coupled models leads to reduction
in computational load compared to the RTE while preserving suffi-
cient accuracy.

4.3 RTE WITH PIECEWISE CONSTANT REFRACTIVE INDEX

The FE approximation of coupled RTE model with piecewise con-
stant refractive index was introduced in publication IV. The moti-
vation was to develop a model which would allow different refrac-
tive indices, for instance for each tissue type, inside the medium
and would be applicable in arbitrary geometries with complex in-
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terfaces between the subdomains.
The performance of the proposed cRTE was tested with 2D sim-

ulations. The simulation domain Ω was a square [−20, 20] mm
×[−20, 20] mm. The solution of the cRTE was compared to the
solution of the Monte Carlo simulation. In the MC simulations,
a photon packet method, originally developed in [182] was modi-
fied to allow computation in complex inhomogeneous geometries
represented by FE meshes with piece-wise constant refractive in-
dices [33]. The number of simulated photons in each simulation
was 500×106 with the average statistical relative error less than
5×10−4. The effect of refractive index variations on the boundary
measurements was investigated.

4.3.1 Effect of refractive index contrast deep inside the target

First, a square inclusion with different refractive index located deep
inside the target was investigated as shown in Figure 4.16. The do-
main was divided into two disjoint subdomains Ω1 and Ω2 corre-
sponding to the regions with different refractive indices. The FE
mesh for the spatial discretization of the subdomain Ω1 is marked
with dark gray and the subdomain Ω2 is marked with light gray
in Figure 4.16. The FE meshes consisted of 4015 and 241 nodes
and 7749 and 428 triangular elements for the subdomains Ω1 and
Ω2, respectively. For the angular discretization, 64 equally spaced
angular directions were used for the both subdomains.

The scattering and absorption properties were the same in the
both subdomains: μs = 1 mm−1, μa = 0.01 mm−1, g = 0.8. The
refractive index of the subdomain Ω1 was n1 = 1.4 and the re-
fractive index of the subdomain Ω2 was varied using values n2 =

1, 1.05, ..., 2. The refractive index of the exterior was nout = 1.
The fluences computed using the cRTE and the MC are shown

in Figure 4.17. In addition, per cent relative error of the fluence
computed using the cRTE against the MC is shown. Figure 4.18
shows the fluence on the boundary computed using the cRTE as a
function of distance along the boundary. In addition, per cent rel-

62 Dissertations in Forestry and Natural Sciences No 164



Numerical results

Figure 4.16: Mesh for the domain with a square inclusion inside the target. The subdomain
Ω1 is marked with dark gray and the subdomain Ω2 with light gray. The source is marked
with a black circle.

ative difference against the case with n2 = 1.4 (matched refractive
indices) is shown. The mean of the relative difference of the bound-
ary measurements against the case with n2 = 1.4 was computed for
the amplitude and for the phase as

Δ|Φ|(%) = mean
(∣∣∣∣ |Φ(r)| − |Φref(r)|

|Φref(r)|

∣∣∣∣
)
× 100%, (4.2)

Δarg(Φ)(%) = mean
(∣∣∣∣arg(Φ(r))− arg(Φref(r))

arg(Φref(r))

∣∣∣∣
)
× 100%, (4.3)

where Φref(r) is the solution with n2 = 1.4, | · | is the absolute value
and arg(·) is the phase angle. These are shown in Figure 4.19.

The results in Figure 4.17 show that when the refractive index of
the inclusion is lower (n2 = 1) than the refractive index of the back-
ground (n1 = 1.4) strong reflection occurs when light enters the
inclusion. In contrast, when the refractive index is larger (n2 = 2)
than the background, more light is transmitted into the inclusion
and total internal reflection takes place when light exits the inclu-
sion, as expected. When the cRTE and the MC solutions are com-
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Figure 4.17: Logarithm of the amplitude (first column) and the phase shift (second column)
of the fluence computed using the cRTE model (first and third row) and using the MC
(second and fourth row) in a medium with a square inclusion. Refractive index of the
inclusion is n2 = 1 (first and second row) and n2 = 2 (third and fourth row). Per cent
relative error of the amplitude and the phase shift against the MC are shown in third and
fourth columns.

pared, a very good agreement is found and the relative error is
under three per cent for both the amplitude and the phase further
from the source.

The results show that the fluence on the boundary is changed
significantly when the refractive index is not constant within the
target. When the refractive index of the inclusion is lower (n2 = 1)
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Numerical results

Figure 4.18: Top row: Logarithm of the amplitude (left) and the phase shift (right) of the
fluence computed using the cRTE model for n2 = 1 (gray line), n2 = 1.4 (black line) and
n2 = 2 (dashed line) as a function of distance along the boundary. Bottom row: Per cent
relative difference of the amplitude (bottom left) and the phase shift (bottom right) against
the case n2 = 1.4.

than the background, the model predicts increase in the amplitude
next to the source due to the reflection from the inclusion. At the
opposite side of the target, the amplitude is up to 10 % lower com-
pared to the fluence without the inclusion. For the phase, smaller
values are predicted by the model next to the source since photons
can arrive earlier to the boundary due to the possible reflection.
If the refractive index is larger (n2 = 2) than the background, the
amplitude is one to four per cent lower compared to the fluence
obtained without the inclusion. For the phase, up to 8 % larger
values are obtained since photons can arrive later to the boundary
due to the internal reflection inside the inclusion. These contrasts
in the boundary data are larger than the typical measurement er-
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Figure 4.19: Mean per cent relative difference of the amplitude Δ|Φ| (left) and the phase
shift Δarg(Φ) (right) of the fluence on the boundary as a function of refractive index of the
inclusion n2.

rors [3]. Therefore, these contrasts can be important in the image
reconstruction problem since even small, both modeling and mea-
surement, errors are amplified when solving the inverse problem.

4.3.2 Effect of refractive index contrast close to the boundary

In the second case, the inclusion located close to the boundary of
the target as shown in Figure 4.20. The FE meshes consisted of
3476 and 1051 nodes and 6398 and 1779 triangular elements for
the subdomains Ω1 and Ω2, respectively. The number of angular
directions was the same as before. In addition, the scattering and
absorption properties were the same as in the first case in Section
4.3.1. Again, the refractive index of the background was set to n1 =
1.4 and the refractive index of the layer n2 was varied.

The fluences computed using the cRTE and the MC are shown
in Figure 4.21 for n2 = 1 and for n2 = 2. In addition, the relative
error of the fluence computed using the cRTE is shown. Figure
4.22 shows the fluence on the boundary for n2 = 1, n2 = 1.4 and
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Figure 4.20: Mesh for the domain with a layer inclusion close to the boundary of the
domain. The subdomain Ω1 is marked with dark gray and the subdomain Ω2 with light
gray. The source is marked with a black circle.

for n2 = 2. The mean of the relative difference of the boundary
measurements against the case with n2 = 1.4 (matched refractive
indices) is shown in Figure 4.23.

The results in Figure 4.21 show that for a smaller refractive index
value (n2 = 1) strong reflection occurs in front of the source when
light enters the layer, as expected. As a result, a major portion of
light remains between the layer and the boundary of the target.
In addition, the part of the light which is transmitted through the
layer in the front of the source gets reflected at the opposite side
of the layer. Hence, some part of the light remains trapped inside
the inner boundary of the layer. In contrast, for a larger refractive
index (n2 = 2) more light is transmitted into the layer, which acts
as a waveguide, and light propagates along the layer. This is due to
the total internal reflection. The cRTE and the MC solutions agree
relative well even though some differences can be seen at the right-
hand side of the target between the layer and the boundary of the
target.
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Figure 4.21: Logarithm of the amplitude (first column) and the phase shift (second column)
of the fluence computed using the cRTE model (first and third row) and using the MC
(second and fourth row) in a medium with a layer inclusion. Refractive index of the
inclusion is n2 = 1 (first and second row) and n2 = 2 (third and fourth row). Per cent
relative error of the amplitude and the phase shift against the MC are shown in third and
fourth columns.

The results in Figure 4.22 show that up to 15 % larger and 25 %
smaller values can be measured for the amplitude next to the source
and at the opposite side of the target, respectively, when the re-
fractive index n2 is smaller than the background in comparison to
the fluences computed without the inclusion. For the phase, up to
15 % difference can be obtained. Based on the results it can be con-

68 Dissertations in Forestry and Natural Sciences No 164



Numerical results

Figure 4.22: Top row: Logarithm of the amplitude (left) and the phase shift (right) of the
fluence computed using the cRTE model for n2 = 1 (gray line), n2 = 1.4 (black line) and
n2 = 2 (dashed line) as a function of distance along the boundary. Bottom row: Per cent
relative difference of the amplitude (bottom left) and the phase shift (bottom right) against
the case n2 = 1.4.

cluded that if the internal refractive index change occurs close to
the boundary, significant changes in the boundary measurements
can be obtained.
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Figure 4.23: Mean per cent relative difference of the amplitude Δ|Φ| (left) and the phase
shift Δarg(Φ) (right) of the fluence on the boundary as a function of refractive index of the
layer n2.
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5 Summary and conclusions

In this thesis, computational methods based on forward-peaked
scattering approximations and hybrid models for modeling light
propagation in biological tissues were developed. The gold stan-
dard model for light propagation in tissue-like media is the radia-
tive transport equation. However, solving the RTE is computation-
ally expensive and therefore it is typically approximated using the
diffusion approximation due to strong scattering of NIR light in tis-
sues. The DA does not model light propagation accurately near the
boundaries and sources, and in low-scattering regions such as the
cerebrospinal fluid surrounding the brain and in the ventricles. The
goal of this thesis was to develop methods which are computation-
ally less expensive to solve than the RTE but still more accurate than
the DA. The developed methods were based on four approaches.

As the first approach, the corrected diffusion approximation,
which corrects for the error made by the DA near the boundaries,
was numerically implemented. The cDA is based on an asymptotic
analysis of the RTE when scattering is much stronger than absorp-
tion. The analysis yields an additive correction term for the DA
near the boundary which satisfies 1D RTE. The numerical imple-
mentation included solving the DA using the FEM and plane wave
solution of the 1D RTE in a half space. The cDA can be used in
complex geometries with spatially varying parameter distributions
and it can be utilized in existing numerical or analytical solution
methods of the DA. The results show that the cDA can correct the
error made by the DA near the boundary. Moreover, computing
the correction term does not increase the computation time signifi-
cantly compared to the DA.

As the second approach, Fokker-Planck-Eddington type approx-
imations, which take into account forward-peaked and large an-
gle scattering analytically when approximating the RTE, were uti-
lized. More precisely, the Fokker-Planck and the Fokker-Planck-
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Eddington equations were used as light transport models. Since
these approximations take into account forward-peaked scattering
analytically, coarser angular discretization can be used compared
with the RTE leading to reduction in computational load. As the
third approach, hybrid models which utilize the FPE and the DA
as light transport models in different subdomains were developed.
The FPE approximations were used in those parts of the domain
in which the DA is not valid, such as in low-scattering regions and
near the boundaries, and the DA was used elsewhere. The models
were coupled on the interfaces between the subdomains and the
resulting system of equations was solved simultaneously. The FPE
approximations and the hybrid models were numerically solved
using the FEM.

The proposed FPE approximations and the hybrid models were
tested using numerical simulations and the results were compared
to the RTE and the DA. The results show that the accuracy of the
FP equation increases as the anisotropy parameter g approaches
to unity. On the other hand, the FPE, which takes into account
both forward-peaked and large angle scattering, is applicable over
a wide range of anisotropy parameters. In general, the results show
that FPE approximates the RTE with good accuracy in biological
tissues. In addition, the results show that the hybrid models de-
scribe light propagation well when the coupling of the models is
done such that the assumptions of the DA are valid on the coupling
interfaces. These assumptions are typically fulfilled in highly scat-
tering media away from the boundaries, sources, and low-scattering
regions. Moreover, using the hybrid models can reduce the compu-
tation time significantly over the RTE depending on the size of the
domain, the optical properties and the subdomain divisions.

The fourth approach included developing a RTE based coupled
model which is applicable when the refractive index is piece-wise
constant within the domain. In the cRTE model, light propaga-
tion in each subdomain with constant refractive index is modeled
using the RTE and the equations are coupled using boundary con-
ditions describing Fresnel reflection and transmission on the inter-
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faces between the subdomains. The resulting coupled system of
RTEs was numerically solved using the FEM. The results show that
the cRTE describes light propagation accurately in comparison with
the Monte Carlo method. In addition, the results show that neglect-
ing internal refractive index changes can lead to significant errors
in the boundary measurements of scattered light.

Biomedical optics provides a unique opportunity for functional
imaging. The information given by different imaging modalities
ranges from molecular environment to changes in blood volume
and oxygenation. The reconstruction of 3D tomographic images of
these quantities requires an accurate and computationally feasible
mathematical model for light propagation inside the tissues. By
combining the methods developed in this thesis it may possible to
use hybrid models and forward-peaked scattering approximations
to reduce computational load and to take into account the refractive
index variations between different tissues types. This combined
model could provide a computationally feasible way to model light
propagation in 3D with sufficient accuracy.

In the future, the developed methods will be applied to image
reconstruction problem of DOT, fDOT and QPAT. In addition, the
methods can be applicable also in other areas of science in which
the RTE describes propagation particles such as in radiation therapy
treatment planning of cancer and radiative heat transfer.
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T. Tarvainen, M. Schweiger, and S. Arridge, “Instrumentation
and calibration methods for the multichannel measurement
of phase and amplitude in optical tomography,” Review of
Scientific Instruments 76, 044302 (2005).
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ridge, and J. Kaipio, “Approximation errors and model re-
duction in three-dimensional diffuse optical tomography,”
Journal of Optical Society of America A 26, 2257–2268 (2009).

[33] T. Tarvainen, V. Kolehmainen, A. Pulkkinen, M. Vauhkonen,
M. Schweiger, S. Arridge, and J. Kaipio, “An approxima-
tion error approach for compensating for modelling errors in
DOT,” Inverse Problems 26, 015005 (2010).

[34] A. Kim, “Correcting the diffusion approximation at the
boundary,” Journal of Optical Society of America A 28, 1007–
1015 (2011).

[35] C. Leakeas and E. Larsen, “Generalized Fokker-Planck
approximations of particle transport with highly forward-
peaked scattering,” Nuclear Science and Engineering 137, 236–
250 (2001).

78 Dissertations in Forestry and Natural Sciences No 164



Bibliography

[36] P. González-Rodrı́guez and A. Kim, “Light propagation in
tissues with forward-peaked and large-angle scattering,” Ap-
plied Optics 47, 2599–2609 (2008).

[37] G. Bal, “Radiative transfer equations with varying refractive
index: a mathematical perspective,” Journal of Optical Society
of America A 23, 1639–1644 (2006).

[38] K. Case and P. Zweifel, Linear transport theory (Addison-
Wesley Educational Publishers Inc., US, 1967).

[39] S. Chandrasekhar, Radiative transfer (Oxford University Press,
London, 1950).

[40] J. J. Duderstadt and W. R. Martin, Transport theory (John Wiley
& Sons, 1979).

[41] M. I. Mishchenko, “Vector Radiative Transfer Equation for
Arbitrarily Shaped and Arbitrarily Oriented Particles: a Mi-
crophysical Derivation from Statistical Electromagnetics,” Ap-
plied Optics 41, 7114–7134 (2002).

[42] M. I. Mishchenko, “Poynting–Stokes tensor and radia-
tive transfer in discrete random media: the microphysical
paradigm,” Optics Express 18, 19770–19791 (2010).

[43] J. Ripoll, “Derivation of the scalar radiative transfer equation
from energy conservation of Maxwell’s equations in the far
field,” Journal of the Optical Society of America A 28, 1765–1775
(2011).

[44] L. Ryzhik, G. Papanicolaou, and J. B. Keller, “Transport equa-
tions for elastic and other waves in random media,” Wave
Motion 24, 327 – 370 (1996).

[45] G. Bal, “Kinetics of scalar wave fields in random media,”
Wave Motion 43, 132 – 157 (2005).

[46] G. E. Thomas and K. Stamnes, Radiative transfer in the atmo-
sphere and ocean (Cambridge University Press, 2002).

Dissertations in Forestry and Natural Sciences No 164 79



Ossi Lehtikangas: Approximations and hybrid models for modeling light
propagation in biological tissues

[47] G. B. Rybicki and A. P. Lightman, Radiative processes in astro-
physics (John Wiley & Sons, 2008).

[48] E. E. Lewis and W. F. Miller, Computational methods of neutron
transport (John Wiley and Sons, Inc., New York, NY, 1984).

[49] S. R. Arridge and J. C. Hebden, “Optical imaging in medicine:
II. Modelling and reconstruction,” Physics in Medicine and Bi-
ology 42, 841 (1997).

[50] M. H. Kalos and P. A. Whitlock, Monte carlo methods (John
Wiley & Sons, 2008).

[51] S. R. Arridge, M. Hiraoka, andM. Schweiger, “Statistical basis
for the determination of optical pathlength in tissue,” Physics
in Medicine and Biology 40, 1539 (1995).

[52] L. Wang, S. L. Jacques, and L. Zheng, “MCML–Monte Carlo
modeling of light transport in multi-layered tissues,” Com-
puter Methods and Programs in Biomedicine 47, 131 – 146 (1995).

[53] D. Boas, J. Culver, J. Stott, and A. Dunn, “Three dimensional
Monte Carlo code for photon migration through complex het-
erogeneous media including the adult human head,” Optics
Express 10, 159–170 (2002).

[54] Y. Fukui, Y. Ajichi, and E. Okada, “Monte Carlo Prediction
of Near-Infrared Light Propagation in Realistic Adult and
Neonatal Head Models,” Applied Optics 42, 2881–2887 (2003).
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a b s t r a c t

In diffuse optical tomography, light transport theory is used to describe photon

propagation inside turbid medium. A commonly used simplification for the radiative

transport equation is the diffusion approximation due to computational feasibility.

However, it is known that the diffusion approximation is not valid close to the sources

and boundary and in low-scattering regions. Fokker–Planck equation describes light

propagation when scattering is forward-peaked. In this article a numerical solution of

the Fokker–Planck equation using finite element method is developed. Approach is

validated against Monte Carlo simulation and compared with the diffusion approxima-

tion. The results show that the Fokker–Planck equation gives equal or better results

than the diffusion approximation on the boundary of a homogeneous medium and in

turbid medium containing a low-scattering region when scattering is forward-peaked.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In diffuse optical tomography (DOT), the goal is to
reconstruct the optical properties of tissues using bound-
ary measurements of scattered near infrared light. The
imaging modality has potential applications for example
in detection of breast cancer, neonatal brain imaging and
functional brain activation studies [1,2]. In the measure-
ment set-up, a set of optical fibers, optodes, are attached
on the boundary of the object in measurement and source
positions. Near infrared light is guided into the object at
one source position at a time and transmitted light is
measured from all the measurement positions using light

sensitive detectors. Then, this measurement process is
repeated for all source positions.

The image reconstruction in DOT is a nonlinear ill-
posed inverse problem. The iterative solution of this
problem requires several solutions of the forward pro-
blem. Moreover, due to ill-posedness of the reconstruc-
tion problem, even small errors in the modelling can
produce large errors in reconstructions. Therefore, an
accurate and computationally feasible forward model is
needed.

Light propagation in biological tissues is governed by
the transport theory [3,4]. This leads to describing the
multiple scattering phenomenon in biological tissues
using the radiative transport equation (RTE). Due to
computational complexity of the RTE, different approx-
imations have been developed to ease up the computation
of the forward problem. A common approximation is the
Pn approximation where the solution of the RTE is
expanded into series of spherical harmonics.
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The most often used model for the solution of the
forward problem in DOT is the diffusion approximation
(DA) which is a special case of the P1 approximation. The
DA is computationally feasible but it has limitations in
accuracy; it fails to describe light propagation accurately
in low-scattering regions as well as in the proximity of the
light source and boundaries [1,5].

Recently there has been a growing interest in using
other approximations of the RTE as a forward model. The
idea of using the Fokker–Planck equation as the forward
model in DOT was introduced in [6]. The Fokker–Planck
equation can be used to describe light propagation
accurately when scattering is strongly forward dominated
[7]. This is the case in biological tissues [8,6].

The derivation of the Fokker–Planck equation for light
transport can be found in [9] and for particle transport in
[10]. In the derivation of the Fokker–Planck equation for
light transport, the scattering probability distribution is
approximated by a sum of delta function and a second order
correction [9]. This approximation explains the limits of the
Fokker–Planck equation. It cannot describe the light
propagation accurately when the scattering is not forward
dominated, but on the other hand when it is the Fokker–
Planck equation offers a good model for light propagation.

There are few numerical solutions to the Fokker–
Planck equation. A numerical solution for the Fokker–
Planck equation using discrete ordinates method was
developed for particle transport in [11]. In [12], a method
for computing Green’s function for the Fokker–Planck
equation as an expansion in plane wave modes was
developed. The plane wave modes for the Fokker–Planck
equation were calculated using finite difference approx-
imation. The DOT reconstruction of the scattering and
absorption coefficients using the Fokker–Planck equation
as a forward model was presented in [13]. The forward
problem was solved numerically using the finite differ-
ence method and the inverse problem was solved using a
transport–backtransport method developed in [14].

In this paper, a finite element solution of the Fokker–
Planck equation is introduced. The finite element method
(FEM) is a flexible approach when implementing different
boundary conditions and handling complex geometries. It
has successfully been used in numerical solution of the light
transport problems [15–17]. In this paper both spatial and
angular variables are discretized using the FEM when
solving the Fokker–Planck equation. A similar approach
has earlier been used in solution of the RTE and the radiative
transfer problem of ionizing radiation [17,18]. To the
authors knowledge the Fokker–Planck equation has not
yet been solved using the finite element method.

In the numerical solution of the RTE, dense angular
dicretization is needed in order to describe light propagation
accurately in strongly scattering medium [13]. Therefore,
large computational resources are needed in the solutions of
the RTE. The Fokker–Planck equation, on the other hand,
assumes that the scattering is forward peaked. Thus, coarser
angular discretization can be used in the numerical
computation compared to the RTE, leading to smaller
amount of computation load and time [13].

The rest of the paper is organized as follows. In Section
2, we give a short review of the RTE, the DA, and the

Fokker–Planck equation. In Section 3, we derive a finite
element solution for the Fokker–Planck equation. In
Section 4, we test the proposed FE-model with simula-
tions. In Section 5, conclusions are given.

2. Light transport models

Let O � Rn be the physical domain and n=2,3 be the
dimension of the domain. In addition, let ŝ 2 Sn�1 denote a
unit vector in the direction of interest.

The frequency domain version of the RTE is of the form

io
c
fðr,ŝÞþ ŝ � rfðr,ŝÞþmafðr,ŝÞ ¼ msLfðr,ŝÞþqðr,ŝÞ, ð1Þ

where i is the imaginary unit, c is the speed of light in
medium, o is the angular modulation frequency of the
input signal, qðr,ŝÞ is the source inside O, fðr,ŝÞ is the
radiance, ms ¼ msðrÞ and ma ¼ maðrÞ are the scattering and
absorption parameters of the medium and L is the
scattering operator defined as

Lfðr,ŝÞ ¼ �fðr,ŝÞþ

Z
Sn�1

Yðŝ,ŝ
0
Þfðr,ŝ

0
Þdŝ

0
: ð2Þ

The scattering phase function Yðŝ,ŝ
0
Þ describes the

probability density for a photon to scatter from direction
ŝ
0

to direction ŝ. In this study the domain is assumed to be
isotropic in the sense that probability of scattering
depends only on the relative angle, not on the absolute
angles, i.e. Yðŝ,ŝ

0
Þ ¼Yðŝ � ŝ 0Þ. An often used phase function

for isotropic materia is the Henyey–Greenstein scattering
function [19] which is of the form

Yðŝ � ŝ 0Þ ¼

1

2p
1�g2

ð1þg2�2gŝ � ŝ
0
Þ

n¼ 2,

1

4p
1�g2

ð1þg2�2gŝ � ŝ
0
Þ
3=2

n¼ 3,

8>>>><
>>>>:

ð3Þ

where parameter g defines the shape of the probability
distribution. Values of g are in the range from �1 to 1, for
go0 scattering is backward dominated and for g40
scattering is forward dominated. When g=0, scattering
phase function is a uniform distribution. In biological
tissues, g is typically close to 1.

In DOT, a natural boundary condition for the RTE is the
so-called vacuum boundary condition which assumes that
no photons travel in an inward direction at the boundary
@O, thus

fðr,ŝÞ ¼ 0, r 2 @O, ŝ � n̂o0, ð4Þ

where n̂ denotes the outward unit normal on @O [1]. The
vacuum boundary condition can be modified to take into
account a boundary source f0ðr,ŝÞ at source position
ei � @O,

fðr,ŝÞ ¼
f0ðr,ŝÞ, r 2

S
jej, ŝ � n̂o0,

0, r 2 @O\
S

jej, ŝ � n̂o0:

(
ð5Þ

Photon density is defined as an integral of the radiance
over angular directions

FðrÞ ¼
Z

Sn�1

fðr,ŝÞdŝ: ð6Þ
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2.1. Diffusion approximation

The diffusion approximation for the RTE has been
derived in numerous references, e.g. [1,4,3,20]. In the
frequency domain the DA is of the form

�r � krFðrÞþmaFðrÞþ
io
c
FðrÞ ¼ q0ðrÞ, ð7Þ

where q0(r) is the isotropic source inside O. The diffusion
coefficient k is defined as

k¼ 1

nðmaþm0sÞ
, ð8Þ

where n is the dimension of the domain and m0s is the
reduced scattering coefficient

m0s ¼ ð1�g1Þms, ð9Þ

and g1 is the mean of cosine of the scattering function

g1 ¼

Z
Sn�1

ðŝ � ŝ
0
ÞYðŝ � ŝ 0Þdŝ: ð10Þ

In the case of Henyey–Greenstein phase function g1=g.
The DA cannot satisfy the boundary condition (4) exactly.
Typically, the boundary condition is approximated with a
Robin-type boundary condition

FðrÞþ
1

2gn

kA
@FðrÞ
@n̂
¼

Is

gn

, r 2
S

jej,

0, r 2 @O\
S

jej,

8><
>: ð11Þ

where gn is dimension dependent constant
ðg2 ¼ 1=p,g3 ¼ 1=4Þ [20], A=(1 + R)/(1�R) and R is the
reflection coefficient on the boundary [21] and Is is an
inward directed diffuse boundary current [21]

2.2. Fokker–Planck equation

In the case of forward-peaked scattering, one can
approximate the RTE by using the Fokker–Planck approx-
imation. In the approximation, the scattering phase
function is approximated as

Yðŝ � ŝ 0Þ � a0dðŝ�ŝ
0
Þþa1d

00

ðŝ�ŝ
0
Þ, ð12Þ

where d is a delta function, d
00

is a second order derivative
of delta function and a0 and a1 are constants. Inserting
this approximation into the RTE (1) and by examining the
eigenvalues of the scattering operator the Fokker–Planck
approximation is obtained. The scattering operator L is
approximated as

Lfðr,ŝÞ � xnð1�g1ÞDŝfðr,ŝÞ, ð13Þ

where Dŝ denotes the Laplacian operator in spherical
coordinates and xn is dimension dependent constant. In
dimension n=2,3 constant xn is [13]

xn ¼
1 n¼ 2,

1=2 n¼ 3:

(
ð14Þ

In case of the Henyey–Greenstein scattering function,
the resulting Fokker–Planck equation in the frequency

domain is

io
c
fðr,ŝÞþ ŝ � rfðr,ŝÞþmafðr,ŝÞ ¼ xnmsð1�gÞDŝfðr,ŝÞþqðr,ŝÞ:

ð15Þ

Unlike the DA, the Fokker–Planck equation can satisfy the
same boundary condition (5) as the RTE. As a solution of
the Fokker–Planck equation the radiance fðr,ŝÞ at spatial
point r into angular direction ŝ is obtained. The photon
density FðrÞ can be calculated from the radiance by using
Eq. (6).

3. Finite element implementations

In this section, the finite element approximation for
the Fokker–Planck equation is derived. In the finite
element method a variational formulation, also known
as a weak formulation, for the problem is derived, and this
infinite dimensional problem is discretized using a
suitable basis for the solution. The finite element approxi-
mation for the Fokker–Planck equation derived here
follows the same kind of procedure as the FE model for
the RTE derived in [17].

3.1. Variational formulation

To obtain a variational formulation of the Fokker–
Planck equation (15), it is multiplied by test function vðr,ŝÞ
and integrated over domain G¼O� Sn�1. In DOT there are
no internal sources and thus the source term in Eq. (15) is
qðr,ŝÞ ¼ 0. After some manipulation and using boundary
condition (5), the resulting weak formulation is obtained.
It is of the formZ
O

Z
Sn�1

io
c
fðr,ŝÞvðr,ŝÞdŝ dr�

Z
O

Z
Sn�1

ŝ � rvðr,ŝÞfðr,ŝÞdŝ dr

þ

Z
@O

Z
Sn�1

ðŝ � n̂Þþfðr,ŝÞvðr,ŝÞdŝ dS

þ

Z
O

Z
Sn�1

mafðr,ŝÞvðr,ŝÞdŝ dr

þ

Z
O

Z
Sn�1

xnmsð1�gÞ
1

sin2j
@fðr,yÞ
@y

@vðr,yÞ
@y

dydr

�

Z
O

Z
Sn�1

xnmsð1�gÞ
1

sinj
@

@j sinj @fðr,ŝÞ

@j

� �
vðr,ŝÞdŝ dr

¼

Z
@O

Z
Sn�1

ðŝ � n̂Þ�f0ðr,ŝÞvðr,ŝÞdŝ dS, ð16Þ

where ðŝ � n̂Þþ and ðŝ � n̂Þ� denote the positive and
negative parts of ðŝ � n̂Þ and f0ðr,ŝÞ is the boundary source.
The derivation of the variational formulation is explained
in more detail in Appendix A.

3.2. Finite element approximation

In the FE-approximation of the Fokker–Planck equa-
tion, the solution of the variational formulation equation
(16) is approximated with a linear combination of the
basis functions

fðr,ŝÞ �fh
ðr,ŝÞ ¼

XNn

i ¼ 1

XNa

l ¼ 1

ailciðrÞclðŝÞ, ð17Þ
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where cðrÞ and cðŝÞ are the nodal basis functions of the
spatial and angular discretizations, respectively, and ail is
the radiance in spatial nodal point i into angular direction
l. In this paper we use a piecewise linear basis for both the
spatial and angular parts of the solution. Using the chosen
finite dimensional basis and choosing basis functions cjðrÞ

and cmðŝÞ as test functions, a finite dimensional approx-
imation for the variational formulation in Eq. (16) is
obtained. A more detailed derivation of the FE-approx-
imation is given in Appendix B. The FE-approximation of
the Fokker–Planck equation is of the form

ðA0þA1þA2þA3þA4þA5Þa¼ b1c
0, ð18Þ

where a = ða1,1, . . . ,a1,Na
, . . . ,aNn ,1, . . . ,aNn ,Na

Þ
T
2 CNnNa is the

radiance at the nodes of the spatial and angular grids. The
source intensity vector c0

¼ ðc0
1,1, . . . ,c0

Nn ,Na
Þ 2 RNnNa in-

cludes nonzero elements at the spatial nodes ri 2 ej � @O
s.t. c0

il is the source intensity at the node i to the angular
direction l. Further, the components of the matrices in Eq.
(18) are

A0ðh,sÞ ¼
io
c

Z
O
ciðrÞcjðrÞdr

Z
Sn�1

clðŝÞcmðŝÞdŝ, ð19Þ

A1ðh,sÞ ¼�

Z
O

Z
Sn�1

ŝ � rcjðrÞcmðŝÞclðŝÞdŝciðrÞdr, ð20Þ

A2ðh,sÞ ¼

Z
@O
ciðrÞcjðrÞdS

Z
Sn�1

ðŝ � n̂ÞþclðŝÞcmðŝÞdŝ, ð21Þ

A3ðh,sÞ ¼

Z
O
maciðrÞcjðrÞdr

Z
Sn�1

clðŝÞcmðŝÞdŝ, ð22Þ

A4ðh,sÞ ¼

Z
O
xnmsð1�gÞciðrÞcjðrÞdr

Z
Sn�1

1

sin2j
@clðŝÞ

@y
@cmðŝÞ

@y
dŝ,

ð23Þ

A5ðh,sÞ ¼�

Z
O
xnmsð1�gÞciðrÞcjðrÞdrZ

Sn�1

1

sinj
@

@j sinj @clðŝÞ

@j

� �
cmðŝÞdŝ, ð24Þ

b1ðhÞ ¼

Z
@O
ciðrÞcjðrÞdS

Z
Sn�1

ðŝ � n̂Þ�clðŝÞcmðŝÞdŝ, ð25Þ

where h=Na(j� 1) + m, s=Na(i �1) + l, j,i=1,y,Nn,
m,l=1,y,Na and h,s=1,y,NnNa.

4. Results and discussion

The finite element solution of the Fokker–Planck
equation was tested with 2D simulations. In 2D the zenith
angle is j¼ 0 and therefore A5=0 in matrix equation (18).
The simulations were carried out in a circular domain O
centered at the origin and with radius 20 mm. The light
source was located at (�20,0) with direction perpendi-
cular to @O. The frequency of the input signal was
100 MHz. The refractive indices of the object and the
surrounding medium were n=1.

The results were compared with the finite element
solution of the DA and with Monte Carlo (MC) simula-
tions. The finite element solution of the DA was obtained
as in [17,22]. The diffuse source model was used. For the

spatial discretization of the DA and the Fokker–Planck
equation, the same spatial grid was used. In the Monte
Carlo simulation, a photon packet method, developed in
[23] and extended in [24], was modified to allow
computation in complex inhomogeneous geometries. This
was achieved by depicting the computational domain
with triangular elements. A more detailed description of
the Monte Carlo method can be found in [25].

4.1. Homogeneous medium

First the performance of the finite element solution of
the Fokker–Planck equation was tested in homogeneous
medium with different scattering properties. The finite
element mesh for the spatial discretization contained
4687 nodal points and 9196 elements. For the angular
discretization 32 equally spaced angular directions were
used. The number of angular directions was chosen by
inspecting the convergence of the FE-solution against the
Monte Carlo solution on the boundary of the object.

4.1.1. Constant scattering coefficient, varying scattering

shape parameter g

The optical properties of the medium used for the first
two simulations are given in Table 1 (cases 1A and 1B). In
the simulations, the absorption and scattering coefficients
were constants ma ¼ 0:01 mm�1 and ms ¼ 1 mm�1, and
scattering shape parameter got two values g=0.6 (case
1A) and g=0.9 (case 1B).

The photon densities on the boundary of the domain
calculated with Fokker–Planck equation, using Eqs. (17)
and (6), the DA and MC are shown in Fig. 1. The
logarithms of the amplitudes on the boundary of the
object along the detection angle, which is the angle
between the source and detector, are shown the first
column and the phase shifts are shown the second
column.

On the first row the scattering shape parameter g=0.6
(case 1A) and on the second row g=0.9 (case 1B). All
results are in same scale and they are scaled with respect
to the source strength.

The relative errors of the photon densities of the
Fokker–Planck equation and the DA were calculated
by comparing them against the solution of MC. The
results are shown in Fig. 2. To give a quantitative
estimate of the errors, the squared norm of the relative
errors was computed. The results are given in Table 2
(cases 1A and 1B).

ARTICLE IN PRESS

Table 1
The scattering coefficient ms, absorption coefficient ma, scattering shape

parameter g and reduced scattering coefficient m0s for the simulations in

homogeneous medium.

ms ðmm�1Þ ma ðmm�1Þ g m0s ðmm�1Þ

1A 1 0.01 0.6 0.4

1B 1 0.01 0.9 0.1

2A 0.5 0.01 0.8 0.1

2B 5 0.01 0.8 1.0
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The results show that the finite element solution of the
Fokker–Planck equation gives almost the same result as
Monte Carlo excluding a drop close to the source in the
highly forward-peaked case (g=0.9). We expect that this

drop, which can be seen in some extent in all of the
results, is due to the differences between the radiative
transport and Fokker–Planck models. All three models
give almost the same results far from the source in
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Fig. 1. The logarithms of the amplitudes (left column) and the phase shifts (right column) of the photon densities on the boundary of the object calculated

with Fokker–Planck equation (solid line), DA (dashed line) and Monte Carlo (dotted line). On the top row g=0.6 (case 1A) and the bottom row g=0.9

(case 1B).
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Fig. 2. The relative errors of the amplitudes (left column) and the phase shifts (right column) of the photon densities on the boundary of the object

calculated with the Fokker–Planck equation (solid line) and the DA (dashed line). On the top row g=0.6 (case 1A) and the bottom row g=0.9 (case 1B).
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amplitude data. However, in the phase shift the DA differs
from the results of the Fokker–Planck equation and MC
especially in the highly forward-peaked case. The relative
errors show that the Fokker–Planck equation gives equal
or better results than the DA when compared to MC.

4.1.2. Constant scattering shape parameter, varying

scattering coefficient ms

The proposed model was tested in the homogeneous
medium also with two different scattering coefficients.
The optical parameters that were used in the simulations
are given in Table 1 (cases 2A and 2B). Now the scattering
shape parameter was constant g=0.8. The scattering
coefficient ms was given two values ms ¼ 0:5 mm�1 (case
2A) and ms ¼ 5 mm�1 (case 2B).

The photon densities calculated with the Fokker–
Planck, the DA and MC are shown in Fig. 3. The figures
are in respective order as in Fig. 1. On the first row the
scattering coefficient was ms ¼ 0:5 mm�1 (case 2A) and on
the second row it was ms ¼ 5 mm�1 (case 2B). The relative
errors of the photon densities are shown in Fig. 4 and the
squared norm of the relative errors is given in Table 2
(cases 2A and 2B).

In the case 2A where ms ¼ 0:5 mm�1, the FE-solution of
the Fokker–Planck equation gives almost equal results as
MC apart from a drop close to the source. The solution of
the DA differs from the other approaches clearly. In the
highly scattering case 2B (ms ¼ 5 mm�1), the Fokker–
Planck, the DA and MC give almost the same results. In
this case, the squared norm of the relative error is larger
for the solution of the Fokker–Planck equation than for
the solution of the DA. However, both of them are smaller
than the norms of the other cases.

4.2. Comparison of the FE-solutions of the Fokker–Planck

equation and RTE

The computational load of the FE-solution of the
Fokker–Planck equation was compared with the FE-
solution of the RTE. The finite element solution of the
RTE was obtained as in [17]. In the FE-solution of the RTE,
the same spatial discretization was used as for the
Fokker–Planck equation. Furthermore, the angular dis-
cretization was chosen similarly as for the Fokker–Planck
equation. The sizes of the FE-matrices, number of nonzero
elements and matrix filling ratios are given in Table 3. The
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Table 2
The squared norm of the relative errors for Fokker–Planck eFP (%) and DA eDA(%).

eFP (amplitude) (%) eDA (amplitude) (%) eFP (phase shift) (%) eDA (phase shift) (%)

1A 7.19 14.18 0.010 0.157

1B 7.77 51.77 0.094 2.79

2A 7.82 51.80 0.086 2.83

2B 4.36 0.33 0.005 0.012
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Fig. 3. The logarithms of the amplitudes (left column) and the phase shifts (right column) of the photon densities on boundary of the object calculated

with Fokker–Planck equation (solid line), DA (dashed line) and Monte Carlo (dotted line). On the top row scattering coefficient ms ¼ 0:5 mm�1 (case 2A)

and in the bottom row ms ¼ 5 mm�1 (case 2B).
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FE-solution of the RTE contains discretization of the
scattering phase function which leads to full angular
matrices. In contrast, the FE-solution of the Fokker–Planck
equation contains derivatives of a basis functions with
respect to angular variables. Thereby, angular matrices are
sparse when piecewise basis functions are used.

CPU-times of the FE-solutions were computed for all
homogeneous test cases. The relative CPU-times tRTE/tFP

and the number of angular direction Na are given in
Table 4. The results show that the CPU-times of the FE-

solution of the Fokker–Planck equation are smaller than
the CPU-times of the FE-solution of the RTE even when
the sizes of the matrices are equal. Most of the relative
CPU-times are order of magnitude smaller for the Fokker–
Planck equation when compared to the RTE. Thus,
significant computational savings can be obtained by
using the Fokker–Planck equation compared to the RTE
when scattering is forward-peaked.

4.3. Inhomogeneous medium

Next the proposed FE-model was tested in inhomoge-
neous medium including a low-scattering void-like
region. The geometry of the domain was the same as
earlier, but now the medium included a low-scattering
void-like region. The geometry for the simulations is
shown in Fig. 5. In the first simulation the void-like region
was a low-scattering layer 2 mm inside the boundary of
the circle (left figure). The width of the layer was 2 mm,
and thus the inner radius of the low-scattering gap was
16 mm. In the second simulation the void region was a
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Fig. 4. The relative errors of the amplitudes (left column) and the phase shifts (right column) of the photon densities on the boundary of the object

calculated with the Fokker–Planck equation (solid line) and the DA (dashed line). On the top row scattering coefficient ms ¼ 0:5 mm�1 (case 2A) and in the

bottom row ms ¼ 5 mm�1 (case 2B).

Table 3
The number of angular directions Na, matrix sizes, number of the nonzeros and matrix filling ratios in the FE-discretizations of the Fokker–Planck (FP)

equation and the RTE.

FP RTE

Na 32 32 64

Matrix size 149 984�149 984 149 984 �149 984 299 968�299 968

Nonzeros 3 115 296 33 229 824 132 919 296

Filling ratio (%) 0.014 0.15 0.15

Table 4
The number of angular directions Na of the FE-discretizations and

relative CPU-times tRTE/tFP of the Fokker–Planck (FP) equation and RTE

for the homogeneous test cases.

Na,FP Na,RTE tRTE/tFP

1A 32 32 3.58

1B 32 64 26.66

2A 32 32 11.63

2B 32 64 8.39
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low-scattering inclusion inside the domain (right figure).
The center of the low-scattering circular inclusion was
located at (�5,5) and its radius was 6 mm.

The scattering coefficients of the background and the
void were ms ¼ 1 mm�1 and ms ¼ 0:001 mm�1, respec-
tively. The absorption coefficient and the scattering shape
parameters were constants in the whole domain,
ma ¼ 0:01 mm�1 and g=0.8, respectively.

The finite element mesh for the spatial discretization
of the inhomogeneous medium including a low-scattering
layer contained 3791 nodal points and 7300 elements. For
the angular discretization 64 equally spaced angular
directions were used. The discretization of the circular
domain with inclusion contained 2923 nodal points and
5698 elements for the spatial part and 32 equally spaced
angular directions for the angular part.
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4.3.1. Low-scattering layer

The photon densities were calculated with the Fokker–
Planck equation, the DA and MC. The results are shown in

Fig. 6. The logarithms of the amplitudes are shown the
first column and the phase shifts are shown the second
column. The photon densities as a function of the distance
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from the source are on the top row and the photon
densities as a function of the detection angle are on the
bottom row. The relative errors of the photon densities
are shown in Fig. 7. The figures are in respective order as
in Fig. 6.

The results of the DA differ clearly from the results of
the Fokker–Planck equation when compared to MC. The
Fokker–Planck equation describes the light propagation
more accurately than the DA on the center axis and on the
boundary. Especially on the phase shift the Fokker–Planck
equation predicts the light propagation with good
precision.

4.3.2. Low-scattering inclusion

The photon densities were computed as earlier. The
results are shown in Fig. 8. Furthermore, the relative
errors of the photon densities are shown in Fig. 9. Because
the case was not symmetric, the results are shown over
full circle instead of semi-circle.

The results show that the Fokker–Planck equation
gives more accurate results both on the center axis and on
the boundary. All three models give similar results on the
amplitude, but still the Fokker–Planck equation is more
accurate than the DA. In addition, in the phase shift the
Fokker–Planck is clearly more accurate than the DA.

5. Conclusions

In this paper, a finite element solution of the Fokker–
Planck equation was introduced. The Fokker–Planck

equation is an approximation to the radiative transfer
equation that is applicable when the scattering is
forward-peaked. Due to angular dependence the Fokker–
Planck equation is computationally more expensive than
the diffusion approximation, but still less demanding to
solve than the full transport equation [13].

The finite element solution of the Fokker–Planck
equation was tested with simulations with different
optical properties. The results of the proposed FE-model
were compared with the finite element solution of the DA
and Monte Carlo simulations. The results show that the
Fokker–Planck equation can describe light propagation
accurately when the scattering is forward-peaked. The
relative errors indicate that the accuracy of the Fokker–
Planck equation is equal or better compared to the DA
when the scattering is forward dominated which is the
usual situation in DOT.

The FE-solution of the Fokker–Planck equation has a
good accuracy also in cases in which turbid medium
includes a low-scattering void-like region. Thus the
Fokker–Planck equation could also be utilized in this
demanding case where the DA fails.
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Appendix A. Variational formulation of the Fokker–
Planck equation

To derive variational formulation for Eq. (15), it is
multiplied by test function vðr,ŝÞ and integrated over
domain G¼O� Sn�1

Z
G

io
c
fðr,ŝÞvðr,ŝÞdVþ

Z
G
ðŝ � rÞfðr,ŝÞvðr,ŝÞdV

þ

Z
G
mafðr,ŝÞvðr,ŝÞdV

�

Z
G
xnmsð1�gÞDŝfðr,ŝÞvðr,ŝÞdV ¼ 0 8vðr,ŝÞ: ð26Þ

Using Green’s theorem [26] and boundary condition (5),
the second term of Eq. (26) can be written asZ
O

Z
Sn�1

vðr,ŝÞðŝ � rfðr,ŝÞÞdŝ dr

¼�

Z
O

Z
Sn�1

ŝ � rvðr,ŝÞfðr,ŝÞdŝ dr

þ

Z
@O

Z
Sn�1

ðŝ � n̂Þfðr,ŝÞvðr,ŝÞdŝ dr

¼�

Z
O

Z
Sn�1

ŝ � rvðr,ŝÞfðr,ŝÞdŝ dr

þ

Z
@O

Z
Sn�1

ðŝ � n̂Þþfðr,ŝÞvðr,ŝÞdŝ dr

þ

Z
@O

Z
Sn�1

ðŝ � n̂Þ�f0ðr,ŝÞvðr,ŝÞdŝ dS, ð27Þ

where ðŝ � n̂Þþ and ðŝ � n̂Þ� denote the positive and
negative parts of ðŝ � n̂Þ defined as

ðŝ � n̂Þþ ¼
ðŝ � n̂Þ ŝ � n̂Z0,

0 ŝ � n̂o0,

(
ð28Þ

ðŝ � n̂Þ� ¼
0 ŝ � n̂Z0,

�ðŝ � n̂Þ ŝ � n̂o0:

(
ð29Þ

The fourth term of Eq. (26) can be written asZ
O

Z
Sn�1

xnmsð1�gÞDŝfðr,ŝÞvðr,ŝÞdŝ dr

¼

Z
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Z
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1
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@j sinj @fðr,ŝÞ

@j

� �
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�

Z
O

Z
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1
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@y
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@y
dŝ dr
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Z
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1
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¼ 0

: ð30Þ

Using Eqs. (28) and (31), we can write Eq. (26) asZ
O

Z
Sn�1

io
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fðr,ŝÞvðr,ŝÞdŝ dr�
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Eq. (31) is the variational formulation of the Fokker–
Planck Eq. (15).

Appendix B. Finite element approximation of the
Fokker–Planck equation

Solution fðr,ŝÞ of the variational formulation is
approximated with a linear combination of the basis
functions, Eq. (17). Using the chosen basis and choosing
basis functions clðrÞ and cmðŝÞ as test functions and
inserting them into variational formulation (31), we arrive
at system of equations

Z
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The boundary source f0ðr,ŝÞ can be represented in the
same basis as the solution

f0ðr,ŝÞ �
XNn

i ¼ 1

XNa

l ¼ 1

c0
ilciðrÞclðŝÞ, ð33Þ

where c0
il is source intensity in the spatial node i into the

angular direction l. Inserting this into Eq. (32) and by
changing the order of integration and summation, the
following system of equations is obtained:

io
c

XNn

i ¼ 1

XNa

l ¼ 1

ail

Z
O
ciðrÞcjðrÞdr

Z
Sn�1
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Z
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Z
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This is the FE-approximation of the Fokker–
Planck equation. It can further be written in the matrix
form (18).
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[9] González-Rodrı́guez P, Kim A. Light propagation in tissues with
forward-peaked and large-angle scattering. Applied Optics
2008;47(14):2599–609.

[10] Pomraning G. The Fokker–Planck operator as an asymptotic limit.
Mathematical Models and Methods in Applied Sciences 1992;2:
21–36.

[11] Morel J. Fokker–Planck calculations using standard discrete
ordinates transport codes. Nuclear Science and Engineering
1981;79:340–56.

[12] Kim A. Transport theory for light propagation in biological tissue.
Journal of the Optical Society of America A 2004;21(5):820–7.
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Abstract: We study the modeling and simulation of steady-state
measurements of light scattered by a turbid medium taken at the boundary.
In particular, we implement the recently introduced corrected diffusion
approximation in two spatial dimensions to model these boundary measure-
ments. This implementation uses expansions in plane wave solutions to
compute boundary conditions and the additive boundary layer correction,
and a finite element method to solve the diffusion equation. We show that
this corrected diffusion approximation models boundary measurements
substantially better than the standard diffusion approximation in comparison
to numerical solutions of the radiative transport equation.
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1. Introduction

Non-invasive boundary measurements of light scattered by tissues are important for biomedical
applications [1, 2]. By extracting information from these measurements regarding the optical
properties of tissues (e.g.absorption and scattering), one may gain valuable insight into tis-
sue health. For example, in diffuse optical tomography (DOT) and fluorescence diffuse optical
tomography (fDOT), one seeks to reconstruct the optical properties of tissues from measure-
ments of light at the boundary of the domain. The applications include, for example, detection
and classification of breast cancer, monitoring of infant brain tissue oxygenation level and func-
tional brain activation studies, for reviews see e.g. [3–5]. In quantitative photoacoustic tomog-
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raphy (QPAT) one seeks to estimate concentration of chromophores, such as hemoglobin and
melanin, inside tissues by combining the optical contrast and ultrasound propagation [6–8].

Image reconstruction problems in DOT, fDOT and QPAT are non-linear ill-posed inverse
problems. There are no direct methods for the solution of these problems, and thus they are
typically stated as minimization problems such as regularized output least squares. The iterative
solution of this problem requires repetitive solutions of the forward model. Therefore, it is
essential to have a computationally feasible forward model that describes light propagation in
tissues accurately.

The theory of radiative transport governs light propagation in tissues [1,2]. This theory takes
into account absorption and scattering due to inhomogeneities in the medium. The major chal-
lenge in using radiative transport theory to study light propagation in tissues is that it is math-
ematically complicated due mostly to the large number of variables in the radiative transport
equation (RTE). The large dimensionality of the RTE makes even computational methods chal-
lenging.

Tissues typically scatter light strongly and absorb light weakly. For that reason, one often
replaces the RTE by the diffusion approximation (DA) [1–4]. In the DA, one assumes that
the light becomes nearly isotropic due to strong multiple scattering. The DA is much simpler
to solve than the RTE. However, applying the DA to model boundary measurements is prob-
lematic. It is well known that the DA is not valid near sources or boundaries. This is because
the assumption that light is nearly isotropic is too restrictive to take into account sources and
boundary conditions. Nonetheless, the DA has been used to model boundary measurements
with some success despite these limitations. Regardless, there still exists a need for more accu-
rate models of boundary measurements. Consequently, the prescription of “correct” boundary
conditions [9–13] and source terms [14–16] for the DA has been a long-standing issue.

There have been some works that have taken into account sources and boundaries cor-
rectly by combining the solutions of the RTE and the DA to form a hybrid method. Wang
and Jacques [17] used Monte Carlo simulations for the RTE in combination with the DA. Tar-
vainenet al [18] developed a coupled method combining solutions of the RTE and DA both
within a finite element framework for both space and angle. This coupled method can take into
account correctly boundaries, sources as well as low-scattering regions in the interior of the
domain. Recently, Gao and Zhao [19] developed a sophisticated numerical method to solve the
RTE. This method employs multigrid methods in both space and angle where the coarsest grid
level is consistent with the DA when scattering is strong and absorption is weak.

Recently, Kim [20] presented an asymptotic analysis of the RTE leading to the so-called cor-
rected diffusion approximation (cDA). The additive correction to the DA is given by a bound-
ary layer solution. This boundary layer solution corrects for the error made by the DA near the
boundary. It vanishes rapidly away from the boundary (on the order of one scattering mean free
path) so that the standard DA approximates the solution deep within the interior of the domain.
The asymptotic analysis used to derive this boundary layer solution was established in the early
1970’s in the neutron transport community [21,22]. In fact, Pomraning and Ganapol [23] used
this asymptotic analysis to study boundary conditions for the DA in detail.

In this paper, we use the cDA to model boundary measurements. Using a finite element
method (FEM) to solve the DA, we are able to consider general spatial domains. By computing
the boundary layer solution only for boundary points where we are modeling measurements,
we show that the cDA provides a superior approximation to the solution of the RTE requiring
only a small amount of more work than solving the DA itself. In particular, we consider a
spatial domainΩ ⊂R

2 with boundary∂Ω. Although the simulations presented here are limited
to two-dimensional (2D) case, the theory derived in [20] and reviewed here is represented in
dimensional independent form allowing for the realization of the method both in two and three
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dimensions (3D). In 3D, the cDA consist of solving 3D diffusion equation and one-dimensional
radiative transport equation for each of the measurements locations. Thus, the extension of
method to 3D is straightforward.

The remainder of the paper is as follows. In Section 2, we give an overview of the asymptotic
analysis of the RTE leading to the cDA. In Section 3 we give details of the calculations needed
to compute the boundary condition coefficients for the diffusion equation and the boundary
layer solution. In addition, we give details of the numerical method used to solve the diffusion
equation. In Section 4 we show results from our computational simulations. Section 5 is the
conclusions.

2. Asymptotic analysis of the radiative transport equation

The steady-state radiative transport equation

ŝ·∇φ + µaφ + µsL φ = 0 (1)

governs continuous light propagation in an absorbing and scattering medium. The radianceφ :=
φ(r, ŝ) gives the power at position r∈ Ω ⊂ R

n flowing in directionŝ∈ Sn−1 with n denoting the
number of spatial dimensions andSn−1 denoting the unit sphere. The absorption and scattering
coefficients are denoted byµa := µa(r) andµs := µs(r), respectively. The scattering operator
L is defined as

L φ = φ −
∫

Sn−1
Θ(ŝ· ŝ′)φ(r, ŝ′)dŝ′. (2)

Thescattering phase functionΘ gives the fraction of light scattered in directionŝ due to light
incident in direction̂s′. We assume that scattering is rotationally invariant so that the scattering
phase functionΘ depends onlŷs· ŝ′.

To solve Eq. (1) inΩ×Sn−1, we must supplement boundary conditions of the form

φ = φ0 +Rφ on Γin = {(r, ŝ) ∈ ∂Ω×Sn−1, ŝ· n̂ < 0} (3)

whereφ0 is the source,∂Ω the boundary of domainΩ andn̂ denotes the unitoutwardnormal
on ∂Ω. Here,Rφ denotes the reflection of light due to a mismatch in the refractive index at
the boundary (see Appendix B, Eq. (B.4)). Boundary condition Eq. (3) prescribes the radiance
over only the directions pointing into the domain.

Boundary measurements are given by the exitanceΓ(rb) definedas

Γ(rb) =
∫

ŝ·n̂>0
T(ŝ· n̂)φ(rb,K(ŝ))dŝ, rb ∈ ∂Ω, (4)

whereT = 1−R is the Fresnel transmission coefficient in the case of mismatched refractive
indices at the boundary and mappingK implements the Snell’s law in a vector form (see Ap-
pendix B, Eq. (B.15)). Furthermore, other quantity of interest is the fluence rateϒ(r), defined
asan integral of the radiance over angular directions

ϒ(r) =
∫

Sn−1
φ(r, ŝ)dŝ, r ∈ Ω. (5)

We consider the case in which scattering is strong and absorption is weak. To make this
assumption explicit, we introduce a small, dimensionless parameter 0< ε ≪ 1 according to

µa = εα, µs = ε−1σ . (6)

By substituting Eq. (6) into Eq. (1), we obtain

ε ŝ·∇φ + ε2αφ +σL φ = 0. (7)
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We seek an asymptotic solution of Eq. (7) in the limit asε → 0+ of the form

φ = Φ+Ψ. (8)

Here,Φ denotes the interior solution andΨ denotes the boundary layer solution. This asymp-
totic analysis was done recently in [20]. In what follows, we summarize the results from that
work.

Seeking the interior solutionΦ in the form

Φ = Φ0 + εΦ1 +O(ε2), (9)

we find thatΦ0 = Φ0(r) andΦ1 = −nκ ŝ·∇Φ0 with Φ0 satisfying the diffusion equation

∇ · (κ∇Φ0)−αΦ0 = 0. (10)

The diffusion coefficientκ is defined as

κ = [nσ(1−g)]−1, (11)

with g denoting the anisotropy factor defined as the mean of the cosine of the scattering phase
function

g =
∫

Sn−1
(ŝ· ŝ′)Θ(ŝ· ŝ′)dŝ′. (12)

Theleading order behavior of the interior solutionΦ ∼ Φ0(r)− εnκ ŝ·∇Φ0(r) is a weakly lin-
ear function of̂s. In general, a weakly linear function ofŝ is not sufficient to satisfy boundary
condition Eq. (3). For that reason, we add a boundary layer solutionΨ to correct the interior so-
lution near the boundary. This boundary layer solution decays rapidly away from the boundary
on a length scale that isO(ε). Thus,φ ∼ Φ0− εnκ ŝ·∇Φ0 deep in the interior ofΩ far away
from the boundary∂Ω.

To computeΨ near a particular boundary point rb ∈ ∂Ω, consider a coordinate system(ρ,z)
whereρ is a vector parallel to the tangent plane at rb andz is the coordinate along−n̂. Let
z= εζ , µ = ŝ· (−n̂) andŝ⊥ = ŝ+ µ n̂. Then, each of the terms in the boundary layer solution
Ψ(ρ,ζ , ŝ) = Ψ0(ρ,ζ , ŝ)+ εΨ1(ρ,ζ , ŝ)+O(ε2) satisfies boundary value problems for the one-
dimensional radiative transport equations of the form

µ∂ζ Ψ0 + σ̄L Ψ0 = 0, in ζ > 0, (13a)

Ψ0
∣

∣

ζ=0 = φ0 +RΨ0−Φ0 +RΦ0, on 0< µ ≤ 1. (13b)

and

µ∂ζ Ψ1 + σ̄L Ψ1 = −ŝ⊥ ·∇⊥Ψ0, in ζ > 0, (14a)

Ψ1
∣

∣

ζ=0 = RΨ1−Φ1 +RΦ1, on 0< µ ≤ 1. (14b)

with σ̄ = σ(rb) and∇⊥ denoting the gradient with respect toρ . BothΨ0 andΨ1 must satisfy
the asymptotic matching condition

Ψ0,Ψ1 → 0, ζ → ∞. (15)

To ensure asymptotic matching condition Eq. (15) is satisfied, one must set

P [Φ0−RΦ0 +Φ1−RΦ1−φ0] = 0. (16)
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Here,P is the operator that projects boundary sources for the one-dimensional half space
problem onto the mode of the solution that does not decay asζ → 0. We give more details
aboutP in Section 3.

For the special case in which the boundary source is axisymmetric aboutn̂ so thatφ0 =
φ0(rb,µ), the right-hand side of Eq. (14a) vanishes identically and Eq. (16) reduces to the
familiar Robin boundary condition

aΦ0 +bκn̂ ·∇Φ0 = f , on ∂Ω, (17)

with

a = P[1−R(µ)], (18)

b = εnP[µ(1+R(µ))], (19)

f = P[φ0(rb,µ)]. (20)

The functionR(µ) is the Fresnel reflection coefficient defined with respect toµ which is defined
on the local coordinate system with respect to rb. Equation (10) together with the boundary
condition Eq. (17) is known as the diffusion approximation to the RTE. The standard diffusion
approximation, which is derived from the spherical harmonics expansion of the RTE, is shown
in Appendix A.

Upon solution of Eq. (10) subject to boundary condition Eq. (17), the boundary layer solution
in axisymmetric caseΨ(ζ ,µ) = Ψ0 + εΨ1 satisfies

µ∂ζ Ψ+ σ̄L Ψ = 0, in ζ > 0, (21a)

Ψ(0,µ) = φ0(rb,µ)+R(µ)Ψ(0,−µ)− [1−R(µ)]Φ0(rb)

+εnκµ[1+R(µ)]n̂ ·∇Φ0(rb), on 0< µ ≤ 1. (21b)

Upon solution of boundary value problem Eq. (21), the corrected diffusion approximation
evaluated at rb ∈ ∂Ω is then given by

φ(r, ŝb) ∼ Φ0(rb)− εnκ ŝ·∇Φ0(rb)+Ψ(0,µ). (22)

Equation (22) gives the asymptotic solution up toO(ε2).

3. Numerical implementations

In this section, we give a method used to compute the boundary condition coefficients given
by Eqs. (18) - (20) and the solution of the boundary value problem Eq. (21) given the diffusion
approximation. Furthermore, we describe briefly a finite element method to solve Eq. (10)
subject to boundary condition Eq. (17).

3.1. Computing boundary condition coefficients and boundary layer solutions

To compute the coefficients of the boundary conditions for the diffusion approximation and the
boundary layer solution forΩ ⊂ R

2, we need to study the canonical half space problem:

cosθ∂ζ Ψ+ σ̄Ψ− σ̄
∫ π

−π
Θ(θ −θ ′)Ψ(ζ ,θ ′)dθ ′ = 0, in ζ > 0, (23a)

Ψ
∣

∣

ζ=0 = ψ +RΨ, on−π/2 < θ < π/2. (23b)
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Here,θ parameterizesS1 and cosθ = ŝ·(−n̂). The boundary sourceψ is assumed to be even so
thatψ(θ) = ψ(−θ) which corresponds to a boundary source that is axisymmetric with respect
to n̂. We use the Henyey-Greenstein scattering phase function [24,25]

Θ(θ −θ ′) =
1

2π
1−g2

1+g2−2gcos(θ −θ ′)
. (24)

Since boundary condition Eq. (23b) prescribes an even function ofθ at ζ = 0 and because
the scattering phase function given in Eq. (24) is rotationally invariant, the solution is an even
function ofθ :

Ψ(ζ ,θ) = Ψ(ζ ,−θ). (25)

For that case, we have
∫ π

−π
Θ(θ −θ ′)Ψ(ζ ,θ ′)dθ ′ =

∫ π

0

[

Θ(θ +θ ′)+Θ(θ −θ ′)
]

Ψ(ζ ,θ ′)dθ ′. (26)

Let µ = cosθ . Then, we can rewrite boundary value problem Eq. (23) as

µ∂ζ Ψ+ σ̄Ψ− σ̄
∫ 1

−1
h(µ ,µ ′)Ψ(ζ ,µ ′)

dµ ′

(1−µ ′2)1/2
= 0, in ζ > 0, (27a)

Ψ(0,µ) = ψ(µ)+R(µ)Ψ(0,−µ), on 0< µ ≤ 1. (27b)

Here, the redistribution functionh is defined as

h(µ ,µ ′) =
1

2π
1−g2

1+g2−2g(µµ ′− (1−µ2)1/2(1−µ ′2)1/2)

+
1

2π
1−g2

1+g2−2g(µµ ′ +(1−µ2)1/2(1−µ ′2)1/2)
. (28)

3.1.1. Plane wave solutions

We use plane wave solutions to solve boundary value problem Eq. (27). Plane wave solu-
tions are special solutions of Eq. (27a) of the formΨ = eλζV(µ). Substituting this ansatz
into Eq. (27a), we obtain the eigenvalue problem

λ µV + σ̄V − σ̄
∫ 1

−1
h(µ ,µ ′)V(µ ′)

dµ ′

(1−µ ′2)1/2
= 0. (29)

There are several properties of plane wave solutions that are useful for computing solutions of
the radiative transport equation [26,27].

To calculate plane wave solutions numerically, we use the discrete ordinate method. In par-
ticular, we use the Gauss-Chebyshev quadrature rule

∫ 1

−1
f (µ)

dµ
(1−µ2)1/2

≈
π
N

N

∑
j=1

f (µ j), (30)

with

µ j = cos

(

π
2(N− j)−1
2(N−1)+2

)

, j = 1, · · · ,N. (31)

Replacing the integral operation in Eq. (27a) with the Gauss-Chebyshev quadrature rule and
evaluating that result atµi , we obtain

λ µiV(µi)+(δ + σ̄)V(µi)− σ̄
π
N

N

∑
j=1

h(µ ,µ j)V(µ j) = 0, i = 1,· · · ,N. (32)
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Equation (32) is a discrete eigenvalue problem suitable for numerical computations. Notice that
in Eq. (32) we have added a small regularization parameter 0< δ ≪ 1 which is equivalent to
adding a small amount of absorption. This ensures that the eigenvalues we calculate numerically
are real and distinct. The numerical error incurred by introducingδ is exponentially small. For
our numerical calculations, we typically have chosenδ = 10−8.

Suppose we solve numerically Eq. (32). We will obtainN eigenvaluesλn and eigenvectors
Vn(µi). For each pair[λn,Vn(µi)] satisfying Eq. (32), the pair[−λn,Vn(−µi)] satisfies Eq. (32)
also. As a result, we order and index the eigenvalues according to

λ−N/2 ≤ λ−N/2+1 ≤ ·· · ≤ λ−1 ≤ λ1 ≤ ·· · ≤ λN/2−1 ≤ λN/2. (33)

Using this indexing the symmetry of the plane wave solutions corresponds toλ−n = −λn and
V−n(µi) = Vn(−µi). The eigenvectors are orthogonal according to

π
N

N

∑
i=1

µiVm(µi)Vn(µi) = 0, m 6= n. (34)

We normalize the eigenvectors according to

π
N

N

∑
i=1

µiVn(µi)Vn(µi) =

{

−1 n > 0,

+1 n < 0.
(35)

3.1.2. Boundary condition coefficients

In Eqs. (18) - (20), the coefficientsa, b and f aredefined in terms of a projection operatorP.
This operator is given as an expansion in plane wave solutions derived in [20]. Here, we state
the result. Letpi for i = N/2+1,· · · ,N be defined as

pi = [V1(µi)−
N/2

∑
n=1

y1nVn(µi)]µi (36)

whereymn satisfies theN/2×N/2 linear system of equations

N/2

∑
m=1

[Vm(−µi)−R(µi)Vm(µi)]ymn = [Vn(µi)−R(µi)Vn(−µi)], i = N/2+1,· · · ,N. (37)

Then, we compute the boundary condition coefficients through evaluation of

a(rb) =
π
N

N

∑
i=N/2+1

pi [1−R(µi)], (38)

b(rb) = nε
π
N

N

∑
i=N/2+1

pi [µi + µiR(µi)], (39)

f (rb) =
π
N

N

∑
i=N/2+1

piφ0(rb,µi). (40)

3.1.3. Boundary layer solution

Now that we have computed the boundary condition coefficients in boundary condition Eq.
(17), let us suppose that we have solved Eq. (10) subject to boundary condition Eq. (17). We
show how we solve this boundary value problem numerically in Section 3.2. Then, the boundary
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layer solutionΨ satisfying boundary value problem Eq. (21) can be computed as an expansion
in plane wave solutions. This expansion is derived in [20]. Here, we give the result forΨ(0,µi)
for −1≤ µ ≤ 1 which is what we need to correct the DA at the boundary. LetHi j be defined as

Hi j =
N/2

∑
m=1

Vm(−µi)

[

Vm(−µ j)−
N/2

∑
n=1

ymnVn(µ j)

]

µ j . (41)

ThenΨ(0,µi) for the points corresponding to−1≤ µ ≤ 1 is given by

Ψ(0,µi) =
π
N

N

∑
j=N/2+1

Hi j
[

φ0(rb,µ j)− [1−R(µ j)]Φ0(rb)

+εnκµ j [1+R(µ j)]n̂ ·∇Φ0(rb)
]

, i = 1, · · · ,N. (42)

3.2. Computing the diffusion approximation

In this work, the FEM is used to solve the DA, Eq. (10) subject to Eq. (17). We follow the same
procedure as in the case of the standard DA, see e.g. [28–32]. The variational formulation of
the DA is

∫

Ω
κ∇Φ0 ·∇dr+

∫

Ω
αΦ0vdr+

∫

∂Ω

a
b

Φ0vdS=

∫

∂Ω

f
b

vdS, (43)

wherev is a test function. By representingΦ0 in a finite dimensional basis the problem is
discretized. The FE-approximation of the DA can be written in the form

(K +C+D)c = G, (44)

where

K(p,k) =

∫

Ω
κ∇ϑk(r) ·∇ϑp(r)dr (45)

C(p,k) =
∫

Ω
αϑk(r)ϑp(r)dr (46)

D(p,k) =
∫

∂Ω

a
b

ϑk(r)ϑp(r)dS (47)

wherek, p = 1,· · · ,N, ϑ(r) is the nodal basis function andN is the number of spatial nodes.
The source vector is

G(p) =
∫

∂Ω

f
b

ϑp(r)dS. (48)

Vector c= (c1, · · · ,cN)T ∈ R
N is the solution of the DA at the nodes of the spatial grid.

3.3. Summary of the algorithm

To summarize, the procedure for a numerical solution of the cDA is given as

1. For a given optical parametersµa andµs, compute the asymptotic parameterε using Eq.
(50) and scaled optical parametersα andσ using Eq. (6).

2. Solve the eigenvalue problem, Eq. (32), at the measurement points rb.

3. Solve the matrixy using Eq. (37). Evaluate the discrete projection operator from the Eq.
(36) and the coefficients of the Robin boundary condition of the DA from Eqs. (38)-(40).
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4. Solve the DA Eq. (10) subject to the boundary condition Eq. (17) using the FEM, Eq.
(44). Evaluate the solution and the gradient at the measurement points rb.

5. Compute the boundary layer correction using Eq. (42).

6. Compute the approximation to the radianceφ at the measurement points rb using the Eq.
(22).

4. Numerical results

The performance of the cDA was tested with 2D simulations. Simulation domainΩ was a circle
with radius of 20 mm centered at the origin. The sourceφ0(r, ŝ) was located at(x,y) = (−20,0)
mm with cosine shape giving the largest value in inward direction and value zero in direction
of tangent to the boundary

φ0(rb, ŝ) = −ŝ· n̂, ŝ· n̂ < 0. (49)

Threetypes of test cases were considered: a homogeneous medium with matched refractive
indices inside and outside the domain for three different values of scattering coefficientµs, the
same cases with mismatched refractive indices, and a heterogeneous medium.

The results of the cDA were compared with the results of the standard DA (see Appendix
A) and the RTE. The cDA was solved as explained above in Section 3.3. The standard DA
was solved with the FEM similarly as in [32]. The FE-approximation of the RTE was imple-
mented similarly as in [32,33] in the case of matched refractive indices. The implementation is
explained in more detail in Appendix B.

The FE-mesh for the spatial discretization of the domain contained approximately 4687 nodal
points and 9196 triangular elements for the homogeneous test cases and 6114 nodal points and
11 988 elements for the heterogeneous test case. For the angular discretization of the RTE 64
equally spaced angular directions were used. Parameterε was chosen as the ratio of the total
mean free pathl = (µs+ µa)

−1 to the size of the domainL [34]

ε =
(µs+ µa)

−1

L
. (50)

4.1. Matched refractive indices

For the first case, we consider a medium with matched refractive indices at the boundary. The
refractive indices inside and outside the medium werenin = 1 andnout = 1, respectively. The
scattering coefficient was given three valueµs = 50, 5 and 0.5 mm−1. The absorption coefficient
and the anisotropy factor were constants,µa = 0.01 mm−1 andg = 0.8, respectively.

Radiances at the boundary point(x,y) = (0,−20) for µs = 5 mm−1 computed using the cDA,
the DA and the RTE are shown in left image of Fig. 1. To compare the performance of the
cDA against the DA, two different quantities were investigated. First, the fluence rate inside the
domain was computed using Eq. (5), and secondly the exitance at the boundary was computed
using Eq. (4). The exitances computed using the cDA, the DA and the RTE are shown in Fig.
2. In addition, the relative errors of fluence rates computed using the cDA (top row) and the
DA (bottom row) against the RTE for different values ofµs are shown in Fig. 3. Furthermore,
the relative errors of exitances are shown in Fig. 4. To give a quantitative estimate of the errors,
the means of the relative errors of fluence rates∆Φ0 and the exitances∆Γ were computed. The
results are given in Table 1. We also recorded the computation times of the different models.
These are given in Table 2.

As it can be seen from Fig. 1, the radiance computed using the cDA agree relatively well with
the RTE and satisfy the zero boundary condition in inward direction. Note that the RTE may
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Fig. 1. Radiance at the boundary point(x,y) = (0,−20) computedusing the cDA, the DA
and the RTE forµs = 5 mm−1 with matched (left) and mismatched refractive indices (right).
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Fig. 2. Logarithm of exitance at the boundary of the domain computed using the cDA, the
DA and the RTE for different values ofµs with matched refractive indices at the boundary.
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Fig. 3. Percent relative error of fluence rate computed using the cDA (top row) and the DA
(bottom row) for different values ofµs with matched refractive indices at the boundary.
The values are cut at 10%.
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Fig. 4. Percent relative error of exitance at the boundary computed using the cDA and the
DA for different values ofµs with matched refractive indices.
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give small negative or positive values in inward direction due to numerical reasons. The DA
gives negative radiance in inward direction which are unphysical. The relative error of fluence
rate is approximately 2 % for the cDA and between 4-6 % for the standard DA when scattering
coefficient isµs = 50 andµs = 5 mm−1 as it can be seen from Fig. 3 and Table 1. Forµs = 0.5
mm−1 both the cDA and the standard DA give large errors since the assumptions of the DA are
not valid anymore. Figure 4 shows that as scattering becomes large compared to absorption, the
relative error of exitance decreases for the cDA just as the asymptotic theory predicts.

The computation times in Table 2 show that solving the cDA is feasible when compared with
the standard DA. In addition, solving both the cDA and the DA are much faster than solving
the RTE. Thus, the cDA models light propagation more accurately than the standard DA and
requires only a small amount of more work.

Table 1. The mean of the relative error of fluence rate∆Φ0(%) andexitance∆Γ(%) com-
putedusing the cDA and the DA for different values ofµs(mm−1) and asymptotic param-
eterε with matched refractive indices.

∆Φ0 ∆Γ

µs ε cDA DA cDA DA

50 0.001 2.10 5.21 2.11 4.21
5 0.01 1.43 4.19 4.86 3.04

0.5 0.1 17.32 14.10 42.31 42.54

Table 2. The computation times of the models for different values ofµs.

Computation time Relative computation time

µs cDA DA RTE cDA/RTE DA/RTE

50 8.9 s 3.3 s 2.4 min 6.2 % 2.3 %
5 8.8 s 3.2 s 2.2 min 6.5 % 2.4 %

0.5 8.6 s 3.3 s 2.3 min 6.4 % 2.5 %

4.2. Mismatched refractive indices

For the second case, we consider a medium with mismatched refractive indices at the boundary.
The refractive indices inside and outside the medium werenin = 1.33andnout = 1, respectively.
Other optical parameters were the same as before. Radiances at the boundary point(x,y) =
(0,−20) for µs = 5 mm−1 computed using the cDA, the DA and the RTE are shown in right
image of Fig. 1. Again, the quantities of interest were the fluence rate inside the domain and
the exitance at the boundary. The exitances computed using different models are shown in Fig.
5. In addition, the relative errors of fluence rates and exitances are shown in Figs. 6 and 7,
respectively. As before, the means of the relative errors of fluence rates and exitances were
computed and the results are given in Table 3.

As it can be seen Fig. 1, the approximation to the radiance given by the cDA agrees better
with the RTE than the approximation given by the DA. Furthermore, the results in Fig. 6 and
Table 3 show the relative error of fluence rate is between 2-3 % for the cDA whenµs = 50
mm−1 and µs = 5 mm−1. For the DA the relative error is larger giving the largest errors at
the boundary. For the caseµs = 0.5 mm−1 neither of the approximations are valid. Figure 7
shows that the relative error of exitance decreases for the cDA when the ratio of absorption
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Fig. 5. Logarithm of exitance at the boundary of the domain computed using the cDA, the
DA and the RTE for different values ofµs with mismatched refractive indices.

Fig. 6. Percent relative error of fluence rate computed using the cDA (top row) and the DA
(bottom row) for different values ofµs with mismatched refractive indices. The values are
cut at 10%.
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Fig. 7. Percent relative error of exitance computed using the cDA and the DA for different
values ofµs with mismatched refractive indices.

and scattering decreases due to the asymptotic theory behind the model. In contrast, the relative
error of the standard DA may not have a global error bound over the whole domain. In that case,
the relative error might be large close to the boundary while giving satisfactory results inside
the domain. In addition, decrease in ratio of absorption and scattering does not ensure decrease
in relative error for the DA. Thus, the cDA models light propagation more accurately than the
standard DA when compared with the RTE.

Table 3. The mean of the relative error of fluence rate∆Φ0(%) andexitance∆Γ(%) com-
putedusing the cDA and the DA for different values ofµs and asymptotic parameterε with
mismatched refractive indices .

∆Φ0 ∆Γ

µs ε cDA DA cDA DA

50 0.001 2.63 3.73 1.96 22.14
5 0.01 1.59 6.31 4.38 13.33

0.5 0.1 11.18 11.74 39.20 26.26

4.3. Heterogeneous medium

For the third case, we consider a medium with heterogeneous optical properties. Simulated
optical parameters of the medium are shown in Fig. 8. The scattering and absorption coeffi-
cients of the background were(µs,µa) = (10,0.01)mm−1. Furthermore, optical parameters of
scattering and absorbing inclusions were(µs,µa) = (20,0.01)mm−1 and(µs,µa) = (10,0.02)
mm−1, respectively. The anisotropy factor in the whole domain wasg = 0.8. The refractive
indices inside and outside the medium werenin = 1.33 andnout = 1, respectively. Asymptotic
parameterε = 0.005 was computed from Eq. (50) using the optical parameters of the back-
ground. The exitances are shown in Fig. 9. The relative errors of fluence rates computed using
the cDA and the DA are shown in Fig. 10. Furthermore, the relative errors of exitances are
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Fig. 8. Optical parameters for the heterogeneous test case.
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Fig. 9. Logarithm of exitance at the boundary of the domain computed using the cDA, the
DA and the RTE for the heterogeneous test case.

Fig. 10. Percent relative error of fluence rate computed using the cDA (left) and the DA
(right) for the heterogeneous test case. The values are cut at 10%.
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Fig. 11. Percent relative error of exitance for the heterogeneous test case.

shown in Fig. 11.
The mean of the relative error of fluence rate is 1.69 % for the cDA over whole domain. In

contrast, the mean of the relative error of fluence rate is 5.07 % for the DA. In addition, the DA
gives larger errors close to the boundary than inside the domain as it can be seen from Fig. 10.
Furthermore, the relative error of exitance is smaller for the cDA (mean 5.38 %) than that of for
the DA (mean 18.73 %). Thus, the cDA gives more accurate results over whole domain than
the standard DA due to a global error bound given by the asymptotic theory.

5. Conclusions

In this work, recently introduced corrected diffusion approximation was numerically imple-
mented. In the cDA, an additive correction term is computed for the DA at the boundary based
on asymptotic analysis of the RTE. The procedure for computing the cDA requires only small
modifications to the existing solvers for the DA. In particular, one only needs to modify the
spatial coefficients of the DA and the Robin boundary condition. In addition, an additive cor-
rection term, which satisfies a one-dimensional radiative transport equation, is readily solved
using the plane wave solutions.

The performance of the cDA was tested with 2D simulations. The results were compared with
the results of the DA and the RTE. The results show that the cDA models boundary measure-
ments of scattered light more accurately than the standard DA with only a small increase in
computation time.

Appendix A. The standard diffusion approximation

The most typical approach to derive the standard DA from the RTE is expand the radiance, the
source term, and the phase function into series using the spherical harmonics and truncate the
series [1,3]. The standard DA can be regarded as a special case of the first order approximation.
In the standard DA framework, the approximation that is used for the radiance is of the form
[1,3,35]

φ(r, ŝ) ≈
1

|Sn−1|
Φ0(r)−

n
|Sn−1|

(ŝ·κDA∇Φ0(r)), (A.1)

where|Sn−1| is the surface measure ofSn−1 andκDA is the diffusion coefficient defined as

κDA = (n(µa + µs(1−g)))−1. (A.2)
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The standard diffusion approximation consists of diffusion equation of the form

−∇ ·κDA∇Φ0(r)+ µaΦ0(r) = 0, (A.3)

andthe Robin boundary condition is of the form

Φ0(r)+
1

2γn
κDAA

∂Φ0(r)
∂ n̂

=
Is
γn

, (A.4)

whereγn is a dimension dependent constant (γ2 = 1/π, γ3 = 1/4) andIs is an inward directed
diffuse boundary current at the source position [36]. The parametersA takes into account a
mismatch in refractive indices inside and outside the domain and it can be derived from the
Fresnel’s law [36,37]

A =
2/(1−R0)−1+ |cos(θc)|

3

1−|cos(θc)|2
, (A.5)

whereθc = arcsin(nout/nin) is the critical angle andR0 = (nin/nout−1)2/(nin/nout +1)2.

Appendix B. FE-approximation of the RTE with reflection boundary condition

Let us consider the steady-state RTE Eq. (1). Letŝi and ŝr be the directions of incident and
reflected light, respectively, at the boundary with a mismatch in refractive indices. Furthermore,
let ŝt be the direction refracted light. We write the boundary condition for the radiance pointing
inward into the domain (i.e. for the directionsŝr · n̂ < 0) in terms of the incident radiance
pointing outward (̂si · n̂ > 0). Mapping from direction̂si to directionŝr is given byH : ŝi → ŝr

ŝr = Hŝi , (B.1)

H =
(

−2n̂n̂T + I
)

, (B.2)

where I is an identity matrix. The matrixH is a Householder transformation, and thus
H−1 = HT = H. Therefore, the inverse mappingH−1 : ŝr → ŝi is given by

ŝi = H−1ŝr = Hŝr . (B.3)

Now, the boundary condition Eq. (3) can be written as follows

φ(r, ŝ) = φ0(r, ŝ)+Rφ(r,Hŝ), ŝ· n̂ < 0, (B.4)

whereR is the Fresnel reflection coefficient defined as

R=
1
2

(

nin cosϕi −noutcosϕt

nin cosϕi +noutcosϕt

)2

+
1
2

(

nin cosϕt −noutcosϕi

nin cosϕt +noutcosϕi

)2

, (B.5)

where

cosϕi = n̂ · ŝi , (B.6)

cosϕt =

√

1−

(

nin

nout

)2

(1− (cosϕi)2) (B.7)

andnin, nout are the refractive indices inside and outside of the object, respectively.
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Utilizing the streamline-diffusion modification [33,38,39], the variational formulation of the
RTE Eq. (1) subject to the boundary condition Eq. (B.4) is obtained as

−
∫

Ω

∫

Sn−1
ŝ·∇v(r, ŝ)φ(r, ŝ)dŝdr+

∫

Ω
δ

∫

Sn−1
(ŝ·∇φ(r, ŝ))(ŝ·∇v(r, ŝ))dŝdr

+
∫

∂Ω

∫

Sn−1
(ŝ· n̂)+φ(r, ŝ)v(r, ŝ)dŝdS−

∫

∂Ω

∫

Sn−1
(ŝ· n̂)−rφ(r,Hŝ)v(r, ŝ)dŝdS

+

∫

Ω

∫

Sn−1
(µs+ µa)φ(r, ŝ)v(r, ŝ)dŝdr+

∫

Ω

∫

Sn−1
δ (µs+ µa)φ(r, ŝ)(ŝ·∇v(r, ŝ))dŝdr

−
∫

Ω

∫

Sn−1
µs

∫

sn−1
Θ(ŝ· ŝ′)φ(r, ŝ′)dŝ′v(r, ŝ)dŝdr

−

∫

Ω

∫

Sn−1
δ µs

∫

sn−1
Θ(ŝ· ŝ′)φ(r, ŝ′)dŝ′(ŝ·∇v(r, ŝ))dŝdr

=
∫

∂Ω

∫

Sn−1
(ŝ· n̂)−φ0(r, ŝ)v(r, ŝ)dŝdS, (B.8)

whereδ is element-wise stabilization parameter in the streamline-diffusion modification which
depends on local the absorption and scattering and(ŝ· n̂)+ and(ŝ· n̂)− denotethe positive and
negative parts of the function̂s· n̂. The finite element approximation of the RTE is of the form

(A1 +A2 +A3 +A4)β = b1υ0, (B.9)

whereβ = (β1,1, · · · ,β1,Na, · · · ,βNn,1, · · · ,βNn,Na)
T ∈ R

NnNa is the radiance at the nodes of the
spatial and angular grid andυ0(υ0

1,1, · · · ,υ
0
1,Na

, · · · ,υ0
Nn,Na

)T ∈ R
NnNa is the source intensity at

the nodes of the angular and spatial discretizations. Further, the components of the matrices in
Eq. (B.9) are

A1(h,s) =−
∫

Ω

∫

Sn−1
ŝ·∇υ j(r)υm(ŝ)υl (ŝ)dŝυi(r)dr

+
∫

Ω
δ

∫

Sn−1
(ŝ·∇υi(r))(ŝ·∇υ j(r))υl (ŝ)υm(ŝ)d̂sdr (B.10)

A2(h,s) =
∫

∂Ω
υi(r)υ j(r)dS

∫

Sn−1
(ŝ· n̂)+υl (ŝ)υm(ŝ)dŝ

−
∫

∂Ω
υi(r)υ j(r)dS

∫

Sn−1
(ŝ· n̂)−rυl (Hŝ)υm(ŝ)d̂s (B.11)

A3(h,s) =
∫

Ω
(µs+ µa)υi(r)υ j(r)dr

∫

Sn−1
υl (ŝ)υm(ŝ)dŝ

+
∫

Ω
δ (µs+ µa)υi(r)

∫

Sn−1
(ŝ·∇υ j(r))υm(ŝ)υl (ŝ)dŝdr (B.12)

A4(h,s) =−
∫

Ω
µsυi(r)υ j(r)dr

∫

Sn−1

∫

Sn−1
Θ(ŝ· ŝ′)υl (ŝ

′)dŝ′υm(ŝ)d̂s

−
∫

Ω
δ µs

∫

Sn−1
(ŝ·∇υ j(r))υm(ŝ)

∫

sn−1
Θ(ŝ· ŝ′)υl (ŝ

′)dŝ′dŝυi(r)dr (B.13)

b1(h,s) =
∫

∂Ω
υi(r)υ j(r)dS

∫

Sn−1
(ŝ· n̂)−υl (ŝ)υm(ŝ)dŝ, (B.14)

whereh = Na( j −1)+m,s= Na(i−1)+ l , j, i = 1,· · · ,Nn, m,l = 1,· · · ,Na, h,s= 1,· · · ,NnNa

andυi(r), υ j(r) andυl (ŝ), υm(ŝ) are the nodal spatial and angular basis functions, respectively.
The indicesi, l refer to the basis functions,j, m to the test functions andNn andNa are the
number of nodes in the spatial and angular discretizations, respectively.

After the RTE is solved using Eq. (B.9), the directionŝt of the refracted radiance at the
boundary exiting the domain can be computed from Snell’s law which is in vector formK :
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(ŝi , n̂,nin,nout) → ŝt

ŝt =
nin

nout
ŝi +

(

cosϕt −
nin

nout
cosϕi

)

n̂. (B.15)

Moreover, the inverse mappingK−1 : (ŝt , n̂,nin,nout) → ŝi is given byK : (−ŝt ,−n̂,nout,nin) →
−ŝi due to reciprocity of light propagation. Note the change of signs and order of normal vec-
tors.

Thus, the final form of the radiance after applying the Snell’s law is of the form

φt(r, ŝ) =







Tφ(r,K(ŝ)) r ∈ ∂Ω ŝ· n̂≥ 0,
φ(r, ŝ) r ∈ ∂Ω ŝ· n̂ < 0
φ(r, ŝ) r ∈ Ω r ∂Ω,

(B.16)

whereT = 1−R is the Fresnel transmission coefficient.
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a b s t r a c t

Coupled light transport models which use forward-peaked scattering approximations of

the radiative transport equation and the diffusion approximation to model light

propagation in tissues are introduced. The forward-peaked Fokker–Planck–Eddington

approximations are used in those parts of the domain in which the diffusion approxima-

tion is not valid, such as close to the source and boundary, and in low-scattering regions.

The diffusion approximation is used elsewhere. The models are coupled through

boundary conditions and the resulting system of equations is solved using a finite

element method. The proposed coupled Fokker–Planck-diffusion and Fokker–Planck–

Eddington-diffusion models are tested with simulations, and compared with the

radiative transport equation, diffusion approximation and coupled radiative transport-

diffusion model. The results show that the new coupled models give almost as accurate

results as the radiative transport equation with reduced computational load.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Non-invasive optical imaging modalities provide use-
ful information about tissue health. By measuring light
propagation through tissues one can derive images of the
optical properties of the medium. These imaging modal-
ities include, for example, diffuse optical tomography
(DOT) in which the optical properties of tissues are
reconstructed on the basis of the transmission measure-
ments of scattered near-infrared light on the surface of
the object. Medical applications of DOT include breast
cancer detection, monitoring of infant brain oxygenation
level and functional brain activation studies, for reviews
see e.g. [1–5].

Image reconstruction problem in DOT is a non-linear
ill-posed inverse problem. Thus, even small errors in

measurements or modelling can cause large errors in
the reconstructed images. Moreover, the iterative solution
of the non-linear problem requires several solutions of the
corresponding forward model. Therefore, an accurate and
computationally feasible forward model is needed.

Light propagation in tissues is governed by the radiative
transport equation (RTE) [1,4,6,7]. The RTE takes into account
absorption and multiple scattering due to inhomogeneities
in the medium. The RTE does not have an analytical solution
in arbitrary geometry and numerical methods are computa-
tionally expensive due to a large number of variables in the
RTE. Therefore, the RTE is often approximated by some
computationally less demanding model.

The most often used approximation to the RTE is the
diffusion approximation (DA). In the DA, one assumes that
light becomes almost isotropic due to strong scattering.
In addition, scattering must be much stronger than absorp-
tion. Due to these limitations, the DA fails to describe light
propagation accurately close to the boundary, sources, and
in low-scattering and non-scattering regions [1,8–10]. A
typical low-scattering region encountered in optical imaging
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of the brain is the cerebrospinal fluid around the brain and
in the ventricles.

To overcome the limitations of the diffusion approx-
imation, different hybrid models have been introduced.
The hybrid models include the radiosity diffusion model
[10,11], hybrid Monte Carlo-diffusion models [9,12–14],
hybrid radiative transport-diffusion models [15–18], and
the variable order spherical harmonics (Pn) approximation
to the RTE [19,20]. The radiosity diffusion model com-
bines the diffusion theory with a ray-tracing algorithm
and is applicable in highly scattering medium with non-
scattering regions. The hybrid Monte Carlo-diffusion
models can be used in complex heterogeneous media
but suffer from a time-consuming nature of Monte Carlo
simulations and often require an iterative mapping
between the models in order to take into account back-
scattering between the sub-domains leading to computa-
tionally excessive problems. In the hybrid radiative
transport-diffusion models, light propagation is modeled
using the RTE in sub-domains in which the DA is not valid.
The DA is used in the rest of the domain and the models
are coupled with boundary conditions at the interfaces
between the sub-domains . The variable order spherical
harmonics approximation uses different orders of the
Pn-approximation in each sub-domain depending on local
scattering and absorption properties.

In tissues, scattering is typically forward-peaked, indi-
cating that the direction of photons changes only a little
in scattering events. The numerical solution of the RTE
with forward-peaked scattering is challenging due to
dense angular discretization needed to describe scattering
accurately. Motivated by that, Fokker–Planck–Eddington-
approximations have been proposed to approximate the
RTE [21–29]. These approximations include, for example,
the Fokker–Planck (FP) and Fokker–Planck–Eddington
(FPE) equations. These approximations take into account
forward-peaked and large-angle scattering analytically
by approximating the scattering probability distribu-
tion using a linear combination of delta functions and
Legendre polynomials. As a result, forward-peaked scat-
tering probability distribution is replaced by an angular
differential operator together with a smooth integral
operator. Thus, coarser angular discretization can be used
compared with the RTE leading to computational savings
[24,27].

In this paper, we use the Fokker–Planck–Eddington-
approximations to approximate the RTE. We introduce
coupled Fokker–Planck-diffusion (cFP-DA) and coupled
Fokker–Planck–Eddington-diffusion (cFPE-DA) models
for modelling light propagation in tissues. The coupled
models are solved with a finite element method (FEM).
We compare the results of the coupled models with the
solutions of the RTE, FP, FPE, and DA, and with the
previously developed [17] coupled RTE-DA (cRTE-DA).

The rest of the paper is organized as follows. The light
transport models including the forward-peaked scattering
approximations are reviewed and the coupled models are
introduced in Section 2. The numerical solutions of the
coupled models using the FEM are described in Section 3.
In Section 4 we test the proposed coupled models with
simulations. Section 5 gives the conclusions.

2. Light transport models

2.1. The radiative transport equation

A widely accepted model for light propagation in
tissues is the radiative transport equation [7]. The RTE is
a one-speed approximation of the Boltzmann transport
equation, and thus energy is assumed to be preserved in
scattering events. In addition, the refractive index is
assumed to be constant within the medium. The RTE
neglects wave phenomena such as diffraction and inter-
ference, and treats photons as particles which propagate
along straight lines between scattering and absorption
events.

Let O � Rn be the physical domain, and n¼ 2,3 be the
dimension of the domain. In addition, let ŝ 2 Sn�1 denote
a unit vector in the direction of interest on the unit sphere
S

n�1. The frequency domain version of the RTE without
internal sources is

io
c
fðr,ŝÞþ ŝ � rfðr,ŝÞþmafðr,ŝÞ ¼ msLfðr,ŝÞ, ð1Þ

where i is the imaginary unit, o is the angular modulation
frequency of the input signal (the units of Hz), c is the
speed of light in the medium (the units of m/s), fðr,ŝÞ is
the radiance (the units of W m�2 sr�1 in 3D and
W m�1 rad�1 in 2D), and ms ¼ msðrÞ and ma ¼ maðrÞ are the
scattering and absorption coefficients of the medium (the
units of m�1), respectively [1,30,31].

The scattering operator LRTE is

Lfðr,ŝÞ ¼LRTEfðr,ŝÞ

¼ �fðr,ŝÞþ

Z
Sn�1

Yðŝ � ŝ 0Þfðr,ŝ
0
Þ dŝ

0
, ð2Þ

where the scattering phase function Yðŝ � ŝ 0Þ describes the
probability for a photon to scatter from direction ŝ

0
in

direction ŝ. An often used phase function is the Henyey–
Greenstein scattering function [32]

Yðŝ � ŝ0Þ ¼
1

9Sn�19

1�g2

ð1þg2�2 gŝ � ŝ
0
Þ
n=2

, ð3Þ

where scattering shape parameter g defines the shape of

the probability distribution, and 9Sn�19 is the surface

measure of S
n�19S19¼ 2p and 9S29¼ 4p). The angular

moments of the scattering phase function are

gm ¼

Z
Sn�1
ðŝ � ŝ

0
Þ
mYðŝ � ŝ0Þ dŝ: ð4Þ

In the case of the Henyey–Greenstein phase function
angular moments are gm ¼ gm. In biological tissues, the
first moment is typically close to 1 indicating that
scattering is forward-peaked [33]. Thus, the direction of
photons is most likely to change only a little in scattering
events.

In this paper, it is assumed that no photons travel in an
inward direction at the boundary @O except at the source
location et � @O

fðr,ŝÞ ¼
f0ðr,ŝÞ, r 2 et , ŝ � n̂o0,

0, r 2 @O\et , ŝ � n̂o0,

(
ð5Þ
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where n̂ is an outward unit normal and f0ðr,ŝÞ is the
source. Quantities of interest include photon density
defined as an integral of the radiance over angular
directions [1]

FðrÞ ¼
Z
S

n�1
fðr,ŝÞ dŝ: ð6Þ

2.2. Fokker–Planck approximation

The Fokker–Planck equation can be derived either using
the Taylor expansion of the scattering operator L at ŝ � ŝ

0

[23], using asymptotic analysis when the scattering mean
free path ls ¼ m�1

s is small while the transport mean free
path ln ¼ ðmsð1�g1ÞÞ

�1 is necessarily not small [21,4], or by
approximating the scattering operator eigenvalues [22,24].
In the following, we shortly review the third approach.

When scattering is forward-peaked, one can approx-
imate the scattering phase function Yðŝ � ŝ 0Þ using a linear
combination of the delta function and its even derivatives
[24]. The Fokker–Planck approximation to the scattering
phase function Yðŝ � ŝ 0Þ is

Yðŝ � ŝ 0Þ �YFPðŝ � ŝ
0
Þ ¼ aFP

0 dðŝ�ŝ
0
ÞþaFP

1 dð2Þðŝ�ŝ
0
Þ, ð7Þ

where coefficients aFP
0 ¼ 1 and aFP

1 ¼ ðn�1Þ�1
ð1�g1Þ can be

determined from the eigenvalues of the original scattering
operator L [24,25], d is the delta function, and dð2Þ is the
second-order derivative of the delta function. The result-
ing approximative scattering operator LFP is

Lfðr,ŝÞ �LFPfðr,ŝÞ ¼
1

n�1
ð1�g1ÞDŝfðr,ŝÞ, ð8Þ

where Dŝ is the Laplacian operator in spherical coordi-
nates (or Laplace–Beltrami operator) on the unit sphere
S

n�1. The Fokker–Planck equation is obtained by substi-
tuting Eq. (8) into Eq. (1).

2.3. Fokker–Planck–Eddington approximation

In the presence of both forward-peaked and large-
angle scattering, smoothly varying Legendre polynomials
can be used to approximate the scattering phase function
in addition to the delta function and its even derivatives
[24]. The Fokker–Planck–Eddington approximation is

Yðŝ � ŝ 0Þ �YFPEðŝ � ŝ
0
Þ ¼ aFPE

0 dðŝ�ŝ
0
ÞþaFPE

1 dð2Þðŝ�ŝ
0
Þ

þ
1

9Sn�19
ðbFPE

0 P0ðŝ � ŝ
0
ÞþnbFPE

1 P1ðŝ � ŝ
0
ÞÞ, ð9Þ

where Pk is the Legendre polynomial of order k and the
coefficients aFPE

0 , aFPE
1 , bFPE

0 , and bFPE
1 can be determined

from the eigenvalues of the original scattering operator
[24,25]. As a result, we obtain

aFPE
0 ¼

g2

5
ð9�4g1Þ, ð10aÞ

aFPE
1 ¼

g2

5
ð1�g1Þ, ð10bÞ

bFPE
0 ¼ 1�

9

5
g2þ

4

5
g3, ð10cÞ

bFPE
1 ¼ g1�

8

5
g2þ

3

5
g3, ð10dÞ

when n¼2, and

aFPE
0 ¼ 2g2�g3, ð11aÞ

aFPE
1 ¼

g2�g3

6
, ð11bÞ

bFPE
0 ¼ 1�2g2þg3, ð11cÞ

bFPE
1 ¼ g1�

5g2

3
þ

2g3

3
, ð11dÞ

when n¼3. Fig. 1 shows the Henyey–Greenstein scatter-
ing phase function Yðŝ � ŝ0Þ, and the approximative phase
functions YFPðŝ � ŝ

0
Þ and YFPEðŝ � ŝ

0
Þ with scattering shape

parameter g¼0.8. The delta function was numerically
approximated as dðxÞ � ða

ffiffiffiffi
p
p
Þ
�1expð�x2a�2Þ with a¼0.1.

The resulting approximative scattering operator is

Lfðr,ŝÞ �LFPEfðr,ŝÞ ¼�ð1�aFPE
0 Þfðr,ŝÞþaFPE

1 Dŝfðr,ŝÞ

þ
1

9Sn�19

Z
S

n�1
ðbFPE

0 P0ðŝ � ŝ
0
ÞþnbFPE

1 P1ðŝ � ŝ
0
ÞÞfðr,ŝ

0
Þ dŝ

0
:

ð12Þ

The Fokker–Planck–Eddington equation is obtained by
substituting Eq. (12) into Eq. (1).

2.4. Diffusion approximation

The diffusion approximation to the RTE can be derived,
for example, by expanding the radiance, the source term,
and the phase function into series using the spherical
harmonics and truncating the series to the first order
[7,1], or by using asymptotic techniques when scattering
is strong and absorption is weak [34–36]. In the DA
framework, the approximation that is used for the radiance
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Fig. 1. Henyey–Greenstein scattering phase function Yðŝ � ŝ 0Þ and the

approximations YFPðŝ � ŝ
0
Þ and YFPEðŝ � ŝ

0
Þ with scattering shape parameter

g¼0.8.
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is [1,7,17]

fðr,ŝÞ �
1

9Sn�19
FðrÞ�

n

9Sn�19
ðŝ � krFðrÞÞ, ð13Þ

where k is the diffusion coefficient

k¼ ðnðmaþmsð1�g1ÞÞÞ
�1: ð14Þ

In the frequency domain, the DA without internal sources
is of the form [1]

�r � krFðrÞþmaFðrÞþ
io
c
FðrÞ ¼ 0: ð15Þ

The DA cannot satisfy the boundary condition (5)
exactly. Typically, the boundary condition is approxi-
mated with a Robin-type boundary condition

FðrÞþ
1

2gn

kA
@FðrÞ
@n̂
¼

Is

gn

, r 2 et ,

0, r 2 @O\et ,

8><
>: ð16Þ

where gn is a dimension dependent constant (g2¼1/p,
g3¼1/4), and Is is an inward directed diffuse boundary
current at the source position [37,38]. The parameter A

takes into account a mismatch in refractive indices at the
boundary and it can be derived from the Fresnel’s law.

2.5. Coupled model

We write the coupled model [17,39,40] in a general
form allowing the use of any scattering operator L. In the
coupled model, the domain O is divided into two disjoint
subsets Of and OF. The sub-domain Of covers the
regions in which the DA is not valid such as the vicinity
of the source and the boundaries, and regions with low-
scattering . Light propagation in sub-domain Of is mod-
eled using either the FP, FPE, or RTE depending on the
chosen scattering operator. The DA is used in the sub-
domain OF ¼O\Of which covers the rest of the domain.
The boundaries of the sub-domains are denoted by @Of
and @OF. Furthermore, the interface of sub-domains is
denoted by G¼ @Of \ @OF. The external boundaries are
denoted by @Of,out ¼ @Of\G and @OF,out ¼ @OF\G.

The models are coupled through boundary conditions
at the interface G. The location of the interface G should
be chosen such that the radiance is almost isotropic. Then,
the DA is a valid approximation and the coupling between
the models is applicable. Usually, this criterion can be
fulfilled in diffuse media with distances greater than three
transport mean free paths ln from the boundaries, sources
and low-scattering regions. The coupled model is of the
form

io
c
fðr,ŝÞþ ŝ � rfðr,ŝÞþmafðr,ŝÞ ¼ msLfðr,ŝÞ, r 2 Of

ð17aÞ

fðr,ŝÞ ¼
f0ðr,ŝÞ, r 2 et , ŝ � n̂o0,

0, r 2 @Of,out\et , ŝ � n̂o0,

(
ð17bÞ

fðr,ŝÞ ¼
1

9Sn�19
FðrÞ�

n

9Sn�19
ŝ � krFðrÞð Þ, r 2 G ð17cÞ

�r � krFðrÞþmaFðrÞþ
io
c
FðrÞ ¼ 0, r 2 OF ð17dÞ

FðrÞþ
1

2gn

kA
@FðrÞ
@n̂
¼

Is

gn

, r 2 et ,

0, r 2 @OF,out\et ,

8><
>: ð17eÞ

FðrÞ ¼
Z
S

n�1
fðr,ŝÞ dŝ, r 2 G, ð17fÞ

where the coupled RTE-DA, FP-DA, and FPE-DA models
are obtained by using the corresponding scattering opera-
tor Eq. (2), (8), or (12), respectively.

3. Finite element approximation of the coupled model

In this work, the solution of the coupled model (17) is
approximated numerically using the FEM. In the FEM, a
variational formulation of the original problem is derived,
and then this infinite dimensional problem is discretized
using a suitable set of basis functions.

The variational formulation of the coupled model (17)
with a streamline diffusion modification [41,39] can be
written asZ
Of

Z
S

n�1

io
c
fðr,ŝÞvðr,ŝÞ dŝ dr�

Z
Of

Z
S

n�1
ŝ � rvðr,ŝÞ

fðr,ŝÞ dŝ dr

þ

Z
@Of

Z
Sn�1
ðŝ � n̂Þþfðr,ŝÞvðr,ŝÞ dŝ dS

�

Z
G

Z
S

n�1

1

9Sn�19
ðŝ � n̂Þ�FðrÞvðr,ŝÞ dŝ dS

þ

Z
G

Z
Sn�1

n

9Sn�19
ðŝ � n̂Þ�ðŝ � krFðrÞÞvðr,ŝÞ dŝ dS

þ

Z
Of

Z
Sn�1

mafðr,ŝÞvðr,ŝÞ dŝ dr

�

Z
Of

Z
Sn�1
Lfðr,ŝÞvðr,ŝÞ dŝ drþ

Z
Of

Z
Sn�1

d
io
c
fðr,ŝÞŝ

�rvðr,ŝÞ dŝ dr

þ

Z
Of

Z
S

n�1
dðŝ � rfðr,ŝÞÞðŝ � rvðr,ŝÞÞ dŝ dr

þ

Z
Of

Z
Sn�1

dmafðr,ŝÞvðr,ŝÞ dŝ dr

�

Z
Of

d
Z
Sn�1
Lfðr,ŝÞðŝ � rvðr,ŝÞÞ dŝ drþ

Z
OF

krFðrÞ

�rCðrÞ dr

þ

Z
@OF,out

2gn

A
FðrÞCðrÞ dS�

Z
G
k n̂ � r

Z
Sn�1

fðr,ŝÞ dŝ

� �
CðrÞ dS

þ

Z
OF

maFðrÞCðrÞ drþ
Z
OF

io
c
FðrÞCðrÞ dr

¼

Z
@Of,out

Z
Sn�1
ðŝ � n̂Þ�f0ðr,ŝÞvðr,ŝÞ dŝ dSþ

Z
@OF,out

2Is

A
CðrÞ dS,

ð18Þ

where v and C are test functions, and d is a streamline-
diffusion modification parameter.

The FE-approximation is obtained by approximating the
solutions fðr,ŝÞ and FðrÞ of the variational formulation
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(18) with a linear combination of the basis functions

fðr,ŝÞ �
XNn

i ¼ 1

XNa

l ¼ 1

ailciðrÞclðŝÞ, ð19Þ

FðrÞ �
XN

k ¼ 1

akWkðrÞ, ð20Þ

where ciðrÞ and clðŝÞ are the nodal basis functions of the
spatial and angular discretizations of Of �Sn�1, ail is the
radiance at a spatial node i in an angular direction l, and Nn

and Na are the number of the spatial and angular nodes in
sub-domain Of, respectively. Further, WkðrÞ is the nodal
basis function of the spatial discretization of OF, ak is the
photon density at a spatial node k, and N is the number of
spatial nodes in the sub-domain OF. In this work, we use a
piecewise linear basis for both the spatial and angular parts
of the approximation. The FE-approximation of the coupled
model can be written in a matrix form as

Af D

F AF

 !
a
a

� �
¼

bf

bF

 !
, ð21Þ

where the block-matrices Af and AF contain the FE-
approximations of the models to be coupled, and the
matrices D and F contain the coupling conditions on the
interface G. The components of the matrix equation (21)
are the following. The block Af is

Af ¼ A0þA1þA2þA3þA4, ð22Þ

where

A0ðh,sÞ ¼
io
c

Z
Of

ciðrÞcjðrÞ dr

Z
S

n�1
clðŝÞcmðŝÞ dŝ

 

þ

Z
Of

d
Z
S

n�1
ŝ � rcjðrÞcmðŝÞclðŝÞ dŝciðrÞ dr

!
,

ð23aÞ

A1ðh,sÞ ¼�

Z
Of

Z
S

n�1
ŝ � rcjðrÞcmðŝÞclðŝÞ dŝciðrÞ dr

þ

Z
Of

d
Z
Sn�1
ðŝ � rciðrÞÞðŝ � rcjðrÞÞclðŝÞcmðŝÞ dŝ dr,

ð23bÞ

A2ðh,sÞ ¼

Z
@Of

ciðrÞcjðrÞ dS

Z
Sn�1
ðŝ � n̂ÞþclðŝÞcmðŝÞ dŝ, ð23cÞ

A3ðh,sÞ ¼

Z
Of

maciðrÞcjðrÞ dr

Z
Sn�1

clðŝÞcmðŝÞ dŝ

þ

Z
Of

dmaciðrÞ

Z
S

n�1
ðŝ � rcjðrÞÞcmðŝÞclðŝÞ dŝ dr,

ð23dÞ

where h¼Naðj�1Þþm, s¼Naði�1Þþ l, j,i¼ 1, . . . ,Nn, m,
l¼ 1, . . . ,Na, and h,s¼ 1, . . . ,NnNa. The matrix A4 depends
on the chosen scattering operator L. In the case of the RTE,
L¼LRTE and

A4ðh,sÞ ¼

Z
Of

msciðrÞcjðrÞ dr
Z
S

n�1
clðŝÞcmðŝÞ dŝ

þ

Z
Of

dmsciðrÞ

Z
Sn�1
ðŝ � rcjðrÞÞcmðŝÞclðŝÞ dŝ dr

�

Z
Of

msciðrÞcjðrÞ dr
Z
Sn�1

Z
Sn�1

Yðŝ � ŝ 0Þclðŝ
0
Þ dŝ

0cmðŝÞ dŝ

�

Z
Of

dms

Z
Sn�1
ðŝ � rcjðrÞÞcmðŝÞZ

sn�1

Yðŝ � ŝ0Þclðŝ
0
Þ dŝ

0
dŝciðrÞ dr ð24Þ

In the case of the FP, Lfðr,ŝÞ ¼LFPfðr,ŝÞ and

A4ðh,sÞ ¼

Z
Of

a1,FPmsciðrÞcjðrÞ dr

Z
Sn�1
rŝclðŝÞ � rŝcmðŝÞ dŝ

þ

Z
Of

da1,FPmsciðrÞ

Z
Sn�1
ðrŝclðŝÞ � rŝ ðŝ � rcjðrÞcmðŝÞÞ dŝ dr:

ð25Þ

In the case of the FPE, Lfðr,ŝÞ ¼LFPEfðr,ŝÞ and

A4ðh,sÞ ¼

Z
Of

ð1�aFPE
0 ÞmsciðrÞcjðrÞ dr

Z
S

n�1
clðŝÞcmðŝÞ dŝ

þ

Z
Of

dð1�aFPE
0 ÞmsciðrÞ

Z
Sn�1
ðŝ � rcjðrÞÞcmðŝÞclðŝÞ dŝ dr

�

Z
Of

aFPE
1 msciðrÞcjðrÞ dr

Z
Sn�1
rŝclðŝÞ � rŝcmðŝÞ dŝ

�

Z
Of

daFPE
1 msciðrÞ

Z
Sn�1
ðrŝclðŝÞ � rŝ ðŝ � rcjðrÞcmðŝÞÞÞ dŝ dr

�
1

9Sn�19

Z
Of

msciðrÞcjðrÞ dr
Z
S

n�1

Z
S

n�1
ðbFPE

0 P0ðŝ � ŝ
0
Þ

þnbFPE
1 P1ðŝ � ŝ

0
ÞÞclðŝ

0
Þ dŝ

0cmðŝÞ dŝ

�
1

9Sn�19

Z
Of

dmsciðrÞ
Z
S

n�1

Z
S

n�1
ðbFPE

0 P0ðŝ � ŝ
0
Þ

þnbFPE
1 P1ðŝ � ŝ

0
ÞÞclðŝ

0
Þ dŝ

0
ðŝ � rcjðrÞÞcmðŝÞ dŝ dr: ð26Þ

The DA block AF is

AF ¼ KþCþRþZ, ð27Þ

where matrices K, C, R, and Z are

Kðp,kÞ ¼

Z
OF

krWkðrÞ � rWpðrÞ dr, ð28aÞ

Cðp,kÞ ¼

Z
OF

maWkðrÞWpðrÞ dr, ð28bÞ

Rðp,kÞ ¼

Z
@OF,out

2gn

A
WkðrÞWpðrÞ dS, ð28cÞ

Zðp,kÞ ¼
io
c

Z
OF

WkðrÞWpðrÞ dr, ð28dÞ

where p, k¼ 1, . . . ,N. The elements of the matrices D and F,
which implement the interface conditions on G, are

Dðh,kÞ ¼ �
1

9Sn�19

Z
G
WkðrÞcjðrÞ dS

Z
S

n�1
ðŝ � n̂Þ�cmðŝÞ dŝ

þ
n

9Sn�19

Z
G
k
Z
Sn�1
ðŝ � n̂Þ�ðŝ � rWkðrÞÞcmðŝÞ dŝcjðrÞ dS,

ð29Þ

and

Fðp,sÞ ¼�

Z
G
kðn̂ � rciðrÞÞWpðrÞ dS

Z
S

n�1
clðŝÞ dŝ: ð30Þ
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The vector bf is of the form

bf ¼ b1c
0, ð31Þ

where c0
¼ðc0

1,1, . . . ,c0
Nn ,Na
Þ 2 RNnNa is the source intensity

vector and

b1ðh,sÞ ¼

Z
@Of,out

ciðrÞcjðrÞ dS

Z
Sn�1
ðŝ � n̂Þ�clðŝÞcmðŝÞ dŝ: ð32Þ

The vector bF is

bFðpÞ ¼

Z
@OF,out

2Is

A
WpðrÞ dS: ð33Þ

Often the sub-domain division is chosen such that the sub-
domain Of includes the source location and the boundary
@O. Then @OF,out ¼ |, and thus bF ¼ 0. As a solution of the
coupled model, the radiance at the nodes of the spatial and
angular discretizations in the sub-domain Of, and the
photon density at the spatial nodes of the sub-domain
OF are obtained.

The FE-approximation of the FP, FPE, RTE, or DA in the
whole domain O can be written in the framework of
the FE-approximation of the coupled model. In the case of
the FE-approximation of the FP, FPE, or RTE Of ¼O and
OF ¼ |, and hence AF ¼ 0, bF ¼ 0, F¼0, and D¼0 in Eq.
(21). The FE-approximation of the DA is obtained by
choosing OF ¼O and Of ¼ |, and hence Af ¼ 0, bf ¼ 0,
F¼0, and D¼0 in Eq. (21). For more details about the
finite element approximation of the RTE, FP, and DA see
e.g. [16,27].

4. Results

The performances of the proposed coupled models
were tested with 2D simulations. The solutions of the
cFP-DA and cFPE-DA were compared with the solution of
the previously developed cRTE-DA and the solutions of
the FP, FPE, DA, and RTE. The solution of the RTE served as
a reference for other methods. All the models were solved
using the FEM. The FE-approximations of the coupled
models were computed using Eq. (21) with the corre-
sponding discretized scattering operator Eq. (24), (25), or
(26). The quantity of interest was the photon density
inside the domain and at the boundary which was
computed from the radiance using Eq. (6).

4.1. Effect of the coupling interface location

First, the effect of the distance between the coupling
interface and the source to the accuracy of the solutions of
the coupled models was investigated. The simulation
domain O was a circle with a radius of 20 mm. The optical
properties were: the scattering coefficient ms ¼ 3 mm�1,
the absorption coefficient ma ¼ 0:01 mm�1, and the scat-
tering shape parameter g¼0.8. The optical properties
were chosen such that, according to the theory, light
becomes diffusive after propagating a few millimeters
from the source. The modulation frequency of the input
signal was 100 MHz. Refractive indices inside and outside
of the domain were nin ¼ nout ¼ 1, and thus parameter
A¼1 in Eq. (16).

In the coupled models, the spatial domain O was divided
into two different sub-domains Of and OF. The sub-domain
Of contained elements within 2.5 mm from the boundary
and within chosen distance from the source. The chosen
distances were 3, 4, 5, 6, 7, and 10 mm. The sub-domain OF

covered the remaining region. Then, the FE-mesh corre-
sponding to each case was created. The FE-meshes for the
spatial discretization of different cases consisted of 4780–
4910 nodes and 9350–9590 triangular elements depending
on the location of the interface. The FE-mesh with 6 mm
distance between the coupling interface and the source is
shown in Fig. 2. The sub-domain Of is marked with black
and the DA sub-domain OF is marked with grey. For the
angular discretization of the FP and FPE, 16 equally spaced
angular directions were used, and for the RTE 64 directions
were used. The number of the angular directions was
chosen by comparing the FE-approximations against the
FE-approximation of the RTE with 128 angular directions.
Since the FP and FPE take into account forward-peaked
scattering analytically, a coarser angular discretization can
be used compared with the RTE.

The photon densities were computed using the models
as described in Section 3. Fig. 3 shows the logarithm of the
amplitude and the phase shift of the photon density
computed using the RTE, FP, FPE, and DA. The correspond-
ing nodal-wise relative errors of the amplitudes and the
phase shifts against the RTE are also shown. Fig. 4 shows
the photon densities computed using the coupled models
and the corresponding relative errors with 3 mm distance
between the coupling interface and the source. The
photon densities and the relative errors computed with
6 mm distance between the coupling interface and the
source are shown in Fig. 5.

To compare the accuracy of the solutions, the norms of
the relative errors of the photon densities were computed.

Fig. 2. Mesh for the coupled model with 6 mm distance between the

coupling interface and the source. The FP, FPE or RTE sub-domain Of is

marked with black and the DA sub-domain OF with grey.
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Therefore, we took 10,232 uniformly distributed points inside
the domain and computed the norm of the relative error as

DF ¼
F�FRTE

FRTE

����
����: ð34Þ

The results are shown in Fig. 6 as a function of distance
between the coupling interface and the source.

In addition, the norms of the relative errors of the FP,
FPE, and DA are shown with vertical lines.

The results show that the RTE and FPE give almost the
same results. The relative error of the FPE is under 1%
both in the amplitude and the phase. The FP and DA give
larger errors than the FPE especially close to the source.
The FP does not allow photons to scatter next to the
source. As a result, the FP underestimates the photon
density next to the source [42] which can be seen as an
increase in the relative error in Fig. 3. The FP and the DA
give satisfactory results further from the source.

Fig. 3. Logarithm of amplitudes (first column) and phase shifts (second column) of photon densities computed using the RTE, FP, FPE, and DA (rows from

top to bottom in the respective order). Relative errors of amplitudes and phase shifts against the RTE are shown in third and fourth columns.
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The results for the coupled models show that when the
coupling of the models is done too close to the source,
when the radiance is not smooth as a function of direc-
tion, the solution is erroneous in the whole domain. As a
result, the norm of the relative error is large. On the other
hand, when the coupling is made far enough, after light
has become diffuse, the norm decreases for all of the
coupled models going under the error level of the DA.
Thus, the coupling should be done such that the coupling
conditions, Eqs. (17c) and (17f), are valid. In that case, the
coupled models give almost as good results as using the
corresponding FP, FPE, or RTE in the whole domain. Thus,
using the coupled models is applicable compared with
using the RTE.

4.2. Computational load

Next, the computational load of the models was
compared. For the coupled models, the distance between
the coupling interface and the source was 6 mm. The

FE-matrix sizes, the number of non-zero elements, and
the matrix filling ratios were computed, and the FE-
matrix assembling times and the FE-matrix equation
solution times were recorded. The results are given in
Table 1. The computations were done on a workstation
with two Intel Xeon quadracore processors clocked at
2.27 GHz and 48 GiB of memory using MATLABs version
7.10 (R2010a), (The MathWorks, Inc.). The matrix equation
was solved using MATLAB’s function ‘‘mldivide’’.

The FPE-approximations have a few advantages in the
assembling of the FE-matrices over the RTE. In the case of
the FP, the resulting FE-matrix is sparse due to the angular
differential operator in contrary to the FPE and RTE in
which the matrices are block-diagonal . Hence, the
assembling of the FE-matrices is fast and the amount of
required memory is smaller. Moreover, the smooth inte-
gral operator in the FPE can be computed efficiently using
the tensor products of one-dimensional integrals. This is
not the case for the RTE. Since smaller amount of angular
directions are needed for the FP and FPE, the computation

Fig. 4. Logarithm of amplitudes (first column) and phase shifts (second column) of photon densities computed using the cRTE-DA, cFP-DA, and cFPE-DA

(rows from top to bottom in the respective order) with 3 mm distance between the coupling interface and the source. Relative errors of amplitudes and

phase shifts against the RTE are shown in third and fourth columns.
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times and the amount of required memory are much
smaller compared with the RTE. This feature can be
important especially in 3D. In addition, using the coupled
models reduce the computation time even more. The
computation times of the coupled FP-DA and FPE-DA are
almost 10 times smaller for the matrix assembling and
almost 20 times smaller for the matrix equation solution
than that of the coupled RTE-DA. Thus, using the coupled
models leads to computational savings compared with
the RTE while preserving sufficient accuracy.

4.3. Realistic head geometry

The coupled models were tested in a realistic head
geometry with tissue-like optical properties. The simula-
tion domain was a 2D slice of a segmented image from a
magnetic resonance image of a new-born infant head. The
head slice is shown in the left image of Fig. 7. The image
was segmented into six different regions: scalp, skull, grey
mater, white mater, cerebrospinal fluid (CSF) around the
brain, and CSF in the ventricles. The optical properties of

different regions used in the simulations are given in
Table 2. Other parameters were the same as before.

The computational domain was divided into sub-
domains Of and OF such that the sub-domain Of covered
all the low-scattering regions as well as regions close to
the source and the boundary. The sub-domain division
between the models is shown in the right image of Fig. 7.
The sub-domain Of is marked with light grey and the
sub-domain OF with white color. The CSF-regions are
marked with dark grey. The location of the source was at
the bottom of the domain and it is marked with a triangle.

The FE-mesh for the spatial discretization of the whole
domain O contained 10,970 nodes and 21,607 triangular
elements. For the coupled models the FE-mesh contained
6141 and 5490 nodes, and 11,270 and 10,337 triangular
elements for the spatial discretization of the sub-domains
Of and OF, respectively. For the angular discretization of
the FP and FPE 16 and for the RTE 32 equally spaced
angular directions were used.

The photon densities inside the head slice computed
using the RTE, FP, FPE, and DA are shown in first and

Fig. 5. Logarithm of amplitudes (first column) and phase shifts (second column) of photon densities computed using the cRTE-DA, cFP-DA, and cFPE-DA

(rows from top to bottom in the respective order) with 6 mm distance between the coupling interface and the source. Relative errors of amplitudes and

phase shifts against the RTE are shown in third and fourth columns.
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second columns of Fig. 8. The photon densities computed
using the cRTE-DA, cFP-DA, and cFPE-DA are shown in
third and fourth columns of Fig. 8. The logarithms of the

amplitudes are shown in first and third columns and the
phase shifts are shown in second and fourth columns.
Fig. 9 shows the photon density at the boundary.

As it can be seen from Fig. 8, the RTE, FP, FPE, and the
coupled models give similar results. The solution of the
DA differs from the solution of the other models. This is
due to the low-scattering CSF regions in which the
diffusion theory breaks down. The photon densities at
the boundary in Fig. 9 indicate that the FPE, cFPE-DA, and
cRTE-DA give the most accurate results compared with
the RTE. Thus, the coupled models provide a useful
approximation to the RTE with almost the same accuracy.
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Fig. 6. Norm of the relative error of photon density against the distance

between the coupling interface and the source.

Table 1
The FE-matrix sizes, number of non-zero elements, matrix filling ratios, FE-matrix assembling times tmat, relative FE-matrix assembling times, FE-matrix

equation solution times tsol, and relative FE-matrix equation solution times.

Matrix size Non-zeros Filling ratio (%) tmat ðminÞ tmat=tmat,RTE ð%Þ tsol (min) tsol=tsol,RTE ð%Þ

RTE 306,112�306,112 135,327,744 0.144 8.389 – 6.363 –

DA 4783�4783 33,039 0.144 0.060 0.72 0.001 0.02

FP 76,528�76,528 1,585,872 0.027 0.466 5.56 0.208 3.27

FPE 76,528�76,528 8,457,984 0.144 0.851 10.17 0.220 3.45

cRTE-DA 116,266�116,266 47,651,710 0.353 2.087 24.88 0.879 13.82

cFP-DA 31,450�31,450 600,180 0.061 0.209 2.50 0.039 0.61

cFPE-DA 31,450�31,450 3,014,852 0.305 0.278 3.32 0.045 0.70

Fig. 7. Segmented image from a new-born infant’s head (left image). Sub-domain division in the coupled model (right image): the CSF-regions (dark

grey), the sub-domain Of (light grey), and the DA sub-domain OF (white). The source location is marked with a triangle.

Table 2
The absorption coefficient ma, the scattering coefficient ms, and the

scattering shape parameter g of different regions.

ma ðmm�1Þ ms ðmm�1Þ g

Scalp 0.018 4.75 0.6

Skull 0.016 4 0.6

Grey mater 0.048 1.25 0.6

White mater 0.036 2.5 0.6

CSF around the brain 0.0048 0.16 0.8

CSF in the ventricles 0.0048 0.006 0.8
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5. Conclusions

In this paper, the forward-peaked scattering approx-
imations of the radiative transport equation, namely the
Fokker–Planck and Fokker–Planck–Eddington equations,
were used to form a coupled model with the diffusion
approximation to model light propagation in medium
with tissue-like optical properties. In the coupled model,
the computational domain is divided into two different
sub-domains . Light propagation in regions in which the
DA is not valid, such as close to the source, boundaries

and in low-scattering regions, is modeled using the more
accurate Fokker–Planck equation or Fokker–Planck–
Eddington equation. The DA is used elsewhere in the
domain. The models are coupled at the interfaces of the
sub-domains with boundary conditions and solved simul-
taneously using the finite element method.

The results of the coupled models were compared with
the previously developed coupled RTE-DA model, and the
solutions of the FP, FPE, DA and RTE. The effect of the
coupling interface location on the solution of the coupled
models was investigated as well as the computational

Fig. 8. Logarithm of amplitude (first and third column) and phase shift (second and fourth column) of photon density computed using the RTE, FP, FPE,

and DA (first and second columns from top to bottom in respective order) and using the cRTE-DA, cFP-DA, and cFPE-DA (third and fourth columns from

top to bottom in respective order) within realistic head geometry.

O. Lehtikangas, T. Tarvainen / Journal of Quantitative Spectroscopy & Radiative Transfer 116 (2013) 132–144142



load. In addition, the models were tested in a realistic
head geometry with tissue-like optical properties. The
results show that the coupled models can be used to
describe light propagation in heterogeneous tissues, also
with low-scattering regions such as the cerebrospinal
fluid in the brain, with almost the same accuracy as the
RTE but with reduced computational load.
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1. Introduction

The radiative transport equation (RTE) can be used to model propaga-
tion of particles such as neutrons and photons in a scattering medium [1–3].
Applications can be found in atmospheric and ocean optics [4], astrophysics
[5], nuclear reactor physics [6] and biomedical optics [7]. In biomedical diffuse
optical tomography (DOT), images of the optical properties of the target are
reconstructed from measurements of near-infrared light made on the surface
of the target. The image reconstruction procedure in DOT requires a model
for light propagation inside the target in which the RTE can be utilized
[8–11].

The RTE takes into account absorption and multiple scattering inside
tissues and treats photons as particles which propagate along straight lines
between scattering and absorption events. The refractive index is assumed
to be a constant inside tissues. However, the refractive index can change
between different tissues types inside the target even though these changes
are typically neglected in DOT.

A more general version of the RTE with a spatially dependent refractive
index was derived in [12], and more recently investigated in [13–21]. This
model allows curved photon paths between absorption and scattering events
based on the gradient field of the refractive index. Therefore, the refractive
index is assumed to be a smooth continuous function such that the gradient
is well defined. However, in biomedical applications the refractive index
can have jumps between different tissue types, such as between skull and
cerebrospinal fluid in the brain, and a smooth function may not approximate
these jumps correctly.

The RTE with piecewise constant refractive index with Fresnel reflec-
tion and transmission between the regions has been considered [22–28]. The
approach was developed for an one dimensional spherically symmetric case
in [22, 23] and for multilayered media in [24–27]. Furthermore, an one di-
mensional plane parallel geometry with multilayered media was considered
in [28]. In this paper, this approach is extended to general geometry. Light
propagation in each sub-domain with a constant refractive index is modeled
using the RTE and the equations are coupled using boundary conditions
describing Fresnel reflection and transmission on the interfaces between the
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sub-domains. This leads to a coupled system of radiative transport equations
(cRTE).

In the numerical solution of the RTE, different discretization methods
have been applied for both the spatial and angular parts of the solution. For
the spatial part, a finite difference method [29–31], a finite element method
(FEM) [32–35] and a finite volume method [36–38] have been the most com-
monly applied approaches. For the angular part, a discrete ordinate method
[29–31, 33, 36, 38], the FEM [34, 35, 39–41] and a spherical harmonics method
(Pn) [42–45] have been utilized.

In this work, the cRTE is numerically solved using the FEM both in
the space and in the angle. In the approach, the boundary conditions are
formulated in a general form. Hence, the model is applicable in complex
geometries represented by finite element meshes with an arbitrary number of
sub-domains and inhomogeneous parameter distributions. Moreover, using
the FEM for the angular part enables an accurate and simple implementation
of the boundary conditions.

The rest of the paper is organized as follows. In Section 2, the RTE and
the boundary conditions between piece-wise constant regions of refractive
index are reviewed and the coupled system of RTEs is described. In Section
3, the numerical approximation of the coupled system of the RTEs using the
FEM is described. In Section 4, simulation results are shown. Section 5 gives
the conclusions.

2. Radiative transport equation with piece-wise constant refractive

index

Let Ω ⊂ R
d be the physical domain with a boundary ∂Ω, and d = 2,3 be

the dimension of the domain. In addition, let ŝ ∈ S
d−1 denote a unit vector

in the direction of interest on the unit sphere S
d−1. Let the refractive index

n be a piece-wise constant within N disjoint sub-domains Ωk, k = 1, ..., N .
An interface between the sub-domains Ωk and Ωn with different refractive
indices nk and nn is denoted by Γk,n = ∂Ωk ∩ ∂Ωn as shown in Figure 1.
Further, the union of the interfaces of the sub-domain Ωk can be written as
Γk = ∪N

n=1,n6=kΓk,m. With these notations, the boundary of the sub-domain
Ωk can be divided into the outer boundary and the union of the interfaces
∂Ωk = ∂Ωk,out∪Γk. Light propagation in each sub-domain Ωk can be modeled
using the RTE and the equations are coupled using the boundary conditions
at the interfaces Γk,n.
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Figure 1: A sketch of sub-domains having different refractive indices. The interfaces Γ
between the sub-domains are marked with gray color and the outer boundaries ∂Ωout with
black color.

2.1. Radiative transport equation

The frequency domain version of the RTE in the sub-domain Ωk can be
written as [8] (

iω

ck
+ ŝ · ∇+ µa

)
φk(r, ŝ) = µsLφk(r, ŝ) (1)

where i is the imaginary unit, ω is the angular modulation frequency of the
input signal, ck = c0/nk is the speed of light in the sub-domain Ωk, c0 is the
speed of light in a vacuum, φk(r, ŝ) is the radiance in the sub-domain Ωk,
and µs = µs(r) and µa = µa(r) are the scattering and absorption coefficients
of the medium, respectively [1, 2]. The scattering operator L is

Lφk(r, ŝ) = −φk(r, ŝ) +

∫
Sd−1

Θ(ŝ · ŝ′)φk(r, ŝ
′)dŝ′. (2)

The scattering phase function Θ(ŝ · ŝ′) describes the probability for a photon
with an initial direction ŝ′ to scatter in a direction ŝ. In this work, the
Henyey-Greenstein scattering function [46] is used

Θ(ŝ · ŝ′) =
1

|Sd−1|

1− g2

(1 + g2 − 2gŝ · ŝ′)d/2
, (3)

where g ∈ [−1, 1] is the anisotropy parameter defining the shape of the
probability distribution. In biological tissues, g is typically close to one
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Figure 2: Interface Γk,n between the sub-domains Ωk and Ωn with different refractive
indices nk and nn. The direction of incoming radiance to the interface is denoted by ŝi,
the direction of reflected radiance by ŝr and the direction of radiance which transmits
through the interface is denoted by ŝt. Outward unit normal is denoted by n̂.

indicating that scattering is forward-peaked. Further, |Sd−1| is the surface
measure of Sd−1 (|S1| = 2π and |S2| = 4π). The fluence is defined as an
integral of the radiance over the angular directions [8]

Φk(r) =

∫
Sd−1

φk(r, ŝ)dŝ. (4)

2.2. Boundary conditions

The boundary condition in the sub-domain Ωk at the interface Γk,n in an
inward direction ŝr,k takes into account the reflected radiance from a direction
ŝi,k and the transmitted radiance from the sub-domain Ωn from a direction
ŝt,k as shown in Figure 2. The boundary condition can be written as

φk(r, ŝ) = Rk,nφk(r, H
−1
k ŝ) + Tn,kφn(r, K

−1
n,k(ŝ)), r ∈ Γk,n, ŝ · n̂k < 0,

(5)

where Rk,n = Rk,n(ŝi,k, n̂k, nk, nk) is the Fresnel reflection coefficient between
the sub-domain Ωk and Ωn

Rk,n =
1

2

(
nk cos θk − nn cos θn
nk cos θk + nn cos θn

)2

+
1

2

(
nk cos θn − nn cos θk
nk cos θn + nn cos θk

)2

, (6)

where

cos θk = n̂k · ŝi,k, (7)

cos θn =

√
1−

(
nk

nn

)2

(1− (cos θk)2). (8)
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Figure 3: Fresnel reflection coefficient R (left column) and transmission coefficient T (right
column) between sub-domains with refractive indices n1 = 1.4 and n2 = 1.33 (top row)
and refractive indices n1 = 1.33 and n2 = 1.4 (bottom row) as a function of incoming
angle. The critical angle θcrit = sin−1(n2/n1) is marked with a gray vertical line when
total internal reflection occurs.

Further, Tn,k is the Fresnel transmission coefficient between the sub-domains
Ωn and Ωk

Tn,k = 1−Rn,k. (9)

Figure 3 shows the Fresnel reflection coefficient R and the transmission co-
efficient T as a function of an incident angle.

The mapping H−1
k is the inverse reflection law giving the initial direction

of the radiance ŝi,k for a given direction of the reflected radiance ŝr,k. The
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reflection law can be written in a vector form as Hk : ŝi,k → ŝr,k

ŝr,k = Hkŝi,k, (10)

Hk =
(
I− 2n̂kn̂

T
k

)
, (11)

where I is an identity matrix. The inverse reflection law H−1
k can be com-

puted

ŝi,k = H−1
k ŝr,k = Hkŝr,k, (12)

since the matrix Hk is a Householder transformation and thus H−1
k = Hk.

The mapping K−1
n,k is the inverse Snell’s law giving the direction ŝt,k from

which the radiance is transmitted from the sub-domain Ωn into the sub-
domain Ωk for a given direction ŝr,k. The Snell’s law for the refraction of the
radiance between the sub-domain Ωn and Ωk can be written in a vector form
Kn,k : (ŝt,k, n̂n, nn, nk) → ŝr,k

ŝr,k =
nn

nk

ŝt,k +

(
cosϕk −

nn

nk

cosϕn

)
n̂n, (13)

where

cosϕn = n̂n · ŝt,k, (14)

cosϕk =

√
1−

(
nn

nk

)2

(1− (cosϕn)2). (15)

The inverse Snell’s law K−1
n,k : (ŝr,k, n̂n, nn, nk) → ŝt,k can be computed as

Kn,k : (−ŝr,k,−n̂n, nk, nn) → −ŝt,k due to the reciprocity principle of light
propagation.

The boundary condition for the outer boundary in the sub-domain Ωk

takes into account a boundary source φ0,k(r, ŝ) and the reflection of the ra-
diance due to a mismatch in refractive indices at the outer boundary

φk(r, ŝ) = φ0,k(r, ŝ) +Rk,outφk(r, Hkŝ), r ∈ ∂Ωk,out, ŝ · n̂k < 0, (16)

where Rk,out = Rk,out(ŝi,k, n̂k, nk, nout) is the reflection coefficient between the
sub-domain Ωk and the exterior of the domain Ω with the refractive index
nout.
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2.3. Coupled system of radiative transport equations

The coupled system of RTEs for N sub-domains with different refractive
indices can be written as(

iω

ck
+ ŝ · ∇+ µa

)
φk(r, ŝ) = µsLφk(r, ŝ), r ∈ Ωk (17a)

φk(r, ŝ) = φ0,k(r, ŝ) +Rk,outφk(r, Hkŝ), r ∈ ∂Ωk,out, ŝ · n̂k, < 0, (17b)

φk(r, ŝ) = Rk,nφk(r, Hkŝ) + Tn,kφn(r, K
−1
n,k(ŝ)), r ∈ Γk,n, ŝ · n̂k < 0,

(17c)

n, k = 1, . . . , N.

3. Finite element approximation of the coupled system

In this work, the solution of the cRTE (17) is numerically approximated
using the FEM. In the FEM, a variational formulation of the original problem
is derived, and then this infinite dimensional problem is discretized using a
suitable set of basis functions.

To derive the variational formulation of the coupled system, we follow
a similar procedure as in [34, 47–50]. Thus, first each of the equations in
(17a) are multiplied by a test function vk and integrated over the domain
Ωk×S

d−1. Then, by using the Green’s theorem [51], separating the resulting
boundary integrals over the outer boundary ∂Ωk,out and over the interfaces
Γk,n, and utilizing the boundary conditions (17b) and (17c), the variational
formulation is obtained. The variational formulation of the cRTE (17) with
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a streamline diffusion modification [32, 48, 52] can be written as

N∑
k=1

(∫
Ωk

∫
Sd−1

iω

ck
φk(r, ŝ)vk(r, ŝ)dŝdr−

∫
Ωk

∫
Sd−1

ŝ · ∇vk(r, ŝ)φk(r, ŝ)dŝdr

+

∫
∂Ωk

∫
Sd−1

(ŝ · n̂k)+φk(r, ŝ)vk(r, ŝ)dŝdS −

∫
∂Ωk,out

∫
Sd−1

(ŝ · n̂k)−Rk,outφk(r, Hkŝ)vk(r, ŝ)dŝdS

−

N∑
n=1,n6=k

∫
Γk,n

∫
Sd−1

(ŝ · n̂k)−Rk,nφk(r, Hkŝ)vk(r, ŝ)dŝdS

−
N∑

n=1,n6=k

∫
Γk,n

∫
Sd−1

(ŝ · n̂k)−Tn,kφn(r, K
−1
n,k(ŝ))vk(r, ŝ)dŝdS +

∫
Ωk

∫
Sd−1

µaφk(r, ŝ)vk(r, ŝ)dŝdr

−

∫
Ωk

∫
Sd−1

Lφk(r, ŝ)vk(r, ŝ)dŝdr+

∫
Ωk

∫
Sd−1

δ
iω

c
φk(r, ŝ)ŝ · ∇vk(r, ŝ)dŝdr

+

∫
Ωk

∫
Sd−1

δ(ŝ · ∇φk(r, ŝ))(ŝ · ∇vk(r, ŝ))dŝdr+

∫
Ωk

∫
Sd−1

δµaφk(r, ŝ)vk(r, ŝ)dŝdr

−

∫
Ωk

δ

∫
Sd−1

Lφk(r, ŝ)(ŝ · ∇vk(r, ŝ))dŝdr−

∫
∂Ωk,out

∫
Sd−1

(ŝ · n̂k)−φ0,k(r, ŝ)vk(r, ŝ)dŝdS
)
= 0

(18)

where δ is a streamline-diffusion modification parameter and (ŝ · n̂k)+ and
(ŝ · n̂k)− denote the positive and negative parts of the function (ŝ · n̂k).

The FE-approximation is obtained by approximating the solutions φk(r, ŝ)
of the variational formulation (18) with a linear combination of the basis
functions

φk(r, ŝ) ≈

Ns,k∑
i=1

Na,k∑
l=1

αk
ilψi,k(r)ψl,k(ŝ), (19)

where ψi,k(r) and ψl,k(ŝ) are the nodal basis functions of the spatial and
angular discretizations of Ωk×S

d−1, αk
il is the radiance in spatial nodal point

i into angular direction l in the sub-domain Ωk, and Ns,k and Na,k are the
number of spatial and angular nodes in the sub-domain Ωk, respectively.
Therefore, different number of angular directions can be used in different
sub-domains if that is feasible. In this work, we use a piecewise linear basis
for both spatial and angular parts of the solution. The FE-approximation of
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the coupled model can be written in a matrix form as


A1 C1,2 · · · · · · C1,N

C2,1 A2
. . . . . .

...
...

. . . . . . . . .
...

CN−1,1
. . . . . . AN−1 CN−1,N

CN,1 · · · · · · CN,N−1 AN







α1
...
αN


 =




b1
...
bN


 , (20)

where the vector of radiances in the different sub-domains is α = (α1, . . . , αN) =

(α1
1,1, ..., α

1
1,Na,1

, ..., α1
Ns,1,Na,1

, ..., αN
Ns,N ,Na,N

)T ∈ C
∑N

k=1
Ns,kNa,k . The matrixAk ∈

C
Ns,kNa,k×Ns,kNa,k contains the FE-approximation of the RTE in the sub-

domain Ωk

Ak = A0,k + A1,k + A2,k + A3,k + A4,k, (21)
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where

A0,k(h, s) =
iω

ck

(∫
Ωk

ψi(r)ψj(r)dr

∫
Sd−1

ψl(ŝ)ψm(ŝ)dŝ

+

∫
Ωk

δ

∫
Sd−1

ŝ · ∇ψj(r)ψm(ŝ)ψl(ŝ)dŝψi(r)dr

)
, (22a)

A1,k(h, s) =−

∫
Ωk

∫
Sd−1

ŝ · ∇ψj(r)ψm(ŝ)ψl(ŝ)dŝψi(r)dr

+

∫
Ωk

δ

∫
Sd−1

(ŝ · ∇ψi(r))(ŝ · ∇ψj(r))ψl(ŝ)ψm(ŝ)dŝdr, (22b)

A2,k(h, s) =

∫
∂Ωk

ψi(r)ψj(r)dS

∫
Sd−1

(ŝ · n̂k)+ψl(ŝ)ψm(ŝ)dŝ

−

∫
∂Ωk,out

ψi(r)ψj(r)dS

∫
Sd−1

(ŝ · n̂k)−Rk,outψl(H ŝ)ψm(ŝ)dŝ

−

∫
Γk,n

ψi(r)ψj(r)dS

∫
Sd−1

(ŝ · n̂k)−Rk,nψl(H ŝ)ψm(ŝ)dŝ, (22c)

A3,k(h, s) =

∫
Ωk

µaψi(r)ψj(r)dr

∫
Sd−1

ψl(ŝ)ψm(ŝ)dŝ

+

∫
Ωk

δµaψi(r)

∫
Sd−1

(ŝ · ∇ψj(r))ψm(ŝ)ψl(ŝ)dŝdr, (22d)

A4,k(h, s) =

∫
Ωk

µsψi(r)ψj(r)dr

∫
Sd−1

ψl(ŝ)ψm(ŝ)dŝ

+

∫
Ωk

δµsψi(r)

∫
Sd−1

(ŝ · ∇ψj(r))ψm(ŝ)ψl(ŝ)dŝdr

−

∫
Ωk

µsψi(r)ψj(r)dr

∫
Sd−1

∫
Sd−1

Θ(ŝ · ŝ′)ψl(ŝ
′)dŝ′ψm(ŝ)dŝ

−

∫
Ωk

δµs

∫
Sd−1

(ŝ · ∇ψj(r))ψm(ŝ)

∫
Sd−1

Θ(ŝ · ŝ′)ψl(ŝ
′)dŝ′dŝψi(r)dr,

(22e)

where h = Na,k(j − 1) + m, s = Na,k(i − 1) + l (j, i = 1, . . . , Ns,k, m, l =
1, . . . , Na,k, and h, s = 1, . . . , Ns,kNa,k). Further, the matrix Cn,k ∈ R

Ns,nNa,n×Ns,kNa,k

contains the coupling conditions on the interface Γk,n due to the radiance
transmitted from the sub-domain Ωn into the sub-domain Ωk. Note that the
matrix Cn,k is non-zero only if Ωn and Ωk share an interface Γk,n. The matrix
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Cn,k can be written as

Cn,k(p, s) = −

∫
Γk,n

ψi(r)ψe(r)dS

∫
Sd−1

(ŝ · n̂k)−Tn,kψl(K
−1
n,k(ŝ))ψu(ŝ)dŝ, (23)

where p = Na,n(e − 1) + u, (e = 1, . . . , Ns,n, u = 1, . . . , Na,n, and p =
1, . . . , Ns,nNa,n). The source vector in the sub-domain Ωk is

bk(h) =

∫
∂Ωk,out

ψj(r)dS

∫
Sd−1

(ŝ · n̂k)−φ0,k(r, ŝ)ψm(ŝ)dŝ. (24)

4. Results

The performance of the proposed cRTE model was tested with 2D simula-
tions. The solution of the cRTE was compared with the solution of the Monte
Carlo (MC) simulation. In the MC simulations, a photon packet method,
originally developed in [53] was modified to allow computation in complex
inhomogeneous geometries represented by finite element meshes with piece-
wise constant refractive indices [54].

The cRTE was solved using the FEM as described in Section 3. The
FE-approximation was computed using Eq. (20). The quantity of interest
was the fluence, Eq. (4), inside the domain and at the boundary.

4.1. Reflection from an oblique surface with mismatched refractive indices

First, a reflection from an oblique surface due to a mismatch in the re-
fractive indices was investigated. The simulation domain Ω was a square
[−20, 20] × [−20, 20] mm2 shown in Figure 4. The domain was divided into
two sub-domains with different refractive indices. The FE-mesh for the spa-
tial discretization of the sub-domain Ω1 is marked with dark grey and the
sub-domain Ω2 is marked with light grey in Figure 4. The FE-meshes con-
sisted of 1710 and 1091 nodes and 3261 and 2043 triangular elements for the
sub-domains Ω1 and Ω2, respectively. The angular domain S

1 was discretized
using 64 equally spaced angular directions for the both sub-domains.

The scattering and absorption properties of the domain were: µs,1 = 0.1 mm−1,
µs,2 = 0.1 mm−1, µa,1 = 0.01 mm−1, µa,2 = 0.01 mm−1, g1 = 0.8 and g2 = 0.8.
These values correspond to a low-scattering medium with a forward-peaked
scattering. Hence, the reflection from a surface with mismatched refractive
indices should be clearly visible. The refractive index of the sub-domain Ω1

was n1 = 2 and the refractive index of the sub-domain Ω2 was given values
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Figure 4: Mesh for the domain with an oblique surface between the sub-domains with
different refractive indices. The sub-domain Ω1 is marked with dark grey and the sub-
domain Ω2 with light grey. The source is marked with a black circle.

n2 = 1, 1.3, 1.6, 1.8. The refractive index of the exterior of the domain Ω was
nout = 1. The modulation frequency of the input signal was 100 MHz. A
collimated source with a narrow gaussian angular dependence was located at
(x, y) = (−20, 0) mm and it is marked with a black circle in Figure 4.

The fluence computed using the cRTE and the MC is shown in Figure 5.
As it can be seen, when n2 = 1, most of the light reflects from the surface
due a large mismatch in the refractive indices. In this case the critical angle
is θcrit = sin−1(n2/n1) = 30 deg (with respect to the unit normal). This
means that only the photons which hit the interface almost perpendicularly
can transmit through the interface. Thus, in this case when the medium is
low-scattering, most of the photons from the collimated source retain their
initial direction before hitting the interface at 45 deg angle and undergo total
internal reflection. When the refractive index of the second sub-domain is
increased, more light transmits through the surface with a refraction.

When the cRTE and the MC solutions are compared, a good agreement is
obtained except close to the source due to different discretization approaches.
In the MC, the solution and the source are element-wise constant whereas
in the FEM piece-wise linear basis is used. This difference is distinguishable
since the medium is small and low-scattering.

13



Figure 5: Logarithm of the amplitude (first and second column) and the phase shift (third
and fourth column) of the fluence computed using the cRTE model (first and third column)
and using the MC (second and fourth column) due to reflection from the oblique surface.
Refractive index of the second sub-domain is n2 = 1 (first row), n2 = 1.3 (second row),
n2 = 1.6 (third row) and n2 = 1.8 (fourth row). Directions of reflected and transmitted
light with incoming angle of 45 deg are marked with black and purple lines, respectively,
and the critical angle is marked with a white line.
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Figure 6: Mesh for the domain with a square inclusion inside the target. The sub-domain
Ω1 is marked with dark grey and the sub-domain Ω2 with light grey. The source is marked
with a black circle.

4.2. Effect of the internal refractive index change on the boundary measure-

ments

Next, the effect of the internal refractive index change on the boundary
measurements was investigated. Two different cases were considered. In
the first case, the inclusion with different refractive indices was located deep
inside the target and in the second case the inclusion was located close to
the boundary of the target.

4.2.1. Inclusion inside the target

First, the inclusion was located inside the target as shown in Figure 6. The
FE-mesh for the spatial discretization of the sub-domain Ω1 is marked with
dark grey and the sub-domain Ω2 is marked with light grey. The FE-meshes
consisted of 3476 and 1051 nodes and 6398 and 1179 triangular elements
for the sub-domains Ω1 and Ω2, respectively. The angular domain S

1 was
discretized using 64 equally spaced angular directions.

The scattering and absorption properties were: µs,1 = 1 mm−1, µs,2 = 1 mm−1,
µa,1 = 0.01 mm−1, µa,2 = 0.01 mm−1, g1 = 0.8 and g2 = 0.8. The refractive
index of the sub-domain Ω1 was n1 = 1.4 and the refractive index of the
sub-domain Ω2 was n2 = 1, 1.05, ..., 2. The refractive index of the exterior
was nout = 1.

The fluences computed using the cRTE and the MC are shown in Figure
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7. In addition, per cent relative error of the fluence computed using the cRTE
against the MC is shown. Figure 8 shows the fluence at the boundary com-
puted using the cRTE for n2 = 1 (grey line), n2 = 1.4 (black line) and n2 = 2
(dashed line) as a function of distance along the boundary. In addition, per
cent relative difference against the case with n2 = 1.4 (matched refractive
indices) is shown. The mean of the relative difference of the boundary mea-
surements against the case with n2 = 1.4 was computed for the amplitude
and for the phase as

∆|Φ| = mean

(∣∣∣∣ |Φ(r)| − |Φref(r)|

|Φref(r)|

∣∣∣∣
)
, (25)

∆arg(Φ) = mean

(∣∣∣∣arg(Φ(r))− arg(Φref(r))

arg(Φref(r))

∣∣∣∣
)
, (26)

where Φref(r) is the solution with n2 = 1.4, |·| is the absolute value and arg(·)
is the phase angle. This quantity is shown in Figure 9 for the amplitude (left
image) and for the phase (right image).

The results in Figure 7 show that when the refractive index of the inclu-
sion is lower (n2 = 1) than the refractive index of the background (n1 = 1.4)
strong reflection occurs when light enters the inclusion. In contrast, when the
refractive index is larger (n2 = 2) than that of the background, more light is
transmitted into the inclusion and total internal reflection takes place when
light exits the inclusion. When the cRTE and the MC solutions are com-
pared, a very good agreement is found and the relative error is under three
per cent for both the amplitude and the phase further from the source.

The results show that the fluence at the boundary is changed when the
refractive index is not constant within the target. When the refractive index
of the inclusion is lower (n2 = 1) than that of the background, larger values
for the amplitude can be measured next to the source due to the reflection
from the inclusion. At the opposite side of the target, the amplitude is up
to 10 % lower compared to the fluence without the inclusion. For the phase,
smaller values can be measured next to the source since photons can arrive
earlier to the boundary due to the possible reflection. If the refractive index
is larger (n2 = 2) than that of the background, the amplitude is one to four
per cent lower compared to the fluence obtained without the inclusion. For
the phase, up to 8 % larger values are obtained since photons can arrive later
to the boundary due to the internal reflection inside the inclusion.
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Figure 7: Logarithm of the amplitude (first column) and the phase shift (second column)
of the fluence computed using the cRTE model (first and third row) and using the MC
(second and fourth row) due to reflection from the square inclusion inside the target.
Refractive index of the inclusion is n2 = 1 (first and second row) and n2 = 2 (third and
fourth row). Per cent relative error of the amplitude and the phase shift against the MC
are shown in third and fourth columns.
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Figure 8: Logarithm of the amplitude (top left) and the phase shift (top right) of the
fluence at the boundary computed using the cRTE model for n2 = 1 (grey line), n2 = 1.4
(black line) and n2 = 2 (dashed line) as a function of distance along the boundary. Per
cent relative difference of the amplitude (bottom left) and the phase shift (bottom right)
against the case n2 = 1.4 are shown on the bottom row.
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Figure 9: Mean per cent relative difference of the amplitude (left) and the phase shift
(right) of the fluence at the boundary as a function of refractive index of the inclusion n2.
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4.2.2. Inclusion close to the boundary of the target

In the second case, the inclusion located close to the boundary of the
target as shown in Figure 10. The number of spatial and angular nodes and
elements were the same as before. In addition, the scattering and absorption
properties were the same as in the first case in Section 4.2.1. Again, we set
the refractive index of the background to n1 = 1.4 and varied the refractive
index of the layer n2.

Figure 10: Mesh for the domain with a layer inclusion close to the boundary of the domain.
The sub-domain Ω1 is marked with dark grey and the sub-domain Ω2 with light grey. The
source is marked with a black circle.

The fluences computed using the cRTE and the MC are shown in Figure
11 for n2 = 1 and for n2 = 2. In addition, per cent relative error of the
fluence computed using the cRTE is shown. Figure 12 shows the fluence at
the boundary for n2 = 1, n2 = 1.4 and for n2 = 2. The mean of the relative
difference of the boundary measurements against the case with n2 = 1.4
(matched refractive indices) is shown in Figure 13.

The results in Figure 11 show that for a smaller refractive index value
(n2 = 1) strong reflection occurs in front of the source when light enters
the layer. As a result, a major portion of light remains between the layer
and the boundary of the target. In addition, the part of the light which is
transmitted through the layer in the front of the source gets reflected at the
opposite side of the layer. Hence, some part of the light remains trapped
inside the inner boundary of the layer. In contrast, for a larger refractive
index (n2 = 2) more light is transmitted into the layer and light propagates
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Figure 11: Logarithm of the amplitude (first column) and the phase shift (second column)
of the fluence computed using the cRTE model (first and third row) and using the MC
(second and fourth row) due to reflection from the layer inclusion close to the boundary of
the target. Refractive index of the inclusion is n2 = 1 (first and second row) and n2 = 2
(third and fourth row). Per cent relative error of the amplitude and the phase shift against
the MC are shown in third and fourth columns.
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Figure 12: Logarithm of the amplitude (top left) and the phase shift (top right) of the
fluence at the boundary computed using the cRTE model for n2 = 1 (grey line), n2 = 1.4
(black line) and n2 = 2 (dashed line) as a function of distance along the boundary. Per
cent relative difference of the amplitude (bottom left) and the phase shift (bottom right)
against the case n2 = 1.4 are shown on the bottom row.
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Figure 13: Mean per cent relative difference of the amplitude (left) and the phase shift
(right) of the fluence at the boundary as a function of refractive index of the layer n2.

along the layer. This is due the total internal reflection. The cRTE and the
MC solutions agree relative well even though some differences can be seen at
the right-hand side of the target between the layer and the boundary of the
target.

The results in Figure 12 show that up to 15 % larger and 25 % smaller
values can be measured for the amplitude next to the source and at the op-
posite side of the target, respectively, when the refractive index n2 is smaller
than the background in comparison to the fluences computed without the in-
clusion. For the phase, up to 15 % difference can be obtained. Based on the
results it can be concluded that if the internal refractive index change occurs
close to the boundary, significant changes in the boundary measurements can
be obtained.

5. Conclusions

In this work, light propagation in a scattering medium with piece-wise
constant refractive index using the radiative transport equation was studied.
Light propagation in each sub-domain with a constant refractive index was
modeled using the RTE and the equations were coupled using boundary
conditions describing Fresnel reflection and transmission phenomenas on the
interfaces between the sub-domains. The resulting coupled system of RTEs
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was numerically solved using the FEM. The proposed model was tested using
simulations and was compared with the solution of the Monte Carlo method.
The results show that the coupled RTE model describes light propagation
accurately in comparison with the Monte Carlo method. In addition, results
show that neglecting internal refractive index changes can lead to erroneous
boundary measurements of scattered light. This indicates that the quality
of the DOT reconstructions could possible be increased by incorporating
a model for internal refractive index changes in the image reconstruction
procedure.
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Diffuse optical tomography is a 

non-invasive biomedical imaging 

modality that is used to reconstruct 

images of the optical properties 

of tissues based on boundary 

measurements of transmitted near-

infrared light. Reconstruction of 

the tomographic images requires 

an accurate and computationally 

feasible mathematical model for 

light propagation inside tissues. In 

this thesis, computational methods 

for modeling light propagation in 

tissue-like media are developed. 

These methods aim at reducing the 

computational load, and increasing 

the accuracy compared to the 

conventional methods. 
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