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Abstract

Hyperspectral remote sensing data carry information on the leaf area index (LAI) of forests, and thus in principle,

LAI can be estimated based on the data by inverting a forest reflectance model. However, LAI is usually not the only

unknown in a reflectance model; especially, the leaf spectral albedo and understory reflectance are also not known.

If the uncertainties of these parameters are not accounted for, the inversion of a forest reflectance model can lead

to biased estimates for LAI. In this paper, we study the effects of reflectance model uncertainties on LAI estimates,

and further, investigate whether the LAI estimates could recover from these uncertainties with the aid of Bayesian

inference. In the proposed approach, the unknown leaf albedo and understory reflectance are estimated simultaneously

with LAI from hyperspectral remote sensing data. The feasibility of the approach is tested with numerical simulation

studies. The results show that in the presence of unknown parameters, the Bayesian LAI estimates which account for

the model uncertainties outperform the conventional estimates that are based on biased model parameters. Moreover,

the results demonstrate that the Bayesian inference can also provide feasible measures for the uncertainty of the

estimated LAI.

Keywords: leaf area index, spectral invariants, photon recollision probability, reflectance model, uncertainty

quantification

1. Introduction1

New satellite missions with enhanced spectral reso-2

lution (e.g. Sentinel-2, EnMAP) will soon produce ex-3

tensive coverage of our planet. More efficient methods4

to handle and interpret environmental information from5

the large data volumes are urgently needed. So far, ap-6

plications of hyperspectral remote sensing (also known7

as imaging spectroscopy) have concentrated on moni-8

toring biochemical properties or functioning of vegeta-9

tion. However, the added value of these data in estimat-10

ing also structural variables of forest canopies has not11

been widely demonstrated. In remote sensing of forest12

structure, hyperspectral data have mainly been used in13

the form of narrowband vegetation indices (VI), so that14

the information content of only a few spectral bands is15

used to estimate a structural characteristic of the canopy16

(e.g. [1, 2]). VI based approach also exhibit problems17

such as significant site-, species- and time specificity18

(e.g. [3–5]), and do not account for the physical rela-19
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tionship between the forest structure and the observa-20

tions.21

Inversion of physically-based forest reflectance mod-22

els may offer a solution to using the full information23

content, and not only selected bands, of hyperspectral24

data sets. The on-going growth in the availability of25

hyperspectral remote sensing data sets has indeed in-26

creased the use of physically-based modeling [6], and27

new interpretations for links between canopy structure28

and detailed spectral features have been proposed (e.g.29

[7]). However, forest reflectance models usually con-30

tain many other unknown variables besides the variable31

of primary interest; for example, forest background (or32

understory reflectance) and leaf spectral properties vary33

significantly even in the same biome. In addition, the34

effect of forest stuctural parameters, for example leaf35

area index (LAI), on reflected radiation is usually non-36

linear and saturates in very dense canopies. Combined,37

these two characteristics make the inversion of a for-38

est reflectance model an under-determined and ill-posed39

problem [8, 9]. The complex nonlinear relationship40

between the leaf area index and the forest reflectance41

makes the estimation of LAI sensitive to uncertainties42

in the other model parameters. Thus, using fixed values43

in the model inversion will most likely result in unreli-44

able estimates of forest structure. A methodology which45

makes it possible to take into account the uncertainty in46

these variables is needed.47

Bayesian inference (e.g. [10]) offers a coherent, yet48

flexible framework for handling model uncertainties in49

parameter estimation problems. In Bayesian approach,50

uncertainties are modeled statistically. Also the param-51

eters of primary interest (such as the LAI in the present52

application) are modeled as random variables, allowing53

the use of a priori information on the parameters. The54

solution of a Bayesian inference problem is the posterior55

distribution, i.e., the conditional probability distribution56

of the unknown parameter given the measurement data.57

The Bayesian approach has been previously used in re-58

mote sensing of forest structural parameters, for exam-59

ple, from multispectral MODIS data by Zhang et al.60

[11]. In this paper, the prior information consisted of61

constraints for the model unknowns, i.e., the parameters62

were assumed to be uniformly distributed over feasible63

intervals. However, more feasible prior information on64

the statistics of the input parameters of reflectance mod-65

els is often available. Moreover, studies on the effect of66

the parameter uncertainties in the LAI estimates and the67

feasibility of the Bayesian approach to recover from the68

errors caused by such uncertainties have not yet been69

reported.70

The present work focuses on estimating LAI of forest71

canopies using hyperspectral data. A set of numerical72

simulations is carried out to study the effect of unknown73

reflectance model parameters to conventional LAI esti-74

mates which use fixed model parameters. Further, we75

study whether the LAI estimates could recover from er-76

rors caused by unknown reflectance model parameters,77

when a Bayesian approach is taken. In the Bayesian78

inference, informative, data-based prior models for the79

reflectance model parameters are written. In addition to80

evaluating Bayesian point estimates for LAI, the feasi-81

bility of Bayesian uncertainty estimates is investigated;82

in particular, we study how well the Bayesian credible83

intervals represent the uncertainty of the estimated LAI.84
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2. Materials and methods85

2.1. Forest reflectance model86

In this work, forest spectra (i.e. hyperspectral mea-87

surements) are modeled using the PARAS forest re-88

flectance model [12] which is based on the concept of89

photon recollision probability. The PARAS model has90

the advantage of containing relatively few independent91

variables and performing well in boreal forests [12].92

The bidirectional reflectance factor (BRF) of a forest,93

r(θ1, θ2, λ), for a given solar zenith angle θ1, viewing94

zenith angle θ2, and wavelength λ, is modeled as: [12]95

r(θ1, θ2, λ) = ρg(θ1, θ2, λ)tc(θ1)tc(θ2)

+ f (θ1, θ2, λ)ic(θ1)
ωL(λ) − pωL(λ)

1 − pωL(λ)
,

(1)

where ρg is the BRF of the understory layer, tc is the tree96

canopy transmittance, ic = 1 − tc the tree canopy inter-97

ceptance, f the canopy upward scattering phase func-98

tion and ωL the leaf single scattering albedo. The pho-99

ton recollision probability p is used in the model to de-100

scribe the aggregated structure of forest canopies. It is101

the probability that a photon, after having survived an102

interaction with a canopy element, will interact with the103

canopy again.104

The first term in Equation (1) describes the part of105

radiation that has penetrated the tree layer canopy and106

reflected upwards through the tree canopy after interact-107

ing with the understory layer. The second term models108

the radiation that has hit the tree canopy and scattered in109

the viewing angle. Even though the model ignores mul-110

tiple interactions between the tree and understory layers,111

it has simulated reflectance factors similar to those ob-112

tained from satellite images [12]. If the model were to113

be used in snow conditions, i.e. with a highly reflecting114

background, modifications would be needed [13].115

In this study, the following assumptions and approxi-116

mations are made in parameterizing the PARAS model.117

We assume that LAI is related to the effective leaf area118

index (LAIeff, commonly measured by e.g. the LAI-119

2000 Plant Canopy Analyzer) through a species-specific120

shoot clumping factor β so that LAIeff = βLAI. Factor121

β, in turn, is related to the shoot silhouette-to-total-area122

ratio (STAR) as β = 4STAR.123

The photon recollision probability p is approximated124

according to [14] as125

p = 1 −
1 − td
LAI

= 1 −
β(1 − td)

LAIeff

, (2)

where td is the diffuse transmittance for the tree canopy126

layer. The canopy transmittance is modeled using Beer-127

Lambert’s law as128

tc(θ) = exp
(
−
β

2
LAIeff

cos θ

)
, (3)

from which the diffuse canopy transmittance td in equa-129

tion (2) is calculated following [13]:130

td = 2
∫ π

2

0
tc(θ) cos(θ) sin(θ)dθ. (4)

The upward scattering phase function f (θ1, θ2, λ) is ap-131

proximated using the proportion of upward scattered ra-132

diation Q as [15]133

f (θ1, θ2, λ) ≈ Q =
1
2

+
q
2

1 − pωL

1 − pqωL
, (5)

where q in is a wavelength independent semi-empirical134

scattering asymmetry parameter. Parameter q describes135

the decrease in probability of the photon escaping the136

canopy with increasing scattering order, in other words,137

it models how photon escape probability decreases as138

the photon scatters deeper inside the canopy. Thus q is139

related to canopy density and increases with LAI (Table140

2 in [15]).141
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2.1.1. Wavelength dependence142

Leaf albedo ωL and understory reflectance ρg are143

wavelength dependent parameters. Thus, in the model,144

ωL and ρg are vectors of the same length as the satellite-145

measured data vector. To reduce the number of un-146

known variables in the inverse problem, we utilize147

known features of the vegetation spectra: The (green)148

vegetation spectra have a typical shape which features149

strong correlations between reflectance parameters cor-150

responding to certain wavelengths and discrete jumps151

across other wavelength intervals. (For further discus-152

sion and references to experimental works on determin-153

ing the vegetation spectra, see Section 2.2.2). This en-154

ables the use of reduced order parametric representa-155

tions for ωL and ρg. More specifically, we use cubic156

monotone Hermite splines to represent the spectral vari-157

ables using 27 manually chosen node points that are158

illustrated in Figure 1. The cubic monotone Hermite159

spline is monotone between the node points and thus the160

curve can change direction only on a node. By placing161

the node points on the typical peaks and troughs of the162

vegetation spectrum, with additional control nodes in163

between, the spline representation can follow the typical164

shape of the spectrum with sufficient accuracy. Figure165

1 also shows an example of how the spline representa-166

tion follows an original spectrum. Using the spline, the167

variables ωL and ρg are rewritten as168

ωL = S (λ; λ̃, ω̃L), (6)

ρg = S (λ; λ̃, ρ̃g), (7)

where S ( · ) is the spline function (piecewise polyno-169

mial), λ̃ ∈ R27 is a vector consisting of wavelengths170

corresponding to the spline nodes, and ω̃L ∈ R27 and171

ρ̃g ∈ R27, respectively, are the values of ωL and ρg at172

the node points λ̃. Because λ̃ is fixed, the spline ap-173

proximations (6) and (7) are fully determined by ω̃L and174

ρ̃g, respectively. Thus, using the spline approximations,175

the low-dimensional vectors ω̃L and ρ̃g are substituted176

for full-length ωL and ρg as variables in the reflectance177

model.178

Figure 1: Spline approximation of a vegetation spectrum (synthetic

understory reflectance) of 150 spectral bands, the original spectrum

is shown with a solid line, the spline approximation with dashed line

and the node points of the spline approximation with circles. The

relative error between the approximation and the spectrum is shown

with a dotted line. The figure also shows the division of the spectrum

to correlated parts.

2.2. Bayesian inversion179

Let us denote the vector of satellite measured bidi-180

rectional reflectances on the Nλ = 150 spectral bands181

by r ∈ R150 and the vector of unknown variables by182

x =

[
LAIeff ω̃T

L ρ̃T
g β

]T
∈ R56. In the following,183

the problem of estimating the unknown model parame-184

ters x from the satellite measurements r is formulated as185

a problem of Bayesian inference. In a Bayesian setting,186

both the measurements r and the model unknowns x are187

modeled as random variables.188

Let the parameters x have a prior probability density189

π(x), which contains the available information on x be-190

fore the reflectance measurements have been done. In191
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Bayesian inference, the prior density is then updated192

with the information gained from the measurements by193

using the Bayes theorem194

π(x|r) =
π(r|x)π(x)
π(r)

∝ π(r|x)π(x), (8)

where π(r|x) the likelihood function containing the in-195

formation from the measurements, and π(x|r) is the pos-196

terior density for the unknowns x, i.e., the conditional197

probability density of x given the measurements r. The198

posterior density π(x|r) is the full solution of a Bayesian199

inverse problem; Section 2.2.3 discusses the exploration200

of the posterior density with an MCMC method, i.e.,201

finding useful point and spread estimates (such as pos-202

terior mean and credibility intervals) for x. The term203

π(r) in Eq. (8) can be thought of as a normalizing con-204

stant.205

2.2.1. The likelihood function206

The likelihood function π(r|x) in theorem (8) is de-207

rived from the measurement model. Here, we model the208

measurements r as209

r = h(x) + e, (9)

where h(x) is the PARAS model (1), including the ap-210

proximations (2), (5), (6), and (7), and e ∈ R150 is an ad-211

ditive error term. The error e describes the discrepancy212

between the PARAS model output and the measured r213

and contains both the model error and the measurement214

noise.215

In the case of the additive error model (9), the likeli-216

hood function π(r|x) gets the form217

π(r|x) = πe(r − h(x)), (10)

where πe( · ) is the density function of e. Here e is mod-218

eled as a multivariate normal distributed random vari-219

able with a zero mean and a covariance matrix Γe, and220

hence, the likelihood function is221

π(r|x) ∝ exp
(
−

1
2

(r − h(x))T Γ−1
e (r − h(x))

)
. (11)

The error e is modeled as uncorrelated, with standard222

deviation of 10% of the data r in each band.223

2.2.2. The prior density224

The prior density π(x) is a critical part of the Bayesian225

approach. In this work, separate prior densities for226

LAIeff, ω̃L, ρ̃g and β are constructed. Uniform densi-227

ties are used as priors for the scalar variables LAIeff and228

β. For the spectral variables ω̃L and ρ̃g, Gaussian ap-229

proximations are build based on empirical data that have230

been presented in the literature. The complete prior den-231

sity π(x) is finally formed by combining the variable-232

specific prior densities under the assumption of mutual233

statistical independence between LAIeff, ω̃L, ρ̃g and β.234

The effective LAI is by definition non-negative; also235

exceedingly large values of LAI are absent in a typical236

forest. As a prior distribution for LAIeff we use a uni-237

form distribution in the interval [0, 10]:238

π(LAIeff) =


1
10 , 0 ≤ LAIeff ≤ 10

0, otherwise.
(12)

Leaf albedo (ωL) measurements for the three most239

common tree species in Finnish boreal forest (Scots240

pine, Norway spruce, and birch species) were reported241

by Lukeš et al. [16]. In our prior construction, the aver-242

age of these species-specific albedos is used as the prior243

expected value for the node-point leaf albedo ω̃L, de-244

noted with µω̃L . Peltoniemi et al. [17] presented re-245

flectance measurements (BRF) of several common un-246

derstory types. The average of these measurements is247

used as the prior expected value for node-point under-248

story reflectance ρ̃g, denoted with µρ̃g . Note here that249
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the reported ω̃L and ρ̃g are averaged only over the tree250

species, not over the wavelength, and hence µω̃L and µρ̃g251

are vectors consisting of the average leaf albedos and252

understory reflectances corresponding to 27 wavelenghs253

λ̃. For both ω̃L and ρ̃g the prior standard deviation was254

set to 20% of the expected value. This amount of vari-255

ance was found to allow adequate range of possible ρ̃g256

and ω̃L values while still constraining the solution space257

sufficiently. The prior expected value and 95% credi-258

ble intervals for ωL and ρg are shown in Figure 2. The259

figure also includes the spectral data [16, 17] used for260

constructing the corresponding prior densities.261

Figure 2: The expected values and 95% credible intervals for the prior

densities of ωL (top) and ρg (bottom), and the data used for construct-

ing the priors.

The vegetation spectra have strong spectral correla-262

tion structure which is utilized in the prior. The model263

for the correlation structure of both ωL and ρg is written264

as follows: First, an uncorrelated Gaussian noise com-265

ponent is written to model the independent variations266

of the values of ωL and ρg at the node points (i.e. ele-267

ments of ω̃L and ρ̃g). Secondly, the measured band is268

divided into four non-overlapping parts (Figure 1), and269

the node points within each part are taken to be mutu-270

ally strongly correlated. Thirdly, the background varia-271

tion in the spectra is modeled with an additional corre-272

lation shared by all the nodes. The four parts in Figure 1273

were chosen to reduce the correlation over the red edge274

between parts 1 & 2, and the water absorption bands be-275

tween parts 2 & 3 and 3 & 4. This makes the prior fit276

better to different canopy and understory species com-277

positions.278

The associated prior correlation matrix R is thus279

R =κind. I
27×27

+ κpartRpart + κall 1
27×27

,

s.t. κind. + κpart + κall = 1,
(13)

where κind. is the strength coefficient of uncorrelated-280

ness, κpart is the strength coefficient of correlation within281

the four band parts shown in Figure 1, κall is the strength282

coefficient of background correlation, I is identity ma-283

trix, 1 is a matrix consisting of ones, sizes of the matri-284

ces are denoted under the symbols, and finally285

Rpart =



1
6×6

0 0 0 0

0 I
1×1

0 0 0

0 0 1
10×10

0 0

0 0 0 1
5×5

0

0 0 0 0 1
5×5


. (14)

In this study we use the values κind. = 0.3, κpart = 0.4,286

κall = 0.3.287

Using the correlation matrix R, the prior covariance288
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matrices for ω̃L and ρ̃g are then respectively289

Γω̃L = S ω̃L RS ω̃L (15)

Γρ̃g = S ρ̃g RS ρ̃g , (16)

where S ω̃L and S ρ̃g are diagonal matrices that contain290

the prior standard deviations of ω̃L and ρ̃g on their main291

diagonal. With the expected values and the covariance292

matrices, the Gaussian prior densities for ω̃L and ρ̃g,293

constrained to the range [0, 1], are294

π(ω̃L) ∝


exp

(
− 1

2 (ω̃L − µω̃L )T Γ−1
ω̃L

(ω̃L − µω̃L )
)
, 0 ≤ ω̃L ≤ 1

0, otherwise,

(17)

π(ρ̃g) ∝


exp

(
− 1

2 (ρ̃g − µρ̃g )T Γ−1
ρ̃g

(ρ̃g − µρ̃g )
)
, 0 ≤ ρ̃g ≤ 1

0, otherwise.

(18)

Due to the monotonicity of the chosen spline represen-295

tations (6) and (7), constraining only the node points to296

the physically possible range [0, 1] is sufficient to keep297

the spectral variables ωL and ρg in that range every-298

where.299

The shoot clumping parameter β for the conifer-300

ous species varies between 0.4 and 0.6 [18]. For301

broadleaved species, β = 1 by definition. Defining β302

for mixed canopies is problematic. For the sake of prac-303

ticality it is assumed that there is an effective canopy-304

wide β that describes the average shoot clumping ef-305

fect. We take this to be the weighted average of species-306

specific β’s. For β we use a uniform prior on the interval307

[0.4, 1]308

π(β) =


5
3 , 0.4 ≤ β ≤ 1

0, otherwise.
(19)

It would be possible to model also the correlations309

between the variables LAIeff, β, ω̃L and ρ̃g. However,310

quantified information on these correlations is scarce.311

Therefore it is approximated that these variables are mu-312

tually independent. With this approximation, the result-313

ing prior density for x is314

π(x) = π(LAIeff)π(ω̃L)π(ρ̃g)π(β). (20)

2.2.3. The posterior density and estimates315

Substitution of equations (11) and (20) to the Bayes’316

theorem (8) gives out the posterior density π(x|r). The317

posterior density is used for computing point and inter-318

val estimates for the variables x. In this study, the pos-319

terior mean is used as the point estimate for x. As an320

interval estimate, 95% credible intervals are computed.321

A 95% credible interval for variable xi ∈ R is an interval322

[a, b] that satisfies323 ∫ b

a
π(xi|r)dxi = 0.95, (21)

where π(xi|r) is the posterior marginal density of the324

variable xi. Note that here xi is a single element of325

the parameter vector x, such as the effective LAI or leaf326

albedo on a single band. Equation (21) has no unique327

solution: in this study the interval is chosen such that328

the probability mass below and above the interval [a, b]329

is equal.330

Computation of the posterior mean and credible in-331

tervals requires integration over the posterior density.332

This can be accomplished numerically using for exam-333

ple Markov chain Monte Carlo (MCMC) methods (e.g.334

[19]). In MCMC methods, a random walk is used to335

draw samples from the underlying distribution and these336

samples are then used to approximate statistics of the337

distribution.338

As the MCMC method, we use the delayed rejec-339

tion adaptive Metropolis (DRAM) algorithm [20]. The340

DRAM algorithm is formulated as follows. Denote a341
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Gaussian proposal distribution by q(y; λ,C), where µ is342

the expected value and C is the covariance matrix. This343

distribution is used to generate the next proposed state344

in the random walk.345

1. Initialization: Choose a point x(0) to be the start346

state of the random walk and choose an initial pro-347

posal covariance matrix C.348

2. Metropolis step, do for each iteration i:349

(a) Sample a candidate y(i) from the proposal350

distribution q(y; x(i−1),C) (the Gaussian pro-351

posal distribution is now centered on the pre-352

vious state x(i−1)).353

(b) Calculate acceptance ratio:

α1 =
π(y(i)|r)
π(x(i−1)|r)

.

(c) Accept the new candidate y(i) with probability354

min{1, α1}. If accepted, set x(i) = y(i).355

3. Delayed rejection step, do if the candidate y(i) was356

rejected:357

(a) Sample a new candidate η(i) from the second358

level proposal distribution q(η; x(i−1), γC),359

where γ is a scaling factor.360

(b) Calculate

α12 =
π(η(i)|r)
π(y(i)|r)

(c) Calculate the second level acceptance ratio:

α2 =
π(y(i)|r)q(η(i); y(i),C)(1 − α12)

π(x(i−1)|r)q(η(i); x(i−1),C)(1 − α1)
.

(d) Accept the new candidate η(i) with probabil-361

ity min{1, α2}. If accepted, set x(i) = η(i), oth-362

erwise keep the previous state and set x(i) =363

x(i−1).364

4. Adaptation, do every kth iteration: Compute a new365

proposal covariance C = sCov(x(0), . . . , x(i)) + sεI,366

where Cov(x(0), . . . , x(i)) is the sample covariance367

of the states x(0), . . . , x(i), s is a scale parameter, I368

is an identity matrix and ε is a small positive con-369

stant. The sεI term ensures that the new proposal370

covariance is nonsingular.371

5. Run until i = N + B, where N is the desired num-372

ber of samples and B is the length of the burn-in373

period. Discard the first B states x(0), . . . , x(B).374

If the steps 3 and 4 are omitted from the above algo-375

rithm, it reduces to the standard Metropolis algorithm.376

The delayed rejection and adaptation steps make the al-377

gorithm more efficient than the standard Metropolis and378

make the method more robust against poorly chosen ini-379

tial proposal covariance.380

In this paper, a total of N = 600000 Monte Carlo381

samples are computed using 12 parallel random walks382

of 50000 samples each. The length of the burn-in period383

is chosen to be 5000 samples. In the delayed rejection384

step of the DRAM algorithm, covariance scaling factor385

of γ = 0.1 is used. The adaptation step in DRAM is386

done after every k = 200 iterations, with parameters387

ε = 10−5 and s = 2.4/
√

56.388

2.3. Simulation studies389

In this study, the effect of unknown reflectance model390

parameters on the LAI estimates is investigated using391

synthetic hyperspectral remote sensing (i.e. forest spec-392

tral) data. Synthetic data is used for the sake of valida-393

tion: while the parameters LAI, β, ωL and ρg are labo-394

rious to measure on field, the simulation studies allow395

for comparison of the estimates with the true values.396

However, care must be taken in analyzing the results,397

because when using simulated data, not all model inac-398

curacies are accounted for.399
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2.3.1. Simulated stands400

A total of 500 random synthetic boreal forest stands401

were generated and the forest reflectance was simulated402

using the PARAS model. The simulated spectra consist403

of 150 spectral bands emulating the EO-1 Hyperion in-404

strument. First, the dominant tree species (pine, spruce405

or broadleaved) was chosen with uniform probability.406

The proportion of the dominant species in the species407

mixture was sampled uniformly from the interval 50%–408

100%; the remainder was then randomly divided be-409

tween the two minority species. The composition of the410

understory layer was then sampled to roughly emulate411

the typical species composition of a Finnish boreal for-412

est with the chosen dominant tree species, that is, the un-413

derstory of broadleaved stands contains mostly grasses414

and some dwarf shrubs, spruce dominated stands have415

mosses and bilberry, and pine stands have mosses, lin-416

gonberry, heather and lichens. Ranges of the understory417

components are presented in Table 1.418

Table 1: Understory composition of the simulated forest stands.

Species Pine Spruce Broadleaved

Mosses 0 – 50% 40 – 100% 0 – 30%

Bilberry n/a 0 – 50% 0 – 30%

Lingonberry 0 – 100% n/a n/a

Heather 0 – 100% n/a n/a

Lichens 0 – 100% n/a n/a

Grasses n/a n/a 30 – 100%

Soil 0 – 10% 0 – 10% 0 – 10%

The leaf area index was chosen randomly from the419

uniform distribution U(0, 5). The leaf albedo ωL and420

understory reflectance ρg were formed as a linear com-421

bination of the experimental values presented in [16]422

and [17], respectively, according to the sampled species423

fractions of both the tree layer and the understory. Fi-424

nally, the shoot clumping factor was sampled based on425

the tree species combination, with deciduous tree frac-426

tion contributing β = 1, spruce β ∼ N(0.5, 0.052) and427

pine β ∼ N(0.6, 0.052).428

After all the input parameters were sampled, the429

PARAS model was used to simulate the forest re-430

flectance. Gaussian random noise with standard devi-431

ation of 10% of the reflectance on each band was added432

to the modelled reflectance. The variance of this sim-433

ulated radiometric noise was somewhat higher than in434

most real instruments to compensate for the lack of sys-435

tematic errors in the simulated data.436

2.3.2. Maximum likelihood estimates437

The conventional approach to model based estimation438

of LAIeff is to invert the reflectance model correspond-439

ing to parameters ωL, ρg and β that are fixed to some440

a priori defined values. We studied the tolerance of441

such LAIeff estimate to misspecification of the param-442

eters ωL, ρg and β. More specifically, we considered443

conventional maximum likelihood (ML) estimates, ob-444

tained by maximizing the likelihood function (11) with445

respect to LAIeff.446

For each of the 500 study stands, the ML estimate447

was computed using two choices of parameters ωL, ρg448

and β: 1) In the first ML estimate, the true parameter449

values in the corresponding study stand were used. This450

choice is of course unrealistic, since these parameters451

are practically always unknown. 2) In the second set452

of ML estimates, parameters ωL, ρg and β were fixed453

to their average values over the ensemble of simulated454

study stand test, i.e., to their population means. The lat-455

ter estimate can be considered as a solution correspond-456

ing to the best realistically available approximation for457

the parameter values, and is expected to exhibit estima-458
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tion error that is caused by the misspecification of the459

parameters.460

The one-dimensional optimization problem (maxi-461

mizing (11) with respect to LAIeff) was solved by brute462

force to 0.1% accuracy, to ensure that the resulting es-463

timate was the global maximum (due to the nonlinear-464

ity, the likelihood has multiple local maxima in some465

cases). For computational reasons, the range of LAIeff466

was constrained to [0, 10].467

2.3.3. Bayesian estimates and reference methods468

Next, the capability of the Bayesian approach to469

tackle to problem of unknown model parameters ωL, ρg470

and β was studied. In the Bayesian inference, LAIeff,471

ωL, ρg and β were simultaneously estimated from the472

reflection data, as described in Section 2.2.473

The Bayesian estimates were compared with two ref-474

erence methods: 1) The ML estimates of LAIeff corre-475

sponding to parameters ωL, ρg and β fixed to their popu-476

lation means (see Section 2.3.2), and 2) empirical linear477

regression with a narrow-band vegetation index (VI).478

We compared our new Bayesian approach with a typi-479

cal empirical vegetation index using two narrow spectral480

bands. As there are a wide range of spectral indices in481

applied in hyperspectral remote sensing of vegetation,482

we selected the simple ratio water index (SRWI) which483

has recently been reported as the best performing index484

for estimating LAIeff in our biome of interest, i.e. the485

boreal forests [2]. The SRWI is defined as486

SRWI =
r854

r1235
. (22)

To construct the the empirical regression model, first, a487

separate set of 100 random stands were simulated and488

the SRWI was calculated for each stand. Ordinary lin-489

ear regression was then performed between LAIeff and490

SRWI in the training set. The regression model was then491

used to estimate LAIeff for each of the 500 study stands.492

We note that as the empirical VI regression estimate493

does not rely on a reflectance model, it does not re-494

quire specifying the model parameters ωL, ρg and β.495

However, the uncertainty of these parameters does have496

an implicit effect on the accuracy of the VI regression497

based LAIeff estimates: variation of these parameters in498

the training set obfuscates the correlation between the499

spectral reflectance data r and LAIeff.500

2.3.4. Effect of prior model on Bayesian estimate501

We also studied the effect of the prior model on the502

Bayesian estimate. Hence, in addition to computing503

the Bayesian estimate corresponding to data based, in-504

formative prior models described in Section 2.2, the505

Bayesian estimate was also computed using uniform506

priors for all the parameters. The uniform priors simply507

constrain LAIeff to the range [0, 10], ωL and ρg to the508

range [0, 1] and β to [0.4, 1]. This estimate corresponds509

to one introduced by Zhang et al. [11].510

3. Results and discussion511

3.1. Sensitivity of the maximum likelihood estimate to512

model uncertainties513

The results of studing the sensitivity of the ML es-514

timate to model uncertainties is illustrated in Figure 3.515

When the true values of ωL, ρg and β are used in the516

reflectance model, the estimated LAIeff are very close to517

their true values in almost every study stand (Figure 3,518

left). Only a few significantly erroneous estimates are519

present – those estimates probably correspond to large520

realizations of observation noise. Moreover, the scatter521
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Figure 3: Estimated LAIeff vs. true LAIeff ML estimates correspond-

ing to models with correct values of ωL, ρg and β (left) and their pop-

ulation mean values (right). Pine dominated stands are marked with

circles, spruce dominated with squares and deciduous with triangles.

plot shows a slight increase of the estimation error with522

increasing LAIeff; this is caused by saturation of the for-523

est reflectance: with the increase of LAI, the sensitivity524

of the reflectance measurements to a change in LAI de-525

creases.526

The ML estimates corresponding to the reflectance527

model with misspecified parameters ωL, ρg and β (Fig-528

ure 3, right) feature large errors. In particular, ML es-529

timates are zero for several cases where the canopy is530

dense in reality, and on the other hand, several ML es-531

timates are equal to 10 in cases where the true value of532

LAIeff is between 2 and 5. In total, 28% of the ML es-533

timates are above the maximum simulated LAI value of534

5. We note that accumulation of the ML estimates to535

values 0 and 10 is a result of bounding these estimates536

to the interval [0, 10] – without these constraints, many537

of the estimates would be even more biased.538

The root mean square errors (RMSE) and biases of539

the two ML estimates are shown in Table 2. The com-540

parison of the errors confirms the observation made541

based on Figure 3: the use of the approximate choices542

of parameters ωL, ρg and β leads, on average, to large543

errors in the LAIeff estimates.544

The results demonstrate that ML estimates are highly545

intolerant to misspecification of parameters in the re-546

flectance model. This intolerance is associated with ill-547

posedness of the inverse problem spanned by the re-548

flectance model – small/moderate errors in the data or549

model can cause large errors in the estimates. Hence,550

although only ML estimates were considered in this551

study, caution should be taken in the interpretation of552

any model based LAI estimate which does not take into553

account the uncertainty of the model parameters.554

Table 2: RMSE, relative RMSE and bias of effective LAI estimates
for the Bayesian posterior mean estimates, the reference empirical VI
regression and maximum likelihood estimates.

RMSE RMSE% bias

ML estimate
- correct model 0.19 7.81 0.0013
- approximate model 3.41 137.78 0.91

Posterior mean
- informative prior 0.61 24.62 -0.0002
- uniform prior 1.14 45.88 -0.17

VI regression 1.10 44.36 0.11

3.2. Performance of the Bayesian estimates555

In this section, we discuss the performance of the556

Bayesian estimate with informative, data based pri-557

ors. First, the full Bayesian solutions – including not558

only the point estimates but also credible intervals of559

the model unknowns – are illustrated with two exam-560

ple cases: one with low LAI (Section 3.2.1) and one561

with high LAI (Section 3.2.2). Comparison between562

the Bayesian estimates and the reference methods is563
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made. Finally, the performance of these estimates is564

rated based on the statistics of the results correspond-565

ing to the set of 500 study stands (Section 3.2.3).566

3.2.1. Example 1: low LAI case567

The first example stand is a spruce dominated stand568

with a low leaf area index of LAIeff = 0.42. The spec-569

tra of ωL and ρg (the ‘simulated true values’) are de-570

picted in Figure 4. The figure also illustrates the the571

prior marginal densities of ωL and ρg, and the (fixed)572

spectra of ωL and ρg used in the ML estimate of LAIeff573

(see Section 2.3.1) for comparison.574

Figure 4: Prior marginal densities and prior expected values of leaf

albedo and understory reflectance. The figure also contains the true

values of ωL and ρg of the examples 1 and 2, and the assumed values

of ωL and ρg used in computing the ML estimates.

The results of Example 1 are illustrated in Figure 5.575

The top image of Figure 5 represents the Bayesian es-576

timates for the effective LAI corresponding to the in-577

formative priors; the posterior mean estimate is marked578

with a circle, and the 95% credible interval is shaded579

with gray. The true simulated value of the effective LAI580

is marked in the figure with a cross.581

The Bayesian posterior mean estimate for LAIeff is582

0.74, and hence, somewhat overestimates the true value583

LAIeff=0.42. On the other hand, the 95% (posterior)584

credible interval is [0.41, 1.07], i.e., the true value 0.42585

lays inside this interval. It is notable that in this example586

case the 95% credible interval is significantly narrower587

than the a priori range [0, 10] for LAIeff.588

Posterior marginals for the leaf albedo ωL and under-589

story reflectance ρg as function of wavelength are illus-590

trated in the center and bottom of Figure 5 respectively.591

In the case of low LAI the posterior 95% CI covers the592

true value of ωL throughout the range (Figure 5, center).593

However, the posterior of ωL is wide, nearly as wide as594

the prior density in some wavelengths, implying high595

uncertainty for the estimated values of ωL. This is an596

expected outcome: In the case of low LAI, the reflect-597

ing surface area of the leaves is small, and the contribu-598

tion of ωL to the reflectance measurements is relatively599

low, i.e., the sensitivity of the measurements to ωL is600

low, and consequently, ωL remains uncertain after the601

inference from the data.602

The posterior density of ρg (Figure 5, bottom), on the603

other hand, is rather narrow. This is again an expected604

result: In the case of low LAI, the understory has a large605

effect on the measured reflectance, and in contrary to606

ωL, the measurements are sensitive to ρg.607

The ML estimate for the effective LAI is marked in608

Figure 5 (top) with symbol ‘4’. In the case of low LAI,609
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the ML estimate for LAIeff is 0.66. Thus, the ML es-610

timate is relatively close to the true value (0.42), even611

slightly more accurate than the Bayesian posterior mean612

estimate. We note that in this example case, the true613

spectra of ωL and ρg were relatively close to the corre-614

sponding values assumed when computing the ML, and615

hence, the effect of uncertainties of this parameters in616

the LAIeff estimates is minor.617

The VI regression estimate is marked in Figure 5618

(top) with symbol ‘5’. In the low LAI case, the VI619

regression estimate equals to 1.70, and is thus clearly620

worse than the model-based estimates.621

3.2.2. Example 2: high LAI case622

In Example 2, LAIeff was 4.87 and the stand was623

dominated by pine. The results of this example case624

are shown in the Figure 6. The Bayesian CM estimate625

equals to 4.56, and is thus rather close to the true value.626

In this case the posterior density of LAIeff (Figure 6,627

top), is significantly wider than in Example 1 (Figure628

5, top), implying that on high LAI stands, the estimate629

for LAIeff has larger uncertainty. This stems from the630

saturation of the forest reflectance mentioned in Section631

3.1: when the canopy gets very dense, the sensitivity632

of the reflectance measurements to a change in canopy633

LAI gets low. Note also that in both example cases, the634

posterior density of LAIeff is skewed to the left; this is635

another indication of the higher uncertainty of the large636

LAI values caused by the saturation effect.637

The posterior marginals for the leaf albedo ωL and638

understory reflectance ρg in Example 2 are shown in the639

center and bottom of Figure 6, respectively. In this case,640

the posterior density of ωL is very narrow, indicating a641

high credibility for the estimated ωL. On the other hand,642

the posterior density of ρg is wide in Example 2, indi-643

cating high posterior uncertainty of ρg. These are again644

an intuitive results: While in the low LAI case, the sen-645

sitivity of reflectance measurements to ωL is poor, lead-646

ing to high posterior uncertainty of ωL, in the high LAI647

case, the measured forest reflectance results nearly en-648

tirely from canopy scattering, with almost no understory649

contribution, leading to high credibility of the estimated650

ωL and high uncertainty of ρg.651

In Example 2, the ML estimate for LAIeff (‘4’ in Fig-652

ure 6, top) was 8.44, which is a heavily overestimated653

value. This error is again related to the saturation of the654

forest reflectance with high LAI. It is notable, that the655

ML estimate for LAIeff is poor even though the the error656

in the variable ωL behind the ML estimate is rather low657

(Figure 4). However, there is significant error in ρg and658

some error in β (β = 0.71 in the ML estimate vs. true659

value of 0.65).660

In this example case, the VI regression estimate (rep-661

resented by ‘5’ in Figure 6, top) was 4.07, i.e., slightly662

closer to the true value than in Example 1. This, how-663

ever, does not mean that the VI regression estimates get664

generally better when LAI increases; in contrast, the665

set of simulations in the next section demonstrate that666

the overall accuracy of the VI regression estimates de-667

creases with the increase of LAI.668

3.2.3. Performance of the estimates over a set of 500669

study stands670

The performance of the Bayesian posterior mean es-671

timates and the VI regression estimates is illustrated in672

Figure 7, showing a scatter plot of the estimated LAIeff673

versus the true value of LAIeff corresponding to each es-674

timation method.675

Generally, the Bayesian posterior mean estimates us-676
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ing the informative prior yield quite reliable estimates:677

In the entire range [0, 5] of LAIeff, these estimates pos-678

sess only small/moderate errors, except for a few out-679

liers (Figure 7, top left). Especially, in some dense pine680

dominated stands the LAIeff is largely overestimated,681

and in a few deciduous stands the LAIeff is underesti-682

mated. Overall, the error increases with increasing LAI683

– as expected, due to saturation effect discussed above.684

The comparison of the scatter plots of the Bayesian685

estimates in Figure 7 (top left) and the ML estimates in686

Figure 3 shows that the Bayesian estimates are not as687

accurate as the ML estimates corresponding to models688

with correct parameters ωL, ρg and β (Figure 3, left).689

However, the Bayesian estimates clearly outperform the690

ML estimates corresponding to parameters ωL, ρg and β691

fixed to their population means (Figure 3, right). This692

observation is verified by the statistics of the estimates693

shown in Table 2: The RMSE of the Bayesian estimate694

is larger than the RMSE of the ML estimate with the695

correct parameters but significantly smaller than that of696

the ML estimate with the approximate parameters. The697

bias is, in fact, smaller than either of the ML estimates.698

The results support the feasibility of the Bayesian ap-699

proach to inversion of the reflectance model: Although700

the accuracy of the estimates decreases from the ideal701

case where the parameters are known, the Bayesian esti-702

mates tolerate the uncertainties of the reflectance model703

significantly better than ML estimates using approxi-704

mate values for the parameters.705

The scatter plot of the VI regression estimates is706

drawn in Figure 7 (top right). This plot shows signif-707

icantly larger variation from the true LAIeff than the708

Bayesian CM estimates corresponding the informative709

prior, and in the small values of LAIeff (especially for710

0 ≤ LAIeff ≤ 1), the VI regression estimates clearly711

feature a large positive bias. Table 2 reveals that the712

VI regression estimates are clearly less reliable than the713

Bayesian posterior mean estimates using the informa-714

tive prior, but more accurate than the ML estimates us-715

ing approximate parameters.716

3.3. Effect of prior model and uncertainty quantifica-717

tion718

The scatter plot of the Bayesian posterior mean esti-719

mate using the uniform prior is shown in Figure 7 (bot-720

tom). This plot and the statistics in Table 2 indicate721

that the accuracy of this estimate is in the same level722

as the accuracy of the VI regression estimate, i.e., the723

Bayesian estimates using the uniform prior are clearly724

more erroneous than those corresponding to the infor-725

mative prior. Especially the overestimation of LAIeff in726

dense pine dominated stands and the underestimation of727

LAIeff in deciduous stands is significantly larger when728

uniform prior is used. This result suggests that the con-729

struction of the informative prior models for the parame-730

ters ωL and ρg is advantageous over simply constraining731

these parameters.732

Table 3 shows the RMSE% and the bias for the es-733

timates of LAIeff, ωL, ρg and β based on Bayesian ap-734

proach. The results are represented for both Bayesian735

estimates: those corresponding to uniform priors and736

those with the informative priors.737

In cases of both prior models, the RMSEs of LAIeff738

and ωL have little variation with respect to the ma-739

jority species. For ρg the RMSE and bias of spruce-740

dominated stands are significantly better, which re-741

sults from the fact that the expected true ρg of spruce-742

dominated stands is closest to the prior mean for ρg. The743

direction of the bias for the pine and deciduous stands744
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points towards the prior mean. Another notable aspect745

is the relatively large overestimation of β on the spruce746

stands, which goes hand in hand with the overestimation747

of LAIeff on spruce-dominated stands. The results of the748

table indicate that when using the informative prior, the749

estimation accuracy is generally fairly good. When us-750

ing the uniform prior, the performance is consistently751

worse.752

In addition to evaluating the point estimates, we also753

investigated the feasibility of the Bayesian estimates to754

quantify the (posterior) uncertainty of the model un-755

knowns. For this purpose, we computed the coverage756

percentages of 95% credible intervals (CI%) for LAIeff,757

ωL, ρg and β; this statistic is defined as the percentage of758

stands on which the true parameter value lies within the759

computed 95% credible interval (Equation (21)). The760

ideal value of the CI% would be 95%.761

When using the informative priors, CI% of the effec-762

tive LAI for the whole set of stands is 82.40%, which763

indicates a slight underestimation of the uncertainty of764

LAIeff. For the other parameters, the CI% is close to765

95%, indicating that the approach gives a very good766

measure for the uncertainty of the estimated parame-767

ters. When using the uniform prior models for the pa-768

rameters, CI%s are generally poorer. Especially, CI%769

of LAIeff is only 59.20%, which indicates a large under-770

estimation of the estimate uncertainty.771

3.4. General discussion772

In this study, cubic monotonic Hermite splines were773

used to enforce smoothness on the spectral variables ωL774

and ρg and to implement dimension reduction. This rep-775

resentation has the strength that informative priors for776

the spectral variables can be constructed in a straight-777

forward way, if expected value and variance of those778

variables is known at the node points. This is a clear779

advantage compared to some other possible low dimen-780

sional representations such as those based on principal781

components.782

Overall, our results (Tables 2 and 3) support the use783

of informative prior models of the parameters ωL and784

ρg in the Bayesian inference based on the reflectance785

model. The results show clearly the smallest estima-786

tion errors for LAIeff when the informative prior models787

are used. Moreover, Bayesian approach with the infor-788

mative prior models provides at least somewhat feasible789

means for quantifying the estimate uncertainties, yet the790

uncertainty of the LAIeff was slightly underestimated791

in this numerical study. The informative prior formu-792

lation could be possibly further improved by including793

additional auxiliary information, for example seasonal-794

ity, forest inventory data and spatial correlation.795

4. Conclusions796

Estimation of canopy LAI from hyperspectral im-797

agery can be done via inversion of a forest reflectance798

model. Forest reflectance models, however, contain799

many other unknown, confounding variables in addition800

to LAI. In this paper, we investigated the effects of the801

model uncertainties on LAI estimates. Moreover, we802

studied whether the LAI estimates could be recovered803

from the errors caused by the model uncertainties by804

taking a Bayesian approach to forest reflectance model805

inversion. Moreover, we studied whether the Bayesian806

approach could be used of quantification of the estimate807

uncertainties.808

The proposed approach was evaluated using realistic809

simulated data representing boreal forests. The perfor-810

mance of the Bayesian estimates was superior to the ref-811
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erence estimates in RMSE and bias. The results also812

show, that if parameters other than LAI are fixed to813

their best-guess value, the estimates based on inverting814

the reflectance model are often vastly erroneous. We815

also tested the effect of prior model formulation for the816

model unknowns; i.e., the informative prior formulation817

was compared with simple uniform prior formulation.818

With the informative priors the Bayesian estimates pro-819

duced significantly smaller estimation errors and better820

estimates for the parameter uncertainty than with uni-821

form priors.822

The simulation results show that the Bayesian infer-823

ence provides a feasible framework to account for un-824

certainties in secondary reflectance model variables. In825

contrast to empirical VI regression methods, the pro-826

posed approach can utilize the full information content827

of hyperspectral data and not only (pre)selected spec-828

tral bands. Additionally, the quantified estimate uncer-829

tainty is important in uncertainty quantification of cli-830

mate models, if remotely sensed LAI is used as an input.831

In the future, the proposed approach has to be tested us-832

ing real measurements to validate these promising sim-833

ulation results.834
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hatalo, Optical properties of leaves and needles for boreal tree909

species in Europe, Remote Sensing Letters 4 (7) (2013) 667–910

676. doi:10.1080/2150704X.2013.782112.911

[17] J. I. Peltoniemi, J. Suomalainen, E. Puttonen, J. Näränen,912

M. Rautiainen, Reflectance properties of selected arctic-boreal913

land cover types: field measurements and their application in914

remote sensing, Biogeosciences Discuss. 5 (2008) 1069–1095.915

doi:10.5194/bgd-5-1069-2008.916
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Figure 5: Posterior marginal densities of effective LAI (top), leaf

albedo (center), and understory reflectance (bottom) for Example 1.

The shaded areas in the top picture correspond to the 50%, 90% and

95% posterior CIs from dark to light grey, respectively.

Figure 6: Posterior marginal densities of effective LAI (top), leaf

albedo (center), and understory reflectance (bottom) for Example 2.

The shaded areas in the top picture correspond to the 50%, 90% and

95% posterior CIs from dark to light grey, respectively.
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Figure 7: Estimated LAIeff vs. true LAIeff for the Bayesian posterior

mean estimates (top left), empirical VI regression estimates (top right)

and Bayesian posterior mean estimates using uniform prior (bottom),

Pine dominated stands are marked with circles, spruce dominated with

squares and deciduous with triangles.
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Table 3: Relative RMSE and relative bias of Bayesian posterior mean estimates, and coverage percentage of 95% credible intervals, by the majority
species. The spectral variables ωL and ρg are divided to visible light (c. 480 – 700 nm), NIR (c. 750 – 1350 nm) and SWIR (c. 1500 – 2350 nm)
components.

Uniform prior Informative prior

RMSE% bias% CI% RMSE% bias% CI%

LAIeff pine 37.44 -5.44 63.29 23.44 -7.34 78.48
spruce 36.02 12.24 69.51 23.51 12.44 86.59
decid. 60.69 -27.43 46.07 26.83 -5.32 82.02
all 45.88 -6.96 59.20 24.62 -0.0089 82.40

ωL, vis. pine 24.14 -2.09 99.64 12.06 2.88 99.19
spruce 27.20 1.06 99.07 12.73 7.45 98.40
decid. 30.95 7.03 99.01 11.25 -3.89 89.48
all 28.29 2.23 99.23 12.17 1.65 95.48

ωL, NIR pine 14.31 -7.83 86.23 9.57 -4.17 90.60
spruce 11.80 -5.25 94.84 4.42 -1.26 99.32
decid. 17.92 -11.25 85.59 5.26 -1.61 97.16
all 15.35 -8.34 88.83 6.70 -2.29 95.80

ωL, SWIR pine 21.36 -4.80 98.88 10.17 -0.15 99.82
spruce 21.87 0.83 98.94 12.54 4.42 99.49
decid. 23.41 -16.7 95.73 12.32 -8.35 88.16
all 23.37 -9.11 97.78 12.39 -2.99 95.56

ρg, vis. pine 48.94 30.57 99.37 30.98 -10.71 88.16
spruce 66.06 54.57 99.91 13.93 2.59 72.00
decid. 112.76 88.64 99.92 28.87 24.62 97.65
all 72.45 53.93 99.74 26.59 2.97 93.77

ρg, NIR pine 52.49 42.56 85.64 25.32 21.34 88.65
spruce 34.58 22.13 93.69 10.03 3.28 98.88
decid. 40.47 24.90 71.00 16.31 -6.31 92.76
all 42.13 28.66 83.06 17.51 4.02 93.47

ρg, SWIR pine 42.60 25.51 96.77 20.06 5.49 94.05
spruce 46.03 32.02 98.68 17.01 13.74 99.52
decid. 60.65 51.77 86.22 20.43 16.56 91.18
all 51.08 36.94 93.64 19.41 11.85 94.82

β pine 15.62 -0.16 89.24 13.06 -3.59 98.73
spruce 20.68 7.34 87.80 22.43 12.96 91.46
decid. 18.86 -12.36 84.27 6.35 1.74 97.19
all 18.87 -3.63 87.00 13.24 3.20 95.80
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