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Abstract
& Key message We present a data-driven technique to vi-
sualize forest landscapes and simulate their future devel-
opment according to alternative management scenarios.
Gentle harvesting intensities were preferred for maintain-
ing scenic values in a test of eliciting public’s preferences
based on the simulated landscapes.
& Context Visualizations of future forest landscapes according
to alternative management scenarios are useful for eliciting
stakeholders’ preferences on the alternatives. However, con-
ventional computer visualizations require laborious tree-wise
measurements or simulators to generate these observations.

& Aims We describe and evaluate an alternative approach, in
which the visualization is based on reconstructing forest can-
opy from sparse density, leaf-off airborne laser scanning data.
& Methods Computational geometry was employed to gener-
ate filtrations, i.e., ordered sets of simplices belonging to the
three-dimensional triangulations of the point data. An appro-
priate degree of filtering was determined by analyzing the
topological persistence of the filtrations. The topology was
further utilized to simulate changes to canopy biomass, resem-
bling harvests with varying retention levels. Relative priorities
of recreational and scenic values of the harvests were estimat-
ed based on pairwise comparisons and analytic hierarchy pro-
cess (AHP).
& Results The canopy elements were co-located with the tree
stems measured in the field, and the visualizations derived
from the entire landscape showed reasonably realistic, despite
a low numerical correspondence with plot-level forest attri-
butes. The potential and limitations to improve the proposed
parameterization are discussed.
& Conclusion Although the criteria to evaluate the landscape
visualization and simulation models were not conclusive, the
results suggest that forest scenes may be feasibly reconstruct-
ed based on data already covering broad areas and readily
available for practical applications.

Keywords Spatial multicriteria decision analysis . Public
participationgeographicinformationsystem(PPGIS) .Remote
sensing . Light detection and ranging (LiDAR) . Persistent
homology . Alpha shape

1 Introduction

Environmental and forestry decision making requires the
identification and comparisons of different management
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alternatives based on multiple objectives and stakeholders
(Kangas et al. 2008). Integrating information on the impacts
of management decisions with preferences of the stakeholders
results in a framework called multiple criteria decision analy-
sis (MCDA). When incorporated with a geographic informa-
tion system (GIS), the resulting applications are nowadays
called “spatial MCDA” or “public participation geographic
information system” (PPGIS; Sieber 2006), depending on
the involvement of the stakeholder. Early forestry applications
of spatial MCDA and PPGIS are provided by Store and
Kangas (2001) and Kangas and Store (2003), respectively.

Projecting future forest landscapes according to alternative
management scenarios is a particularly useful MCDA compo-
nent for participatory forest planning. For example, impacts of
growth, management practices, forest (logging) operations,
and locations of logging areas may affect the stakeholders’
preferences on the management alternatives. It has long been
recognized that even technically simple computer visualiza-
tions improve understanding of forest stand dynamics and
effects of management decisions (Pukkala and Kellomäki
1988; Burkhart 1992) and facilitate eliciting the related pref-
erences (Tahvanainen et al. 2001; Karjalainen and Tyrväinen
2002). Visualization techniques and applications are reviewed
in the forestry context by Mendoza et al. (2006) and Falcão
(2008) and techniques for extracting the decision makers’
preferences from the visualizations by Kangas et al. (2008).
Recent practical examples of incorporating the information
obtained in decision support and GIS frameworks are present-
ed byWarren-Kretzschmar and von Haaren (2014) and Lämås
et al. (2015).

The visualizations of forested landscapes require balancing
between the image realism, the desired resolution, and the
measurements available (cf. Bergen et al. 1998; Uusitalo and
Orland 2001). Even if extremely photorealistic forest scenes
may be obtained by combining botanical models of tree archi-
tecture with line graphics or real tree textures presented in
virtual reality environments (e.g., Aono and Kunii 1984;
Honjo and Lim 2001; Fujisaki et al. 2008), the tree and
branch-level measurements required by these techniques are
time-consuming and expensive. Unless tree-wise inventory
data are available, the landscapes need to be populated with
trees based on less detailed inventory data. A typical approach
is to simulate the locations and appearances of the individual
trees based on mean diameter, height, and structure informa-
tion (e.g., Karjalainen and Tyrväinen 2002). Particularly, the
use of mean-based attributes and thus the requirement to sim-
ulate the trees will result in generalizations and restrictions of
reality (Uusitalo and Orland 2001; Wang et al. 2006).

Techniques based on remote sensing provide significant
advances over conventional forest measurements.
Particularly due to its capability to present forest structure as
a point cloud mapped in 3D, airborne laser scanning (ALS;
also referred to in some instances as “airborne scanning

LiDAR”) has become an increasingly popular technique for
various forestry applications (Maltamo et al. 2014). However,
the use of ALS for visualizing forestry decision making has
been rare, to date, even though proposed already by Hill and
Veitch (2002), McGaughey and Carson (2003), and Ahlberg
et al. (2004). Despite the availability of feature-rich software
packages for visualizing ALS point clouds, rendering realistic
tree geometry from the point data poses a problem (Simons
et al. 2014). Typical approaches to parameterize a forest scene
in ALS-based analyses include populating a list of tree loca-
tions and dimensions using simple artificial turbid media such
as cones, ellipses, voxels (Schneider et al. 2014), or other
types of 3D primitives (Koch et al. 2014). A common problem
of these approaches is, however, the requirement for a very
high data density (e.g., tens of pulses per m2), whereas prac-
tically available data sets are typically collected for other pur-
poses such as ground elevation modeling with densities as low
as <1 pulses per m2 (e.g., Nord-Larsen and Schumacher 2012;
Villikka et al. 2012).

Triangulating point data and subsequent filtering of the
triangulations (e.g., Delfinado and Edelsbrunner 1995) has
been proposed as an alternative means to represent the 3D
canopy surface (Vauhkonen et al. 2014). As opposed to ap-
proaches that use fixed image elements and therefore require
specifying an artificial pixel or voxel resolution, the triangu-
lations are entirely based on the properties of the point data.
Applying filtrations, one can adjust the level of detail in the
triangulated point cloud and thus account for canopy gaps and
detailed properties existing in the data (see Sect. 2.2. for
details). The optimal degree of filtering is found to be forest
structure specific (Vauhkonen et al. 2016), whereas less de-
tailed information could suffice for generating realistic visu-
alizations of tessellated landscapes (Vauhkonen 2015). We
additionally propose that the topology based on the filtrations
could be utilized as a mechanism to simulate changes in the
forested landscapes visualized (Sect. 2.3.), which is
complicated based on simulated forest stand dynamics (cf.
Dreyfus 2012).

Even though the low resolution obtainable by the practical-
ly available sparse data most likely restricts the detail of the
visualizations, the decision maker may be expected to benefit
from representing real tree geometry (cf. Uusitalo and Orland
2001) and visual descriptions (cf. Tahvanainen et al. 2001)
instead of simulated and verbally or numerically described
forest scenes. Another practical benefit of our approach is that
required data can be feasibly extracted from any location cov-
ered by an ALS campaign such as those designed for
collecting sparse density data for ground elevation modeling.
Although the suitability of such data for forest inventories was
verified (Nord-Larsen and Schumacher 2012; Villikka et al.
2012), the benefits of using the spatially explicit 3D scenes
obtainable have not been fully employed despite the potential
identified earlier (Hill and Veitch 2002; McGaughey and
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Carson 2003; Ahlberg et al. 2004). Therefore, rather than de-
veloping another virtual reality platform aiming at improved
photorealism with high costs of collecting the required data,
we present a wireframe model on how to extract information
from the visualized forest scenes for a spatial MCDA to open
up discussion on the potential and limitations of the broadly
available sparse ALS point data to support forestry decision
making.

The purpose of this study is to describe a technique for
visualizing forest scenes from sparse density ALS data and
evaluate their potential for forestry decision support, making
a difference between (i) close-range and (ii) landscape levels.
The close-range visualizations correspond to a within-forest
view and up to a plot scale, whereas the landscape level shows
forest areas in scales of tens to hundreds of hectares corre-
sponding to typical properties managed by a single forest
owner. The forest scenes were obtained applying a triangulat-
ing and filtering technique to ALS data acquired originally for
ground elevation modeling. Regarding (i), we assessed the
correspondence of the forest canopy elements modeled as tet-
rahedra and obtained by filtering the triangulations with forest
attributes observed in the field. Regarding (ii), we introduce an
intuitive concept based on using the filtrations to simulate
changes to canopy biomass. The initial and simulated land-
scapes are visualized and demonstrated in eliciting public’s
preferences on scenic values resulting from biomass harvests
applied with varying intensities.

2 Material and methods

2.1 Study area and data

The study area is a typical, managed boreal forest in eastern
Finland. An area of 1000 × 1200 m located approximately on
62° 31.5′ N, 30° 11′ E was selected for the visualizations due
to the presence of a forest and lake mosaic, which likely pro-
duced high recreational and scenic values over the area. The
data for the visualizations included the locations of the lakes
and ALS data extracted from a topographic database. In addi-
tion, the ALS data were extracted for a number of field sample
plots existing in the area, and the field measurements co-
located with the ALS data were used to assess the correspon-
dence of the modeled canopy with respect to the field data.
The plots were located up to 2.5 km apart the visualized area
and were earlier used to study the spatial pattern and diameter
distribution of the trees from both the ecological and econom-
ic perspectives. Scots pine (Pinus sylvestris L.) and Norway
spruce (Picea abies [L.] Karst.), with a minor proportion of
deciduous species, were present in the plots, whereas the area
used for the visualizations was assumed to be nearly purely
pine-dominated.

The ALS data used in the study were acquired by the
National Land Survey of Finland as a part of their data acqui-
sition campaign for creating a nationwide ground elevation
model for Finland. The data were downloaded from a file ser-
v ice (h t tps : / / t i edos topalve lu .maanmi t taus la i tos .
fi/tp/kartta?lang=en), from which they are available for free
and with extensive permissions of use. The data were
acquired on April 30, 2012, with Leica ALS60 scanner
operated in a multipulse mode. The flying altitude was 2350
m, yielding a nominal pulse density of 0.8 m−2. The data
provider had detected and classified the ground level, on
which the normalization of the vegetation height values was
based. As the data are meant specifically for ground elevation
modeling, we assumed the accuracy of this classification to be
appropriate for our purposes. The analyses were focused only
on the first echoes (i.e., “only” and “first of many” of up to four
echoes recorded per pulse), aiming to obtain the main
information from the data (Vauhkonen et al. 2014), while
retaining most generalization abilities over sensors that record
a different number of echo categories (e.g., Næsset 2014).

The field plots were measured in May–June, 2010. All
trees with either diameter at breast height (DBH) ≥ 4 cm or
height ≥ 4 m were mapped for locations and measured for
species, DBH, and height. The measurements are described
in more detail by Packalén et al. (2013). For simplicity, the
plot size used in this study was standardized to 400 m2, rather
than varying from 400 to 900 m2 as in the earlier publications.
The standardization was achieved by creating rectangular
windows of 20 × 20 m with the center and orientation corre-
sponding to the original plot. The trees located within this
window based on the measured tree coordinates were extract-
ed for the analyses.

Plot-level basal area was computed based on summing
from the diameter measurements. Dominant height was deter-
mined as the mean height of 100 thickest trees per hectare
(four trees per plot). Individual stem volumes were estimated
by models of Laasasenaho (1982), employing the DBH,
height, and tree species as predictors. The models for birch
were used for all deciduous trees. The spatial pattern of the
trees was assessed by means of the Clark-Evans index (CEI;
Clark and Evans 1954) of the aggregation of a point pattern.
The CEI values were computed based on the tree coordinates
using the spatstat package of the R statistical computing en-
vironment (Baddeley and Turner 2005), applying an edge cor-
rection proposed by Donnelly (1978). General descriptive sta-
tistics of the field data are shown in Table 1.

2.2 Modeling the initial forest canopy using triangulations

In our approach, “visualization” essentially refers to visualizing
forest canopy geometry based on the 3Dmeasurements collect-
ed by an ALS sensor (e.g., Sun and Ranson 2000). The geom-
etry is composed of n-dimensional basic elements (points,

Annals of Forest Science (2017) 74: 9 Page 3 of 13 9

https://tiedostopalvelu.maanmittauslaitos.fi/tp/kartta?lang=en
https://tiedostopalvelu.maanmittauslaitos.fi/tp/kartta?lang=en


edges, facets, tetrahedra), which are referred to using generic
term “simplex” unless an element of a specific dimension is
particularly denoted. The main canopy elements are tetrahedra
obtained by subdividing the underlying space of the 3D mea-
surements, which is called triangulating. The entire triangula-
tion, referred to below also as “complex,” thus represents both
the canopy and empty space, which need to be divided to sep-
arate subcomplexes constructing a filter. The triangulations
were filtered using a well-known computational geometric or
topological concept called 3D alpha shapes (Edelsbrunner and
Mücke 1994), while an appropriate degree of filtering was de-
termined by analyzing persistence of the observed topology,
i.e., topological persistence or persistent homology
(Edelsbrunner et al. 2002). All computations were based on
Delaunay triangulations and implemented with C++ and
open-source libraries (Morozov 2012; Da et al. 2013; Pion
and Teillaud 2013). The applied workflow is described below,
but the mathematical formalism is intentionally left to the orig-
inal publications. Illustrations of all the concepts applied to
ALS data are presented by Vauhkonen (2015), for example.

Following earlier analyses with ALS point data
(Vauhkonen et al. 2014, 2016), the landscape was tessellated
to a regular grid with a cell size corresponding to the plot size
(20 × 20 m). The ALS data of each cell or plot was triangu-
lated and filtered separately. The problem related to using the
alpha shapes is the determination of a proper value for alpha
(α), which is a threshold for the squared radius of the
circumscribing sphere of each simplex and therefore a criteri-
on determining which simplices of the full triangulation be-
long to its current subcomplex, i.e., α-complex or α-shape.
Here, the value of α was selected based on filtration obtained
by ordering the α-complexes according to the values of α (see
also Delfinado and Edelsbrunner 1995).

During the filtration, i.e., by increasing the value of α,
simplices of a dimension d join together with other d-dimen-
sional simplices to form structures with a higher dimensional-
ity. Particularly, when the value of α allows two points (d = 0)
to connect, an edge of d = 1 between these two points is
formed. The edges further join to form facets (d = 2) and
tetrahedra (d = 3), the latter being the highest dimension con-
sidered here. Each simplex can thus be described by its per-
sistence in the structure formed. This index of persistence was

obtained as the absolute difference between the index values
of α causing the birth and death of simplices of the given
dimension.

Following the logic of the previous paragraph, a birth and
death diagram was computed for indices with d = 1 and d = 2.
Only these dimensions need to be considered, since those with
d = 0 or d = 3 do not born or die, respectively, in this process.
In the diagram, the most interesting observations are those off-
diagonal: These simplices are interpret to cause the most fun-
damental changes to the triangulated structure, typically at the
lowest values of α, while the diagonality of the observations
indicates stability (persistence) of those features. The maxi-
mum off-diagonal α at the death of both d = 1 and d = 2 was
hypothesized to reflect the primary persisting structures of the
obtained triangulation and was thus used as the α value deter-
mining the degree of filtering and thus the initial state of the
forest canopy.

The rationality of the obtained canopy was evaluated using
the field data. The observed tree (stem) positions and dimen-
sions were visualized with the canopy to assess the co-location
of these elements. Descriptive characteristics were extracted
from the triangulation-based canopy models and related with
the forest attributes measured in the field (Table 1). The value of
the parameterα resulting from the persistent homology analysis
and the total tetrahedral volume, percent of the plot area cov-
ered by the tetrahedral, and top height of the underlying space
of the specified α-complex were extracted, assuming these to
be related to the total tree attributes of a field plot. Additionally,
the number of connected tetrahedra with at least one joint edge
was computed, assuming this to be related to the number of tree
patches within the plot. The correspondence was assessed by
means of the coefficient of determination (R2).

2.3 Simulating changes to the canopy and assessing their
impacts to the scenery

2.3.1 Visualizing the landscape and harvests of canopy
biomass

The full landscapes were visualized using triangulation repre-
sentation (TriRep) and triangular surface plot (trisurf) func-
tions implemented in Matlab, version R2012a (MathWorks,

Table 1 Central characteristics
of the 71 field plots Attribute Mean Std Min Max

Stem volume, m3/ha 199.6 73.2 69.6 482.2

Basal area, m2/ha 24.9 6.6 12.2 43.7

Number of stems, 1/ha 1275.3 590.8 400.0 2875.0

Basal-area weighted mean diameter, cm 21.6 5.2 12.8 32.3

Dominant height, m 20.4 4.1 13.5 32.5

CEI, index value 1.09 0.16 0.69 1.41

Std standard deviation, Min minimum, Max maximum
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Inc., Natick, MA, USA). The landscapes were composed of
the adjacent 20 × 20 m cells processed according to Sect. 2.2.
Due to depicting solely canopy geometry, certain simplifica-
tions to the visualizing other elements were adopted. The
number or the spatial pattern of the tree stems could not be
precisely modeled, which is a typical result of ALS-based
analyses (e.g., Packalén et al. 2013). However, the
landscape-level visualizations were found to be more realistic
with at least some shadowing caused by the stems. A number
of the highest tetrahedra per cell were thus accompanied with
simulated tree stems. The number of stems was determined as
ceil(np × f × Vp/Hp), where np was the number of tetrahedra,
Vp was the total volume of these tetrahedra, Hp was the max-
imum ALS height value of the cell p, and f was a unit area
factor, in this case 1/400. The diameters of the stems (in me-
ters) were simulated as Ht/50, where Ht is the maximum
height of the considered stem t in meters. The applied rules
resulted in too few and too large trees, in general, but provided
the landscapes with such a realism that only the largest tree
stems were visible when looking from a distance. The pro-
duced landscapes were colored as pure pine forests, i.e., spe-
cies recognition was not attempted due to the low proportion
of other species. The ground level was depicted as perfectly
flat, since the fluctuations in the terrain elevation were known
to be minor in this area.

In addition to visualizing the initial canopy, reductions to
the canopy volume were simulated to portray harvests with
varying intensities. In the approach, simplices belonging to
the canopy were re-assigned as empty space by adjusting the
value of α parameter (see Sect. 2.2.) downwards. As a result,
the initial α-complexes were subtracted starting from the larg-
est tetrahedra, assuming this to correspond with harvests with
varying retention levels based on removing the largest trees
from the forest. The harvests were focused on one compart-
ment with a dense initial canopy. Altogether, five harvesting
intensities were defined bymultiplying the initial α by a factor
of 0.95, 0.75, 0.68, 0.6, and 0.5, which corresponded to an
average reduction of 17, 71, 83, 93, and 99%, respectively, of
the initial canopy volume (11,673 m3/ha on the area of the full
compartment, on average). The visualizations of the full land-
scape obtained as a result of the harvesting were labeled as
images A–E according to the increasing harvesting intensity
and are presented as Electronic Supplementary Material
(Online Resource 1).

2.3.2 Pairwise comparisons of the simulated landscapes

To obtain preference information on how the harvesting af-
fected the landscape, a pairwise comparison of the visualized
landscapes was implemented using the SurveyMonkey® on-
line platform (http://www.surveymonkey.com/). In the survey,
two simulated landscapes were shown at the time, asking a
question of which of the two images was better with respect to

the recreational use and the scenic values of the landscape and
how much better it was. The respondent was asked to express
his/her opinion on whether either image was (i) equally good,
(ii) slightly better, (iii) clearly better, (iv) considerably/strongly
better, or (v) absolutely better compared to the other. In the
following text, this decision is called the priority ratio of the
respondent between the two landscapes.

A link to the survey was submitted to the mailing list of the
forestry students of the University of Eastern Finland and
accompanied with brief instructions (translated from Finnish):

“The central compartment of [this] landscape is marked
to be harvested. Awalking trail and a ‘laavu’ (a tempo-
rary shelter for field lunch or camping) are situated in
the area of the compartment. The harvesting intensity is
not yet determined, but the aim is to maintain the recre-
ational value of the forest as high as possible.
In the survey, you are asked to compare two alternative
landscapes and select which harvesting intensity is bet-
ter suited with respect to the recreational use and scenic
values. The compartment to be harvested is delineated
with a red boundary in the image below. The other parts
of the landscape will not be affected. Start the survey by
clicking ‘Next image pair’ button.”

The survey was held open between 21 January and 12
February, 2015. The survey yielded altogether 57 responses,
of which 7 were incomplete (no response to one or more
comparisons). Altogether, 50 responses were thus analyzed
in the further study.

2.3.3 Preference elicitation

On the basis of the pairwise comparisons (Sect. 2.3.2.), rela-
tive priorities of the scenic values with respect to the harvest
intensities were estimated using the eigenvalue technique of
analytic hierarchy process (AHP; Saaty 1977, 1980). This
technique was used to convert verbal evaluations to ratio-
scale numerical values in a forestry decision support applica-
tion bearing a close resemblance to our study (Kangas et al.
1993).

In the approach, the priority ratios i–v (Sect. 2.3.2.) are
translated into numerical values of 1:1, 3:1, 5:1, 7:1, and
9:1, respectively. The values are arranged into a reciprocal
matrix A, and using the matrix as input, the numeric weights
or priorities of the pairwise comparisons are computed as the
right eigenvector of the largest eigenvalue (λmax) of A (Saaty
1977).

To assess the coherence of the pairwise comparisons, a
consistency index (CI; Saaty 1980), which estimates the level
of consistency with respect to the entire comparison process,
is derived by relating the value of λmax with the number of
comparisons made. The observed CI is further compared with
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an average CI obtained by randomly generated comparisons
in a matrix with a size corresponding to A (Saaty 1980). The
result is a consistency ratio (CR), which measures the coher-
ence on a scale of 0.1. According to a general rule of thumb,
comparisons with CR > 0.1 are deemed inconsistent.

3 Results

Except for top height, the triangulated and filtered canopy
models were in low correspondence with any forest attribute
when evaluated with respect to the field measurements.
Nevertheless, the R2 values for the total volume and top height
of the canopy model in particular were statistically significant
(Table 2), and the forest structure affected the models obtained
in the way it was expected. The spatial pattern of the trees,
quantified in terms of CEI, significantly affected the values of
the α parameter (Table 2), indicating that a different α value
was required for different spatial patterns. The total tetrahedral
volume of the reconstructed canopy was significantly related
to all other size and structure attributes expect for the stem
number (Table 2), and the volume increased according to in-
creasing values of these attributes. The number of connected
tetrahedra and the coverage of the tetrahedra relative to the
plot area however had a low degree of determination with any
of the field attributes. The top height of the canopy model had
the best overall correspondence with the field attributes and a
strong linear relationship especially with the dominant tree
height. Noting that no allometric knowledge was used in the
construction of the canopy, the models based on the geometry
and topology of the point data still reflect the variation in the
forest properties and aggregated stem attributes.

Based on a visual assessment, the canopy elements of the
coniferous dominant canopy in particular were fairly accurate-
ly co-located with the tree stems measured in the field (Fig. 1).
The positions of the canopy elements were also somewhat in
line with the spatial patterns of the field measured trees, par-
ticularly those showing clustered patterns. Nevertheless,
Fig. 1 also shows the limitations of the proposed technique
toward close-range visualizations. The level of detail and the
representation of the deciduous and understorey trees are in

particular limited, the reasons of which are further discussed in
Sect. 4.

Despite the low detail in close-range visualizations (Fig. 1),
the visualizations derived for the entire landscape showed a
reasonable level of detail and realism (Fig. 2). For instance,
roads, electric lines, or otherwise open areas could be pointed
out from the image. Further, despite the potential to edge ef-
fects, i.e., incorrectly cutting the ALS data due to an edge of a
cell (Fig. 1), the borders of the 20 × 20 m cells did not show in
the visualization of the full landscape (Fig. 2).

The canopy biomass reductions simulated to the landscape
were found to reasonably resemble effects of real-world har-
vesting operations (Fig. 2). However, the simulated harvests
clearly had a more considerable effect on the horizontal cov-
erage than on the height of the modeled canopy (Fig. 3).
Especially, the top height changed very moderately based on
harvesting intensities A, B, and C according to Fig. 3, which
shows the effects of the simulated reduction of parameter α to
the vertical and horizontal structure of the landscape.

According to the survey, the landscape treated with heavy
harvesting intensities (images E and D) was preferred by none
of the responders, while lower intensities (images C, B, and A)
were selected as most preferable by 10 (20%), 16 (32%), and
24 (48%) responders, respectively. Due to these preferences,
the (accumulation of) relative priority between the landscapes
was significantly indifferent for different types of responders
(Fig. 4) and the general trend was difficult to model without
additional information.

According to the AHP, the consistencies of the responses
varied considerably. Only 10 (20%) of the pairwise compari-
sons had a CR < 0.1, while 30 (60%) and 10 (20%) resulted in
CRs between 0.1–0.3 and >0.3, respectively. The maximum
and mean CR values were 0.99 and 0.22. When examined
against the relative priorities (Fig. 4), the inconsistencies were
neither clustered in any preference group nor reflected in any
other particular way, however.

4 Discussion

According to the results presented above, the canopy models
and visualizations based on the sparse density ALS data are

Table 2 The degree of
determination (R2) between
selected field attributes and alpha
value (α), total volume (V),
number of connected tetrahedra
(N), coverage (C), and top height
(H) of the canopy models

Field observation α V N C H

Stem volume, m3/ha 0.01 0.26* 0.07* 0.09* 0.54*

Basal area, m2/ha 0.00 0.11* 0.06* 0.07* 0.16*

Number of stems, 1/ha 0.02 0.02 0.00 0.03 0.19

Basal-area weighted mean diameter, cm 0.05 0.27* 0.04 0.05 0.78*

Dominant height, m 0.02 0.32* 0.06* 0.07* 0.94*

CEI 0.06* 0.01 0.05 0.06* 0.00

Asterisk marks significance of the correlation at the 95% confidence level, while R2 > 0.5 are printed in italics
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mainly suited for landscape-level analyses. The low degree of
determination between the close-range models and forest at-
tributes indicates that either a field sample to optimize the
canopy model (Vauhkonen et al. 2014, 2016) or a completely
different approach based on higher density data obtained by
ALS or terrestrial laser scanning is required for detailed
modeling. On the other hand, the proposed approach appears
interesting due to the possibility to generate the visualizations
from very sparse ALS data that often readily exist and the
inherent property of the modeling technique to simulate
changes to the landscape by adjusting the filtration parameter
α. The obtained visualizations are affected by both input data
and proper selection of the value for α, as discussed below.

As opposed to conventional forest visualization techniques
that require laborious tree-by-tree measurements or the use of
simulators to generate these observations, the present study
requires a wall-to-wall coverage of ALS data over the land-
scape to be visualized. While the acquisitions of ALS data for
ground elevation modeling nowadays allow applications of
these data for vast areas, properties such as the scarcity of
the input point data may restrict some forestry analyses (e.g.,
Vauhkonen et al. 2016). As seen from Fig. 1 of this study, for
instance, the true canopy height was underestimated due to the
penetration of the pulses through the top canopy (Gaveau and
Hill 2003). Nevertheless, the top height extracted from the
triangulation-based canopy models had a strong relationship
with the dominant height (Table 2), which was comparable to
the height metrics extracted from the initial point data (de-
tailed results not shown). No information related to the spatial
pattern of the trees or tree number could be derived, which is
in line with earlier studies based on ALS data (e.g., Packalén
et al. 2013). The percent coverage of the tetrahedra could be
compared to the canopy cover metric computed from the point
data as the proportion of the echoes above a certain height
threshold to all echoes (Korhonen et al. 2011). This metric
had a correlation of 0.8 with the tetrahedral coverage, but
similarly low degrees of determination with the field-
measured forest attributes.

Since the data were captured under a leaf-off period of the
vegetation phenology, less first-return data were obtained
from the deciduous than coniferous trees, even if those were
located in the dominant canopy (Fig. 1; see also Villikka et al.
2012). Also, only limited information was obtained from the
understorey. Although some researchers have detected more
trees under leaf-off than leaf-on conditions, when focusing on
individual tree detection in dense ALS data (Duncanson et al.

�Fig. 1 Examples of visualized plots with clustered (CEI = 0.7, above),
random (CEI = 1.0, middle), and regular (CEI = 1.4, below) patterns of
tree stems. The locations and dimensions of the cylinders correspond with
the tree stems measured in the field. The brown and gray cylinders
represent scots pine and deciduous trees, respectively. The interval
between tick marks corresponds to 5 m in the vertical axis and 2 m in
the plane
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2014), also the results of Korpela et al. (2012) indicate that
direct measures of the understorey are difficult to obtain due to
transmission losses occurring in the upper canopy (see also
Maltamo et al. 2005). For the reasons stated above, the spatial
patterns of the deciduous and understorey trees may be incor-
rect in some parts of the landscape, but this was not assumed
to be a major problem in the pine-dominated test area consid-
ered in our study. Whether attempted in more complex cano-
pies in further studies, however, considerations on, e.g., the
species and pulse penetration properties are required.

Whether the limitations described in the previous para-
graph are accepted, the presented approach is proposed feasi-
ble for visualizing landscapes such as that presented in Fig. 2.
The methodology presented here allows a description that is
based on real canopy elements, as extracted from the triangu-
lations based on ALS data, but not explicit prescription of leaf
or shoot locations and orientations, for example. Therefore,
regarding the degree of detail in describing the distribution of
canopy elements, the proposed approach is a compromise be-
tween artificial tree/crown-level turbid media parameterized
by a list of tree locations and dimensions (e.g., Schneider
et al. 2014) and more realistic 3D models of vegetation

elements potentially obtainable by terrestrial laser scanning.
An application to forest management planning is described in
the present study, but the modeling approach could also be
suited for other applications requiring geometrically explicit
parameterizations of forest landscapes. An example is light
interaction and radiative transfer modeling (e.g., Schneider
et al. 2014), in which incorrect assumptions on crown shapes
and inappropriate voxel grid resolutions are reported to result
in significant errors in retrieved crown parameters (Calders
et al. 2013; Widlowski et al. 2014).

Visualization is a straightforward application for the triangu-
lations and filtrations of ALS data collected over a forested
area, which are earlier tested in various forest inventory appli-
cations (Vauhkonen et al. 2014, 2016; Vauhkonen 2015). As
opposed to the typical “surfacemodeling” approaches using 2D
to 2.5D raster images, the use of triangulations and filtrations
provides means of constructing genuine 3D parameterizations
of forested landscapes instead of just representing counts of
height values within pixel or voxel cells. Besides triangulations,
geometric modeling techniques that could be considered for
solving the presented problem are an iterative surface wrapping
technique based on delineated tree crowns (Kato et al. 2009),

Fig. 2 The full landscape
visualized with the approach
proposed. The sub-figures on the
right give examples on harvests
simulated to the compartment in
the center of the landscape. All
five simulated landscapes are
presented as Electronic
Supplementary Material (Online
Resource 1)

Fig. 3 The effects of the
simulated reduction of parameter
α to the top height and proportion
of the plot area covered by the
tetrahedra of the modeled canopy.
The dots and lines indicate the
mean and standard deviation,
respectively, within the area.
Harvesting intensity 0
corresponds to the initial canopy
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3D clustering followed by convex polytope reconstruction
(Gupta et al. 2010), stacking horizontal slices of the height
values (Tang et al. 2013), or voxel-based techniques
(Schneider et al. 2014; see also Koch et al. 2014). All these
methods involve certain parameters to be set by the operator,
and the obtained results depend on these. Further, the methods
are so far tested with data densities varying from 4 to 5 m−2

(Gupta et al. 2010) to 10–20 m−2 (Kato et al. 2009; Tang et al.
2013; Schneider et al. 2014) as opposed to 0.8m−2 of this study.
The data studied here would have resulted in an extremely
coarse voxel grid resolution. On the other hand, requiring data
with a higher density would mean distinct data acquisitions and
therefore considerably higher inventory costs.

Applying filtrations, one can adjust the level of detail in the
triangulated point cloud and thus account for canopy gaps and
detailed properties existing in the data, which is controlled by
filtration parameter α. The approaches to determine the filtra-
tion parameter have included using the most feasible
population-specific fixed value like in Vauhkonen et al.
(2012), who evaluated a range of α’s, but rather than selecting
one particular value, they used metrics quantifying the differ-
ence of the shape obtained with the range of α’s to the convex
hull of the point data, which corresponds to α-shapes with
α→∞. Vauhkonen et al. (2014, 2016) optimized the degree
of filtration with respect to field-measured forest attributes and
predicted this degree by means of linear regression. In the
present study, the selection of α was based on analyzing the
persistent homology of the filtrations (Edelsbrunner et al.
2002). This approach resulted in less accurate parameter esti-
mates (e.g., R2 = 0.26 of the volumes in the present study vs.
0.49–0.83 reported in the previous studies) but eliminated the
need for a field training data required for the optimization
(Vauhkonen et al. 2014, 2016).

The persistent homology approachwas tested to replace the
calibration field data by analyzing the inherent topological

properties of the point data. A simple approach based on the
birth and death diagrams of the various simplices
(Edelsbrunner et al. 2002) turned out to produce reasonably
good information. The persistent homology of vegetation
point clouds should be more comprehensively analyzed after
this initial test. For example, one could derive the Euler char-
acteristic and the Betti numbers from the filtrations (Robins
2002) and use them in a similar manner than the birth and
death diagramwas used. One could further attempt to quantify
the obtained filtration by other geometric features than total
volumes such as edge lengths or facet areas. The approach has
a profound mathematical formalism on topological connectiv-
ity and implementations based on efficient data structures are
available (Pion and Teillaud 2013; Da et al. 2013).

A definite difference and a strength of the triangulation-
based approach over alternative 3D modeling or description
techniques is the ability to simulate changes to the geometric
models obtained. This is an inherent property of the technique
adopted and may be simply implemented by adjusting the
degree of filtering, but, to the best of our knowledge, this
option has not been utilized elsewhere beyond the present
study. Here, it was used to depict impacts of biomass harvest-
ing to the scenic values of the area by simulating harvests with
varying intensities. According to the high CR values, some
incoherence existed in the pairwise comparisons, which can
possibly be explained by a comparison of Figs. 3 and 4.
According to Fig. 3, the reduction of the α value changed
the top height of the canopy models based on harvesting in-
tensities A, B, and C moderately, whereas the reduction of the
top height was clearly more pronounced for harvests D and E.
This corresponds well with the dispersion between A, B, and
C as the most preferred harvesting intensity and the clearly
lower preference toward D and E (Fig. 4). Although the can-
opy coverage changed more than height (Fig. 3), the moderate
change in the top height may have dominated especially in the

Fig. 4 The distribution (left) and accumulation of the relative preferences between harvesting intensities. The thick line depicts the mean of all
preferences. The dashing of the individual preferences varies according to which harvesting intensity was preferred most
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landscape scale considered. To generate more discriminative
differences, either more intense harvests or fewer harvesting
intensities should have been simulated.

The height and cover reduction of the simulated harvests
(Fig. 3) can be compared to Nijland et al. (2015), who studied
ALS data acquired from an experimental forest, where vari-
able retention harvests had been replicated for different stands.
Their observations on the behavior of maximum ALS echo
height are fundamentally similar than our results illustrated in
Fig. 3. Obviously, our technique cannot reproduce varia-
tions in the spatial pattern of the remaining trees caused
by machine corridors and tree selection, for example,
and the overall correspondence of the simulations with
real-world harvests can only be validated under a rarely
available experimental setup similar to Nijland et al.
(2015). However, producing at least indicative informa-
tion on the average reduction of tree height and cover
corresponding to harvests with varying retention levels
by just adjusting the degree of filtering would consider-
ably facilitate similar simulations due to the simplicity
of implementing this procedure.

Considering other possible explanations for the inconsis-
tencies in the pairwise comparisons, it is possible that the
respondent focused on other issues than scenic values such
as a minimum timber recovery obtainable by the harvest or
the concept of recreational or scenic values was not only af-
fected by the harvesting intensity but issues such as the visi-
bility from or to the walking path affected by logging trails,
residues, stumps, etc. According to our tests, even a small
inconsistency in just one of the comparisons could increase
the CR above the threshold of 0.1. Similar problems are re-
ported in ratio-scale pairwise comparisons based on other
types of surveys (Sironen et al. 2013), and other measures
have been presented for evaluating the inconsistencies
(Peláez and Lamata 2003; Ramík and Korviny 2010) and
uncertainties related to the process overall (see Alho and
Kangas 1997), differing from those originally proposed by
Saaty (1980).

According to the earlier studies on the preferences on forest
use, the majority of citizens, regardless of forest ownership, do
not approve of clearcutting (Valkeapää and Karppinen 2013).
Also, according to pairwise comparisons of edited photo-
graphs of various forest management alternatives
(Silvennoinen et al. 2002; Tönnes et al. 2004; Ribe 2009),
the scenic values in clearcut forests are consistently lower than
in forests grown in denser, uneven-aged structures. Yet, it
should be noted that the studies mentioned in the previous
sentence estimated preferences for alternatives of clear cut-
tings, such as seedling tree or retention tree harvests, and were
thus examined at initially very low tree densities and using
close-range visualizations. Overall, the scenic values are
found to be lowest in both clearcut areas and in extremely
dense, unthinned forests (Silvennoinen et al. 2001). Taken

together with the earlier studies, the results obtained here be-
come more logical: The heaviest harvesting intensities were
deemed less attractive, while the preferences on the harvests
leaving more standing trees varied. The results of the AHP
thus support the realism of the landscapes generated.

Based on the discussion above, our approach is concluded
to implement the main feature for a visualization system to
support forestry decision making in the temporal dimension,
i.e., the ability to represent the current and future texture of the
trees in a geometric complexity that is possible to implement
in a landscape extent (Falcão 2008). According to Falcão
(2008), a missing key element is soil texturing, in which roads,
tracks, human constructions, and other massive-scale charac-
teristics are most important. Considering that these elements
are usually obtained by overlaying satellite or aerial imagery
over a digital elevation model (DEM), a potentially simple
means to implement the description of the ground texture
would be to export the canopy elements produced by our
approach to an existing visual environment such as Google
Earth. We acknowledge that also the visualization of the can-
opy elements could be considerably improved, for instance,
using detailed lightning models that affect not only the vege-
tation but also the entire landscape. In a closely related study,
Lämås et al. (2015) used photographs of tree and ground tex-
ture in a specific visualization software to generate scenes of
future management rotations simulated for over 200-year pe-
riods. However, the trees in the landscapes were parameter-
ized by only a few general attributes like vegetation height,
density, and species. Our visualizations were contrariwise
based on observed canopy geometry with less attention on
the photorealism. Whether it is more important to focus on
the realism in appearances or other properties likely depends
on application and should be further analyzed particularly
with respect to the information obtained for decision making.

As indicated in Sect. 1, we would like to emphasize the role
of information already obtainable by the simple visualizations
presented in this study. Once derived, the preferential infor-
mation could be incorporated as an objective on choice of
treatments for compartments in numerical optimization
(Pukkala et al. 1995). Such information may become more
valuable as situations where multi-attribute comparisons are
required become more frequent (e.g., Pukkala et al. 2011).
Even though ALS data are increasingly employed in opera-
tional inventories providing input for forest management plan-
ning (e.g., Næsset 2014), the aim of these inventories is typ-
ically limited to predicting conventional standwise forest
mensurational attributes. Although the horizontal information
on the distribution of forest patches is employed in spatial
optimization (see, e.g., Pukkala et al. 2014) and integrating
expert opinion with ALS data is noted to provide enhanced
information (Pascual et al. 2013), no other decision support
tools routinely used in forest management planning (Kangas
et al. 2008) are common in analyses based on ALS data. The
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derivation of the preference information from the point data
could thus be seen as an important contribution to the litera-
ture of using ALS data for forestry decision support.

5 Conclusion

The modeling approach proposed provided canopy elements
that were fairly accurately co-located with the tree stems, but
in a low numerical correspondence with plot-level forest attri-
butes measured in the field. The visualization technique thus
allowed close-range visualizations, but due to the coarse level
of detail, better results were obtained at a landscape level. In
turn, the approach can be operated based on ALS and field
data, which already cover broad areas and are readily available
for practical inventories.

The landscape-level visualizations produced were found to
preserve a reasonable level of detail and realism. Except for
static images depicting the present state of the canopy, the
approach allowed simulating changes to the landscape, which
were found to realistically resemble harvests with varying
retention levels. Although the criteria to evaluate the visuali-
zation and simulation models were not conclusive, potential
reasons were pointed out in the discussion.

Multicriteria decision analysis techniques such as the
pairwise comparisons and the AHP allowed eliciting specific
weights for each considered harvesting alternative, which are
easy to incorporate into numerical optimization and forest
management planning overall. Here, the heaviest intensities
were deemed less attractive than lower ones, which support
the previous research on preferences among management al-
ternatives with respect to scenic amenity. According to the
results of this study, the information obtainable directly from
the ALS point data could be more integrally used for forest
management planning.
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