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Introduction
Cell stress and impairments in cellular functions, such as protein 

folding, trafficking and quality control systems, have been suggested 
to play a role in the pathogenesis of neurodegenerative disorders, 
including Alzheimer’s disease (AD) [1,2]. Indeed, decreased activity 
and dysfunction of the ubiquitin-proteasome system (UPS) or 
autophagosome-lysosome pathway (ALP), the two main protein 
degradation machineries in the cells, are known to associate with 
neurodegenerative diseases and aging [3-8]. 

Different molecular chaperones, such as heat shock proteins 
(Hsps, including Hsp70), play an essential role in protein refolding and 
targeting unnecessary, misfolded, damaged, or aggregated proteins to 
disposal via UPS or ALP [9]. UPS manages the degradation of soluble 
proteins, but is usually not capable of degrading protein aggregates. 
Instead, these can be targeted to the ALP for disposal [10]. The signal for 
targeting a protein for UPS- or ALP-mediated degradation is covalent 
attachment of ubiquitin chains to the protein by the coordinated action 
of different ubiquitin ligases, i.e., poly-ubiquitination. Lysine 48-linked 
poly-ubiquitin chains are the classical signal for degradation by the 
barrel-shaped 26S proteasome complex, which contains a channel where 
the proteins are enzymatically degraded when they pass through [11]. 
Lysine 63-linked poly-ubiquitination functions as a signal for targeting 
the proteins or protein aggregates for autophagy [12]. In the ALP, the 
proteins or protein aggregates are engulfed within a double-membrane, 
which forms the autophagosome. Different autophagy receptors, such 
as p62/SQSTM1, are essential in the recruitment of lysine 63-ubiquitin-
linked proteins to autophagic degradation [13,14]. The autophagosomes 
may fuse with late endosomes or multivesicular bodies to form 
amphisomes. The autophagosomes or amphisomes finally fuse with 
lysosomes, leading to the degradation of their contents [8,15]. 

Neurons, as postmitotic and highly compartmentalized cells, are 

especially dependent on the efficient function of the UPS and ALP and 
microtubule-based protein transport in order to handle accumulated, 
misfolded and aggregated proteins. Protein degradation via the UPS can 
take place locally at different subcellular sites in neurons, such as pre- 
or postsynaptic compartments [16]. Autophagosomes are generated in 
distal axons, while mature lysosomes, which operate at the late stages 
of ALP, mainly localize in the soma of neurons [17,18]. Therefore, 
microtubule-based retrograde transport of autophagosomes from the 
axons to the soma is crucial for delivering the autophagosomal cargoes 
for lysosomal degradation in neurons [19]. A typical feature in AD is 
accumulation of autophagic vesicles in dystrophic neurites, implicating 
impaired microtubule-based transport of autophagic vesicles as a 
central feature in AD pathology [20]. A recent study by Feng et al. 
showed that activation of autophagy in the neurons of AD model mice 
resulted in aberrant accumulation of β-site cleaving enzyme 1 (BACE1) 
in autophagic vesicles in the distal axons and decreased localization of 
BACE1 in the lysosomes in the neuronal soma [21]. BACE1 is the initial 
and rate-limiting enzyme in the generation of β-amyloid peptides (Aβ) 
from β-amyloid precursor protein (APP). BACE1 mainly resides in the 
endosomes, which harbor an acidic pH providing optimal conditions 
for BACE1 enzymatic activity and Aβ generation, and its levels are 
regulated by lysosomal degradation [22,23]. The study by Feng et al. [21] 
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further showed that impaired axonal transport of BACE1-containing 
autophagic vesicles to the soma subsequently led to increased levels 
of the BACE1-cleaved APP C-terminal fragments (β-CTFs) C99 and 
C89 from which Aβ peptides are generated by γ-secretase-mediated 
cleavage. These phenomena were rescued by enhancement of retrograde 
transport by overexpression of snapin-1, a component of the dynein-
mediated motor protein complex [21]. In addition to BACE1, APP 
and APP β-CTFs have previously been shown to undergo autophagic 
degradation and blockade of autophagosomal and/or lysosomal 
degradation leads to their accumulation and increased levels of Aβ [24-
27]. Therefore, APP and BACE1 intracellular trafficking are essential in 
the regulation of their levels, function, and generation of Aβ.

Ubiquilins are a protein family implicated in the alleviation of 
different cellular stress conditions and targeting of specific proteins to 
degradation through the UPS or ALP, thus functioning as molecular 
chaperones [28]. Importantly, previous studies have shown that 
ubiquilins regulate the subcellular targeting and degradation of several 
neurodegenerative disease-associated proteins, including presenilin-1 
and -2 (PS1 and PS2), mutant huntingtin proteins, or TAR DNA 
binding protein 43 (TDP-43), through these pathways [29-33]. The facts 
that polymorphisms in UBQLN1 gene underlie the increased risk of AD 
[34] and that mutation in UBQLN2 gene lead to the pathogenesis of 
amyotrophic lateral sclerosis (ALS) or ALS/dementia [35] also provide 
a strong link between the function of ubiquilin family members and 
pathogenic processes in neurodegenerative diseases. Particularly one 
of the ubiquilin protein family members, ubiquilin-1, is implicated in 
the regulation of the trafficking, accumulation, or clearance of several 
AD-associated proteins as well as in alleviating ER and oxidative stress 
[36-41]. 

Ubiquilin-1 Structure and Function 
Ubiquilin-1, also known as PLIC-1 (protein linking integrin-

associated protein with cytoskeleton-1) [37], belongs to a highly 
conserved group of ubiquitin-like proteins. These proteins are 
suggested to function as a chaperones or shuttle proteins within the 
UPS delivering poly-ubiquitinated proteins to the proteasome or the 
autophagosomes for degradation [30,39,42-44]. In humans, ubiquilin-1 
is encoded by the UBQLN1 gene, which consists of eleven exons. 
Ubiquilin-1 protein contains two characteristic domains directly 
associated to its shuttle function in the UPS. The N-terminal ubiquitin-
like domain (UBL) mediates the interaction with the 26S proteasome 
by directly binding to S5a-component of the 19S proteasomal subunit. 
The C-terminal ubiquitin-associated domain (UBA) binds to poly-
ubiquitin chains attached to e.g. misfolded or accumulated proteins 
destined for degradation [30,39,44]. The central region of ubiquilin-1 
consists of conserved asparagine- and proline-rich (Asn-Pro-rich) 
repeats. These repeats interact with specific domains of other proteins, 
such as epidermal growth factor substrate 15 homology (EH) – domain 
present in a number of proteins that regulate endocytosis and vesicle 
sorting, suggesting involvement of ubiquilin-1 in intracellular vesicular 
trafficking [30]. 

Ubiquilin-1 is ubiquitously expressed in most, if not all, tissues [42]. In 
the human brain, ubiquilin-1 is present in neurons. Ubiquilin-1 localizes 
in the cytoplasm, endoplasmic reticulum (ER), and to a lesser extent in 
the nucleus and peripheral parts of the cell [30]. Four alternatively spliced 
UBQLN1 transcript variants (TVs) have been identified in human brain 
[34,41]. These TVs encode four protein isoforms, which differ in their 
domain composition. However, whether the different isoforms display 
differential cellular functions is not clear [45].

Functional studies in different in vitro and in vivo models have 
proven that ubiquilin-1 regulates the trafficking, function, levels and 
degradation of numerous proteins. The diversity of the ubiquilin-1 
interactome suggests that it is involved in a variety of physiological and 
pathophysiological functions [29] (Figure 1). In addition to its function 
as a chaperone in the UPS, ubiquilin-1 may also mediate the clearance 
of aggregated proteins, cellular waste and pathogens via the ALP [33,46-
49]. Ubiquilin-1 is suggested to interact with autophagosomes through 
its UBA domain and it itself is a substrate for ALP [33,48]. The chaperone 
function of ubiquilin-1 in the UPS or ALP is especially important in 
situations when the capacity of the UPS or ALP to degrade accumulatesd 
proteins or protein aggregates becomes overwhelmed. Under excessive 
protein accumulation, ubiquilin-1 has been shown to target proteins 
into intracellular inclusion bodies, termed aggresomes [31,33,50-52]. 
Structurally, these juxtanuclear inclusion bodies closely resemble the 
characteristic intracellular inclusions containing aggregated proteins 
in the brain of patients with AD and other neurodegenerative diseases, 
such as tau in tauopathies, including AD, α-synyclein in PD, or TDP-
43 in frontotemporal lobar degeneration (FTLD) or ALS [2]. It is clear 
that formation of these inclusion bodies is associated with disease 
pathogenesis and neurodegeneration. Yet, accumulating evidence implies 
that they in fact may represent a cytoprotective mechanism in diseased 
cells, since they sequester potentially harmful proteins into restricted 
compartments, which may later be safely disposed of through the ALP 
[37,45]. 

Ubiquilin-1 and Cell Stress 
Several studies indicate that ubiquilin-1 plays a role during 

different cellular stress conditions [32,40,41,49,53]. Ubiquilin-1 
protects cells from starvation-induced apoptosis in an autophagy-
dependent mechanism [49]. Moreover, ubiquilin-1 levels are up-
regulated during the unfolded protein response (UPR) and it has been 
shown to protect cells from ER-stress-associated apoptotic cell death 
[39,41,53]. All ubiquilin-1 TVs, except the shortest TV4, alleviate the 
induction of UPR-inducible stress genes and subsequently provide 
cytoprotection during ER-stress and hypoxia [41]. The beneficial 
effect of ubiquilin-1 during acute stress is suggested to take place by 
enhancing the proteasomal disposal of ER-associated degradation 
(ERAD) substrates [53,54]. Supporting this idea, ubiquilin-1 down-
regulation in vivo in Caenorhabditis elegans or mice was reported to 
result in the accumulation of misfolded and poly-ubiquitinated proteins 
during induced ER-stress, oxidative stress and ischemia [40,53]. On the 
contrary, ubiquilin-1 overexpression protected mice from oxidative 
stress, neuronal injury, and motor defects following ischemic stroke 
[40].These studies suggest a role for ubiquilin-1 in relieving stress by 
inhibiting the accumulation of damaged proteins. 

Ubiquilin-1 and Protein Aggregation in 
Neurodegeneration

A number of studies link ubiquilin-1 to AD at both genetic and 
functional level. Specific genetic variants in UBQLN1 are associated 
with increased AD risk [34,55-58], although this association could 
not be replicated in all studies [59-64]. However, the risk allele of 
UBQ-8i single nucleotide polymorphism (SNP) has been reported 
to alter the UBQLN1 mRNA ratio of TV2 to TV1 similarly to human 
brain and cause a pathological phenotype in Drosophila melanogaster 
[34,65,66]. Stieren et al. have reported that ubiquilin-1 protein levels 
are significantly decreased in the brain of AD patients as compared 
to control subjects [67], implying decreased ubiquilin-1 function in 
AD. Furthermore, emphasizing the association of UBQLN gene family 
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Figure 1: Ubiquilin-1 protein interactome. 
Abbreviations: AD: Alzheimer’s Disease; ALP: Autophagosome-Lysosome Pathway; ALS: Amyotrophic Lateral Sclerosis; DBLD: Diffuse Lewy Body Disease; FTLD: 
Frontotemporal Lobar Degeneration; HD: Huntington’s Disease; NFT: Neurofibrillary Tangle; PD: Parkinson’s Disease; UBA: Ubiquitin-Associated Domain; UBL: 
Ubiquitin-Like Domain; UPS: Ubiquitin-Proteasome System
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with neurodegenerative diseases and protein aggregation, mutations 
in UBQLN2 encoding a ubiquilin-1 homolog, ubiquilin-2, have been 
shown to cause rare familial ALS with dementia and lead to defects in 
the protein degradation pathway, abnormal protein aggregation and 
neurodegeneration [35].

Ubiquilin-1 was originally identified as a PS1- and PS2-interacting 
protein [30]. PSs are essential components of the γ-secretase complex, 
which cleaves APP to generate the Aβ peptides [68]. Subsequent 
studies have demonstrated that ubiquilin-1 specifically increases 
the accumulation and aggresomal targeting of ubiquitinated high-
molecular weight (HMW) PS-complexes [30,31,33,65,69-72]. 
Interestingly, our previous study indicated that this function may 
partially be isoform-dependent, since especially ubiquilin-1 TV3, 
which lacks the proteasome-interacting UBL domain, enhanced 
PS1 accumulation and localization to aggresomes [33]. Even though 
the fact that ubiquilin-1 regulates PS levels and accumulation 
suggests that ubiquilin-1 may affect the processing of PS-dependent 
γ-secretase substrates, including APP, the functional consequences of 
the interrelationship between ubiquilin-1 and the PSs as well as the 
other γ-secretase complex components Pen-2 and Nicastrin have thus 
far remained poorly understood [33,70,73]. Another link between 
ubiquilin-1 and AD molecular pathogenesis is provided by studies 
reporting that modulation of ubiquilin-1 levels in vitro in cells or in vivo 
in Drosophila melanogaster leads to altered APP processing, maturation, 
trafficking and proteolysis, consequently affecting Aβ production and 
secretion in a PS/γ-secretase-independent mechanism [36,38,66,67, 
69,73,74]. However, these data have been partly conflicting in different 
cell types and need to be confirmed in further studies. 

Increasing evidence suggests the involvement of ubiquilin-1 in 
the pathogenesis of other neurodegenerative disorders beyond AD. 
Ubiquilin-1 co-localizes with neurofibrillary tangles (NFTs), dystrophic 
neurites, and Hirano bodies in the AD brain and Lewy bodies in Parkinson’s 
disease (PD) and diffuse Lewy body disease (DLBD) [30,75,76]. A recent 
study suggested that early NFT changes are associated with upregulation 
or nuclear translocation of ubiquilin-1 in hippocampal neurons [75], 
but the possible relationship between tau and ubiquilin-1 has not been 
studied in more detail. Ubiquilin-1 has also been reported to localize in 
the ubiquitin/p62/SQSTM1- and TDP-43-immunopositive intracellular 
inclusions in FTLD and ALS brain and mediate the stability and 
toxicity of these aggregates in vitro and in vivo [32,77,78]. Interestingly, 
ubiquilin-1 has also been linked to repeat expansion disorders, such as 
Huntington’s disease (HD), ataxias, and FTLD and ALS related to the 
C9ORF72 hexanucleotide repeat expansion. Ubiquilin-1 was found 
to regulate the accumulation and toxicity of expanded polyQ repeat-
containing proteins, such as huntingtin and polyA-containing proteins 
associated predominantly with congenital malformation syndromes [79-
83]. Moreover, the brains of C9ORF72 hexanucleotide repeat expansion-
carrying FTLD and ALS patients show distinct ubiquilin pathology. 
Even though ubiquilin-1 appears to associate with several different 
neurodegenerative diseases, it remains to be determined whether 
ubiquilin-1 aggravates or alleviates their pathogenesis.

New Evidence on the Interrelationship between 
Ubiquilin-1 and AD-Associated BACE1

Information regarding ubiquilin-1 expression and function in 
diseased human brain and in mammalian animal models is thus 
far limited. In our recent study by Natunen et al. [84], we examined 
ubiquilin-1 expression in human brain in relation to AD-related 
neurofibrillary pathology at different stages of the disease as 
indicated by Braak staging [85]. Furthermore, we characterized the 

effects of ubiquilin-1 overexpression on the regulation of BACE1, 
neuroinflammation and neuronal viability in different in vitro and 
in vivo mammalian model systems, including neuronal cell lines, co-
cultures of mouse embryonic primary cortical neurons and microglial 
cells under acute neuroinflammation and the brain of APdE9 transgenic 
mice at the early phase of the development of Aβ pathology. 

We first analyzed UBQLN1 mRNA expression in post mortem 
human brain samples. These investigations using probes against 
different UBQLN1 exons revealed a global decrease in UBQLN1 mRNA 
expression in relation to advancing neurofibrillary pathology (Braak 
stages 0-VI). Overall, the highest UBQLN1 mRNA expression was 
observed at Braak stage 0 and the expression significantly decreased 
along with the disease progression. We also observed a similar 
decreasing trend in the ubiquilin-1 protein levels along with advancing 
neurofibrillary pathology. These data are in accordance with the 
previous report by Stieren et al. [67], showing decreased ubiquilin-1 
levels in AD brain as compared to age-matched controls. Interestingly, 
further screening of the levels of ubiquilin-1 and key proteins involved 
in APP processing in human brain revealed a positive correlation 
between the levels of ubiquilin-1 and BACE1 proteins. There was no 
association between ubiquilin-1 levels and β-secretase activity. 

Previous studies have linked ubiquilin-1 to different cellular stress 
conditions and suggested that ubiquilin-1 may alleviate oxidative and 
ER stress in vivo and in vitro in cultured cells [41,53,54,86]. The role 
of ubiquilin-1 in neuroinflammation, which is centrally involved in 
AD pathogenesis [87], had not been previously investigated. Using 
lentivirus-mediated overexpression of human ubiquilin-1 in mouse 
primary cortical neurons in co-cultures with mouse microglial BV2 cells, 
we detected an upregulation of the levels of overexpressed ubiquilin-1 
under lipopolysaccharide (LPS) and interferon-γ (IFN-γ)-induced acute 
neuroinflammation. Moreover, ubiquilin-1 overexpression resulted 
in enhanced neuroinflammatory stress as indicated by an increase 
in tumor necrosis factor-α (TNF-α) levels in the co-culture medium. 
Furthermore, ubiquilin-1 overexpression led to decreased neuronal 
cell viability not only under neuroinflammation but also under normal 
culture conditions. Thus, in contrast to previous studies showing 
alleviation of ER or oxidative stress by ubiquilin-1 overexpression, our 
data suggest that ubiquilin-1 is not able to alleviate neuroinflammatory 
stress and that ubiquilin-1 overexpression itself could be detrimental 
in neurons. Additionally, ubiquilin-1 overexpression led to significantly 
upregulated levels of BACE1 in the co-cultures under both normal 
conditions and neuroinflammation, providing corroboration to our 
initially observed link between ubiquilin-1 and BACE1 levels in 
the human brain. In line with previous studies showing that BACE1 
expression is promoted under inflammation after treatment with 
proinflammatory compounds, such as LPS and IFN-γ [88,89], a slight 
increase in BACE1 protein levels after LPS and IFN-γ-treatment in the 
co-cultures was also detected in our study. 

Lentivirus-mediated overexpression of ubiquilin-1 in vivo, starting 
at four months of age when the Aβ pathology starts to develop [90], in 
the hippocampus of APdE9 AD model mice resulted in a mild increase 
of BACE1 protein levels and β-secretase after five months. Strong BACE1 
staining was observed around Aβ plaques in these mice, but this was 
unaffected by ubiquilin-1 overexpression. On the other hand, β-secretase 
activity significantly correlated with soluble Aβ40 and Aβ42 levels in the 
hippocampi of APdE9 mice. Despite the previously reported effects of 
ubiquilin-1 on APP maturation, intracellular trafficking, proteolytic 
processing, and degradation in vitro in cultured cells [33,36,38,67,73,74], 
we did not observe significant changes in APP maturation, the levels of 
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APP metabolites (APP CTFs or Aβ) or APP ubiquitination status in vivo 
in the hippocampi of APdE9 mice overexpressing ubiquilin-1. However, 
Aβ plaque load was modestly decreased, while soluble and insoluble Aβ40 
and soluble Aβ42 levels were increased in the hippocampi of these mice 
overexpressing ubiquilin-1. These observations agree with the idea of the 
dynamic nature of Aβ aggregates, which have been described to undergo 
constant aggregation and dissolution of Aβ molecules to and from the 
plaques [91]. They also are in line with the recent report by Adegoke et 
al. [92], which shows that ubiquilin-1 overexpression alleviates AD-like 
cognitive and motor deficits and reduces Aβ accumulation in APdE9/
ubiquilin-1 transgenic mice.

We did not detect significant alterations in tau phosphorylation 
at the AD-related AT8 epitopes or total tau protein levels in the 
hippocampi of APdE9 mice upon ubiquilin-1 overexpression. In the in 
vitro co-cultures of ubiquilin-1 overexpressing neurons and microglial 
cells, we noticed a significant increase in total protein levels of the 
0N3R-tau isoform upon induction of neuroinflammation, but no effects 
on tau phosphorylation (AT8), in contrast to previous in vivo studies 
indicating an increase in tau phosphorylation after LPS treatment 
[93,94]. Even though further studies are warranted to elucidate the 
effects of ubiquilin-1 on tau levels and phosphorylation, our findings 
implicate that ubiquilin-1 may modulate tau levels under inflammatory 
conditions. It appears that ubiquilin-1 overexpression itself does not 
result in neuroinflammation in vivo in the mouse brain, as we did not 
detect alterations in the levels of glial fibrillary acidic protein (GFAP) or 
the CD45 immunopositive area. 

To shed light into the molecular mechanisms of the observed 
interrelationship between ubiquilin-1 and BACE1, we then utilized different 
human neuronal cell lines either stably or transiently overexpressing 
ubiquilin-1. Ubiquilin-1 overexpression led to significantly increased 
BACE1 expression levels in all the studied cell lines and the increase was 
reversed by siRNA-mediated ubiquilin-1 downregulation. The protein 
levels of ubiquilin-1 and BACE1, both before and after ubiquilin-1 
downregulation, strongly correlated with each other, confirming the 
interrelationship of these two proteins observed in the human and APdE9 
mouse brain. Using cycloheximide time-course assay, in which de novo 
protein synthesis is prevented and degradation rate of the protein of interest 
can be followed over time, indicated that ubiquilin-1 overexpression led to 
a significantly prolonged half-life of BACE1 protein. This result implicated 
that overexpression of ubiquilin-1 increases BACE1 levels by slowing 
down its degradation, which mainly takes place in lysosomes [22]. Thus, 
we next studied by co-immunofluorescence the co-localization of BACE1 
with markers of endosomes and lysosomes, the subcellular compartments 
where BACE1 has previously been reported to mainly reside in [95]. 
Accordingly, we also observed a prominent co-localization of BACE1 
with Rab7, a marker for late endosomes and lysosomes (LEL), transferrin 
receptor (TfR), a marker for early and recycling endosomes, and EEA1, a 
marker for early endosomes. In ubiquilin-1 overexpressing cells, the co-
localization of BACE1 with Rab7 in the LEL was significantly decreased 
concomitantly with increased co-localization with TfR in the earlier 
endosomal compartments. These data indicated that overexpression 
of ubiquilin-1 leads to decreased lysosomal degradation of BACE1. We 
failed to find evidence that the decreased lysosomal targeting of BACE1 
to lysosomes resulted from alterations of the levels of proteins previously 
reported to regulate BACE1 subcellular trafficking or sorting, such 
as GGA1, GGA3, ARF6 or seladin-1, or changed lysine 48 or lysine 
63-linked BACE1 ubiquitination in the ubiquilin-1 overexpressing cells. 
Therefore, whether ubiquilin-1 controls BACE1 intracellular trafficking 
directly or indirectly via another protein(s) still remains to be clarified in 
future studies. In conclusion, our study by Natunen et al. [84] suggests a 

previously unknown interrelationship between BACE1 and ubiquilin-1, 
which may influence Aβ accumulation and development of Aβ pathology 
in mouse and human brain. However, further investigations will provide 
additional insights into the underlying mechanisms of the relationship 
between ubiquilin-1 and these pathogenic events.

Conclusion
Together with the previous reports, the data in our report by 

Natunen et al. [84] suggest that ubiquilin-1 specifically interacts with 
several AD-associated proteins and plays a multifaceted role in different 
stress conditions. Thus, it is obvious that ubiquilin-1 is a complex factor 
that affects multiple phenotypic traits and cellular processes, which may 
hamper its use as a straightforward therapeutic target in the context 
of neurodegenerative diseases, such as AD. Finally, pre-clinical studies 
in vivo, such as those recently reported by Adegoke et al. [92], will 
shed light on whether the targeting of ubiquilin-1 has the potential for 
subsequent clinical intervention studies in AD.
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