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ABSTRACT

The notion biosignal can be used for any signal measurable from the human body. In
this thesis, four different biosignals are considered. These are the galvanic skin response
(GSR) which measures changes in skin resistance, the electrical activity of the brain
known as the clectroencephalogram (1315G), the variability of the heart beat interval
(heart rate variability, HRV) which can be extracted from the clectrocardiographic (ECG)
recording, and the variability of the blood pressure values.

In the ELXG recording, the potentials measured from the scalp represent a superpo-
sition of the volume conductor fields produced by active neural sources. GSR, on the
other hand, measures changes in skin resistance induced by sweat gland secretion which
is controlled by the sympathetic branch of the autonomic nervous system. Heart rate
and blood pressurce are also controlled by the autonomic nervous system, but with both
the sympathetic and parasympathetic branches being effective.

In this thesis, three novel methods for the analysis of biosignals arc proposed. The first
proposed method is a principal component analysis (PCA) based method for analyzing
the patterning of successive GSR measurements. As a specific application the method is
applied to GSR measurcments of 20 healthy control subjects and 13 psychotic paticents.
For most of the control subjects a clear pattern in successive GSRs was found whercas
within psychotic patients the lack of time-locking of GSRs seemed characteristic. With
application to clustering a significant discrimination of the subjects is achicved.

A major issuc in blosignal analysis is the stationarity of the considered signal. If
the signal is nonstationary, which is often the case for biosignals, it has to be catered
for in the analysis methods. In the second proposed method, the properties of non-
stationary 1I2G are analyzed by means of time-varying time scries modeling. For the
time-varying parameter estimation problem a Kalman filter algorithm along with a fixed-
interval smoothing procedure is applied. This, so-called Kalman smoother approach, is
applied to the estimation of event-related synchronization (ERS) dynamics of occipital
alpha rhythm. With the proposed method detailed time-frequency dynamics can be
extracted even from single ERS samples.

The third proposced method is an advanced, simple to use detrending method with
an application to RV analysis. The proposed method is suitable for removing slowly
varying trend components from measured biosignal. The effect of the proposed detrending
method on general time- and frequency-domain analysis of HRV is considered.

AMS (MOS) Classification: 62F15, 621125, 621,12, 62M10, 62M15, 93E10
National Library of Medicine Classification: QT 36, WG 106, WI, 150, WG 140
INSPEC Thesaurus: medical signal processing; estimation theory; time scries; principal

component analy autoregressive moving average processes; modelling; Kalman filte

parameter estimation; electric resistance; skin; electroencephalography; electrocardiog-
raphy; blood pressure measurement
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CHAPTER |

Introduction

The notion biosignal can be used for any signal mecasurable from human body.
The measurable quantity can be electrical or, for example, change in pressure or
volume. Probably the most familiar electrical measures are the electrocardiogram
(ECG) which is a recording of the electrical activity of the heart and the electroen-
cephalogram (EEG) which measures the electrical activity of the brain. Another
not so well known biosignal that was traditionally used in lie detectors is the gal-
vanic skin response (GSR) which measures the changes in skin resistance induced
by changes in sweat gland secretion. These electrical biosignals, especially ECG
and GSR, can be easily recorded from body surface with adequate bioamplifier. In
addition to above biosignals, there are other kinds of biosignals that require a to-
tally different recording method. One such biosignal is blood pressure (BP) which
can be measured continuously, ¢.g., from the fingertip by using the volume-clamp
method, originally proposed in [139, 140].

In addition to above continuous biosignals, there arc biosignals the values of
which arc known only at some discrete times. One such event series is, for example,
the series of successive heart beat intervals. The variation within these intervals has
been studied widely and the term heart rate variability (HRV) is generally adopted.
The HRV time series is extracted from the ECG recording by calculating the time
differences between suceessive QRS complexes. Similar to HRV time series are the
time series constructed from successive BP values. That is, after cach heart beat
systolic, diastolic, and mean BP values can be extracted. The fluctuation of these
values is, in general, termed blood pressure variability (BPV).

In the EEG rccording, the potentials measured from the scalp represent a
superposition of the volume conductor fields produced by active neural sources.
The main sources for the potentials are the pyramidal cells of the cortex. GSR,
on the other hand, measures changes in skin resistance induced by sweat gland
sceretion. The seeretion is controlled by the sympathetic branch of the autonomic
nervous system and, thus, GSR has been used for capturing the sympathetic tone.
Heart rate and blood pressure are also controlled by the autonomic nervous system,
but with both the sympathetic and parasympathetic branches being effective.

In the analysis of biosignals, three different approaches can be distinguished:
analysis of transient cvents related to some physical stimulus, analysis of spon-

17



18 1. Introduction

tancous activity of the measured signal, and correlation analysis of two or more
biosignals of different origin. In the event-related analysis, the aim is to analyze
those parts of the signal that are related to the stimulus. The response to the
stimulus can be assumed to be either constant or variable for repeated stimula-
tion. In the former case, an average of the responses is usually taken, whereas in
the latter case, e.g., the trend within the responses is analyzed. In the analysis
of the spontancous activity of the measured signal, on the other hand, the whole
measurement is typically analyzed. The characteristics of the signal arc typically
parameterized by calculating different statistics. In the biosignal analysis, it is
common to characterize the measurement in the frequency-domain by calculating
the spectrum of the signal. The fundamental aim of biosignal analysis is typically
to obtain information on the physiological or psychological state of the subject or
to improve the understanding of the functioning of the subject organ. By means
of correlation analysis of several biosignals it is sometimes possible to obtain such
valuable information that could not be obtained directly from the separate signals.

One important issue in the analysis of biosignals is stationarity. A stationary
signal is such that its statistical properties do not change over time. Stationarity
is often a desired property since many of the analysis methods, especially the
frequency-domain methods where the spectrum of the signal is calculated, require
a stationary signal. Unfortunately, biosignals are rarely stationary in the long
run. Sometimes the measured signal can, however, be assumed to be piccewise
stationary. In such cases, the signal can be divided into stationary segments and
each segment can be analyzed separately using traditional methods [10]. When the
signal is notably nonstationary such a segmentation can not be accomplished, but
time-varying analysis methods need to be utilized. For example, the time-varying
spectrum of the signal can be obtained with time-frequency representation (TFR)
methods such as the traditional short-time Fourier transform (STFT). Another
nowadays popular TFR method is the wavelet transform (W'T).

Both the STFT and WT, however, suffer from a trade-off between time and
frequency resolutions. An alternative approach for calculating TFR is to use time-
varying parametric spectrum estimation methods [60, 88]. A common approach is
to use an autoregressive (AR) or autoregressive moving average (ARMA) model
with time-varying parameters for the signal. The frequency resolution of para-
metric methods is superior to nonparametric TFRs [110], but not infinite. The
main task in parametric methods is the estimation of the time-varying model pa-
rameters. For this, adaptive algorithms such as Kalman filter, originally proposed
n [78], have been adopted. Along with a smoother algorithm, the tracking lag
of adaptive filters can be avoided and an improved tracking of signal characteris-
tics can be obtained. In this thesis, such algorithms are applied to estimation of
nonstationary EEG signals.

In some cases, the measured signal contains a slow linear or more complex
trend component and is, thus, characterized by nonstationary mean. The effect of
the nonstationary mean on the analysis can be eliminated by removing the trend
somehow. One should, however, always make sure that the trend component to
be removed does not contain any valuable information, but is of irrelevant origin.
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A simple method for removing trend components is to fit a first or higher order
polynomial to the data [149, 101, 115], but also more advanced methods have been
proposed [198].

THE AIMS AND CONTENTS OF TIIE THESIS

The aim of this thesis is to propose novel methods for the analysis of both event-
related and spontaneous biosignals. The first proposed method is a principal
component analysis (PCA) based method for analyzing the patterning of successive
GSR measurcments.  The sccond proposed method is an advanced detrending
method with application to HRV analysis. This method is based on smoothness
priors reqularization theory. The third proposed method is concerned with the
estimation of nonstationary EEG with a Kalman smoother algorithm.

The methods proposed in this thesis have been partly published in [174, 175,
176, 177, 172, 173]. The aim of this thesis is not only to summarize the results
of these publications but also to give a more detailed presentation of the methods
and their theoretical background. A common factor in the proposed methods is
that they can all be presented in estimation theoretical framework. The aim of
this thesis is to present the estimation theoretical background of each proposed
method in a unified formalism.

In this thesis, two different data sets are mainly used. The recordings of the
first data set. that has been mainly used in Chapter 5 for GSR analysis, was car-
ried out by the Departments of Psychiatry and Clinical Neurophysiology at Kuopio
University Hospital, Finland. The recordings were conducted on 20 healthy control
subjects and 13 first-cpisode patients with acute psychosis admitted for hospital
evaluation in supervision of a trained psychiatrist Minna Valkonen-Korhonen, MD.
Several paradigms were conducted for each subject and EEG, ECG, and GSR were
continuously recorded during the paradigms. The second data set, that has been
used in Chapter 6 for event-related EEG analysis, was carried out in the Depart-
ment of Clinical Neurophysiology, Kuopio University Hospital, Finland. These
recordings were conducted on 6 healthy subjects and the experimental procedure
was to close and open the eyes repeatedly at given intervals. All subjects in both
data sets provided written informed consent and the studies were approved by the
local ethical committee. In addition to the previous data sets, single measure-
ments carried out in the Brain@Work Laboratory, Department of Occupational
Medicine, Finnish Institute of Occupational Health, Helsinki, Finland and in the
Department of Applied Physics, University of Kuopio, Finland are used in Chapter
7. The author has no credit for the measurements.

All the data analysis, text, and figures of this thesis, unless otherwise stated, are
made by the author himself. In addition, the author is one of the key programmers
of the Biosignal analysis software [1] and is mainly responsible, e.g., for the GSR,
quantitative EEG, HRV, BPV, and baroreflex sensitivity (BRS) analysis tools.

The thesis is organized as follows. After the Introduction in Chapter 1, the
theoretical framework for the proposed methods is given in Chapters 2 4 and cach
proposed method is presented in a separate chapter in Chapters 5 7.



20 1. Introduction

In Chapter 2, the estimation theoretical background required in the rest of the
thesis is presented. The required elements of probability theory are summarized
and the concepts of least squares estimation, reqularization, and Bayestan estima-
tion are introduced. The end of Chapter 2 focuses on mean square estimation
depicting the derivation of Kalman filter and smoothing algorithms. In Chapter
3, the results of estimation theory are applied to estimation of stationary time
series models. The most common time serics models, i.e. AR, MA, and ARMA
models, are given and estimation of AR model parameters is considered. In ad-
dition, Chapter 3 contains the basics of spectrum estimation of stationary time
series. In Chapter 4, the assumption of stationarity is dropped and the time series
models are assumed to be time-varying. The most common adaptive algorithms
for estimating the time-varying model parameters are presented and time-varying
spectrum estimation is considered.

In Chapter 5, the PCA based method for analyzing the patterning of successive
GSR measurements is presented. As a specific application the proposed method
is applied to GSR measurements of 20 healthy control subjects and 13 psychotic
patients. For most of the control subjects, there was a clear pattern in successive
GSRs, whereas within psychotic patients the lack of time-locking of GSRs seemed
to be characteristic.

In Chapter 6, the Kalman smoother approach for estimation of nonstation-
ary EEG is presented. The estimation accuracy of the Kalman smoother is first
evaluated with simulations and then compared to other popular TFRs. As a
specific application the Kalman smoother approach is applied to estimation of
event-related synchronization/desynchronization (ERS/ERD) dynamics of occipi-
tal alpha rhythm.

In Chapter 7, a review of methods used in the analysis of cardiovascular vari-
ability signals is given. The importance of preprocessing of these signals is em-
phasized and the proposed detrending method is described in detail. The effect of
detrending on somne general time-domain measures as well as spectrum estimates
of HRV is studied.

The discussions of the proposed methods are placed separately after each chap-
ter, respectively. The overall discussion and conclusions of the thesis are given at
the end of the thesis in Chapter 8.



CHAPTER I

Estimation theory

Estimation theory is a fundamental tool required in time series analysis and system
theory. For an extensive discussion on estimation theory sce, c.g., [169]. In this
chapter, only the necessary cstimation theoretical background for the time series
analysis and spectrum estimation methods presented in Chapters 3 and 4 will
be given. A restriction on linear and discrete-time problems is made. In some
places, references on extending the results to nonlinear case are given. The main
references for this chapter are [6, 82, 88, 113, 118, 133, 169, 170].

2.1 Introduction

The problem in estimation theory is to determine the parameters describing the
underlying system from noisy observations. In this thesis, z is used to denote the
observations and € the parameters. A basic approach to solve the estimation prob-
lem is to first define a model of some specific structure describing the dependency
of the observations on the model parameters and then compute the parameters in
some optimal way. Such a model is here referred to as observation model. The
decision on model structure is usually based on some prior knowledge of the un-
derlying system. Typically, the errors in the observations are considered additive
and the observation model used is of the form

= h{#)+e (2.1)

where e is the additive error term and & is a function describing the underlying
system. In some contexts e is referred to noise and the above model additive noise
model.

In this thesis, the focus is on lincar and discrete-time problems and a vector
x = (1, 29,... ,JIJN)T € RY is used to denote the discrete observations and 6 =
(01,02,....0,)" € RP the paramcters. The superseript (-)7 denotes transpose.
The observations x can be considered to be sampled from a continuous signal x(¢)
at discrete times (t1,%2,...,tx). The sampling interval AT is usually assumed to
be constant, l.e. AT =549 —t; = ¢ for all j, and the sampling rate is given by
fs = 1/AT. Then, the lincar observation model is simply

r=HO+e¢ (2.2)

21



22 2. Estimation theory

where H is a p x N matrix that does not contain parameters to be estimated.
Throughout the thesis, H is often called observation matriz. The columns ;
(j = 1,2,...,p) of H are called basis vectors. For an estimate of § a notation 0
is used and the difference between the true and estimated parameters (i.e. the
estimation error) is denoted 6 = 6 — 0. Furthermore, the estimation error of the
observations, i.e. the residual, is given by e = 2 — H 6 =1 — 2.

2.2 Summary of probability theory

In this section, a short review of notations and definitions used in this thesis is
given. The fundamental definitions of probability theory will not be discussed
here. These definitions can be found, e.g., in [133].

One important concept of probability theory is that of random variables. A
random variable x; is a rule for assigning a value x;(¢) to every outcome ¢ of an
experiment, i.e. a function defined for all outcomes of the experiment. A random
vector x = (x1,...,a5)7
A random process x(t), on the other hand, is a function of both time ¢ and the
outcome (, i.e. z(t) = z(¢,(). For a fixed outcome ¢ random process is a single
function of time and for a fixed t it is a random variable z;.

Let z = (z1,22,...,zx5)" € RY and y = (y1,92,---,ym)” € RY be ran-
dom vectors whose probability density functions are p. () and p,(y), respectively.
Subscripts # and y of the density functions refer to the random variables and,

is a vector whose components x; are random variables.

according to a common practice, the same letters are used for the arguments of
the density functions. Therefore, without a risk of confusion the subscripts can
be omitted and the density functions denoted simply as p(x) and p(y). The joint
probability density of z and ¥ is denoted as p(z, y).

The expected value or the mean 7,, of a random vector x is defined as

Ny = E{a:}:/ zp(z) de (2.3)

I

RN
o oC
-

/ / (x1,...,zn)" p(X1,. .. xN) dTy -+ day (2.4)
J—oc J—0o0

- T -
- (nwu---aan) (2‘))
where the integral is taken over each random variable z;. The mean 7, is also
called the first moment of z. Higher moments arc obtained correspondingly by
integrating 2"p(x). Of particular interest is the variance which is the second
centered moment of 2 defined as

UQ:VaI‘fIJ: .’E-xQ X x. .
2o} = [ @) d (26)

Clearly, this is the expected value of the random vector (x — 7,)? which can also
be written as

o2 :E{(:z;—nm)2} :E{:I;Q} —E{r}z (2.7)
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The correlation matrix of a random vector z is defined as

E{JJ]CII]} E{CII]JIN}
R, = E{xx’} = : (2.8)
E{xnxi} -+ El{ryan}
and the cross-correlation matrix of random vectors x and y as
Ryy = E{xyT} . (2.9)
Furthermore, the covariance matrix of a random vector z is defined as
Cr =E{(z—na)(z— UT)[} — E{xx’} — et (2.10)

that is the correlation matrix of the centered random vector (x —1,). The cross-
covariance matrix of x and y is

Copy = E{(:I; — )y — 'r}y)T} = E{:I;:(/T} — r/m'r}g. (2.11)
The conditional probability density of 2 given y is defined as
(2, y)
plzly) = (2.12)
py)

for p(y) # 0, otherwise p(z|y) = 0. Likewise, the conditional density of y given z

15

~ ply. z) ‘
plylz) = ) (2.13)

Combining of cquations (2.12) and (2.13) yiclds

p(ly)ply) = plyle)p(z) (2.14)

which is the so-called Bayes’ theorem. Another useful result that can be easily
derived is that for the joint conditional density of z and y given z

p(x,yl2) = p(zly. 2)p(y]2). (2.15)

The conditional mean of 2 given y is given by

Naly = E{xly} = /

2

xp(xly) de. (2.16)

The components z; of a random vector arc said to be jointly Gaussian if their
joint probability density is of the form

L fl(x — nm)TC;] (z— 7}.@)) (2.17)

o) = N de G eXp( 2
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&
x— 10

R(II)

Figure 2.1: Projection of the obscrvation x.

where det C,, is the determinant of C,. A jointly Gaussian random vector x with
mean 7, and covariance C, is denoted as

x ~ Ny, Cy). (2.18)

If y = Lx, where L is an affine transformation, then y is also jointly Gaussian with
probability density

P) = s exp (3~ L) (LCLLT )y~ L)) (219

that is y ~ N (Ln,, LC,LT).

2.3 Least squares estimation

In this section, the least squares (LS) solution for the linear observation model
r=Hbl+e (2.20)

where parameters 6 and error term e are unknown, will be presented. In the
nonlinear case, the LS solution is obtained using some iterative method such as
Gauss-Newton or steepest descent. These methods are not, however, in the scope
of this thesis, but an interested reader is referred to [95]. In the LS estimation,
neither the parameters 8 nor the observation error e is interpreted as random, but
the LS estimation can be considered as a deterministic fit. The LS solution is
defined as the vector € that minimizes the squared error norm, i.e. the minimizer
of the function

100) = ||z — HO | (2.21)

where || - || is the Euclidean norm. The columns of matrix H span a p dimensional
subspace R{H) which is often called as the range of H. It can be shown, that the
function (2.21) is minimized by selecting @ so that the residual vector @ — HE is
orthogonal to the subspace R(H) (sce Fig. 2.1). Then, we can write

H"(z — Hipg) =0 (2.22)
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which can also be written in the form
HTHO s = H . (2.23)

The system of equations in (2.23) is often called the normal equations and the
formal LS solution for the parameters 8 is given as

bs=(H 'H)Y "H 2. (2.24)

This is a unique solution of the function (2.21) if the matrix HTH is positive
definite. The LS estimate for the obscrvations is, furthermore, obtained as

F1s = Hb g (2.25)

Note, that the residual € = x — Z1,g is orthogonal to R(H) and #1,g is simply the
orthogonal projection of  onto R(H).

2.4 Principal component analysis

Principal component analysis is a multivariate statistical procedure, where the
random obscrvations are transformed into a smaller set of uncorrelated variables
called principal components (PCs). Even though, the observations are considered
as random variables no assumptions about the probability densities are made in
PCA. PCA was first introduced in [138, 64] and is equivalent to the Karhunen-
Locwve transform [80, 103]. When the calculated PCs are used in any form in
regression analysis the term principal component regression (PCR) is used instead
of PCA [73]. Some typical applications of PCA include data reduction, feature
extraction, and visualization of multidimensional data.

The starting point of PCA is the derivation of the PCs themselves. Consider
that we have made M observations of a random vector z € RY. Vectors 2 will
span a vector space which will be at most of min{ N, M} dimensions. The aim in
PCA is to find K < min{ N, M} PCs for cach obscrvation that will cover most of
the variance in the observations. The first PC 6, for observation z is obtained as
a linear combination of the elements of x

N
- X
6, = g ViLL; =01 T (2.26)
j=1
where vy = (v, 021, . .. ,’l,‘Nl)T € RY is a vector of scalar weights. The task is to

find the vector v; so that the variance of §;, i.e. the variance of v{x, is maximized.
Clearly, to achieve the maximum variance for finite v; some constraints must be
set. The most convenient constraint is || vy || = 1. The variance of the first PC is

var{f1} = E{(z{x — E{L{ZF})Q}
= B{(v[(z — E{z}))?}
= L(l/‘E{(x7%)(%7%)7‘}@1

. _
= WTCuu = AL

2.27
2.28
2.29

(
(
(
(2.30

)
)
)
)
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Thus, the variance of the first PC is equal to the largest cigenvalue of the covari-
ance matrix C, and vy is the corresponding eigenvector. Next, a vector vg that
maximizes the variance of v1 z with constraint that vJ z is uncorrelated with v{'z
is looked for. Furthermore, the third PC is obtained by finding vector v that
maximizes the variance of v1'z with constraint that v1 'z is uncorrelated with v{ z
and vz and so on. It turns out that, the k£'th PC (k = 1,2, ..., K) is obtained by
selecting v to be the eigenvector of C, corresponding to k’th largest eigenvalue

Ak [73].
2.4.1 Calculation of principal components

Next, the derivation of PCs for an ensemble of observations and the connection to
LS estimation is presented. Let X = (x),...,25) € RN*M be a N x M matrix
with the M observations in its columns and H = (v1,ve,...,vk) a matrix with
eigenvectors in its columns, and Opc = (01,0s,...,0,)7 a K x M matrix with
k’th PCs in the £’th row. So, the m’th clement of 8, is the £’'th PC for the m'th
observation. Then, according to equation (2.26), we can write

Opc = HT'X. (2.31)

Since the columns of H are cigenvectors of a symmetric matrix they are orthogonal.
In addition, a constraint || vy || = 1 was set and, therefore, the columns of H are
in fact orthonormal. This means that H” H = I, where I denotes identity matrix,
and we can write

(H'H)9pe = HT X. (2.32)
This is of the same form as the least squares normal equations in (2.23). Thercfore,
it can be concluded that, if we sclect the basis vectors of the observation matrix
to be the eigenvectors of the data covariance matrix the LS solution ends up to
PPCR. The estimates for the components are obtained as

Ope = (HTHY "HTX = HTX (2.33)
and the principal component transformation of the observations as
Xpe = Hbpe = HHTX. (2.34)

An important property of this transformation is the fact that it is the best orthogo-
nal fit in the mean square error sense. Meaning that, prediction error E{||X —X |2}
is minimized with respect to using any other set of same amount of orthogonal
basis vectors.

In the previous, the covariance matrix was used to extract the eigenvectors. In
this case, the eigenvectors reflect variance and covariance structure of observations,
while the mean of observations E{x} is neglected. In some cases, it is not, however,
desirable to remove the mean from the observations. In this case, the mean can
be included in the observation matrix explicitly. Another approach is to use the
correlation matrix instead of covariance to extract the eigenvectors [128]. Then
the eigenvectors will also reflect the mean. This approach is analogous to the one
using covariance matrix with the exception that quadratic mean E{Qﬁ} of PCs is
maximized instead of variance.
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2.5 Regularization theory

In this scction, the basic ideas of regularization theory are introduced. The aim
is to derive the smoothness priors regularization method, which will be used in
Chapter 7 for preprocessing of heart rate variability time series. The term regular-
ization arises from the area of ill-posed problems [57]. For such problems a unique
solution does not exist or the solution is unstable. In the latter case, small errors
in the observations can cause large error in the solution. Methods that are used
to stabilize the problem such that the solution becomes unique or less sensitive
to observation crrors arc called regularization methods. Probably the most pop-
ular such method is the Tikhonov regularization [181]. In the standard Tikhonov
regularization, the functional to be minimized is of the form

10) = z—HO|| +r2 |0 (2.35)

where x > 0 is a regularization parameter that controls the significance of the sec-
ond term in the functional. Clearly, the objective is not just to find the minimizer
of the residual norm (first terin) but to allow small deviation from it in order to
find a solution with smaller norm.

In the more genceral form of Tikhonov regularization, the functional to be min-
imized is

10) = | Ly(z — HO) | + &7 || Lo(0 — 0%) || (2.36)

where L is a weight matrix, Ly is a regularization matrix, and 6* is a prior guess
for the solution. The regularization matrix Lo is typically set to be either identity
matrix or a discrete approximation Dy of d’th-order derivative. Methods using
difference approximations in regularization can, in general, be called smoothness
priors methods [88]. The difference approximations are banded matrices with full
row ranks. For example, the second-order difference matrix Dy is of the form

1 2 1 0 -0
p— |V 2 cpova, (2.37)
Ly,
O -~ 0 1 -2 1

2.5.1 Smoothness priors regularization

Next, a particular type of smoothness priors regularization is considered. Consider
that there arc no particular prior assumptions about the paramecters 6 or the
parameters may not even have any physical meaning. On the other hand, there
are some assumptions about the observations themself. In that case, the prediction
H6 have to be regularized instead of 8. Let Ly be the identity matrix, Lo the d’th-
order difference matrix Dy, and 6* = 0. Then functional (2.36) yields

10) = ||z — HO || + 12 || Da(HE) |°. (2.38)
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By doing some rearrangements this can be written in the form

1o = H<0) ‘(niH) ’

2

(2.39)

By making notations

/:(”g) H’:<KDHdH> (2.40)

functional (2.39) returns to the form of the regular least squares functional (2.21)
and, therefore, the solution can be written as

0= H"HY "H"2' = (H'H + &*H"DYDyH) " H" ¢ (2.41)

The selection of the observation matrix H can be implemented according to
some known properties of the data x. For example, when the data is assumed to
be smooth, a generic set of Gaussian basis functions or sigmoids can be used. If
the only assumption is the smoothness the trivial choice of identity matrix for H,
ie. H=1¢RMN_ can be used since the smoothing is enforced by the difference
matrix Dg, anyway. In this case, the problem returns to the smoothing problem
proposed in [198], where the observation z is assumed to consist of a smooth
function f = HO € RV and observation noise, i.e. z = f +e. Clearly, for k = 0
the trivial solution f = z is obtained and for x% > 0 the trivial solution is drawn
toward the null space of the regularization matrix Dy. The null space of the second
order difference matrix, for example, contains all first order curves and, thus,
the solution will be smooth. The regularization parameter & which controls the
smoothness of the solution is also referred to as smoothing parameter. An evident
application of this approach is the estimation of the trend of a nonstationary mean
observation.

2.6 Bayesian estimation

So far, the parameters 8 have been assumed to be unknown deterministic constants.
In Bayesian estimation, the parameters are assumed to be random having a joint
probability density p(x,#) with the observations. The aim in Bayesian estimation
is to solve the posterior density p(f|x) of the parameters given the observations
[113]. According to the Bayes’ theorem (2.14) the posterior density is

p(z|0)p(0)
p(z)

where p(x|@) is the conditional density of observations x given the parameters
f. In Bayesian estimation p(z|@) is called the likelihood density. The densities
p(0) and p(z) are the marginal densities of the parameters 6 and observations z,
respectively. Tn Bayesian estimation the marginal density p(8) is replaced with a
density that describes the knowledge and/or assumptions of the paramecters prior

p(flx) = x p(x]6)p(0) (2.42)
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to any mecasurcments. This replacement is not differentiated here and, thus, the
marginal density p(#) is also referred to as prior density. The marginal density of
observations, given by p(z) = [ p(#,z)d0 = [ p(0)p(x|0)df, on the other hand, is
only a scale factor when z is given.

The posterior density (2.42) is a complete solution for the estimation problem
given the observations and the prior. It assigns a valuc for cach point 6 describing
the probability of the solution for the given observations and prior. In practice,
point. estimates such as the mean are extracted from the posterior density and are
given as solutions. The selection of the point estimates, in Bayesian estimation,
is done by defining a cost function C(8, é) that sets a unique typically real-valued
cost for each combination of the true parameter values 6 and the estimated values
0. The expected value of the cost function

B(é) = E{C(Q,é(:l;))} = / / C(ﬁ,é(:l:))p(ﬁ,:l:) df dx (2.43)
RN S e
is called the Bayes cost. According to the Bayes estimation criterion [113] the
optimal estimator é]g for the given cost function is the one that minimizes the
Bayes cost, i.e.
B(f;3) < B(f) (2.44)
for all §. Different estimators can be derived depending on the choice of the cost
function.

2.7 Mean square estimation
In the mean square (MS) Aestirnation, the cost function is the squared norm of the
estimation crror § =0 — 6, i.c.

Cus(0.0) = 10— 82 = (8- O)7(0  b). (2.45)
The MS estimate is, thus, scarched by minimizing the Bayes cost with the given

cost function. By substituting (2.45) into (2.43) the Bayes cost can be written in
the form

B() = /R/ 16— 6)?p(0, x) df dx (2.46)
= [ (1o arenei) do Yot (2.47)
B(0)x)

Because p(z) is nonnegative, B (é) is minimized by minimizing the inner integral
in (2.47). This is done by taking the partial derivative of B{f|z) with respect to

f and setting it to zero. This yields

IB(0|z - N
ﬂ = (070 — 20" Ons + O1gOns)p(0z) dO (2.48)

ot ke 08
_ / (2015 — 20)p(0]x) d — 0. (2.49)
JIRP
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Since fyg does not depend on 8, it can be taken outside the integral and the
previous equation can be rearranged to yield

Onis / p(Blx)do = [ 6Op(Blz)do. (2.50)
JRP JRe

Since the integral over the conditional density is naturally equal to unity, it is
concluded that

Opis = /]R Op(0)z) do = E{0|z} (2.51)

i.e. the MS estimator is equal to the conditional mean of parameters § given the
observations x. Based on this, the estimator is sometimes also called as the con-
ditional mean estimator. Furthermore, it could be casily shown that the expected
value of the estimation error 6 = 6 — éMg is zero [113] and, therefore, the MS
estimate is unbiased. Because f is zero mean, the estimation error variance is of

the form
var{é} - E{é”'é} - E{(e 9T~ é)} (2.52)

and, thus, the conditional mean minimizes the variance of the estimation error.
Therefore, g is also called minimum error variance estimator or just minimum
variance estimator [113].

2.8 Maximum a posteriori estimation

Another possible cost function is the uniform cost (UC) function given by

o [0 if|6] <& Yk
Cuc(0,6) = { 1 otherwise

where ¢ is a small constant. This cost function gives zero penalty if all components
of the estimation error § are small and unit penalty if any of the components is
larger than . By substituting this cost function into (2.43) it turns out that the
optimum estimator for this cost function is the one that maximizes the posterior
density p(A]z) [113], that is

z) > p(@lz), V. (2.54)

p ((;U C

In other words, éU(; is the mode! of the conditional density p(0)x). Due to these
results, the estimator éUC is called the conditional mode estimator or more com-
monly the mazimum a posteriori (MAP) estimator éM Al-

A useful equivalence can be casily observed. That is, if the posterior density
p(f]x) is symimetric and unimodal then the mode and the mean of the density
function are the same. This means that the MS and MAP estimates are the same,
i.e. éMS = éMAI). This equivalence will be utilized in Section 2.9 in the derivation
of the Kalman filter equations.

1 The mode is the value of @ that maximizes the density function p(8).
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2.9 Dynamic linear mean square estimation

So far in this chapter, the parameters 8 have been considered time-invariant. Next,
the system under consideration is assumed to be dynamic and the parameters ¢
time-varying. The time-varying parameters can be estimated in recursive manner
with Kalman filter that was originally introduced in [78]. In Kalman filtering, the
cstimates of the parameters at certain time instant arc calculated by updating
the previous estimates each time a new data point is available. The derivation of
the Kalman filter equations, presented in this section, is based on the one given
in [113]. Another popular approach is to use the so-called innovations in the
derivation [60].

The formulation of the Kalman filter cquations is based on state-space formal-
ism, which is one of the fundamental models of system theory [88]. Let z; be a
random process and #; € R? a vector valued random process. The evolution of the
state 0; is described with the linear equation

‘9t+] = FtQt + Gtu‘t (255)

where F; and GG; are known matrices and w; is a zero-mean random process with
covariance Cy,, = cov{wy,,wy, } = 02.(t1) for t1 = t2 and 0 otherwise. The sub-
script ¢ denotes the discrete time instant. The observation z; depends on the state
0, according to the lincar observation model

x, = H,0,+ ¢, (2.56)

where Hy is a known observation matrix and e; is a zero-mean random process
with covariance C,, = cov{e;,,e,} = o2(t1) for t; = to and 0 otherwise. Noise
processes wy and e; are assumed to be uncorrelated so that cov{w;, e, } = 0 for all
j and k.

There are two approaches for obtaining the lincar mean square estimate. The
first onc is to specify a lincar conditional mean and find the best lincar form.
The second approach, which is adopted here, is to assume noise processes w;
and e; to be Gaussian. As shown in [113], the conditional mean for Gaussian
variables is linear and, therefore, the two approaches are identical. This leads to
the well known fact that the Kaliman filter is the optimal estimator if the Gaussian
assumptions arc valid and no matter what the distributions are it is still an optimal
lincar estimator.

The aim is then to find the MS estimate for each state 8, given the observations
X¢ = (1,22, ..., 7¢) € RY. Asshown in Section 2.7, this is equal to the conditional
mean .

0, = E{0,|X,} . (2.57)
Because of the Gaussian assumptions, the MAP estimate is equal with the MS
estimate. Since the derivations are simpler for the MAP estimate, it is used here.
The posterior density to be maximized can be written as
(0. X;) (0, Xy 1. 3)
(0, X,) = =
p(Xy) (X1, 2)

(2.58)
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The numerator of this can be written as

PO, Xi—1,70) = p(@e|0, Xeo1)p(0r, Xi—1) (2.59)
= p(a]0, Xo—1)p(0:] Xy —1)p(Xi 1) (2.60)

where p(24]6;, X; 1) = p(a¢]6,) since if 8, is given, the only random variable in the
observation model (2.56) is e¢;, which does not depend on either 6, or X; 1. By
substituting (2.60) along with the above observation the posterior density (2.58)
can be written as

P(x]0:)p(0¢ Xe—1)p(Xe—1)
p(XLflv '/I"L)

p(0:|Xy) = . (2.61)
The denominator can also be written as p(X; 1, 2;) = p(ag| Xp—1)p(Xi—1) and,
thus, the posterior density becomes

(0060, Xe—1)

(0| X,) =
[( t‘ t) p(mt‘Xl,—l)

(2.62)

which is now of the desired form. The posterior density can then be determined
by evaluating each of the densities on the right hand side of (2.62). Note that the
denominator density p(a¢| X;—1) does not contain 8;, but is only a scale factor and,
thus,

p(0,1X,) ox p(|0)p(0) Xi—1). (2.63)

Since both of the densities on the right hand side of (2.63) are Gaussian, only
the means and covariances need to be derived in order to evaluate the densities.
The mean and covariance for the density p(x¢|0;) are

77x,,\0,, = E{.’IJ{‘QL} = E{Hte[ + 6L|9L} = HLGL (264)
Colon = E{(Htf)t + e = 1,10, ) (Heb + e — ’r/w,,w,))th} =0C,, (2.65)

and so p(x|0;) is of the form
1 .
p(]0) x 0xp<—§(:1;L — HLHL)IC’;] (xy — HLHL)> (2.66)

where the scale factor of the normal distribution (2.17) have been omitted. Simi-
larly, the mean and covariance for the density p(6,|X,—1) are

Mox: . = E{Fi10i0+Giqwe 1| Xy 1} (2.67)
= F10,, = ét|t4 (2.68)
Coix.n = E{(Br—no,x, )0 —mp,x, ) [ Xen} (2.69)
- E{é,/“_léz‘;_l\xt,l} =Gy (2.70)
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where ;1 is the estimate for state 7 given observations X;_ 1 and 051\1 s to
be determined. The density p(6y] X;—1) is, thus, of the form

0 g )C5) O Bun). )

1
PO Xy 1) ox ‘3XP<2 By

Next, in order to find the MAP estimate, the value of 6, that maximizes the
posterior density (2.63) need to be evaluated. Here, the usual approach of maxi-
mizing the logarithm of p(8;|X,) instead of p(6;|X;) itself is taken. The logarithm
of (2.63) given (2.66) and (2.71) is

lnp(ﬁ,,\X,/) X (IL'[/*H[/Q[I)TCil (IEL*HLQL)+(91/*ét‘t,])chl (91/*9}‘25,]). (272)

e
- Oyt 1

The MAP estimate ét is then obtained by taking the partial derivative of the
previous expression with respect to 6, and scetting it to zero. This yiclds

H;TC;l(CUt — Htét) - 57‘],’7] (ét - é”[/,l) - 0 (273)

Solving this for 0, gives

0, = (HI'C,'H, + S I (&% Oe 1 + HIC, ). (2.74)

1 Oyt 1

To put this into a more convenient form, the following matrix inversion lemma is
used. If C7 and Cs are symmetric and positive definite then

(ATCTTA+ o = Oy — Co AT (ACL AT + €)1 ACs. (2.75)

By using this lemma and after some simple but lengthy calculations equation (2.74)
can be written as [113]

é(/ = ét\tfl + K(/(IL'[I — Hl,ét\tfl) (276)
where the so-called Kalman gain matrix K, is

K; = C(;WHHtT(HtC(;”MHtT +Ce,)h (2.77)

Equation (2.76) is now of the desired recursive form. It is seen that the estimate
«9A,/ is obtained by correcting the prediction QA,,‘,/,l given by (2.68) with the one step
prediction error x; — Hté,,‘,/,l of the observation x; weighted by the Kalman gain
matrix K.

Before the algorithm is complete, the computation of the error covariance
05/,\,,71 needs to be determined. The prediction error can be written as

ét\tf] = 0, — ét\tq —F, 06,1 +Gywy — F 10, (2.78)
Fial1+ Gy (2.79)
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and, therefore, Cﬁw , can be written as

= E{(Ftvlét/d + Grow )(Fy10,1 + Gt—lwtvl)T} (2.80)
= FaCy FLy+GiaCo, G (2.81)

Ot 1

since 5,/_ 1 and w;_; are uncorrelated. Furthermore, the estimation error can be
written as _ X . A
9,5 = 915 — 915 = 915 — QL‘Lﬁl — Kt(.’l’}t — Ht‘gl,\tvl)- (282)

By inserting x; = H;#, + ¢, this becomes
ét = §L|I/71 - Kt(Hl/éHtvl +e) =~ KLHL)éL\Lvl — Kyey. (2.83)

The error covariance is then of the form

Cy, = (I = KuHy)Cy, (I = K Hy)" + K, Ce K (2.84)
which can be reduced to yield
Cj, = (I = KH)C, . (2.85)

The derivation of the Kalman filter algorithm is now complete. The algorithm
consisting of equations (2.68), (2.76), (2.77), (2.81), and (2.85) can be summarized
as

Onen = Fr10, (2.86)
G0y = Gy P+ GeaCo, (G (2.87)
K, = G, HI(HGC; H +Ce)” (2.88)
6, = (;ﬂtq +KL(:I;,,-H,,0At‘t41) (2.89)
G, = (- EKdL)Cy,, (2.90)

To initialize the algorithm, the prior knowledge of (;0 = E{0y} and C@O =Cy
the state is required.

2.10 Smoothing

In the Kalman filter algorithm, the state estimate is updated immediately after a
new observation is available. Such a real time processing is not, however, always
necessary. Instead, if a small lag in the processing is allowed or if the data is
processed off-line, also the future observations can be used in the state estimation.
In this case, it is reasonable to expect the estimates to be more accurate. Such an
estimator, which uses observations zj,..., 2, to estimate the state ; at time
instant ¢, is called a smoother.

Historically, three different kinds of smoothers have been proposed, namely
fixed-point, fived-lag, and fixed-interval smoothers [6]. The fixed-point smoothing



2.10 Smoothing 35

is useful, for example, when the initial state of a process is to be estimated while
the process progresses and new data is obtained. The fixed-point smoothing prob-
lem is to find estimates éj‘L for fixed j and all L. The fixed-lag smoothing, on
the other hand, is suitable for online processing of the data when a small delay
of L data points is allowed in the estimation of the state. In fixed-lag smooth-
ing estimates ét, ¢ for cach ¢ and fixed L arc to be obtained. Here, only the
third smoothing approach, i.c. the fixed-interval smoothing, is considered. The
fixed-interval smoothing is suitable for off-line processing of finite data sets. In
addition to these three historical smoothers various computationally more efficient
smoothing algorithms such as the one in [38] have been proposed.

The fixed-interval smoothing problem is to find estimates é,/‘N for each state
8, (t=1....,N) given all the observations Xy = (z,...,zx). The MS estimate
for this is equal to the conditional mean

Oin = B{0,| XN} (2.91)

Different approaches for the derivation of the fixed-interval smoothing equations
have been presented. One quite straightforward approach is to use an optimal
forward-backward filter formulation [43]. Another approach, which will be adopted
here, is to derive the smoothing cquations in Bayesian point of view similar to the
derivation of the Kalman filter presented in the previous section. This approach
was presented in [153] and is sometimes referred to Rauch-Tung-Striebel form of
smoothing equations.

Similar to the derivation of the Kalman filter, Gaussian variables are assumed
and, thercfore, the MS estimate can be replaced with MAP estimate. Thus, étw
is the value of 4, that maximizes the posterior density p(6,|X ). Similarly, QAL‘N
and «9A,/+1‘N are the values of §; and 6,11 that maximize the density p(6;, 8,11 X n).
This joint posterior density can be written as

P04 01, Xv)
p(ét,QtH\X/\) [)(XN) (2.92)
P01, 0141, 011, an| X )p(X)) .
= . (2.93)
P(zpgr. .., xn| Xe)p(Xy)
Reducing the terms p(X,) and noting that the denominator is just a scale factor
this yields

p(@t, 9t+1 ‘Xj\e') X p(@t, ‘9t+] R (N DR ,J?N‘Xt). (294)

Applying the result given in (2.15) this can be written as
])((91/,9[+1‘XN) X p(9/,+1-37/,+1----,J/‘NW/,-XL)])(@L\X/,) (295)
where p(6e 1, 2441, ... xn) does not depend on X; when 6, is given. Thus, apply-

ing (2.15) again yiclds

P01, 0411 XN) o plxigrs .- an |01, 00)p(004116,)p(60,1 X)) (2.96)
o p(@itts e 2n[041) (01100 p(0:] X0) (2.97)
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which is now of desired form.

Next, it is assumed that the filtered estimate g, is already determined and
the maximum of the posterior density is searched for. For this the means and
covariances of the densities on the right hand side of (2.97) need to be evaluated.
It is, however, noted that the first term p(z;y1,....xn|0i41) does not contain 4,
and can, therefore, be neglected [153]. The mean and covariance for the second
term p(f;416;) are given as

T/Ot | 1‘9t - Ftet (2.98)
CetJrl 16, = E{(FLGL -+ GL’U}L - Tlel,+1 |6’,,)(FL0L -+ GL’UJL - T/GI,+1 |01/>T‘0L} (299)
= G[/C’wt GLF (2100)

The mean and covariance for the third term p(6,]X,) arc simply given by substi-
tuting ¢ — 1 to ¢ in equations (2.68) and (2.70). This yields

Mox, =0, Cox, = Cj (2.101)

e

Now, the posterior density (2.97) is sufficiently determined and the logarithm
of it is of the form

lnp(9L796+l‘XN) x DB+ (9L+1 - FLGL)T(GLCU%GT)A](9L+1 - Fl,‘gl,)
+(0: = 00)7C; 1 (0 — 6) (2.102)

where B represents the terms arising from the first density in (2.97) that does not
depend on 0,. Deriving this with respect to 8, and setting the result to zero yields

‘FLT(GLCu,thT)q(étH\N - FLétIN) + Cév,,l(ét\N - é’) =0 (2103)

Using the matrix inversion lemma (2.75) once again and after some lengthy calcu-
lations this can be written in the desired form

ét\N = ét + At(ét-HlN - ét+1|t> (2.104)
where
Ay =Gy FLCy r (2.105)
t 1

This is the solution of the fixed-interval smoothing problem. Note, that the
smoothed estimates are obtained by running the stored filter estimates éL and
étﬂ ¢ backwards in time by taking ¢ = N — 1, N —2,...,1. Also the crror covari-
ances (' and C’@t e need to be stored. For the initialization, the filtered estimate

Oy is used, i.c. Onn = On.

For the error covariance, similar recursive equation can be derived by examining
the estimation error (;ﬂ n of the smoothed estimate. This results in the recursion
[153]

Cy

= Cy, + A(Cy -Gy, m)A’[ (2.106)

tIN tiLIN

which completes the solution of the fixed-interval smoothing problem.



CHAPTER II

Stationary time series models

This chapter is concerned with stationary time series models. The most popu-
lar paramcter models, that is AR, MA, and ARMA models, which are commonly
used in time series analysis are presented. The estimation of AR model param-
eters is a linear estimation problem and few popular procedures for solving AR
parameters are presented in Section 3.3. Here, only the transversal structure of
the AR ecquations will be considered. Another common structure, i.c. the lattice
structure, for these equations is presented, e.g., in [110]. The estimation of MA
or ARMA paramcters, on the other hand, is a nonlinear problem and is not con-
sidered in this chapter. The end of the chapter is focused on spectrum estimation
of stationary time series with a division into classical Fourier transform based and
parametric spectrum estimation methods. The main references for this chapter
arc [84, 110, 118, 133, 134, 151].

3.1 Stochastic processes and stationarity

As given in Section 2.2, a random or stochastic process x(t) maps the outcomes
¢; of an experiment to a set of time dependent functions z(t,(;). The collection
of all possible functions is called ensemble and a particular function is called a
realization of the process. In other words, a random process is a family of random
variables 2, where t belongs to some given index set [151]. If ¢ represents time and
the given index set is the real axis, i.c. ¢ € R, then o, = 2(1) is a continuous-time
process. If the index set is a set of integers, for example £ = 1,2,..., then the
process is said to be a discrete-time process, a time series. Here, only discrete-
time processes x; of finite length (¢ = 1,2,..., N) and with real valued variables
arc considered.

Ef{x,} = /% xplre) de =1y, (3.1)

— 0T

for all . The autocorrelation vy (t1,12) of process x, is the expected value of the

37
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product Ty, Ty, 1.€.
> OG OC
To(t1,te) = E{ry, a4, } = / / T129p(Zey, Tty ) dy dag (3.2)
— X —

which is a function of the two time indices ¢; and to. The autocovariance v, (t1, t2)
of x; is the covariance of random variables z,, and x,

et t) = Bl — )50 — )} (33)
= ru(ti,te) = N, Moy, - (3.4)

The cross-covariance of random processes x, and y, is defined as

Yoy (l1,12) = ray(t,t2) = N, My, - (3.5)

If vy (f1, t2) = O for all ¢ and ¢, the processes z, and y, are said to be uncorrelated.
Similarly, if ryy(t1,t2) = 0 for all ¢; and ¢, they are said to be orthogonal.

The stochastic process is said to be stationary if its statistical properties do
not change over time. The complete stationarity presumes that the joint prob-

ability distribution of (xy,,..., 2, ) is identical to that of (x4 4ry..., Ty, +r) for
all admissible t1,...,1, and all 7. An important subclass of stochastic processes
consists of wide-sense stationary (WSS) processes. For WSS process z; the mean
is constant, i.e.
E{z} =n (3.6)
for all ¢, and the autocorrelation r,(t1,t2) depends only on the lag 7= to — t;
ra(ti,ta) = ra(7). (3.7)

For each 7, the autocorrelation sequence r,(7) measures the correlation between
process values separated by interval 7. Clearly, r,(0) > r,(7) for any 7 and the
correlation tends to weaken when 7 increases, but it can have humps even for
large 7 (e.g. for cyclic processes). Another useful property of the autocorrelation
sequence is that r,(7) = r,(—7). In addition, the autocorrelation matrix

72 (0) rp(1) e 7y (L)
r2(1) 7r4(0) oo re(L—1)
R.=| " . o (3.8)
re(L) T (L—1) ... r,(0)
formed from autocorrelation sequence components up to lag L is by definition
positive semidefinite, that is, for arbitrary vector @ = (aq,...,a541)7
L1 L41
a’Rya = Z Z ajarry(k —j) > 0. (3.9)
G=1 k=1

: . . Ry e
This can be proved by examining the expectation of | > j; ajz;|* [133)].
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An important problem in the theory of stochastic processes is the estimation
of the various statistics. Especially, since in many practical situations only a
single realization of the process is observed. In such cases, the estimation of the
ensemble averages is impossible. However, if the process is ergodic, which is in
general true for stationary processes, the ensemble averages can be replaced with
the appropriate time averages. That is, for an crgodic process

| X
— E T E{x}. (3.10)
R— e

Thus, the mean of an ergodic process can be approximated with the time average

Z:r, (3.11)

Correspondingly, the autocorrelation sequence 7, (7) can be estimated by averaging
all the possible products z,z,,,. This yields

N—|7|
1
15(T) = ——— Z Ty || (3.12)
=1

= 7]

This is an unbiased estimate of the autocorrelation but it can lead to autocorrela-
tion matrix which is not positive semidefinite [110]. Therefore, the biased estimate

N—|7]

1
1o (T) = N Z Ty r] (3.13)

t=1

which always leads to positive semidefinite autocorrelation matrix, is usually used
instecad. Clearly, both of these estimates for the autocorrelation have the same
property, namely the bigger the lag 7 is the less terms are included in the average.
Therefore, the accuracy of the autocorrelation estimate is decreased for bigger
lags.

Additional information about the process of interest can be achieved by present-
ing the process in frequency-domain using the power spectrum or power spectral
density (PSD) representation of the process. The power spectral density P, of
process x; is defined as the Fourier transform of the autocorrelation sequence

ok

P.(w) = Z 1 (T)e T (3.14)

T=—0C

where i = /=1 is the lmaginary unit and w € [—7, 7] is the angular frequency
w = 2nf. The calculation of the Fourier transform and methods for estimating
(3.14) arc discussed in Scction 3.5.
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3.2 Autoregressive and moving average parameter models

Basically, the term model refers to any hypothesis that can describe the generation
of the observed process or signal. The observed time series, denoted by x;, is now
assumed to be a WSS process with zero mean. The most common parameter
models used in time series analysis are the AR, MA, and ARMA models. The
most popular one of these parameter models is surely the AR model.

The time series z; is said to be an AR process of order p, i.e. an AR(p) process,
if it satisfies the difference equation

p
Ty = — Z ;T + € (3.15)
j=1

where a1, as,...,a, are the parameters of the AR model and e; is a white noise
process. A white noise process e, is a random process with zero mean, for which
the correlation sequence is

o, 7=20

re(r) = { 0, 770 (3.16)

In other words, the components of a white noise process are uncorrelated with
variance o2. The correlation sequence can also be presented using the Dirac delta
function as 7.(7) = ¢25(7). By substituting (3.16) into (3.14) it is observed that
the spectrum of a white noise process is flat, i.e. P.(w) = 02 for all w. The
distribution of the random variables e, is usually assumed to be Gaussian, i.e.

er ~ N(0,021). (3.17)

For Gaussian variables the uncorrelated components of e¢; are also independent
and the term iid (independent identically distributed) is also used instead of white
noise [118]. As the term autoregressive indicates, the present value of the process
x; is generated (regressed) on the p previous values x,_q,...,2,p. In addition,
randomness is introduced into the process by the noise term e;.

In the AR modeling, the observed time series x; (e.g. measured biosignal) is
technically assumed to be an AR process of some specific order p. Then, the model
parameters a; are estimated so that the variance of the prediction error or residual
€¢

p
€= Xy + Z a;Ti—j (3.18)
j=1

is minimized in some sense. In the case of AR model, these estimation methods
are linear and, thus, easy to implement. In the next section, two common methods
for estimating the AR parameters are presented, namely the Yule-Walker (YW)
and least squares methods.

Another general class of time series models is the MA model. Time series x;
is called a MA process of order ¢, denoted by MA(g), if it satisfies

q
Ty = Z bret—k (3.19)
k=0
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where by, b1, ..., by arc the MA paramcters and e, 1s a white noise process. By
comparing the AR and MA models it is noted that the white noise process ¢ is
used in both models. The difference between the models is, however, that in AR
model the value of e; influences the value z; and, thereby, also all the future values
Tyt Teg2,.... In the MA model, on the other hand, the value of e; influences
only a finite extent of future values of x, namely x41....,2+44. This difference
accounts for the fact that the autocorrelation function of an MA(q) process cuts
off after lag ¢, whereas the autocorrelation function of an AR(p) process extincts
gradually [151].

A natural generalization of AR and MA models is to combine them to yield a
mixed autoregressive moving average model. The process 2, is called ARMA(p,q)
process if it satisfies the difference equation

» a
T = — Z a;Te_; + Z bres_g (3.20)
7=1 k=0
where a1, a0, ..., ap and by, b1, ..., by arce the AR and MA parameters respectively.
Clearly, AR and MA models are special cases of an ARMA model. The AR model
is obtained by setting ¢ = 0 and by = 1 in the ARMA model and, correspondingly,

the MA model by setting p = 0.

3.3 AR parameter estimation

The procedure of fitting a parameter model to observed time series can be divided
into three separate steps. The first step is to identify the genceral structure of the
model which would be most appropriate. This is usually done according to the
prevailing practice in the field of application and the case of implementation may
also have some weight. In addition, examination of the data autocorrelation func-
tion and, especially, spectral analysis of observed data can be useful approaches in
the selection of the model structure. The second step in the model identification
is the selection of the model order. For this, various criteria have been devel-
oped. All these criteria, however, ecmploy the estimates of the model parameters
and, thus, the final step of parameter estimation is considered first. Here, only
the estimation of AR model parameters, which is a linear estimation problem, is
considered. The estimation of MA or ARMA parameters is instead a nonlinear
problem and is not considered here. Different methods for solving ARMA model
parameters arc presented, c.g., in [24].

3.3.1 Yule-Walker method

The problem of estimating AR model parameters is as follows. Given the N
observations x1,Z92,....2zx the problem is to estimate the unknown parameters
a1,02,....0p. In the Yule-Walker method, also known as the autocorrelation
method [84], the AR parameters are estimated such that the prediction crror vari-

ance o2 is minimized. This is minimized if the prediction error given by (3.18) is
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orthogonal to the data, i.c.
p
E{(z; + Z ;X ok} =0, Vk=1,2,...,p. (3.21)
7=1

Noting that FE{z, 2, } = r»(k—7), the set of equations in (3.21) can be written
in matrix form as

72(0) 72 (1) re(p—1) a (1)
(1) 72(0) Te(p —2) as B 7(2)

: : : : o (3.22)
rz(p—1) r{p—2) - 72(0) Qp r2(p)

where 6 denotes the AR parameter vector. When the biased autocorrelation es-
timate given in (3.13) is used in (3.22), these cquations are called Yule-Walker
normal equations. The AR parameter estimates are obtained as

Oyw = —R'rg. (3.23)

For a true AR(p) process x; the prediction error term x; + Z?:l a;Ti—j is
equal to the white noise process e; and, thus, by setting k£ = 0 in (3.21) it yields

E{eixs} = E{(if} = 02 since e is uncorrelated with zy_q,... ,T¢—p. Thus, the

prediction error variance (ff can be estimated as
P
52 : o Nl AT .
&2 = E{(z + E a;x—5)e = 15(0) + Oywra. (3.24)
j=1

3.3.2 Least squares method

The AR equations, i.e. one step forward prediction equations, for all possible
observations x; are given by

P
:I;t:—Zaj:L'L-j+eL, t=p+1,...,N (3.25)
j=1

where €; is the prediction error. This set of equations can be written in matrix
form as

Lp+1 Lp Lp—1 L1 ai €p+1
Lp42 Lp41 Ty te Lo a9 €p+2
. = - . . + . )
(3.26)
TN IN-1 TN-2 “* IN-p) \Gp N

T H 0 €
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In the LS method, the AR paramecter estimates are obtained by minimizing the
squared prediction crror norm [|e]|?. According to Section 2.3 the LS solution can
be written in the form
~H"HOs = H'z (3.27)
and the AR parameter estimates are obtained as
Os = —(H"H) " H” 2. (3.28)

By comparing cquations (3.22) and (3.27) it is noticed that they arce of the same
form, but with different autocorrelation estimates. Roughly speaking it can be said

that the autocorrelation functions are connected such that RYW = g E{H"H}
and rYW = ﬁE {HTz} [110]. Technically, however, in the LS method the same

amount of data is averaged for each lag in the autocorrelation estimates, whereas
in YW less data is averaged for bigger lags as pointed out by (3.13). Nevertheless,
it can be argued that the two methods are asymptotically equivalent.

3.3.3 DModified covariance method

One popular method for estimating AR parameters is the so-called modified covari-
ance method [110], which is simply a forward-backward LS estimation procedure.
This method can be derived as follows. Corresponding to the forward prediction
cquations given in (3.25) the backward prediction equations are given by

Ty = — Z(I?JIJL+]' +eP, t=1,....N—p (3.29)
j=1

where the superseript b stands for backward prediction. These cquations can be
written in the matrix form

P = —Hpb + P (3.30)
where 7P = (21,22, ..., 2x )7, €® = (€1, €2....,en )T, and
T €T3 o Ip
o :1;:3 :1::4 . :1;p:+2 . (3.31)

The minimized quantity is now the sum of the squared prediction error norms
[€!]]? + ||€P]|?, where €l is the forward prediction error term given in (3.26). Due
to the symmetry of the autocorrelation, it can be shown that the forward and
backward AR coefficients for stationary processes are equal, i.e. 6f = g = 6™
[110]. Therefore, the combined forward-backward prediction equations can be
written in the matrix form

D@6

xfb H['b 6fb
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The LS solution for the forward-backward parameter estimation is, thus, given by

Afb T 1447, fb 9 9

s = —(HpHp)” Hpz™. (3.33)

The estimate for the prediction error variance o2 in the LS methods is obtained

simply as the average of the squared prediction error values. In the forward-
backward approach this yields

6% = E{(¢")?} = I (3.34)

where the prediction error term e is simply estimated as é = 2 + Hfbéﬂi In

case of accurate estimation, the prediction error terms are sensitive to numerical
errors and, therefore, procedures with improved numerical accuracy for solving the
prediction error variance have been proposed, see, c.g., [171].

3.4 Model order selection

The central problem in the model order determination is the trade-off between
the model fit (i.e. the residual variance) and model complexity (i.e. the number
of model parameters). Suppose that an AR model of order p is fitted into a
realization of an AR process of finite order. If the order p is smaller than the
true model order, the estimated residual variance 62 is expected to be larger than
the true white noise variance o2. When p is increased over the true order, on the
other hand, the residual variance is not expected to decrease significantly. Thus,
the optimal model order could be determined by plotting the estimated residual
variance 62 as a function of the model order p and selecting the optimal order
p from the point where the graph levels off. This method for AR model order
determination was proposed in [199].

Various refined versions of the above method have been proposed ever since,
see, e.g., the review in [53]. Some of the well-known model order selection criteria
are the two developed by Akaike. The first of these being the final prediction error
(FPE) criterion [3], where the model order p is selected so that the term

N+p

FPE(p) = 67
) =625 (3.35)

where N is the number of data samples, is minimized [151]. After this, Akaike
proposed the Akaike’s information criterion (AIC) [4] that includes a term of
maximized log-likelihood of the model and a term of number of parameters, i.e.

N
AIC(p) = ~2max Zlnp(azt\é) + 2p. (3.36)
j=1
For AR processes with Gaussian variables the AIC reduces into the form [84]

AIC(p) = N In(62) + 2p. (3.37)
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Again the optimal model order p is selected such that AIC(p) is minimized. AIC
has also been used for estimating the AR and MA orders p and ¢ of an ARMA
model. This is done by simply replacing p with the sum p + ¢ and calculating
AIC(p, q) for finite combination of p and ¢ values. Yet another criterion for model
order selection is the so-called minimum description length (MDL) criterion pro-
posed in [160]. This criterion, resembling the AIC in shape, is given by

MDL(p) = N In(62) + pIn(N). (3.38)

All the previous model order selection criteria are derived for true AR pro-
cesses and are, therefore, known to work well for simulated AR processes. Actual
measured biosignals are, however, hardly AR processes. In this case, the model
bias increases the residual variance and, therefore, affects on the model order se-
lection criteria. In other words, the suitability of the model order selection criteria
depends on how well the signal is modeled by an AR process. Thus, the model
order selection criteria can only be used as guidelines for the model order in real
applications.

3.5 Spectrum estimation

Additional information about the process of interest can be achieved by presenting
the process in frequency-domain using the power spectrum representation of the
process. According to (3.14) the PSD is defined as the Fourier transform of the
autocorrelation sequence. The true autocorrelation sequence is not usually known
and, thus, the spectrum must be estimated. Methods for estimating PSD can
be divided into classical (nonparametric) and parametric methods. The classical
PSD estimators are based on the Fourier transform which for finite discrete-time
processes is usually calculated using the fast Fourier transform (FFT). In the
parametric methods, on the other hand, the observed process is modeled with
some paramctric model (c.g. AR or ARMA) and the PSD is obtained from the
estimated model parameters.

3.5.1 Fourier transform
The continuous Fourier transform (CFT) of function x(t) can be defined as
X(f) = / z(t)e 2™/t gt (3.39)
J—oc

where 7 is the imaginary unit and f is frequency. The function X(f) is a complex
function and can, thus, be presented in the form

X(f) = (X)) = A(f)er*D (3.40)

where A(f) is the amplitude spectrum and &®(f) the phase spectrum of z(t).
The power spectrum is the square of the amplitude spectrum, that is P(f) =
X(HX*(f) = |X(f)]?, where the superseript (-)* denotes the complex con-
jugate operation. The analogy between z(f) and X(f) is denoted shortly as
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x(t) «— X(f). One important property of Fourier transform is that convolution
in time-domain corresponds to multiplication in frequency-domain, i.c.

z(t) x y(t) —— X(HY(S) (3.41)

which is known as convolution theorem and applies also the other way around.

Let x; be a discrete-time sequence sampled from z(¢) at fs = 1/AT Hz, where
AT is the sampling interval. Clearly, the sampled sequence z, can be represented
as Ty = Z;;vx z(FAT)S(t — jAT) and the Fourier transform of x; yields

X(f) = Z 2y 12l /1 (3.42)

j=—00

where x; = 2(jAT). It turns out that (3.42) is a periodic replication of (3.39) with
period fs. In general, sampling in time-domain results in periodicity in frequency-
domain and vice versa. Therefore, to avoid the overlapping of the spectrum periods
(frequency aliasing) the continuous signal (%) must be bandlimited with maximum
frequency fmax, 1.€. the transform of (1) is zero for all f > fiax, and the sampling
frequency must satisfy fs > 2 fia., where 2 fna, is known as the Nyquist frequency.

If only a finite data sequence of N points is observed the transform (3.42)
reduces to

N—1
X(f) = Z x eI f /] (3.43)

j=0

which can be considered as the transform of the infinite sequence z, windowed with
a N-point rectangular window. This is still a continuous function of frequency.
Evaluation of the previous equation in discrete frequencies fr = k fs/N, k =
0,1,...,N — 1 yields
—1
XDFT(fk) _ Z xjeAiQﬂ'jk/N (344)

J=

which is called the discrete Fourier transform (DFT) of sequence x,. Since the
sampling in the frequency-domain results in periodicity in time-domain, the DFT
should actually be considered as the transform of a periodic extension of z; win-
dowed with a rectangular window. The length of the window being equal to the
length of the period. Efficient algorithms that evaluate the DFT equation (3.44)
are, in general, called FFT algorithms.

3.5.2 Classical spectral estimation

The classical PSD estimators are divided into indirect and direct approaches. In
the indirect approach the PSD is obtained as the transform of the autocorrelation
sequence, whereas in the direct approach PSD is obtained by taking the transform
of the process directly. Collectively, the indirect approaches are called correlograms
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and direct approaches periodograms. Only the latter approaches are considered
here. The periodogram PSD estimate for the observed sequence g is defined as

L= 2
Pufi) = |3 e i2mikiN (3.45)
Nfs|4
7=0

where the scaling term N fy is required for proper power determination [110]. The
periodogram can be shown to be an asymptotically unbiased estimate of PSD, but
it is not consistent because the standard deviation (square root of variance) of peri-
odogram for any frequency is approximately cqual to the power density value to be
estimated and does not depend on N [84]. The variance of periodogram can, how-
cver, be reduced by averaging periodograms calculated from shorter epochs of the
data sequence. The spectral resolution of the periodogram, on the other hand, is
roughly the reciprocal of the length of the observed sequence, that is ~ f,/N. This
leads to the fundamental trade-off in periodogram spectrum estimation, namely
between the frequency resolution and the estimate variance. Another important
issue in periodogram cstimators is the effect of windowing which will be discussed
next.

EFFECT OF WINDOWING

It is recalled, that in discrete Fourier transform the observed data sequence was
considered as a multiplication of its periodic extension with a rectangular window.
In the frequency-domain, this corresponds to convolution of the transform of the
periodic extension and the transform of the window. The Fourier transform of a
rectangular window is known to be a sine-function and, thus, the DFT is implicitly
convolved with sinc-function. This phenomenon is known as spectral leakage to
sidelobes and it tends to broaden the spectral peaks and can also cover weaker
spectral components. The effect of windowing for a short sinusoid is presented in
Fig. 3.1, where the DFT magnitude of a 32-point sinusoid is presented along with
the DFT magnitude of 32-point rectangular window. The relative frequency of
the sinusoid is 0.1.

Various window functions have been derived to decrease the spectral leakage
produced by the rectangular window. These include, e.g., triangular, Hanning,
Hamming, and Gaussian windows. Each window function has characteristic main-
lobe widths (the DET hump at zero frequency) and sidelobe levels. Rectangular
window has the narrowest mainlobe and, thus, the best frequency resolution of
all windows. However, other window functions have lower sidelobe levels and are,
therefore, used to reduce spectral leakage. The selection of the window function
is, thus, a trade-off between spectral resolution and sidelobe level.

PERIODOGRAM MODIFICATIONS

Several modifications of the periodogram PSD estimate (3.45) have been devel-
oped [110]. The reason for these modifications is to reduce the variance of the
periodogram by means of averaging. In Daniell’s modification the periodogram is



48 3. Stationary time series models

1 g o
£
2
o 10
[0}
0.5 &
(0]
g -20
=
£
0 * < -30
0 16 32 -05 -03 -041 0.1 0.3 0.5
Time index Relative frequency
(@) (b)
1 @ 0
[ “ [ E
2
5 10
ol Il ] g W\(\ﬂﬂ
0
] g
g -20
=
_q €
< -30
0 16 32 -05 -03 -041 0.1 0.3 0.5
Time index Relative frequency
(c) (d)

Figure 3.1: The influence of spectral leakage on the DFT of a sampled sinusoid.
(a) A 32-point rectangular window and (b) its DF'T magnitude. (¢} A 32-point
sinusoid and (d) its DEF'T magnitude.

smoothed by averaging over adjacent frequency bins. The evident generalization
of this modification is simply to low-pass filter the periodogram. In Bartlett pe-
riodogram, on the other hand, the observed sequence of N points is divided into
nonoverlapping shorter segments of D points and a periodogram is calculated for
each segment. The Bartlett periodogram is then obtained by averaging the seg-
ment periodograms. The Bartlett periodogram was further modified by Welch. In
Welch’s modification, a window function is applied to the data in each segment to
reduce spectral leakage and the segments are allowed to overlap. The purpose of
overlapping segments is to increase the number of segments and, thus, to decrease
the spectrum estimate variance further. The Welch’s periodogram is obtained as

2

1M L |Pa o
Pweien(fr) = i Z NI Z szzgm)c"gwk/l) (3.46)
m=1 48 ]:O
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(m)

where w = (wq, ..., wp_1) Is the discrete window function, oy is the m’th data
scgment, M is the number of segments, and
D
L E 2 By
5 520

is the window energy. The scale factor U removes the energy bias caused by
windowing,.

3.5.3 Parametric spectral estimation

In the classical spectral estimation methods, the Fourier transform of the observed
sequence or its autocorrelation yvielded the PSD estimate. Next, parametric spec-
tral estimation methods, where the observed sequence is first modeled as an output
of a lincar filter with a white noise input (i.e. a time series model) and then the
PSD estimate is obtained from the estimated filter cocfficients. It is assumed here
that the reader is familiar with the basics of signal analysis and filter theory. For
example, the so-called z-transform is not defined here. If this is not the case, the
reader is referred to see, e.g., [134, 110].

Here, the paramctric ARMA spectrum  estimation is considered.  The
ARMA(p,q) modecl can be presented as

p q
Z a;Ti_; = Z bres_g (3.48)
§=0 k=0

where ag = 1 and, in addition, the usual assumption by = 1 is adopted. By taking
the z transforms from both sides this yields

X(2)A(z) = E(2)B(z) (3.49)

where X (z) is the z-transform of scquence z;, E(z) is the transform of white
noise process ¢;, and A(z) = 1+ Y% a;z277 and B(z) = 1+ Y0 byz " are
the transforms of the AR and MA polynomials. Considering x; as an output of a
lincar filter for the white noise input e, the system function H(z) relating input
and output transforms as X (z) = H(z)E(z) is

B(z) 1+ bz
Alz)  1+X0 a2

H(z)=

which can also be written in the equivalent factored form

H(z) = EE,JE; - Oj’ji (3.51)

where 3 arc the roots of the numerator polynomial, also called the zeros of H{(z

z

(
(

For a stable system the roots must lic inside the unit circle, Le. |ag| < 1 for all &

and «; are the roots of the denominator polynomial, also called the poles of H

);
).
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Furthermore, it can be shown that the z-transform of the autocorrelation of x;
is related to the transform of the input autocorrelation by [110]

Pul) = HAH(/2P(2) = G ) (3.52)

where P.(z) = 02. The PSD of the ARMA process x; is obtained by substituting
z = 27I/1s and scaling with the sampling frequency f,. This yields

1+ 39 bpei2mkS /12

1+ 37 aje2mif/fs

Parma(f) = a2/ fs 5 (3.53)

which becomes an PSD estimate when the estimated model parameters a; and fA)k
and prediction error variance 62 are substituted. The PSD estimates for pure AR
or MA processes are obtained by setting by = 0 for all k =1,...,¢ or a; = 0 for
all j =1,...,p respectively.

Besides the method used in the parameter estimation, the quality of the para-
metric PSD estimate mainly depends on the used model, i.e. the general model
structure and model order. The selection of the model structure is often based
on common practice and ease of implementation. The benefit of ARMA model
is that it can represent diverse spectral shapes with substantially lower model or-
ders. The selection of the model order was already discussed in Section 3.4 and
can be accomplished using some of the criteria presented there. In addition, prior
knowledge on the spectral content of the observation can be used in model order
selection. Since each pair of complex roots of the AR polynomial produce a peak
into the spectrum, it is obvious that a smaller AR model order will result in a
smoother spectrum estimate and the selection of too high a model order can pro-
duce spurious peaks in the spectrum. In any case, the order of the AR part should
be at least twice the number of expected peaks in the spectrum.

Note that equation (3.53) is a continuous function of frequency f and can,
therefore, be evaluated at any desired frequencies up to the Nyquist frequency f,/2.
The frequency resolution is naturally not, however, infinite, but is determined by
the underlying model. When compared to classical PSD estimation methods, the
resolution of parametric PSD estimators is higher due to the implicit extrapolation
of the autocorrelation sequence [110].

SPECTRAL DECOMPOSITION

One property of the parametric spectrum estimation methods, that has been found
advantageous in many applications, is that the spectrum can be divided into sep-
arate components [208]. Consider a pole a; of an AR(p) model positioned at
frequency f;. The spectrum of this single component in the vicinity of f; can be
estimated as
() ~ € _ pi2nf/f. 35
Pi(f) ~ a1z FC (3.54)
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where the constant ¢; is given by

.
oc/ s T (3.55)

C; ~ .
g *
ysj(z — o) (1/2 — )

That is, the part ¢; of the AR spectrum estimate is assumed to be constant when
f = f;. The sum of the component spectra should be approximately equal to the
AR spectrum (zsti.mat(), ie. Par(f) = ;.):] Pi(f).

The powers of the components can be estimated using the method proposed
in [72]. According to this, the power of the component positioned at frequency f;
can be estimated with the residue

Par(z
Py, = dRe {Ros {M}’ } (3.56)
: z EREEEVER

where the residue is evaluated at 2z = ¢273/4s and the coefficient d = 1 for real

poles and d = 2 for complex poles. The previous cquation can be solved by
evaluating
2
oi(z — «y)
P;, =dRed —&~——77 3.57
g {zA<z>A<1/z>} (3:57)

where A(z) = II7_,(1 — agz~ 1), at z = oy [110]. This method for component
power cstimation works for well-separated poles, but for poles close to cach other
power estimates can yield negative values.

3.6 Cross spectrum and coherence

The cross power spectrum I, ( f) of sequences x;, and y, is defined as the Fourier
transform of the cross correlation function ., (7). The cross spectrum describes
the correlation of the two sequences in the frequency-domain. A concept closely
related to cross spectrum is that of coherence. The coherence function is defined
as i

Cohyy(f) = P‘Lu—m (3.58)

Pe(f)v/Py(f)

The squared magnitude of this, i.c. [Cohyy(f)[?, is often used as a measure of
similarity between the two sequences as a function of frequency. This is because
Cohy, (f)|? returns 0 for frequencies where there is no correlation and 1 for fre-
quencies where sequences are perfectly correlated. The coherence phase spectrum
is given as

G,y (f) = tan” *(Im {Coh,y (f)} /Re {Coh,y (f)}) (3.59)

which represents the phase difference between the two sequences as a function of
frequency.

Using the classical spectrum estimation methods presented in Section 3.5.2 the
coherence function can be calculated by substituting the spectra Py(f), P, (f), and
Py (f) with the corresponding averaged periodograms. That is, sequences z, and
1y, arc divided into shorter scgments and periodogram cstimates are calculated for
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cach segment. Periodogram estimates Py(f) and P,(f) are given by (3.45) and
the cross spectrum periodogram estimate is given by

Payl() = 7= Xoen () Vs () (3.60)
438
The averaging over segments reduces both the variance of the periodogram es-
timates and the bias in the coherence estimate. In the extreme case when the
periodograms are calculated without segment averaging the coherence function is
clearly Cohgy(f) = 1, i.e. a constant independent of data. This points out the
extreme effect of bias in the coherence function.

The coherence function can also be evaluated using the parametric spectral
estimation techniques presented in Section 3.5.3. To do this, the parameter model
needs to be redefined in vectorized form, see, e.g., [110]. This is not, however, in
the scope of this thesis and will not be presented here.



CHAPTER 1V

Time-varying time series models

In the previous chapter, stationary time series modeling was concerned. The
observation was considered to be an output of a linear time-invariant system which
could be described by a finite set of constant variables. Next, it is assumed that the
underlying system is time-varying and an obscrvation of the system output at time
t is denoted as x;. The resulting sequence of observations z, will be nonstationary
and it must be modeled as an output of a time-varying or dynamic model. The
time-varying autoregressive moving average ARMA(p.q) model can be written in
the form

P q
T o= — Z (1,(1'7):1;1/,]- + Z b,(lk)c,,,k; + e (4.1)
j=1 k=1

where (12(5'7) is the value of the j7th AR parameter at time £ and bgk) the value of the
k’th MA paramecter at time £. In this chapter, some popular adaptive algorithms
for estimating the time-varying parameters of model (4.1) are presented. Time-
varying AR or MA models are not considered separately, since the revision of the
results for these models is straightforward. At the end of the chapter, time-varying
spectrum estimation methods, including the popular short-time Fourier transform
and wavelet transform time-frequency representations, are discussed. The main
references for this chapter are [5, 60, 63, 81, 167].

4.1 Time-dependent parameter estimation

Let xp be an output of the time-varying ARMA(p,q) model given in (4.1). The

. . 1
problem is then to estimate the p + ¢ unknown parameters (J,E ), e ,(1,(? ) and
b,( b bEQ) for each time instant ¢. This is clearly a highly undeterministic prob-

lem, but it can be solved recursively with the Kalman filter algorithm derived in
Scction 2.9. The Kalman filter is based on state-space formalisim.

4.1.1 Kalman filtering

To utilize the Kalman filter algorithim, the state-space model for the observations
need to be established. To do this, the time-varying ARMA(p,q) model given in
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Figure 4.1: Structure of the state-space signal model.

(4.1) is written in vector form by denoting the AR and MA parameters at time ¢

0, = (—alV, ... —a BN )T (4.2)

and the sequences of the past observations and noise terms as
Ht = (.’IJtA],...,.’L't_p,etA],...,etAq). (43)

Using the above notations the time-varying ARMA (p,q) model can be written in
the form
Ty = Htﬁt —+ C¢ (44)

which is formally a linear observation model with H, being the regression vec-
tor and e, the observation error. Note that the sequence e;_1,...,e,—, in the
regression vector is not measured unlike z;, but it has to be estimated together
with other parameters. The evolution of the state 8; when no prior information is
available is typically described with the random walk model [60] yiclding a state
equation of the form

Brrq1 = 0y + wy. (4.5)

Equations (4.4) and (4.5) form the state-space signal model for the time-varying
ARMA process z;. The structure of this signal model is presented in Fig. 4.1.

The Kalman filter solution for the state 6, i.e. for parameters agj) and bgk),
can now be written as in Section 2.9. By comparing the state equations (2.55) and
(4.5) it is, however, noted that now F; = I and Gy = I. Thus, the Kalman filter
cquations reduce to

Bije 1 Co,_, + Cu, s (4.6)
K = G, H(HGC; H +C)™ (4.7)
€ = Ty H,/étﬁl (4.8)
0 = 01+ K (4.9)
5, = (- KtHL)Cgm .- (4.10)

Note that the unknown observation noise term ¢; is estimated as the one step
prediction error ¢; of the observation x; in every step of the iteration.
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4.1 Time-dependent parameter estimation

To opcrate the Kalman filter algorithm in practice, both the initial values for
the state and the error covariance and the noise covariances Cy,, and Cy, need to
be specified. In practice, the distribution of the initial state 8 is rarely known and,
therefore, the initial values 0y and Cs, are usually determined by some conventional
means. A common approach for the initialization is to set the initial state, e.g.,
for éo = 0 and the error covariance, ¢.g., for Cj = I and then to run a short
scgment from the beginning of data backwards in time. The values obtained for
the state and error covariance in the backward run are then used as initial values
in the forward run. This kind of initialization is not, however. needed if sufficient
amount of data before the point of interest is available.

The state noise covariance C,,, is the term that determines the adaptation (i.e.
the speed of change of the state) of the Kalman filter. In [67], it was assumed that
Cyp, = 021 and C,, = 02 = 1, where o
and o2 the observation noise covariance coefficient. In this case, the adaptation of
the filter can be adjusted with a single coefficient. The bigger the value of o2, the
quicker the adaptation. The variance of the state estimates is, however, inversely
proportional to the value of o2, and, thercfore, o2 should be specified in such a

2 is the state noise covariance coefficient

way that a desired balance between the filter adaptation and estimate variance
is obtained. The above sclections for the covariances scems reasonable sinee the
parameter estimates only depend on the ratio o2 /c2. Another approach is to
adjust the covariances iteratively [70, 31]. An extensive review of Kalman filtering
with different choices for C,, and C¢, can be found in [167]. In this thesis, the
assumptions Cy, = 021 and C,, = 1, which were found to be favorable in [167],
arc adopted.

4.1.2 Fixed-interval smoothing

The fixed-interval smoothing equations were derived in Section 2.10. The fixed-
interval smoothing is an off-line procedure and it assumes that the Kalman filter
state estimates and the error covariances arc known for cach time ¢. Fixed-interval
smoothed estimates 6, (v for state ¢, and Cj  for error covariance are then given

£ N
by running the Kalman filter estimates backwards in time by takingt = N -1, N —
2...., 1. The smoothing cquations can be sumimarized as
él,\N = 0, + AL(éHl\N —by) (4.11)
T
Con = Cot MG, — Gy A (4.12)
_ ol .
A = C’GtCQt L (4.13)

where the filtered estimate 0y is used for the initialization, that is QAN‘N = On.
Note that the operation of the smoother does not require any additional spec-
ifications, but the ones made for Kalman filter algorithm act on the smoothed
cstimates as well. An estimator consisting of the Kalman filter algorithim along
with smoothing cquations is in general called Kalman smoother. In this thesis,
this term refers in particular to fixed-interval smoothed Kalman filtering.
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4.1.3 LMS and RLS algorithms

PParallel to the Kalman filter, several other recursive algorithms have been pro-
posed, see, e.g., [60, 167]. In biosignal applications the most popular such al-
gorithms are the least mean square (LMS) and recursive least squares (RLS) al-
gorithms. The LMS algorithm is often considered as a standard against other
recursive algorithms, mainly because of its simplicity. The RLS algorithm is com-
putationally more complex, but its convergence is typically an order of magnitude
faster than that of LMS algorithm.

LMS ALGORITHM

The LMS algorithm was proposed in [200]. It is a gradient based adaptive al-
gorithm closely related to the steepest descent algorithm. In the gradient based
algorithms the state estimate is updated in the direction of the negative gradient
of the mean square error, that is

-1 aB{e,}
9,5 = 91/41 -+ 5[14 (‘W (414)

where g is a positive constant, a step size parameter. In the LMS algorithin
the gradient is approximated by differentiating the prediction crror term e, =
T — Hlét,1 [60]. The partial derivative of e% with respect to 9A,,71 is AQH,'I[‘xL e
2HT'H, 10;—1. Substituting this into (4.14) yields the LMS algorithm, which is of
the form

él - é[/,l -+ ,U,HtT(L[ - Hté[,vl) (415)

where the step size parameter p controls the convergence of the algorithm. A small
value of p results in slow adaptation while a larger value gives faster adaptation
but with the expense of estimate stability. The details of the convergence of the
LMS algorithm have been extensively discussed, e.g., in [60], where a simplified
condition, stipulating that the adaptation parameter y must satisfy

D<u< (4.16)

H H]

at every step of iteration, for the convergence of LMS was given. The term H, H}
in (4.16) represents the total input power at time ¢. This condition can be imple-
mented into the algorithm by adjusting p iteratively as u; = ¢/(H,H/"), where c
is a constant smaller than 2.

RLS ALGORITHM

The RLS algorithm is a method for solving the least squares estimate for state
0, at time t by updating the previous state estimate. The estimation criterion in
RLS algorithm is, thus, to minimize the LS functional. In order to improve the
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adaptation of the algorithm the ordinary LS functional (2.21) need to be replaced
with the weighted LS functional

H0:) = N e (4.17)

where A is called the forgetting factor which must satisfy 0 < A < 1. The RLS
algorithm could be derived by differentiating the above functional with respect to
;. The resulting algorithm can be summarized as [60]

ét == ét,] -+ Kt(fl/'t - Htétf‘l) (418)
where
P, HT
K = ———— 4.19
’/ Hy P, HT + A (4.19)
P, = M1 K,H)P,_,. (4.20)

The adaptation speed of the RLS is controlled with the forgetting factor A. This
is clearly seen from the functional (4.17). For smaller values of A more weight
is given to the recent error terms than the first terms and, thus, the algorithm
adapts faster to changes. If A = 1 the solution returns to the regular LS solution.
In practice the forgetting factor is typically chosen between 0.9 < A < 1.

CONNECTIONS TO KALMAN FILTER

The Kalman filter equations given in (4.6) (4.10) can be written in simplified form
by denoting I, = C5 + C,,, and substituting (4.6) into (4.7)—(4.10). This yields

ét == ét,] -+ Kt(fl/'t - Htétf‘l) (421)
where
pP_HT
K, = e (4.22)
H/P_H +C,
Poo= (I - KLHL)])[/fl + Cu:t- (423)

Thus, the RLS and Kalman filter algorithms differ only on the form of the gain
vector K. In fact, it can be shown that with a specific choices of C,, and C,,
the Kalman filter gives the RLS algorithm [102, 60, 81]. Furthermore, it turns out
that also the LMS algorithm can be derived from the Kalman filter equations with
specifie choices for C,, Cy,, and Py [81]. Finally, it can be summarized that all
three algorithms can be presented in the form (4.21) with different choices of gain
K,. For the LMS algorithm the gain K is clearly of the form K, = /J,H,i[‘.
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4.2 Model order selection

The selection of the model order in the time-varying case is not as straightforward
as in the stationary case, where simple criteria such as FPE and AIC for selecting
the model order were given (see Section 3.4). Some approaches for estimating the
model order in nonstationary case can be found, c.g., in [50, 59]. For example, in
[50], a modified AIC was used for estimating the order of the AR model along with
the model parameters iteratively. In practice, however, the model order is usually
fixed according to some prior knowledge or known guidelines. A fixed value for
the model order can also be roughly estimated by using some of the criteria from
the stationary case.

4.3 Time-varying spectrum estimation

The definition of the power spectral density given in (3.14) is valid only for sta-
tionary processes. The real life processes are, however, rarely stationary, but their
properties change in time. One traditional approach to manage nonstationary
processes is to transform them into stationary form by removing specific trend
components from the processes. This approach is basically useful for processes
with time-varying mean, but it is inadequate when higher order nonstationari-
ties are included. In the latter case, time-varying spectrum estimation methods
are required. For this, several time-frequency representation methods have been
proposed. A traditional TFR method is the STFT, which is also known as the
spectrogram. Another common TFR method that is shortly discussed here is the
wavelet transform. In addition to these two linear TFRs, various quadratic TFRs
such as the Wigner distribution and its numerous smoothed versions have been
proposed. For good tutorials on TFR methods, see, e.g., [26, 63, 5]. An alter-
native approach is to use parametric time-varying spectrum estimation methods
discussed in Section 4.3.2.

4.3.1 Time-frequency representations

A TFR describes the energy density of the observed process simultancously in time
and frequency. TFR methods can be divided into linear and quadratic methods
based on how they depend on the observation z; [63]. Both the STFT and WT
methods presented here are linear TFRs.

SHORT-TIME FOURIER TRANSFORM

The STFT consists simply of local spectra of the observation at different times.
In the STFT the spectrum at time ¢ is estimated by taking the Fourier transform
of the observed process x; multiplied with an analysis window w; centered at time
t and the time-variation is obtained by sliding the analysis window over the whole
observation. For the discrete-time process xy of N points the STFT is defined as

N1
Xstrr(t, fr) = Z zjwy e PIRIN g b IN (4.24)

j=0
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where the analysis window is such that w;_, > 0 for |j —1| < D/2 and w(j—t) =0
otherwise. The value D <« N is the effective length of the analysis window.
The time-varying power spectrum or I’SD estimate is then given as the squared
magnitude of the STFT with proper power scaling, i.e.
L 2
Pyrer(t, fe) = 777 [ Xsrir(t, fe)] (4.25)
NfU

where U is the energy of the analysis window given by (3.47). The TFR given by
the above equation is also commonly known as the spectrogram.

The time-frequency resolution of the spectrogram depends on the length D
of the analysis window. The frequency resolution is inversely proportional to the
window length according to Af = f5/D, whercas the tine resolution behaves vice
versa. That is, an improvement in the time resolution is obtained by shortening
the analysis window. Thus, it is impossible to accomplish arbitrarily good resolu-
tion in both time and frequency, but a trade-off must be committed. It should also
be noted that the observation is assumed to be stationary within cach windowed
segment. which might not be true for signals which include short-term nonstation-
aritics cven when rather short window is used. Besides the length, also the form
of the analysis window need to be specified. This can be done as in the stationary
case (see Section 3.5.2).

The STFT given in (4.24) has another useful interpretation as follows. Multi-
plying the STFT by ¢™2%%/N i both sides yields

N-—1

Xorrr(t fr) = (i7i27r1/k/NZ:L,j‘{7j71/(ii27r(l/7j)k:/N (4.26)
3=0

_ (;izmk/N(l,t " Wtcfzzmk/N) (4.27)

where w, is assumed to be symmetric. From the above presentation it is observed
that STFT can also be interpreted as filtering the observation with a causal filter
with impulse response

hy = wyet2THRIN (4.28)

and multiplying the filter output with phase shift factor ¢ =274/N  In frequency-
domain this filtering corresponds to windowing the observation spectrum with the
window transform centered at frequency fg, i.c.

Ty % ‘Vt(iiQWLk/N > X(HWf — fr) (4.29)

In other words, STFT can be interpreted as filtering the observation z; with a
band-pass filter having constant band-width for all frequencies fy.

WAVELET TRANSFORM

The WT is a fairly new TFR method, originally introduced as a time-scale method
[159, 158, 191]. The WT has a clear interpretational connection to STFT. That is,
the WT can also be interpreted as filtering the observed process with a band-pass
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filter centered at specific frequency. The fundamental difference to STFT is that
in WT the band-width of the filter is proportional to frequency. The WT has also
been termed as a constant-Q) transform since the filter quality factor () defined as
the ratio of the center frequency and band-width is constant [159]. Thus, the WT
results in improved time-resolution but decreased frequency resolution for higher
frequencies and vice versa for lower frequencies.

The continuous wavelet transform (CWT) is defined as

Xewr(ra) = / w(t)hE (1) dt — \% / a:(t)h*(t a7> dt (4.30)
where hg-(t) is the prototype wavelet localized in time, a is a scale parameter,
and 7 a shifting factor. Thus, the wavelet basis is obtained by scaling and shifting
in time the single wavelet prototype hq -(t). For large values of a the wavelet
is a stretched low frequency version of the prototype and for small values of a a
contracted high frequency version is obtained. If compared to STFT given above,
it is noted that in STFT the “analyzing wavelet” is a modulated version of the
analysis window.

The CWT can also be seen as an orthonormal basis decomposition and, fur-
thermore, it preserves encrgy [159]. Thercfore, the CWT can be used to define
a TFR which can be considered as a modified version of the spectrogram. The
frequency scale for the WT is obtained by substituting a = fy/f, where fy is the
center frequency of the wavelet [158]. The wavelet PSD estimate, known as the
scalogram, is obtained as the squared magnitude of the CWT

Powr (7, f) = | Xcwr (T, f)|?. (4.31)

In the discrete time case, the scale factor a and time shift 7 are discretized. In
the discretization corresponding to a dyadic time-frequency grid, this is done by
setting a = 2™ and 7 = n2™AT, where AT is the sampling interval of the discrete
signal and m and n are integers [191]. The discretized wavelet prototype can be
written in the form

B (£) = 27/ 20(27 ™ — nAT). (4.32)

The fundamental decision in wavelet analysis is how to sclect the wavelet pro-
totype. Numerous such prototypes have been proposed. One such prototype, that
has been applied in Section 6.5.2 for estimating the TFR of an event-related EEG
sample (see Fig. 6.9), is the modulated Gaussian function known as Morlet wavelet
which is of the forin )

h(t) = 2t ot (4.33)

where wg = 5.33.
4.3.2 Parametric time-varying spectrum estimation

Consider next that the process x, is a time-varying ARMA(p,q) process satisfying
the difference equations given in (4.1). That is, x, is an output of a linear time-
varying filter with white noise input. Then, the spectral density of z; at time
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{ is given according to the stationary case (3.53) from the momentary system
coefficients as

q (k) ,—i2nkf/fs|2
L+2 kb e

1432 alP e i2mif/f.

Parma(t: ) = a2 (8)/ fs (4.34)

2

where aij) and bgk) are the time-varying AR and MA model coefficients and o2 (t)

is the variance of the white noise process e; at time t. This time-varying PPSD
estimate is also called the instantancous spectrum [88]. One fascinating detail of
this spectrum estimate is the fact that it can be derived from the evolutionary
spectrum theory as described in [151].

The time-varying ARMA spectrum can be estimated by substituting the
ARMA cocfficient estimates (}gj) and Z)Ek), calculated using some adaptive algo-
2(t) of the prediction
error process €, into (4.34). That is, the variance of the unknown white noise pro-
cess ¢, is approximated with the variance of the prediction error €;. The prediction
error €; is calculated at every step of iteration in all presented estimation methods.
The variance of €, can be estimated, for example, as [23]

rithm presented in Section 4.1, and the estimated variance &

13
. 1 .
~2 2 ‘
1) = —— - 4.35
6:(1) tfm+1j:§m€t (4.35)

where m is the time index at which the algorithm used to estimate the model
parameters converges.

As in the stationary case, the frequency resolution of the time-varying ARMA
spectrum cstimate is implicitly restricted by the model structure even though
equation (4.34) is a continuous function of frequency f and can be evaluated at any
desired frequencies up to the Nyquist frequency f¢/2. The time resolution, on the
other hand, is determined by the update coefficient of the adaptive algorithm. In
the Kalman smoother this implicates the selection of the state noise covariance that
adjusts the adaptation speed of the algorithm. In practice, a trade-off between the
adaptation speed of the algorithm (time resolution of the spectrum) and estimate
variance need to be done.



CHAPTER V

Analysis of galvanic skin responses

This chapter is concerned with analysis of galvanic skin responses. GSR is known
to reflect autonomic response and has been, for example, used in the traditional
lie detector devices. At first, a short introduction to GSRs including its ori-
gin, measurcment, and waveform characteristics is given. After this, an advanced
method for analyzing the patterning of successive GSRs is presented in detail.
The proposed method is based on principal component analysis and was originally
published in [175]. As a case study the method is applied to GSR measurements
of 20 healthy controls and 13 psychotic patients.

5.1 Introduction

Electrodermal activity, that is the variation of skin resistance, is a simple, useful,
and reproducible method of capturing the autonomic nerve response as a parame-
ter of the sweat gland function [168]. One common term applied to this activity is
the galvanic skin response. Physically GSR is a change in the clectrical properties
of the skin in response to different kinds of stimuli and any stimulus capable of an
arousal effect can evoke the response.

The terminology applied to electrodermal activity is diverse. It is also known
as the psychogalvanic reflex, peripheral autonomic surface potential, skin potential
response, or more commonly as sympathetic skin response (SSR) [54]. Another
measure of the electrodermal activity is the skin conductance response (SCR),
which is a measure of skin conductance instead of potential. Most of the GSR
studies in last decades have been concerned with the normal values of response
amplitude and latency. Also the typical GSR waveshapes and the habituation
effect of GSR responses for repeated stimulations have been studied.

In this chapter, a new practical method for analyzing the patterning of suc-
cessive GSRs is presented. The method was originally proposed in [175] and it
is based on PCA. The description of the method is given in Section 5.3.2 and
in Section 5.4 the method is applied to GSR measurements of 20 healthy con-
trol subjects and 13 psychotic patients. The observed degree of similarity within
successive GSRs was clearly higher for healthy subjects. For psychotic patients
no clear time-locking or pattern was observed in measured responses. It will be

62



5.2 Origin and measurement of electrodermal activity 63

pointed out how PCA can be used to evaluate the patterning of responses and
thereby discriminate GSRs of control subjects and psychotic patients. By means
of clustering techniques presented in Section 5.3.2 a significant discrimination of
the two subject groups is obtained.

5.2 Origin and measurement of electrodermal activity

The electrodermal activity originates from the eccrine sweat gland activity. The
sweat gland secretion is activated by the sympathetic nervous system. Two types of
sweating are generally recognized. That is, thermoregulatory sweating occurring
over the whole body and emotional sweating which is confined to palmar and
plantar sites and axilla. The two types of sweating do interact even though they
have distinct basic neuroregulatory mechanisms [190]. The sweat gland secretion
changes the conductivity of the skin. The surface of the skin consists of dead
cells on top of the living cells. The sweat, on the other hand, can be considered
cquivalent to a 0.3% sodium chloride (NaCl) saline and, thus, sweat sccretion
increases the conductivity of the surface of the skin [108]. This change in skin
conductivity can be easily measured.

There are practically two different methods for recording electrodermal ac-
tivity, namely skin potential and skin conductance measurements [42]. In skin
conductance (or resistance) measurciments, current is applied between the record-
ing clectrodes and the resulting voltage is measured. In skin potential measure-
ments, on the other hand, current is not applied, but the potential between the
electrodes is generated due to differences in electrochemical reactions within the
electrode-skin interfaces [121]. When amplitude levels are of interest, the conduc-
tance measurement should be preferred because the sensitivity of skin potential
levels to hydration coffects is probably greater that that of skin conductance levels
[42]. The detection of skin potentials is, however, more sensitive than that of skin
conductances and, thus, they can be preferred when amplitudes are not of partic-
ular interest. In addition, the measurement of skin potential is easier since it can
be measured without applying voltage or current across the skin.

For electrodermal recordings silver-silver chloride (Ag/AgCl) electrodes with
either potassium chloride (KCl) or sodium chloride {(NaCl) electrolyte can be used.
A bipolar clectrode placement should be used in skin conductance measurcments,
wherceas skin potentials must be recorded using a reference clectrode placed on an
inactive site. Palmar sites should be preferred, but also the plantar side of the
feet can be used in recordings if necessary. Recommended places for the active
electrode(s) on the palmar surface of the hand are the medial and distal phalanges
of the fingers and the thenar and hypothenar eminences, sce Fig. 5.1 (a). The
reference clectrode for skin potential recordings can be placed, for example, on the
forcarm or dorsal side of the hand.
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Figure 5.1: GSR measurements. (a) Typical electrode placements for recording
electrodermal activity (redrawn from [30]). (b) Typical GSR waveforms, the most
common waveform beginning with negative polarity in triphasic pattern is shown

on top (redrawn from [7]).

5.3 Event-related GSRs
5.3.1 Waveforms and habituation

The waveform of GSR is typically either biphasic or triphasic, sce Fig. 5.1 (b).
Probably the most common waveform is a triphasic one starting with a small neg-
ative component followed by a strong positive component and ending with a slow
negative component [9, 7, 183]. The waveform remains usually fairly unaltered
between repeated stimulation, but also a clear change from one waveform to an-
other is possible. The normal values of the response amplitudes and latencies have
been studied extensively. Response amplitudes vary substantially, depending on
the experimental conditions. In [40], an auditory stimulus was delivered to both
ears and a mean amplitude of (2.8 & 1.2) mV measured from the palmar site was
observed, whereas in [187] a mean amplitude of (0.985 4 0.300) mV was reported.
The corresponding latencies for the palmar site where (1.50 £ 0.09) seconds in [40]
and (1.49 + 0.17) seconds in [187]. Latencies for the plantar site are about 0.6
seconds larger and amplitudes less than half of those for palmar site [184].
Common stimuli in GSR studies are the auditory stimulation, electrical stim-
ulation, and transcranial magnetic stimulation. Response amplitudes have been
shown to correlate with the stimulus intensity [40, 185], but it is also acknowledged
that response amplitude is more dependent on the surprise effect of the stimulus
than on the physical stimulus strength. Also the waveform has been reported to
be dependent on stimulus intensity [185]. When GSRs are recorded for repeated
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stimulations, the amplitudes tend to decrease and also the waveform can change.
The largest response amplitudes arc usually obtained for the first stimuli after
which response amplitudes tend to decrease and at some point vanish completely.
In addition, the latency of the response for repeated stimuli was reported to in-
crease in [40], whereas in [20] the latency remained constant, but the duration of
the response increased. This phenomenon in general is known as the habituation
cffect of GSRs and is mainly due to the decrease of the surprise effect of the stimu-
lus [40]. Other factors affecting the normal values of GSR include the mental and
emotional state [91, 193], ambient and skin temperature [96, 35], and age [36].

The duration of the response is typically between 2 and 6 seconds. Because
GSRs are such long lasting waveforms interstimulus intervals (ISIs) should be
long enough. When using short ISTs response overlapping should be considered by
decomposing the overlapped responses. Such a decomposition for skin conductance
responses is presented in [98].

5.3.2 Principal component analysis of GSRs

Principal component analysis discussed in Section 2.4 is a multivariate statisti-
cal procedure, where the vector containing the measured signal is presented as a
weighted sum of orthogonal basis vectors. The central idea in PCA is to reduce the
dimensionality of the data set, while retaining as much as possible of the variance
in the original data. The dimensionality of measurements can be estimated by the
number of basis vectors needed to estimate measurements in a certain accuracy.

Let the following notation for GSR measurements be used. The sampled po-
tential after j’th stimulus is denoted with a length N column vector

. _ AT .

;= (x;(1). 2;(2), ..., z;(N))" . (5.1)

As an obscrvation model for the measurements the so-called additive noise model
e e £

Tj =85+ ¢€; (5.2)

is used, where s; is the response signal corresponding to j'th stimulus and e; is
measurement noise. The measurement noise is assumed to be a stationary zero
mean process. If there are M measurements, the response signals s; will span a
vector space S, which will be at most of min{ M, N} dimensions. In the case that
the waveforms of the measured signals are rather similar, the dimension of the
vector space S will be K < min{M, N} and measurements can be well approxi-
mated with some lower dimensional subspace of §. Thus, each measurement can
be expressed as linear combination

- . _ o

z;=Hgsb; +¢; (5.3)

where Hs = (1,49, ...,¢¥k) 1s a N x K matrix of basis vectors which span the

K dimensional subspace of & and 6; € RE is a column vector of weights to j'th

measurement. By defining a N X M measurement matrix X = (x1,22,..., Tar)
the observation model (5.3) can be written in the form

X =HsO+e (5.4)
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where 8 = (01,04,...,60n) isa K x M and ¢ = (ey,¢9,...,¢ep) is a N x M matrix.

The critical point in the use of model (5.4) is the selection of basis vectors
Y. A variety of ways to select these basis vectors exist. Here a special case, i.e.
principal component analysis introduced in Section 2.4, is considered. In PCA the
basis vectors are selected to be the eigenvectors of either the data covariance or
correlation matrix. Here, the correlation matrix is utilized. The eigenvectors of
the correlation matrix are orthonormal and, therefore, according to Section 2.4.1
the ordinary least squares solution for the parameters (i.c. PCs) becomes

fpo = HEX (5.

ot
S’

and the measurements X can be reconstructed by
Xpe = Hsbpe = HsHg X. (5.6)

INTERPRETATION OF PRINCIPAL COMPONENTS

The fact that the basis vectors are orthogonal has sometimes lead to interpretations
that the basis vectors could represent some independent physiological sources of
activity. This interpretation is however wrong because the fact that basis vectors
are orthogonal is because they are eigenvectors of a symmetric matrix. Signals from
independent physiological generators, however, are not necessarily orthogonal and
as shown in [164] they can not be extracted with PCA. Even though the basis
vectors have no clear meaning, it is reasonable to argue, based on [116], that
variations in GSR latencies is here the main reason for the existence of additional
components in PCA.

Quantitatively the first basis vector is the best mean square fit of a single
waveform to the entire set of measurements. The second basis vector is the best
mean square fit to the residual from the fit of the first factor, with a constraint
that it is orthogonal to the first basis vector etc. Hence by using eigenvectors
(v1,v2,...,Vk) corresponding to largest eigenvalues (A, Ao, ..., Ax) as basis, the
best K dimensional approximation of measurements in the mean square sense is
obtained. Because principal component solution is a best fit of a st of orthogonal
functions to the set of signals, the solution will depend on the nature of the signal
set.

In this work, the main interest is on the patterning, i.e. the similarity of the
waveforms, of successive GSR responses. By normalizing the measured data PCA
becomes sensitive to waveshape but not the signal amplitude. Information about
the nature of measurements can be obtained from the PCs 6;(k) and from cigenval-
ues Ar. Whenever the observation matrix Hg is orthonormal, the coefficient 9?(/{:)
has the property of being the mean square contribution of k’th basis vector to
J’th measurement [71]. When measurements are normalized ZZE{N’M} 03 (k) =1
and Qf(k) x 100% can be directly interpreted as the percentage contribution. The
expected value of coefficients (03 (k),03(k),...,0%,(k)) associated with k’th basis
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vector is [128]
E{L(07(k).....00(k)} = E{(v/X)’}=E{v/XX" v} (5.7)
T E{XX" oy = vl Rxvp = M. (5.8)

So that each eigenvalue Ay represents the mean square contribution of the corre-
sponding basis vector v to the measurements. If the first K cigenvectors are used
in the obscrvation model (5.4), the mean square reconstruction crror averaged over
all waveforms will be Zz:l,iﬁ’]jw} Ar. This is also the smallest conceivable mean
square error. If the measurements are normalized Z?;nl{N’M} M. = 1. An ideal
example of patterning is the case that all the measured waveforms are identical.
Then there would be only one nonzero cigenvalue and the cigenvector correspond-
ing to it would have the same shape as the measurements. So it is obvious that the
magnitudes of largest eigenvalues describe the degree of patterning in the measured
waveforms.

One possible visual way to estimate the patterning of waveforms is to plot the
cumulative sum of the cigenvalues. The shape of such a curve describes the degree
of patterning between various waveforms. A highly patterned signal set will have
a sharply rising curve, rapidly approaching to its maximum Zzl;nl{N'M} Ap. If, on
the other hand. there are only few common features between various signals the
curve will approach the maximum very slowly.

GRAPHICAL REPRESENTATION OF THE DATA USING IPCs

One of the most useful properties of PCA is that the dimensionality of the original
data set can be reduced substantially. This cnables a distincet graphical repre-
sentation of the multidimensional data in some lower dimensional subspace. For
example, if two or three first PCs account for most of the variance in data, the
data can be represented in two or three dimensions with respect to these P’Cs.
If the aim is to represent characteristics of a set of measurements instead of a
single measurement in, c.g., two-dimensional co-ordinates, the cigenvalues of the
corrclation matrix should be used instead of PCs. A natural choice would be to
plot the first two or three eigenvalues of a data set, but also some other sensible
combinations of the eigenvalues can be used. Other techniques, such as principal
co-ordinate analysis, biplots, correspondence analysis, and Andrews’ curves, for
representing high dimensional data can be found in [73].

Besides the graphical representation, the PCs or the cigenvalues can be used in
discrimination analysis. For example, measurcment sets of different subjects can
be discriminated into two or more groups based on the eigenvalues. Or similarly,
single measurements can be discriminated based on PCs. For accomplishing such
discriminations some kind of clustering or classification techniques need to be
utilized.

CLUSTERING TECHNIQUES

The classification problem, in gencral, is to divide the observations into two or
more groups basced on their propertics. The development of the classifier can be
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divided into supervised and unsupervised techniques. In supervised techniques,
learning sets for cach group are first established using some sample observations
and then each new observation can be classified by comparing its properties with
the properties of each group. In unsupervised techniques, on the other hand, the
properties of the groups are not known beforehand, but only some measure of
proximity or similarity between observations is used. Such unsupervised classifi-
cation techniques are often called clustering. In the clustering process, the set of
observations is divided into a number of groups called clusters. The number of
the clusters can be fixed in advance. Instead of clustering the original observa-
tions it could be more appropriate to perform PCA and cluster the obtained PCs
or eigenvalues. Using this kind of approach the obtained clusters can be visually
presented in two or three dimensions. This kind of approach has been used, e.g.,
in [48].

In this thesis, a simple hierarchical agglomerate clustering method will be em-
ployed. The basic idea in agglomerate clustering is to merge two closest clusters
into one repeatedly, until the desired number of clusters is achieved or some pre-
defined criterion is satisfied. The initial cluster partition is usually a singleton
partition, in which cach observation forms its own cluster. The crucial point of
the method is the definition of the cluster-wise distance function. One simple
cluster-wise distance function is the Euclidean distance of cluster centers. Let G
and G denote two specific clusters and G and G the corresponding cluster cen-
ters (the mean values of the observations included in Gy and G3). The distance
of the cluster centers is then given by

D(G,Gs) = || G1 — Gy HQ (5.9)

where || || is the Euclidean norm. A clustering method using (5.9) as a distance
function is called the centroid method. This method assumes that the observations
within a cluster are Gaussian distributed with equal variance in each direction.
Another distance function that takes into account the covariance structure of the
group when calculating the distance between an observation and the group is the
Mahalanobis distance. Several other clustering methods using different definitions
for the cluster-wise distance function have been presented, e.g., in [16].

5.3.3 Practical method for analyzing GSRs

In the previous section, a PCA based method for analyzing GSR measurements
was presented. To summarize the proposed method, it will be presented here in
practical manner for discriminating response sets of different degrees of waveform
patterning. The proposed method is described stepwise as follows.

1. Measure a set of GSR responses X = (z1,x2....,2). Because GSR is a
long lasting waveform, the ISI should be long enough to avoid response over-
lapping. Novelty stimuli are preferable in order to obtain distinct responses.

2. If habituation effect is strong, it is reasonable to reject the weakest GSRs
from the analysis.
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3.

5.4

5.4.1

When waveshapes are of interest, the measured data should be normalized
in some manner. One way to do this is to sct the norm

;|| =1, Wj=1.....M. (5.10)

This normalization makes PCA sensitive to waveshapes, but not to signal
amplitudes.

Calculate the data correlation matrix Ry, which for discrete case can be
approximated by

LM .
Ry ~ Y Zl‘jl‘j (5.11)
Jj=1

and solve the ordinary cigendecomposition RxV = AV. Form obscrvation
matrix Hg = (v1, 09, ..., 0k ), where vy is the &'th cigenvector of Ry corre-
sponding to k’th largest eigenvalue Ag. PCs fpc can be solved from (5.5)
and estimates Xpe for GSRs from (5.6). Note that when correlation matrix
is used, an approximation for the mean of the GSRs is modeled automati-
cally as the first eigenvector of the matrix, but if covariance matrix is used
instead, the mean has to be included in the equations explicitly.

Information about the nature of a set of GSRs is obtained from the eigenval-
ucs. If the patterning of the measured waveforms is high, the first cigenvalue
will be relatively large. When patterning exist, but there are variations in
response latencies it can be speculated that the second cigenvalue, which de-
scribes the derivative of the mean, will also be significant. Furthermore, the
rest of the eigenvalues should be quite insignificant in the case of patterned
waveforms. Corresponding information about single responses is obtained
from cocfficients Hj(k) If the waveforms are not normalized these cocefhi-
cients depend on amplitudes and they can be used to describe habituation.
For example, the parameter

S (6 + 922)

S 02(1) + 02(2))

Jj=1

e = (5.12)

desceribes the relative dominance of the first three waveforms.

Case study

Materials and experimental procedure

As a case study, the GSR recordings of the first data set addressed in Section 1
were analyzed. The recordings were conducted on 20 healthy controls and on 13
first-episode patients with acute psychosis admitted for hospital evaluation. The
positive and negative syndrome scale (PANSS) scores for the patients ranged from
99 to 120. None of the patients had ever used medication for psychiatric problems.
Although main inclusion criterion was disturbance of reality-testing, the diagnostic
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confirmation was verified by the structured clinical interview (SCID), carried out
by a trained interviewer (Minna Valkonen-Korhonen, MD). GSRs were recorded
using Ag/AgCl electrodes affixed to the palm and dorsum of the non-dominant
hand. As a recording device a NeuroScan system (Compumedics Limited) was
used. The sampling frequency of the device was 500 Hz and the passband was
0.3-50 Hz. For the analysis, the GSR signals were decimated to 31 Hz.

The experimental procedure for all subjects, used in this case study, was as
follows. Two kinds of auditory stimuli, standard and target, were used in the
stimulation according to classical oddball paradigm (85% standard stimuli of 800
Hz and 15% pitch deviants of 560 Hz with 1 second ISI). The duration of the
standard and target stimuli were 84 ms including 7 ms rise and fall times. The
total number of stimuli was 600. Among the standard and target tones there were
11 randomly presented unique novelty sounds (human sounds). Tone intensity was
individually adjusted 55 dI3 above the sensation level. Subjects were advised not
to pay attention to standard stimuli and to push a button when hearing a target
stimulus. They were not informed about the novelty sounds. GSR was recorded
continuously during the session and 8 second epoch after each novelty stimulus
was extracted for analysis. The time between consecutive novelties was random
but at least 30 seconds. Because of the long ISIs of novelty stimuli no response
overlapping appeared in the measurements.

During the experiment, the identification of the target tones and the corre-
sponding reaction times were measured. On average, the patients made 2.0 incor-
rect reactions for the standard tones and missed 3.9 target tones. The correspond-
ing averages for the control subjects were 0.5 incorrect reactions and 0.8 missed
targets. In other words, the patients made about four times more mistakes than
the controls. The reaction times did not, however, differ significantly between the
groups.

5.4.2 Results

The proposed method was then applied to the GSR measurements of the 20 healthy
controls and the 13 psychotic patients. Measurement sets for all subjects are
presented in Fig. 5.2. For each subject 11 responses of 8 second length were
measured. Responses are plotted from bottom to top (the response for the first
stimulus at the bottom) and the vertical axis is inverted (negative peaks point
upward). The amplitude scale is different for each subject and the time instant 0
corresponds the occurrence of the stimulus.

At first, the method is demonstrated by applying it to GSR sets of typical
control and psychotic subject. Afterwards, the discrimination of the two subject
groups with respect to different parameters obtained from the method will be
shown. For the typical control subject and psychotic patient, subjects C17 and
1’5 were selected. The 11 measured GSRs for these subjects are presented in Fig.
5.3 in the same amplitude scale.

The degree of patterning between these 11 successive responses is clearly higher
for the control subject, latency variation is small and the response waveshape does
not change prominently between repetitions. The approximated onset latency is
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Figure 5.2: GSR mcasurements for healthy controls C1, C2, ..., C20 and for
psychotic patients P1, 1’2, ..., 1’13 as walerfall plots. The amplitude scale is

unique for each subject.
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Figure 5.3: Measured responses for (a) healthy control (C17) and (b) psychotic

patient (1°5) as a waterfall plot.
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Figure 5.4: The mean values of measurements for (a) healthy control (C17) and
(b) psychotic patient (P5). Note that the amplitude scale for psychotic patient

is 10 times smaller than for healthy control.

about 1.8 seconds. For psychotic patient the lack of time-locking in GSRs seems
to be characteristic and there is not any observable pattern in the measurcments.
Mean values of the 11 responses are presented in Fig. 5.4. The mecan value for
the healthy subject represents a very common response waveform starting with
a negative phase. For the psychotic subject the mean value is not a realistic
prototype for a GSR waveform and it seems to arise immediately after the stimulus.
Conclusions about the waveform patterning and normality of the responses could
be drawn by simply looking at the mean of the measurements. Instead of stopping
here we are aiming to a more sophisticated way to analyze GSR responses.
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Figure 5.5: ’cak to peak amplitudes for (a) healthy controls and (b) psychotic

patients.

AMPLITUDES AND HABITUATION

GSR. amplitudes were defined from peak to peak at time window from 1 to 6 sec-
onds after stimulus onset. This is the time frame in which GSR peaks normally
appear. Response amplitudes in Fig. 5.3 are much higher for the control sub-
jeet compared with the patient. In fact, there is a small difference in amplitudes
between the two subject groups as can be scen from Fig. 5.5, which shows the
histograms of peak to peak amplitudes of all responses of all subjects in the two
groups. However, the amplitude variation within control subjects is rather sub-
stantial and, therefore, response amplitudes can not be used to discriminate the
subject groups.

For most subjects a significant habituation of amplitudes was obscrved. The
habituation is scen from responses of the control subject in Fig. 5.3. The largest
response amplitude is 7.75 mV and the smallest only 0.85 mV. So the decrease
in amplitudes is about 89%. Within all control subjects the habituation varies
between 67 and 99%. even though novelties were used in stimulation.

Observed habituation effect must be taken into account in the analysis. It is
possible that the weakest measurements in a set do not feature responses to specific
stimuli at all. Instead, a weak measurement can include a response to some pre-
ceding target stimulus and the contribution of measurement noise is also notable.
Based on these observations it is reasonable to reject the weakest responses from
the analysis and focus on the patterning between the most substantial waveforms.

PCA ANALYSIS

Because of the strong habituation effect, it was decided that only the 6 most
substantial waveforms are analyzed. The rejected 5 measurements of smallest
norms are usually responses to last stimuli and do not necessarily feature responses
to specific stimuli. Because waveshapes are of interest, cach selected response is
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Figure 5.6: Selected normalized responses for (a) healthy control (C17) and (b)
psychotic patient (1°5).
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Figure 5.7: Correlation matrix for (a) healthy control (C17) and (b) psychotic
patient (P5) displayed as an gray-scale image. The values of positive correlation

are printed in white and the values of negative correlation in black.

normalized to unit norm. This normalization makes PCA sensitive to waveshapes
only. The normalized selected responses are presented in Fig. 5.6.

First step in PCA is to calculate the correlation (or covariance) matrix of data.
Correlation matrices of selected responses are presented in Fig. 5.7. For control
subject one can distinguish regions of strong positive and negative correlations.
The two regions of positive correlation (printed in white) in the diagonal are due
to the time-locking of the two peaks in GSR signals. For the regions of negative
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Figure 5.8: Figenvectors corresponding to the three largest eigenvalues (A1, Az,
and Ag) of the correlation matrix of the measured GSRs for (a) healthy control
(C17) and (b) psychotic patient (1°5).

corrclation (printed in black) the peaks in signals are negatively correlated. For
psychotic patient there is not as significant strongly correlated regions as for control
subject.

Three eigenvectors, obtained from eigendecomposition of data correlation ma-
trix, corresponding to largest cigenvalues are presented in Fig. 5.8, For the control
subject the first cigenvector is quite similar with the mean of the measurements
in Fig. 5.4. The mean square contribution of the first cigenvector to the measure-
ments is approximately 81% and the contribution of the first two eigenvectors is
over 92%. For the psychotic patient, for whom the patterning of the GSR wave-
forms is clearly weaker, the total contribution of the first two eigenvectors is only
about 67%.

The nature of the eigenvalues can be presented visually by plotting the cumu-
lative sum of the eigenvalues. The cumulative sum of six largest eigenvalues is
presented in Fig. 5.9. The curve for control subject is more rapidly rising and ap-
proaches the maximum carlier. This is characteristic for a highly patterned signal
set.

When calculating parameters 8 and estimates for measurements the number
of eigenvectors to be used in the observation matrix Hg has to be decided. Some
rules for this decision are discussed in [73]. Here, three most dominant eigenvectors,
which arc presented in Fig. 5.8, are used. Parameters 6 are solved from (5.5) and
the squares 9?(1), ﬁf(Q) and 9?(3) that describe the mean square contributions of
the three largest eigenvectors to selected measurements (5 = 1,.... 6) are presented
in Fig. 5.10. For control subject the contribution of the first eigenvector is clearly
the most substantial to all waveforms and the contribution of the third factor is
cffective only to the first measurement. For psychotic paticnt the contribution of
the first cigenvector is biggest only to half of the responses while the other half
arc contributed more by the sccond or third cigenvector. The estimates for the
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Figure 5.9: The cumulative sum of largest eigenvalues for (a) healthy control
(C17) and (b) psychotic patient (I’5) as a function of the number of cigenvalues
summed (). The sum of all cigenvalues is 1 (s=).
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Figure 5.10: Coefficients 0]2.(1) (), ()]2-(2) (—), and ()]2-(3) (=—) for selected
measurements (5 = 1,...,6) for (a) healthy control (C17) and (b) psychotic
patient (1°5).

six selected waveforms calculated from equation (5.6) are presented in Fig. 5.11.
Clearly, the responses of the control subject can be modeled more accurately with
the three first eigenvectors.

CLUSTER ANALYSIS

In this section, the clustering of the two subject groups is examined. Since the
purpose is to discriminate GSR sets, instead of single responses, the clusterization
will mainly consist on the eigenvalues that describe the mean square contribu-
tions of corresponding cigenvectors. However, the regression paramcters 6;(k)
are also considered because they contain all the information about the nature of
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Figure 5.11: Sclected normalized measurements (s=) and cstimates (—) for (a)
healthy control (C17) and (b) psychotic patient (1°5).

single GSRs. All clusters are formed with a hicrarchical agglomerate clustering
algorithm, with cluster-wise distance defined by equation (5.9).

First, the clusterization of the groups when only six most substantial wave-
forms, normalized to unit norms, arc analyzed. Fig. 5.12 shows a plot of the sum
of two largest cigenvalues Ay + A2 with respect to sum ZIZ:[:] Ar (reconstruction
error when measurements are estimated with three most dominant eigenvectors).
The clustering of groups is clearly seen, but is not complete. Most of the con-
trol subjects (14/20) are clearly clustered in the bottom right corner. For these
controls the contribution of two largest cigenvectors is over 85% and the recon-
struction error when three largest cigenvectors are used in reconstruction is less
than 5%. But there are also six controls among psychotic patients.

The same kind of clustering is seen in a plot of third eigenvalue A3 with respect
to fourth cigenvalue A4 in Fig. 5.13. Both Az and A; arc small for a majority of
control subjects. Now cight control subjects are among psychotic subjects and six
of these are in fact the same ones which deviated from other controls in Fig. 5.12.
Figs. 5.12 and 5.13 clarify the capabilities of PCA to discriminate GSR sets, even
though the clusterizations are not complete.

For comparison, PCA is performed to all 11 waveforms without normalization.
Then PCA is sensitive to signal amplitudes and, thus, the strongest signals dom-
inate the shapes of the eigenvectors. The clusterization with respect to the sum
A1 + Ao and 22”:4 A is shown in Fig. 5.14. There are four psychotic patients
among the controls group. This is due to a strong habituation effect of GSR wave-
forms as can be scen from Fig. 5.15, where parameter ¢, calculated from (5.12)
with respect to Ap + Ag is presented. Figure shows a strong habituation for all the
four paticnts clustered into controls group.
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Figure 5.13: Clusterization of healthy controls (+) and psychotic patients (o)
with respect to their third and fourth largest eigenvalues Az and Ag4. Six most

substantial waveforms (M = 6), normalized to unit norms, were analyzed.
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Figure 5.16: Typical spontaneous GSR signals and corresponding spectrograms
for a healthy subject measured during a passive oddball paradigm (passive) and

Wisconsin card sorting test (heavy load).

5.5 Spontaneous GSR

Instead of analyzing GSRs elicited to specific stimuli, it might also be useful to
consider the spontancous changes in GSR activity. Since GSR activity is controlled
by sympathetic nervous system an increase in GSR activity, i.e. increase in am-
plitude and occurrence rate, can be interpreted as increased sympathetic activity.
In addition, GSR has been related to factors such as attention, emotional arousal,
and information processing [28]. Therefore, analysis of spontaneous GSR activity
is a promising method. It has been used, e.g., in determination of drowsiness [204]
and sleep stage quantification [97].

Oune obvious approach to analyze the spontaneous GSR activity is to consider
its time-frequency representation. The most traditional such representation is the
spectrogram. The frequency range of spontancous GSR activity is usually between
0.01 and 1 Hz and the amplitudes are usually smaller than amplitudes of GSRs
evoked by some surprising external stimuli.

Here, it is demonstrated how the cognitive task effects the spontaneous GSR
activity. The spontaneous GSR was measured from a healthy subject during a pas-
sive oddball paradigm (passive) and during a Wisconsin card sorting test (heavy
load) as in Neuroscan STIM (Compumedics Limited), see Fig. 5.16. In the passive
oddball paradigm, the subject watched a silent video and was instructed not to
pay attention to the tone stimuli. The amplitude of GSR activity is, as expected,
higher for the passive task. This can also be seen from the spectrograms presented
below the GSR signals. The center frequency of GSR activity is about 0.2 Hz
corresponding to wavelength of 5 seconds and most of the power is confined be-
tween 0 and 0.4 Hz. Thus, one appropriate measure of GSR activity would be the
average power within specific frequency band. Other useful measures are, e.g., the
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number of slopes per time and the corresponding amplitudes.

5.6 Discussion

In this chapter, a new practical method for analyzing the patterning of successive
GSRs was presented. The method was originally proposed in [175]. It was shown
that GSR responses of different nature can be discriminated with the PCA based
procedure. Regression methods are also needed when single responses are of in-
terest. Previously PCA has been applied to skin conductance responses in [163]
without application to clustering, but the procedure presented in this chapter is
a totally new approach in GSR analysis. As a specific application the method
was applied to GSR sets of healthy controls and psychotic patients and a good
discrimination of the two subject groups was obtained.

The best obtained discrimination of healthy controls and psychotic paticnts is
presented in Fig. 5.12. All patients were ranked correctly, but six controls were
ranked as patients. This gives the method a sensitivity of 100%, specificity of 70%,
and overall correct ratings of 82%. Furthermore, by using the binomial distribution
it can be argued that in 95% probability the sensitivity of the method is 75.3 100%,
specificity 45.7 88.1%, and overall correct ratings 64.5 93.0%. In a different kind
of approach, the same data scts were visually examined and rated into patient and
normal categories by 20 evaluators (10 physicists and 10 physicians) and an overall
average for correct ratings of 787 was attained [189]. All evaluators were shown a
picture of the single trial trend of a typical control and patient beforchand. None
of the evaluators had any previous experience in GSR analysis, but 10 of them
were professionals in signal processing and EEG analysis.

There were altogether six false-positive classifications (subjects C4, C7, C9,
C10, Cl14, and C15 were classified as patients) in Fig. 5.12. These misclassi-
fications are partly due to the habituation effect of GSR waveforms suggesting
the extinction of GSR in repetitions. Responses of subject C4 seem to present
abnormally large measurement noise, since the amplitudes of the responses are
exceptionally small. Subject C4 was not however rejected because there were no
problems in the recordings in our knowledge. Despite these misclassifications it
should be noted that all patients were ranked correctly giving the proposed method
a sensitivity of 100%. Thus, there were no false-negative rankings. This fact makes
the method a promising approach to be applied in clinical practice as a screen-
ing test for specific risk-groups and prodromal patients in future. The method
is inexpensive and noninvasive and, thercfore, appropriate for the screening of
larger populations as well. Subjects rated falsely as positive can be sorted out in
more focused further follow-up studies (e.g. psychiatrist’s interviews or structural
magnetic resonance imaging).

One significant factor effecting on the proposed method is the selection of the
number of waveforms M per subject to be analyzed. It is practically impossible
to define a generie criterion for the sclection of M. Instcad M should be sclected
based on the experimental procedure. For example, the number of stimuli and
the surprising effect of these are both decisive in sclecting M. For example, when
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several novelty sounds are presented the novelty sound starts to lose its surprising
effect and is probably not able to evoke GSR response for long. This habituation
effect should be taken into account when selecting M, since totally habituated
responses do not carry information about the true GSR and can, therefore, cause
distortion to analysis. In this study, the selection M = 6 seemed to be appropriate
considering the number of stimuli and the habituation rate.

It should be emphasized that the basis for the proposed method is the ex-
perimental procedure. For the used test, the 11 successive GSR responses were
typically clearly patterned for healthy controls whereas for psychotic patients the
lack of time-locking was characteristic. Because of such clear distinctions in mor-
phologies of GSR sets for healthy controls and psychotic patients, the second order
statistics of the proposed method is sufficient for obtaining good results in practice.
However, for more complicated test procedures some nonlinear methods could be
necessary. One advantage of the proposed method is that the dimensionality of
data set is reduced while retaining as much as possible of the variance in the orig-
inal data. This reduction enables the graphical representation of the data and
further analysis of clusterization. Another important property is the formability
of the method according to the problem. Adjustments of the method can and
should be done based on the signals under consideration. In this study, the sum of
two largest eigenvalues was used as a measure of patterning of a GSR set instead
of just the first eigenvalue. The second eigenvalue was included because it allows
some variation in response latencies, which is thought to be normal in GSRs. The
capability of the normalized correlation coefficient, which is a measure of similarity
between two waveforms, to discriminate GSR sets was also tested, but results were
not as good as were results obtained from PCA.



CHAPTER VI

Estimation of nonstationary
electroencephalographic signals

In this chapter, the measurement of EEG recordings and the basic quantitative
analysis methods are shortly introduced. For more extensive introduction to EEG
rescarch sce, ¢.g., the handbook [123]. The main issue of this chapter is the esti-
mation of nonstationary EEG signals. As a specific application, we have focused
on the estimation of event-related synchronization/desynchronization dynamics of
occipital alpha rhythm. For the estimation of the ERS/ERD dynamics a Kalman
smoother approach is proposed. The presented approach was originally proposed
in [173], but in this chapter the approach is covered in more details.

6.1 Introduction

Electroencephalogram is a recording of the clectrical activity of the brain. It has
been found to be a useful tool for studying the functional state of the brain and
for diagnosing certain ncurophysiological disorders. EEG signals arc often quan-
tified based on their frequency-domain characteristics. Typically the spectrum is
estimated using the FFT. A fundamental requirement in the FFT-based spectral
analysis is the stationarity of the analyzed signal. In [25]. it was suggested that
EEG cpochs shorter than 12 scconds may be considered stationary. However, it
is well known that EEG can exhibit considerable short-term nonstationarities. In
such situations, time-frequency representation methods, discussed in Section 4.3,
are required.

A traditional TFR method is the so-called spectrogram. In this method, the
signal is implicitly assumed to be stationary within cach windowed segment and
the selection of the length of this window is followed by a trade-off between time
and frequency resolutions. Another popular TFR method is the wavelet transform
in which the window width is inversely proportional to the frequency resulting
in improved time resolution at high frequencies and frequency resolution at low
frequencies.

TFR methods have various applications in the ficld of EEG analysis. One of
the most common applications is the analysis of ERS/ERD of EEG [83, 41, 39, 49,
51]. The terms ERS and ERD usually refer to stimulus-induced changes in EEG

83
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amplitude or power within certain frequency band rather than synchrony. This
is also the case here and, therefore, the present study should not be confused to
studies of EEG synchrony such as [106]. TFR methods have also been used in the
inspection of the frequency content of event-related brain potentials [117, 179],
quantification of epileptic seizure dynamics [47, 206, 166, 202, and analysis of
newborn EEG seizure events [15, 22].

Nowadays, one of the most popular TFR methods used in EEG analysis, and
in biomedical applications in general, is the WT [188]. This method, however,
suffers from the same kind of trade-off between time and frequency resolutions as
the traditional spectrogram method. An improved time-frequency resolution can
be obtained by using parametric spectral analysis methods based on time-varying
linear models. One approach is to use a time-varying autoregressive moving av-
crage model. The frequency resolution of parametric methods is superior because
of the implicit extrapolation of the autocorrelation sequence [110]. For the same
reason the leakage effect of the classical spectral estimators, depending on the used
windowing function, is suppressed.

The main task in parametric modeling is the estimation of the time-varying
model parameters. For this, adaptive algorithms such as Kalman filter, LMS, and
RLS have been adopted (see Section 4.1). Kalman filter, which is an optimal es-
timator in mean square sense, has been previously used in EEG analysis, e.g., in
[67, 17, 68, 8]. A good overview on the analysis of nonstationary EEG with para-
metric models can be found, e.g., in [75, 167]. A drawback of the Kalman filter,
as of all other adaptive algorithms, is the tracking lag present in the estimated
parameters. This is especially disadvantageous when the aim is to estimate accu-
rately some abrupt (perhaps event-related) changes of EEG. However, the tracking
lag can be avoided by using a so-called simoother algorithm with the Kalman filter
as described in Section 4.1.2. An estimator including the Kalman filter along with
a smoother is called Kalman smoother.

In this chapter, a Kalman smoother approach for estimating time-frequency
structures of nonstationary EEG signals is presented. This approach was origi-
nally presented in [173]. The tracking ability of the presented approach is tested
with simulations and the advantages against commonly used adaptive filters are
pointed out by comparing Kalman smoother with the popular forgetting factor
RLS algorithm. As a specific application Kalman smoother is applied to quan-
tification of ERS/ERD dynamics of occipital alpha rhythm. With the presented
approach detailed time-frequency representations for single ERS/ERD samples
can be extracted. By using the classical spectrogram method such details can no
be observed without averaging several consecutive trials due to poor resolution.

6.2 Measurement and quantitative analysis of EEG

EEG is usually recorded with Ag/AgCl electrodes. To reduce the contact
impedance between the electrode-skin interface, the skin under the electrode is
abraded and a conducting electrode paste used. The electrode placement should
conform the international 10-20 system shown in Fig. 6.1 [89]. One important
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Figure 6.1: The international 10-20 electrode system (redrawn from [1087). A
= ear lobe, C = central, Pg = nasopharyngeal, P = parietal, I' = frontal, Fp =

frontal polar, and O = occipital.

issue in the recording is the selection of the reference electrode. In common ref-
erence recordings, the reference site should be electrophysiologically as inactive
as possible. Other approach is to use bipolar recordings in which EEG activity
between two active sites is recorded. From the EEG recording it is possible to
distinguish delta, theta, alpha, and beta waves (see Fig. 6.2). Besides the fre-
quency of the observed rhythm also the site of the synchronized region generating
it determines the classification of the rhythm [58]. The frequency content of EEG
is confined below 70 Hz and, thus, the minimum sampling rate for acquisition is
about 200 Hz.

The extent of different quantitative methods applied to EEG recordings is di-
verse [126, 127, 69, 148]. Usually, however, EEG activity is quantified in frequency-
domain. Both power and amplitude spectrum representations have been used. The
spectrum is calculated using either nonparametric or parametric methods. In clin-
ical evaluation of EEG, the spectrum is commonly calculated using the FFT. One
important issuc in the spectrum estimation is that of stationarity. Usually EEG
can be considered to be stationary only within some short epochs. In addition,
EEG can exhibit several disruptive artifacts such as eye movement and eye blink
artifacts. Therefore, the spectrum is usually obtained from several short artifact
free stationary epochs that describe well the background activity (see Fig. 6.3).
The epoch length is usually between 1 and 30 scconds depending on the quality of
the recording. Longer cpochs, yielding better frequency resolution, are preferred
as long as sufficient number of epochs can be extracted from the recording. After
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Figure 6.2: Some examples of EEG waves (redrawn from [108]).

the epochs are selected, the power spectrum estimate is obtained by averaging
spectra of each epoch. The variance of the resulting spectrum depends on the
number of epochs.

In the analysis, the EEG spectrum is divided into frequency bands. The classic
frequency bands are 0—4 Hz (delta), 5-7 Hz (theta), 8-13 Hz (alpha), and 14-30 Hz
(beta) [126]. These divisions are not, however, always followed. Tt is also common
to further divide some of the bands, c.g., alpha band to alpha-I (8 10 Hz) and
alpha-II (10-13 Hz) and beta band to beta-I (13-20 Hz) and beta-1I (20-30 Hz).
For each band measures such as absolute power and amplitude, relative power and
amplitude, peak frequency, and mean frequency are extracted. In addition, power
ratios between specific bands are often used.

6.3 Event-related synchronization/desynchronization

6.3.1 Alpha rhythm

EEG activity at the 813 Hz frequency band is, in general, called alpha rhythm
[109]. To be precise, there are three physiologically distinet alpha rhythms, namely
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Figure 6.3: Quantitative analysis of background EEG activity. Program inter-

face and reports of quantitative EEG analysis tool, part of the Biosignal analysis

software [1].

the classical posterior alpha occurring during relaxed wakefulness, the Rolandic or
central mu rhythm reactive to motor actions, and the midtemporal third rhythm
which might sometimes fall into the upper theta band [122]. Here, only the classical
posterior alpha rhythm will be considered.

The posterior alpha rhythm is best observed from parietal, posterior temporal,
and occipital regions of the brain and is, thus, also referred to as occipital alpha
rhythm. This rhythm begins to appear at the age of three months and evolves
during maturation [122, 165]. At the time of appearance the frequency of this
rhythm is about 4 Hz and it increases up to age of 11 12 years reaching the lower
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limit of alpha frequency band at the age of 3 years. The amplitude of the alpha
rhythm varies substantially between subjects, but it is usually between 20 and
100 1V with a slight asymmetry between hemispheres (higher amplitudes usually
occur on the right hemisphere).

The occipital alpha rhythm is strongest with eyes closed during relaxed wakeful-
ness. This rhythm is attenuated by attention and it is usually completely blocked
by visual stimulation (e.g. opening the eyes). Such a stimulus induced attenu-
ation or blocking is called ERD and the opposite phenomenon ERS [144]. The
ERS/ERD has been differentiated to at least two alpha components with different
spatial characteristics [145, 90]. In addition, the ERS after eye closure starts up
at higher frequency and directly begins to shift to lower frequencies [109]. This
short-term phenomenon of occipital alpha rhythm has been called the “squeak”
effect. Tt does not oceur every time the eyes are closed and, event though, it has
not been reported to have any clinical significance [197] it is a good test for the
resolution of the analysis method.

6.3.2 Analysis of ERS/ERD

The changes in ERS/ERD are time but not phase-locked to the entailed stimulus,
and can not, therefore, be extracted by simple first order methods such as averag-
ing, but may be detected by frequency analysis [144]. A traditional method, that
has been used, e.g., in [143, 145, 144], for quantifying ERD dynamics is as follows.
First of all, the ERD trials for every stimuli are filtered with a bandpass filter cen-
tered at the desired frequency band. The filter outputs are then squared in order
to obtain power values. The ERD time course is finally obtained by averaging the
squared filter outputs over all trials. In addition, the obtained time courses can
be smoothed by averaging over time samples. A drawback of this approach is the
rather low frequency resolution. Furthermore, the selection of the band limits can
be problematic, even though, the limits are nowadays usually adjusted individ-
ually based on some specific frequency. Another traditional ERD quantification
method is the intertrial variance method proposed in [77]. For a review on ERD
estimation methods, see, e.g., [62].

An alternative approach is to use a high-resolution TFR method for repre-
senting the ERD in the time-frequency plane. This kind of a representation gives
a comprehensive picture of the ERD dynamics and no prior frequency band se-
lections are required. In addition, the classical ERD parameters, such as power
and mean or peak frequency within some specific frequency band, can be easily
extracted from the TFR. Here, the Kalman smoother approach will be used for
estimating the time-frequency structure of the ERS/ERD samples.

6.3.3 Kalman smoother approach

In the Kalman smoother approach, the measured ERD trial is first modeled as an
output of parametric model with time-varying parameters. Here, the time-varying
ARMA(p,q) model given in (4.1) is used. The time-varying model parameters
are then estimated using the Kalman filter algorithm along with a fixed-interval
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smoother as described in Section 4.1. The state and observation noise covariances
of the Kalman filter are sct to Cy, = 021 and C,, = 1, where the state noise
covariance coefficient o2, is adjusted in such a way that a desired compromise be-
tween the variance of estimates and algorithm adaptation is achieved. Finally,
once the model parameters are solved the time-varying PSD estimate can be ob-
tained from (4.34) for cach time instant. However, it is not always desirable to
calculate the PSD estimate for cach time instant, but only within some short time
intervals. This can be obtained by averaging the estimated ARMA parameters
with a moving window.

The ERD dynamics can then be easily extracted from the time-varying PSD
estimate. The power variation within a specific frequency band is obtained by
integrating the PSD estimate over the given frequencies. Correspondingly, the
center frequency for the given band can be obtained as the frequency bisecting the
power within the band.

6.4 Materials and experimental procedure

The ERS/ERD of occipital alpha rhythm was studied from six healthy subjects
included in the sccond data set addressed in Section 1. In the test procedure,
subjects closed and opened their eyes in accordance with auditory stimuli (beeps)
at 15 second ISIs. While eyes open state, subject was instructed to focus the eyes
to a fixed point. During the test procedure a total of 19 ERS/ERD samples were
obtained for each subject.

As a recording device a Braintronics CNV/IS0-1032 amplifier with the inter-
national 10-20 electrode coupling was used. The common reference electrode was
placed on the right mastoid. The sampling frequency of the device was 256 Hz
and the passband was 0.3 70 Hz. The ERS/ERD for visual stimulation is best
seen in the posterior and occipital regions of the brain. Therefore, the occipital
02 channel was selected for the analysis. The sampling frequency of the selected
channel was reduced after lowpass filtering to 64 Hz. The measured ERS/ERD
trials for one of the subjects are presented in Fig, 6.4.

6.5 Results

The dynamics of the measured ERS/ERD trials can be estimated using the Kalman
smoother approach. At first, however, the performance and estimation accuracy
of the proposed adaptive algorithm is evaluated. Usually, this is done with sim-
ulations. Here, two different simulations to test the tracking ability of Kalman
smoother were conducted. In both simulations, Kalman smoother was compared to
the popular forgetting factor RLS algorithm. After simulations, the time-frequency
resolution of the proposed approach was compared with the traditional spectro-
gram as well as other common approaches and then used for tracking the dynamics
of ERS/ERD transitions. At the end of the scetion, statistics of Kalman smoother
spectrum estimates, especially the frequency resolution, is considered.
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Figure 6.4: Measured ERS/ERD samples from O2 channel for one subject.
A total of 19 samples were measured, the first one presented at the bottom.
Auditory stimuli instructing subject to close or open eyes are presented at time

instants 0 and 15 seconds.

6.5.1 Simulation studies

In the first simulation, a smoothly varying AR(2) process was generated. The
trace of the simulated AR(2) model root and typical realization are presented in
Fig. 6.5 (a). The parameters controlling the adaptation (i.c. the state noise co-
variance coefficient o2, of Kalman smoother and forgetting factor A of RLS) were
selected to minimize the estimation error of AR coefficients. Optimal values for
the parameters were o2, = 0.001 and A = 0.935 and the error for the Kalman
smoother was 52% smaller than for RLS. Obtained estimates for the root modulus
and frequency are presented in Fig. 6.5 (b). The other RLS estimate was calcu-
lated with a substantially larger forgetting factor (A = 0.98). It is clearly seen
that by increasing A more stable RLS estimates are obtained but, as a downside,
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Figure 6.5: AR(2) process estimation with optimized Kalman smoother (o2, =
0.001) and RLS (A = 0.933) algorithms. (a) The root evolution and a typical
realization. (b) Estimates of the root modulus and frequency: true values (s,
Kalman smoother estimates (—), and RLS estimates (—). The other RLS esti-

mate (smoother with larger tracking lag) was obtained with A = 0.98.

the tracking lag is increased. The tracking accuracy of the Kalman smoother is,
however, clearly better than either of the RLS estimates. This simple simulation
demonstrates the benefits of the Kalman smoother approach compared to other
recursive estimators but, unfortunately, the applicability of the Kalman smoother
on tracking of nonstationary EEG is not addressed by this simulation.

In the second simulation, an EEG transition from desynchronized to synchro-
nized state was modeled. The used approach is presented in detail in [76] and
is, therefore, described here only briefly. For other approaches to simulate non-
stationary EEG see, e.g.. [66. 196]. Occipital EEG recorded with the eyes closed
shows high intensity in the alpha frequency band, classically defined as 8 13 Hz
band [126]. By opening the eyes this intensity is decreased or even blocked. Tt can
be thought that EEG exhibits a transition from one stationary state to another.
Such a transition was here simulated by modeling both stationary states as an
fifth-order AR process. The roots of the models were estimated from real EEG
measured during an eyes open/closed test. The obtained roots for both states and
the corresponding power spectra are presented in Fig. 6.6 (a). The strong peak
near 0.377 in the eyes closed state spectrum is due to the inereased alpha rhythm.

In order to make the simulation more realistic the abrupt transition between
the two stationary states was smoothed as described in [76]. In the smoothing
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Figure 6.6: A realistic simulation of an EEG transition as an AR(5) process. (a)
The roots and the corresponding spectra before (—) and after (—) the transition
(eyes open — eyes closed). Numbers 1, 2, and 3 indicate the analogy of the
roots and spectral peaks. (b) A typical realization of the smoothed transition.
(¢) Averaged estimates over 100 realizations of the modulus and frequency of
the root 2 corresponding to alpha rhythm: true values (==}, Kalman smoother
estimates (—) with o2, = 0.0001, and RLS estimates (—) with A = 0.9 (smaller
tracking lag) and A = 0.98 (smoother with larger lag).

procedure the time-varying AR cocfficients having an abrupt transition at one
point are presented as linear combinations of some shifted smooth basis functions.
Here, shifted Gaussian functions were used. As well as the AR coefficients, also
the prediction error variance evolution was smoothed.

A typical realization of the simulated ERD/ERS transition is presented in Fig.
6.6 (b). The simulated process was then estimated with Kalman smoother and
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Table 6.1: Statistics of different estimators for the simulated AR(3) processes.

The bias and standard deviation of the estimated AR coefficients &iw, Ce, &,(55)
and the bias of the modulus |- | and frequency £- of the root d,(/m corresponding

to alpha rhythm for RLS and Kalman smoother (KS) estimators. The root (3,52>

was obtained (rom averaged AR cocflicients

RIS RIS KS

(A =10.9) (A=10.98) (02 =3-107%
Bias¥STD  Bias+STD Bias£STD
all 0.05440.050  0.069+0.067  0.067+0.064
at? 0.12840.067  0.085+0.089  0.06840.069

0
k4
(
I

at®?  0.058+0.067
D 0.06240.107
(
T

a
P 0.28740.120
al? 0.127
1A
£a? 0.061

0.080£0.118
0.117£0.158
0.22440.161

0.086
0.050

0.091£0.093
0.063£0.146
0.120£0.117

0.029
0.021

RLS algorithms by using a fifth-order AR model. Estimates were calculated for
100 realizations and the statistics of the obtained results are presented in Table 6.1.
The bias of the averaged AR coefficient estimates and the standard deviations of
single estimates are presented in the top five rows. A smaller bias for the Kalman
smoother estimates is observed for the 2nd and 5th coefficient. These are the two
AR cocfficients for which the simulated transition effects the most. The estimates
for the root corresponding to alpha rhythm were then calculated from the averaged
AR coefficient estimates. Obtained estimates of the modulus and frequency of the
root are presented in Fig. 6.6 (c¢). Biases of the estimates are presented in bottom
of Table 6.1. RLS estimates were again calculated with two different forgetting
factor values (A = 0.9 and A = 0.98) in order to demonstrate the trade-off between
the tracking lag and stability of the estimates. The RLS estimates show that the
tracking lag can not be entirely avoided even though quite small forgetting factor
value is used. The Kalman smoother, on the other hand, can estimate the change
very accurately.

6.5.2 Nonstationary EEG experiments

In order to demonstrate the tracking ability of the Kalman smoother on real EEG
data it was first compared with the spectrogram. Both methods were applied
to measurcments of one subject and time-varying PSD estimates were calculated
for every ERS/ERD trial. The underlying model for the Kalman smoother was
selected to be ARMA(6,2) and the state noise covariance coefficient adjusting the
adaptation was set to 02, = 0.0001, whereas a 1-second time-window corresponding
to 1 Hz frequency resolution was used in the spectrogram.  Averaged Kalman
smoother spectra and spectrograms for the 19 ERS/ERD trials are presented in
Fig. 6.7. From both averaged spectra it is observed that the synchronization seems
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Figure 6.7: Avcraged Kalman smoother spectra and spectrograms for the 19
ERS/ERD samples presented in Fig. 6.4.

to start at higher frequency and shifts to lower frequencies within few seconds. This
is the well known “squeak” phenomenon of occipital alpha rhythm.

With the Kalman smoother approach the “squeak” effect can be observed even
from a single ERS/ERD sample as shown in Fig. 6.8. With the spectrogram, on
the other hand, this effect can not be seen from single sample due to the poor
time-frequency resolution.

Next, the Kalman smoother approach was compared to some commonly used
methods including the popular wavelet scalogram. A typical ERS sample presented
on top of Fig. 6.9 was considered. Time-varying PSD estimates obtained with
Kaliman smoother, RLS, and LMS algorithis as well as spectrogram and scalogram
are presented below the ERS sample. An ARMA(6,2) model was again used
with the adaptive algorithms. The parameters adjusting the adaptation of cach
algorithm were selected based on visual inspection. The state noise covariance
coefficient of Kalman smoother was set to 02, = 0.0001 and the forgetting factor
of RLS to A = 0.94. The step size of LMS was adjusted adaptively to be smaller
than the reciprocal of the input power. In the spectrogram a 1-second time-window
was used. The scalogram was computed using the Morlet wavelet as described in
[120].

Time instant 0 in Fig. 6.9 corresponds to the stimulus occurrence instructing
the subject to close the eyes. Shortly, after the eyes are closed, a substantial
increase in alpha band power is observed in all spectra. The poor resolution of the
classical spectrogram is evident when compared to the three parametric methods
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Figure 6.8: Kalman smoother spectrum and spectrogram for a single ERS sam-

ple.

and the WT does not produce remarkable improvement. The main drawback of
RLS and LMS is the unavoidable tracking lag clearly seen in both spectra. The
observed time-frequency resolution of the Kalman smoother is, on the other hand,
extremely high, Even the short-terim changes in alpha rhythm, c.g., the “squeak”
phenomenon and the interval approximately from 4.3 to 4.7 seconds with decreased
power in alpha frequency band, are detected reliably.

Finally, the Kalman smoother spectrum estimation method was tested with
ERS samples showing short period changes in the alpha rhythm. The results
for one such sample are shown in Fig. 6.10. In order to prove the capability of
Kalman smoother method to detect short power changes, a simple alpha detection
procedure was applied. First of all, the variation of power within alpha band
was calculated by integrating the Kalman smoother spectrum over the alpha band
(7-13 Hz). The obtained power variation is shown in Fig. 6.10 (a). Then, the
original EEG signal was divided into epochs for which the alpha band power was
greater/smaller than the sclected threshold of 5 pV2/Hz. At last, the epochs
for which alpha power was greater than the threshold and the epochs for which
it was smaller were concatenated and traditional FFT based spectrum estimates
were calculated for the resulting signals [Fig. 6.10 (b)]. The results verify the
absence of alpha rhythm in the other concatenated signal and, therefore, shows
the applicability of Kalman smoother spectrum estimation method in case of short
period EEG changes.
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Figure 6.11: Typical ERS/ERD samples for the three selected subjects and the
corresponding time-varying Kalman smoother spectra. Stimulus occurrence times
(0 and 15 seconds) instructing subjects to close and open their eyes are marked on
the top. Individually adjusted alpha frequency bands are marked with horizontal

lines on top of each spectrum. The band width is set to 8 Hz.

6.5.3 Tracking of ERS/ERD transition dynamics

The ERS/ERD dynamics of all measured EEG samples were then estimated with
the Kalman smoother approach. The results for three selected subject are pre-
sented in Figs. 6.11 and 6.12. Each selected subject had different characteristic
patterns of alpha rhythms. Typical ERS/ERD sample and the corresponding
Kalman smoother spectrum for each subject is presented in Fig. 6.11. For sub-
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ject 1 the power of alpha rhythm is quite invariant during the whole eyes closed
period while for subject 3 the alpha power attenuates within few scconds after eye
closure. For subject 2, on the other hand, a slow increase of alpha power after eye
closure seems to be characteristic. The frequency band limits for alpha rhythm
in Fig. 6.11 were adjusted based on the individual center frequencies. The center
frequency was determined as the mean peak frequency of the spectrum during eye
closure. Obtained center frequencies were 12.06, 11.69, and 10.69 Hz for subjects
1, 2, and 3, respectively. The band width was set to 8 Hz to cusure the complete
involvement of the “squeak” phenomenon.

The average ERS/ERD dynamics for each subject was then evaluated by ex-
tracting the time-variation of the center frequency and power of alpha rhythm
from the Kalman smoother spectra. The center frequency was defined as the fre-
quency bisecting the power within the alpha band and the power was obtained by
simply integrating the spectrum over the alpha band. Average center frequencies
and band powers over the 19 consecutive ERS/ERD samples for each subject are
presented in Fig. 6.12 along with estimated trends and SD intervals. The trend
was estimated with the smoothness priors based approach presented in Section
2.5.1.

A common trend in the center frequency of alpha rhythmn is observed among the
subjects. Shortly after the eye closure center frequency reaches its maximum and
then starts to decrease. After a while the frequency seems to reach a constant level
which can be thought of as the individual characteristic alpha rhythm frequency.
The power of alpha rhythm, on the other hand, increases rapidly after eye closure
but reaches its maximum a bit later when the center frequency has already started
to decrease. After 15 sceonds when the eyes are opened a rapid decrease in alpha
band power is observed for subjects 1 and 2. For subject 1 the power secms to
start decreasing before the eyes are opened which may be due to expectation or
anticipation of the upcoming stimuli [145]. For subject 3, on the other hand, the
alpha rhythm power has already been attenuated during eyes closed period.

6.5.4 Statistics of Kalman smoother spectrum estimates

The statistics of the Kalman smoother spectrum estimates can be considered as
follows. The estimation errors of the ARMA(6,2) model parameters at time €,
denoted 6,, are assumed to be jointly Gaussian with mean zero and covariance
Cs,- The covariance Cj, is calculated at every step of the Kalman smoother

algorithm according to (2.106) and, thus, the distribution of 0, is known for every
t. Values from this distribution can be generated as follows. Let x be a Gaussian
random variable with mean zero and variance 1, i.c. x ~ N (0,1), and assume that
the covariance matrix C@t can be written in the form Cj = LLT. Then according
to equations (2.17) and (2.19) samples from the distribution of 0, are given by Lu.
The matrix L can be found by using Cholesky decomposition.

Let us consider the Kalman smoother spectrum of the ERS sample shown in
Fig. 6.9. Given the ARMA parameter estimates 0, and crror covariances Gy,
at every time instant £, noisy parameter estimates can be generated as described
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Figure 6.13: Statistics of the Kalman smoother spectrum estimate. (a) The

distribution of the ARMA(6,2) model roots and the corresponding spectra for
1000 noisy parameter estimates generated from the Gaussian distribution (see
text) at time t = 1.35. The means (—) and 95% confidence intervals (-—) for
peak frequency and power are indicated. (b) The time variation of the peak

frequency and alpha band power (—) and the 95% confidence intervals ().

above. From the noisy estimates, roots of AR and MA polynomials and corre-
sponding spectra can be calculated. In Fig. 6.13 (a), the roots and spectra at
time instant ¢ = 1.35 s for 1000 noisy parameter estimates are presented. The
mean peak frequency and power and the 95% confidence intervals are shown for
the peak corresponding the alpha rhythm. Instead of the peak power, one is often
more interested in the power of a specific band, here the alpha band (8-16 Hz).
The peak frequency and band power statistics were calculated for every time in-
stant ¢ and the results are shown in Fig. 6.13 (b). On average, the 95% confidence
interval of the peak frequency is about 0.18 Hz and the confidence interval of the
band power is about 2.5 dB.
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6.6 Discussion

In this chapter, the Kalman filtering algorithm along with a fixed-interval smoother
was applied to tracking of nonstationary EEG. The presented approach was first
proposed in [173]. Kalman filter has been previously used in EEG analysis in,
e.g., [67, 17, 68, 8], but Kalman smoother, on the other hand, has not been used
carlier for analysis of EEG. Compared to other adaptive algorithins such as RLS
or LMS the most significant benefit of the Kalman smoother is the avoidance of
the time-lag in the estimates.

In addition, due to the properties of parametric spectral estimation methods,
the frequency resolution of Kalman smoother is better for narrow band processes
than that of the classical FFT-based methods. In Section 6.5.4, the statistics of
the peak frequency of the Kalman smoother spectrum presented in Fig. 6.9 were
calculated. As a result, it was observed that the uncertainty of the observed peak
frequency is in 95% confidence less than 0.18 Hz, whereas the frequency resolution
of the corresponding spectrogram in Fig. 6.9 was about 1 Hz.

In the present study, an ARMA model was used as a model for nonstationary
EEG. ARMA model has more degrees of freedom than AR model and has, there-
fore, better ability to generate diverse spectral shapes. The shape of the spectrum
also depends on the selected model orders. Too low a model order may result in
a too smooth spectrum and, on the other hand, too high a model order may pro-
duce spurious components in the spectrum. Some common model order selection
criteria for the stationary case were given in Section 3.4, but they can hardly be
applied to the time-varying case. Some approaches for the model order sclection
problem in nonstationary case have been proposed, e¢.g., in [50, 59]. However,
based on our experience, the ARMA model of order (6,2) is suitable for modeling
nonstationary EEG.

Oune problem in terms of application is how to set the state noise covariance
coefficient that adjusts the adaptation speed of the Kalman smoother. In the selec-
tion of this coeflicient a trade-off between the adaptation speed and the estimate
variance need to be done. In other words, the improvement in the tracking prop-
erties is achieved with the expense of increased estimate variance. Here, a value
o2 = 0.0001 was used for the update cocfficient. The selection was made based
on the conducted realistic EEG simulation and on the visual inspection of the
estimates for real EEG data. Generally, the initialization of adaptive algorithms
is a widely studied fundamental problem. In the case of EEG, probably the first
attempt for an approach to find an optimal update coefficient for Kalman filter
was made in [17]. However, there is no general solution for this problem. The
measurement noise covariance coefficient, on the other hand, was set to (I;f = 1.
This selection is not, however, essential since only the ratio o2 /o2 has effect on the
estimates. Furthermore, the initial guesses for the state 6y and error covariance

5, only affect on the initialization time (i.e. the time elapsed while the initial
guesses converge near the true values) of the algorithm and, therefore, are not
essential when sufficient amount of data before the point of interest is available.
Here, 6y was set to zero and C equal to identity matrix.
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The results of tracking the ERS/ERD dynamics for three subjects were pre-
sented in Figs. 6.11 and 6.12. The main benefit of the presented method over the
traditional ERS/ERD quantification based on bandpass filtering is the improved
frequency resolution. Using the Kalman smoother approach the “squeak” effect of
alpha rhythm seen in Figs. 6.7 and 6.12 for averaged estimates can be observed
even from single sample spectrum estimates (sce Figs. 6.8 and 6.11). With the
classical spectrogram, on the other hand, this ceffect can not be observed from a
single sample due to the poor time-frequency resolution (Fig. 6.8). However, by
averaging spectrograms of several consecutive ERS/ERD samples the “squeak”
can be observed (Fig. 6.7). The short-term “squeak” effect can not be observed
from the RLS or LMS spectra either because of the unavoidable tracking lag. In
addition, the applicability of the Kalman smoother spectrum estimation method
in casc of short period power changes was shown in Fig. 6.10.

Although “squeak” effect per se has been suggested as clinically meaningless
[197], the accuracy and usability of the Kalman smoother in the spectral anal-
ysis of event-related EEG changes makes it a promising analysis method, e.g.,
for cognitive ERS/ERD experiments. The high time-frequency resolution of the
Kalman smoother could enable the spectral analysis of single ERS/ERD samples.
This property is crucial in some cognitive tasks where the transition can not be
assumed to recur alike from time to time and, therefore, averaging of all trials
would not be an optimal analysis method.



CHAPTER VII

Analysis of cardiovascular variability signals

This chapter is concerned with heart rate and blood pressure variability signals.
The origin of these variability signals, i.e. the influence of different control systems
on heart rate and blood pressure, is discussed and the construction of the two
variability time series is described. A special emphasis is laid on the importance
of preprocessing, and an advanced detrending procedure originally proposed in
[176] is presented. In addition, the basic time- and frequency-domain analysis
methods as well as modern methods for assessing baroreceptor reflex sensitivity
are suimarized. During the preparation of this thesis, analysis softwares for HRV
and BPYV signals including the presented methods were developed. The software
was developed using Matlab® (The MathWorks Inc.). The aim of this chapter is
to summarize the methodological framework of these software and not to give a
detailed documentation for the software.

7.1 Introduction

The main task of the cardiovascular system is to provide sufficient amount of
blood delivering nutrients and oxygen for tissues and vital organs and it also
participates on body temperature regulation. The work is mainly carried out by
the left ventricle of the heart which pumps blood through the aorta into greater
circulation. The blood flow into the aorta after contraction is faster than the
drain through the arterioles and, therefore, the pressure in the aorta increases.
The maximum pressure during systole (systolic blood pressure, SBP) is determined
mainly by the strength of the contraction and the distensibility of the aortic walls.
After systole, the aortic valves are closed and blood flows to peripheral circulation
with a rate depending on the pressure difference between the aorta and periphery.
The systemic pressure is determined by the relationship between cardiac output
and total peripheral resistance.

In different conditions, sufficient blood flow is obtained due to elaborate inter-
acting control systems. The rhythm of the heart is controlled by the sinoatrial
(SA) node, which is modulated by both the sympathetic and parasympathetic
branches of the autonomic nervous system. Sympathetic activity tends to increase
heart rate (HRT) and its response is slow (few seconds) [12]. Sympathetic in-

104
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nervation covers also arterial walls and causes vasoconstriction, e.g. in physical
exertion the vessels of most internal organs contract. Parasympathetic activity, on
the other hand, tends to decrease heart rate (HR]) and mediates faster (0.2 0.6
seconds) [12]. In addition to central control, there are some feedback mechanisms
that can provide quick reflexes. One such mechanism is the arterial baroreflex.
This reflex is based on baroreceptors which are located on the walls of some large
vessels and can sense the stretehing of vessel walls caused by pressure increasc.
Both sympathetic and parasympathetic activity arc influenced by barorcceptor
stimulation trough a specific baroreflex are, Fig. 7.1.

The continuous modulation of the sympathetic and parasympathetic inner-
vations results in variations in both heart rate and blood pressure. The most
conspicuous periodic component of HRV is the so-called respiratory sinus arrhyth-
mie (RSA) which is considered to range from 0.15 to 0.4 Hz [12]. In addition to
the physiological influence of breathing on HRV. this high frequency (HF) com-
ponent is generally believed to be of parasympathetic origin. Another widely
studied component of HRV is the low frequency (LF) component usually rang-
ing from 0.04 to 0.15 Hz including the component referred to as the 10-second
rhythm or the Mayer wave [12]. The rhythms within the LF band have been
thought to be of both sympathetic and parasympathetic origin [12] even though
some researchers have suggested them to be mainly of sympathetic origin [107].
The fluctuations below 0.04 Hz, on the other hand, have not been studied as much
as the higher frequencies. These frequencies are commonly divided into very low
frequency (VLF, 0.003-0.04 Hz) and ultra low frequency (ULF, 0-0.003 Hz) bands,
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but in case of short-term recordings the ULF band is generally omitted [178].
These lowest frequency rhythms are characteristic for HRV and BPV signals and
have been related to, e.g., humoral factors such as the thermoregulatory processes
and renin-angiotensin system [12].

The interdependencies between HR, BP, and respiration has lead into studies
where the interactions of the signals have been modeled using parametric multi-
variate models [93, 94]. These models can be divided into open- and closed-loop
models. The simplest such model is the multivariate AR model, which is a closed-
loop model. Utilization of such a model can provide additional information from
the system, for example, through partial spectrum representation.

Even though HRV has been studied extensively during the last decades within
which numerous research articles have been published, the practical use of HRV
have reached general consensus only in two clinical applications [178]. That is, it
can be used as a predictor of risk after myocardial infarction [104, 65] and as an
early warning sign of diabetic neuropathy [18, 129]. In addition, HRV has been
found to correlate with, e.g., age, mental and physical stress, and attention, see,
e.g., the review in [12].

In this chapter, the origin and determination of cardiovascular time serics are
shortly discussed and the most common time- and frequency-domain analysis
methods are reviewed. The importance of removing nonstationarities like slow
linear or more complex trends from these time series is particularly emphasized
and an advanced detrending method originally presented in [176] is given.

7.2 Materials and experimental procedures

In this chapter, data from three different sources are used. The effect of the de-
trending method is tested with the passive oddball paradigm data included in the
first data set addressed in Section 1. The orthostatic test recording, on the other
hand, was carried out in the Department of Applied Physics, University of Kuopio
and the measurement used in the demonstration of baroreflex estimation in the
Brain@Work Laboratory, Department of Occupational Medicine, Finnish Institute
of Occupational Health. In all of the measurements, ECG was recorded using a
NeuroScan measurement device (Compumedics Limited) with 500 Hz sampling
frequency. The blood pressure recordings were made with a Portapres system
(TNO Biomedical Instrumentation) which measures BP continuously from finger-
tip using the volume-clamp method (also known as the method of Penaz). The
sampling frequency of the Portapres was 200 Hz.

7.3 Cardiovascular variability signals

In this section, the formulation of HRV and BPYV signals is presented. The term
HRYV refers, in general, to changes in heart beat interval which is a reciprocal
of the heart rate. The starting point for HRV analysis is the ECG recording
from which the HRV time series can be extracted. Correspondingly for the BPV
analysis, beat-to-beat information of systolic, mean, and diastolic blood pressure
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Figure 7.2: Electrophysiology of the heart (redrawn from [108]). The different
waveforms for each of the specialized cells found in the heart are shown. The

latency shown approximates that normally found in the healthy heart.

ralucs (SBP, MBP, and DBP respectively) are required. In the formulation of the
above cardiovascular variability signals, a fundamental issuc is the determination
of heart beat period.

7.3.1 Heart beat period and QRS detection

The aim in HRV analysis is to examine the sinus rhythm modulated by the au-
tonomic nervous system. Thercfore, one should technically detect the occurrence
times of the SA-node action potentials. This is, however, practically impossible
and, thus, the fiducial points for the heart beat is usually determined from the
ECG recording. The nearest observable activity in the ECG compared to SA-node
firlng is the P-wave resulting from atrial depolarization (sce Fig. 7.2) and, thus,
the heart beat period is gencerally defined as the time difference between two suce-
cessive P-waves, The signal-to-noise ratio of the P-wave is, however, clearly lower
than that of the strong QRS complex which results primarily from ventricular de-
polarization. Therefore, the heart beat period is commonly evaluated as the time
difference between the easily detectable QRS complexes.

A typical QRS detector consists of a preprocessing part followed by a decision
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rule. Several different QRS detectors have been proposed within last decades
[180, 131, 132, 56, 44]. For an casy to rcad review of these methods, see [2]. The
preprocessing of the ECG usually includes at least bandpass filtering to reduce
power line noise, baseline wander, muscle noise, and other interference components.
The passband can be set to approximately 5-30 Hz which covers most of the
frequency content of QRS complex [131]. In addition, preprocessing can include
differentiation and/or squaring of the samples. After preprocessing, the decision
rules are applied to determine whether or not a QRS complex has occurred. The
decision rule usually includes an amplitude threshold which is adjusted adaptively
as the detection progresses. In addition, the average heart beat period is often
used in the decision. For other approaches on QRS detection, see, e.g., [203, 74].
The fiducial point is generally selected to be the R-wave and the corresponding
timme instants are given as the output of the detector.

The accuracy of the R-wave occurrence time estimates is often required to be
1-2 ms and, thus, the sampling frequency of the ECG should be at least 500-
1000 Hz [178]. If the sampling frequency of the ECG is less than 500 Hz, the
errors in R-wave occurrence times can cause critical distortion to HRV analysis
results, especially to spectrum estimates [114]. The distortion of the spectrum is
even bigger if the overall variability in heart rate is small [146]. The estimation
accuracy can, however, be improved by interpolating the QRS complex, e.g., by
using a cubic spline interpolation [29]. Tt should be, however, noted that when
the SA-node impulses are of interest there is an unavoidable estimation error of
approximately 3 ms due to fluctuations in the AV-nodal conduction time [162].

7.3.2 Derivation of cardiovascular time series

After the QRS complex occurrence times have been estimated, the HRV and BPV
time series can be derived as described in Fig. 7.3, where short samples of ECG
and BP signals are plotted one upon the other. The inter-beat intervals or RR
intervals are obtained as differences between successive R-wave occurrence times,
i.e. RR,, = t,,—t,_1. The time series constructed from all available RR intervals is,
clearly, not equidistantly sampled, but have to be presented as a function of time,
i.e. asvalues (t,,RR,,). In some context, normal-to-normal (NN) may also be used
when referring to these intervals indicating strictly intervals between successive
QRS complexes resulting from SA-node depolarization [178]. In practice, the NN
and RR intervals appear to be the same and throughout this thesis the term RR
is preferred.

Correspondingly, the BI’ time series are determined as pressure values as a
function of R-wave times. For each beat SBP, MBP, and DBP values can be
extracted as shown in Fig. 7.3. The mean pressure is the average pressure level
within the heart period and it corresponds to the line dividing the BP signal into
two equal parts (A; = Ay in Fig. 7.3). The resulting pressure series are those of
(t7,9BP,,), (£,,MBP,}, and (¢,,DBP,,). The construction of the time series and
the correspondence of the RR interval and BP values adopted here conform to
those given in [34, 119, 79] but also different approaches have been used [162, 92].

One characteristic property of the above time series that has to be considered
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Figure 7.3: Construction of RR interval and systolic, mean, and diastolic BP

time series from [KCG and BP signals.

prior to frequency-domain analysis is the fact that they are non-equidistantly sam-
pled. In general, three different approaches have been used to get around this issue
[178]. The simplest approach that have been adopted in. e.g.. [11] is to assuime
cquidistant sampling and calculate the spectrum directly from the RR interval
tachogram (RR intervals as a function of beat number), see the left pancl of Fig.
7.4. This assumption can, however, cause distortion into the spectrum [111]. This
distortion becomes substantial when the variability is large in comparison with the
mean level. Furthermore, the spectrum can not be considered to be a function of
frequency but rather of cycles per beat [32]. Another common approach, adopted
here, is to use interpolation methods for converting the non-cquidistantly sampled
RR interval time series (also called the interval function) to equidistantly sampled
[178], see the right panel of Fig. 7.4. One choice for the interpolation method is
the cubic spline interpolation [111]. After interpolation, regular spectrum estima-
tion methods can be applied. The third general approach called the spectrum of
counts considers a series of impulses (delta functions positioned at beat occurrence
times) [33]. This approach relies on the generally aceepted integral pulse frequency
modulator (IPFM) which aims to model the neural modulation of the SA-node
[162]. According to this model, the modulating signal is integrated until a refer-
ence level is achieved after which an impulse is emitted and the integrator is set to
zero. The spectrum of the series of events can be calculated, ¢.g., by first lowpass
filtering the event series and then calculating the spectrum of the resulting signal
[32].
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Figure 7.4: Derivation of two I1IRV signals from ECG (redrawn from [162]): the
interval tachogram (left panel) and the interval function (right panel).

7.4 Preprocessing of cardiovascular time series

Any artifact in the RR interval or BI’ time series may interfere the analysis of
these signals. The artifacts within cardiovascular signals can be divided into tech-
nical and physiological artifacts. The technical artifacts can include missing or
additional QRS complex detections, errors in R-wave occurrence times, and er-
rors in BP values. These artifacts may be due to measurement artifacts or the
computational algorithm. One striking technical artifact within continuous BP
measurements arises from the calibration pauses of the Portapres device, occur-
ring approximately every 70 heart beats. A correction procedure for recovering
these pauses was described in [85]. The physiological artifacts, on the other hand,
include ectopic beats and arrhythmic events. In order to avoid the interference of
such artifacts, the ECG or BP recordings and the corresponding event series should
always be manually checked for artifacts and only artifact-free sections should be
included in the analysis [178]. Alternatively, if the amount of artifact-free data is
insufficient, proper interpolation methods can be used to reduce these artifacts,
see, e.g., [99, 100, 112].

Another common feature that can alter the analysis significantly are the slow
linear or more complex trends within the analyzed time series. Such slow non-
stationarities are characteristic for cardiovascular variability signals and should
be considered before the analysis. The origins of nonstationarities in HRV are
discussed, e.g., in [12]. Two kinds of methods have been used to get around the
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nonstationarity problem. In [195], it was suggested that HRV data should be sys-
tematically tested for nonstationarities and that only stationary segments should
be analyzed. Representativeness of these segments in comparison with the whole
HRV signal was, however, questioned in [52]. Other methods try to remove the
slow nonstationary trends from the HRV signal before analysis. The detrending
is usually based on first order [101, 115] or higher order polynomial [149, 115]
models. Here, an advanced detrending procedure originally presented in [176] is
described. The approach is based on smoothness priors regularization which was
discussed in Section 2.5.1.

7.4.1 Smoothness priors based detrending approach

Let 2 € RY denote the RR interval time series which can be considered to consist
of two components
T = Zstal + LTirond (7.1)

where T4, is the nearly stationary RR interval series of interest and Ziyenq 1s the
low frequency aperiodic trend component. Suppose that the trend component can
be modeled with a lincar obscrvation model as

Tirend = HO + ¢ (7.2)

where H € RN*P is the observation matrix, § € RP arc the regression parameters,
and e is the observation error. The task is then to estimate the parameters by
some fitting procedure so that Zyreng = HO can be used as the estimate of the
trend. The properties of the estimate depend strongly on the properties of the
basis vectors (columns of the matrix H) in the fitting. A widely used method for
the solution of the estimate @ is the least squares method. However, a more general
approach for the estimation of 6 is used here. That is, the so-called regularized
least squares solution

© — HO||? + &>

‘Dd(He)

f,, = arg min 2 7.3
s = arg min { h (7.3)
where k is the regularization parameter and Dy indicates the discrete approxima-
tion of the d’th derivative operator. This is clearly a modification of the ordinary
least squares solution to the direction in which the side norm || Dg(HE)|| gets
smaller. In this way, prior information about the predicted trend H6 can be im-
plemented to the estimation. The solution of (7.3) can be written in the form (see
Section 2.5.1)

0. = (H"H+x*H "D DyH) "H"x (7.4)

and the estimate for the trend which is to be removed as
Tirend = Heh (75)

The sclection of the observation matrix H can be implemented according to
some known propertics of the data z. For example, a generie set of Gaussian
shaped functions or sigmoids can be used. Here, however, the trivial choice of
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Figure 7.5: a) Time-varying frequency response of £ (N — 1 = 50 and A = 10).
Only the first half of the frequency response is presented, since the other half is
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lines), for A = 1, 2, 4, 10, 20, 100, and 500. The corresponding cut-off {requencics
are 0.213, 0.145, 0.101, 0.063, 0.045, 0.021 and 0.010 times the sampling frequency.

identity matrix H = I € RV*¥ is used. In this case, the regularization part of (7.3)
can be understood to draw the solution towards the null space of the regularization
matrix Dg. The null space of the second order difference matrix given in (2.37)
contains all first order curves and, thus, D5 is a good choice for estimating the
aperiodic trend of RR series. With these specific choices, the detrended nearly
stationary RR serics can be written as

Zspat = T ~ Héli = (I - (I + HQDgDQ)vl)m' (76)

In order to demonstrate the properties of the proposed detrending method, its
frequency response is considered. Equation (7.6) can be written as Ty = Lz,
where £ = I — (I + k2D¥D;)™1 corresponds to a time-varying finite impulse
response highpass filter. The frequency response of £ for each discrete time point,
obtained as a Fourier transform of its rows, is presented in Fig. 7.5 (a). It can be
seen that the filter is mostly constant but the beginning and end of the signal are
handled differently. The filtering effect is attenuated for the first and last elements
of z and, thus, the distortion of end points of data is avoided. The effect of the
smoothing parameter £ on the frequency response of the filter is presented in Fig.
7.5 (b). The cutoff frequency of the filter decreases when s is increased. Besides
the x parameter the frequency response naturally depends on the sampling rate
of signal z.

7.5 Analysis methods of HRV

Next, a short review of measures used in the analysis of short-term HRV record-
ings is given. The selection of the presented measures is based on the guidelines
given in [178]. Even though most of these measures have been derived for HRV,
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several of them can be as well applied for analyzing BPV recordings. The analy-
sis methods of HRV can be roughly divided into time-domain, frequency-domain,
and nonlinear methods. In addition, time-varying methods such as time-frequency
representations have been utilized. The presented HRV measures are summarized
in Table 7.1.

7.5.1 Time-domain methods

The time-domain methods are the simplest to perform since they are applied
straight to the series of successive RR interval values. The most evident such
measure is the mean value of RR intervals (RR) or, correspondingly, the mean HR
(HR). In addition, several variables that measure the variability within the RR
series exist. The standard deviation of RR intervals (SDNN) is defined as

1 .

N 1 Z(RRJ - R‘R)Q (7.7)

J=1

SDNN =

where RR; denotes the value of jth RR interval and N is the total number of
successive intervals. The SDNN reflects the overall (both short-term and long-
term) variation within the RR interval series, whereas the standard deviation of
successive RR. interval differences (SDSD) given by

SDSD = |/ E{ARR?} — E{ARR,}? (7.8)

can be used as a measure of the short-term variability. For stationary RR series
E{ARR;} = E{RR;11} — E{RR;} = 0 and SDSD cquals the root mean square

of successive differences (RMSSD) given by

| N
= | E L 32
RMSSD = N1 (RRj41 — RRRy)2 (7.9)
i =
Another measure calculated from successive RR interval differences is the NN50
which is the number of successive intervals differing more than 50 ms or the cor-
responding relative amount

=

NN
PNN50 = ——°

0 \
T 100%. (7.10)

The properties of RMSSD and pNN50 were compared in [46], where a modified
RMSSD index that is more robust to artifacts and does not saturate like pNN50
was proposed.

In addition to the above statistical measures, there are some geometric mea-
surcs that arc calculated from the RR interval histogram. The HRV triangular
index is obtained as the integral of the histogram (i.c. total number of RR inter-
vals) divided by the height of the histogram which depends on the sclected bin
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width. In order to obtain comparable results, a bin width of 1/128 seconds is rec-
ommended [178]. Another geometric measure is the TINN which is the baseline
width of the RR histogram evaluated through triangular interpolation, see [178]
for details.

7.5.2 Frequency-domain methods

In the frequency-domain methods, a power spectrum estimate is calculated for
the RR interval series. The regular PSD estimators implicitly assume equidistant
sampling and, thus, the RR interval series should be converted to equidistantly
sampled series by interpolation methods prior to PSD estimation. In HRV analy-
sis, the PSD estimation is generally carried out using either FFT based methods or
parametric AR modeling based methods, see Section 3.5. The advantage of FFT
based methods is the simplicity of implementation, while the AR spectrum yields
improved resolution especially for short samples. Another property of AR spec-
trum that has made it popular in HRV analysis is that it can be decomposed into
separate spectral components as described in Section 3.5.3. The disadvantages of
the AR spectrum are the complexity of model order selection and the contingency
of negative components. Nevertheless, it may be advantageous to calculate the
spectrum with both methods to have comparable results.

The generalized frequency bands in case of short-term HRV recordings are
the very low frequency (VLF, 0-0.04 Hz), low frequency (LF, 0.04-0.15 Hz), and
high frequency (HF, 0.15-0.4 Hz). The frequency-domain measures extracted from
the PSD estimate for each frequency band include absolute and relative powers
of VLF, LF, and HF bands, LF and HF band powers in normalized units, the
LF/HF power ratio, and peak frequencies for cach band (sce Fig. 7.6 and Table
7.1). In the case of FFT spectrum, absolute power values for each frequency band
are obtained by simply integrating the spectrum over the band limits. In the case
of AR spectrum, on the other hand, distinct spectral components emerge for each
frequency band with a proper selection of the model order and the absolute power
values are obtained directly as the powers of these components as described in
equations (3.56)-(3.57). The band powers in relative and normalized units are
obtained from the absolute values as described in Table 7.1.

7.5.3 Nonlinear methods

Considering the complex control systems of the heart it is reasonable to assume
that nonlinear mechanisms are involved in the genesis of HRV. The nonlinear prop-
erties of HRV have been analyzed using measures such as Poincaré plot [19, 21],
approximate entropy [154, 45], detrended fluctuation analysis [141, 142], correla-
tion dimension [55, 61|, and Lyapunov exponent [186, 61|, see Table 7.1. Dur-
ing the last years, the number of studies utilizing such methods have increased
substantially. The downside of these methods is still, however, the difficulty of
physiological interpretation of the results.

One commonly used nonlinear method that is simple to interpret is the so-
called Poincaré plot. It is a graphical representation of the correlation between
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Figure 7.6: The user interface of the IIRV analysis software, part of the Biosignal

analysis sofltware [1.

successive RR intervals, i.c. plot of RR; 41 as a function of RR; as deseribed in
Fig. 7.7. The shape of the plot is the essential feature. A common approach
to parameterize the shape is to fit an ellipse to the plot as shown in Fig. 7.7.
The ellipse is oriented according to the line-of-identity (RR; = RR;41) [19]. The
standard deviation of the points perpendicular to the line-of-identity denoted by
SD1 describes short-term variability which is mainly caused by RSA. It can be
shown that SD1 is related to the time-domain measure SDSD according to [19]

1
SD1?% = §SDSD2. (7.11)
The standard deviation along the line-of-identity denoted by SD2, on the other
hand, describes long-term variability and has been shown to be related to time-

domain measures SDRR and SDSD by [19]

SD2? = 2SDRR? — %SDSDQ. (7.12)
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Table 7.1: Selected measures of HHRV for short-term recordings. For cach mea-
sure preferred units and a short description is given. In addition, related refer-

ences are given for some measures

Measure Units  Description References
RR [ms] The mean of RR. intervals
TR [1/min]  The mean heart rate
SDNN [ms] Standard deviation of RR intervals
E SDSD [ms] Standard deviation of successive RR interval differences
g RMSSD [ms] Square root of the mean squared differences between succes-
QO sive RR intervals
& NN50 Number of successive RR interval pairs that differ more than
& 50 ms
& pNN50 [%] NN350 divided by the total number of RR. intervals
HRYV triangular The integral of the RR interval histogram divided by the
index height of the histogram [178]
TINN [ms] Baseline width of the RR interval histogram (178]
o VLF, LF, HF [Hz| VLF, LI, and HF band peak frequencies
- VLF, LF, HF [msQ] Absolute powers of VLF, LF, and HF bands
g VLF, LF, HF (%] Relative powers of VLLF, LF, and HF bands
QO VLF [%)] = VLF [ms?]/total power [ms?] x 100%
L LF [%)] = LF [ms?]/total power [ms?] x 100%
g HF [%)] = I1F [ms?]/total power [ms?] x 100%
g LT, HF [n.u.] Powers of I.F and HF bands in normalized units
g LF [n.u.] = LF [ms?]/(total power [ms?] — VLI [ms?])
& HF [n.u.] = UF [ms?]/(total power [ms?] — VLF [ms?])
LF/HF Ratio between LEF and HF band powers
SD1, SD2 [ms] The standard deviation of the Poincaré plot perpendicular
to (SD1) and along (SD2) the line-of-identity (19, 21]
. ApkEn Approximate entropy [154, 15]
“ Samplin Sample entropy [154]
8 Ko Kolmogorov entropy (55]
= DTFA Detrended fluctuation analysis (141, 142]
ZO MED Minimum embedded dimension [152, 61]
A Lyapunov exponents [186, 61]
Do Correlation dimension [65, 61
RPA Recurrence plot analysis [194, 186, 207]
Time-varying spectrum [13, 125, 105, 86, 14, 192, 201, 182]

estimation methods

The standard Poincaré plot can be considered to be of the first order. The second
order plot would be a three dimensional plot of values (RR;,RR;j41,RR;12). In
addition, the lag can be bigger than 1, e.g., the plot (RR;,RR;12).

7.5.4 Time-varying methods

As already mentioned, cardiovascular signals are often characterized by nonsta-
tionary trend components. In addition, the low and high frequency variability
which one is usually interested in might also vary in time due to, e.g., change in
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Figure 7.7: Poincaré plot analysis with the ellipse fitting procedure. SDI and
SD2 are the standard deviations in the directions x1 and x2, where xo is the

linc-of-identity for which RR; = RR;41.

physiological conditions. For example, in the orthostatic test, subject stands up
rapidly after lying supine for few minutes. After standing up, HR starts to increase
to compensate the decrease in BP. On supine, the high frequency variation of HR
is typically strong, often higher than the low frequency variation. At the instant
of standing, an immediate strong decrease in HF variation and a more gradual
increase in LF variation has been observed [86]. Such changes in HRV can be an-
alyzed with time-varying spectrum estimation methods, sce Fig. 7.8. The interest
towards these methods has increased recently and they have been applied for moni-
toring different types of transient cardiac events [13, 125, 105, 86, 14, 192, 201, 182].
For example, HRV recording corresponding to an ischemic episode is usually char-
acterized by a marked nonstationarity. In [13. 14], the spectral content of HRV
during such cpisodes was analyzed dynamically by using a paramectric time-varying
AR model based spectrum estimation method.

7.6 Effect of detrending

Next, the influence of the low frequency trend components that are characteristic
for RR interval series is considered by comparing HRV results obtained before and
after detrending the R series. The trends were removed using the smoothness
priors basced approach presented in Section 7.4. The performance of the detrending
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Figure 7.8: Time-varying spectrum of a RR series recorded during an orthostatic
test. A 16’th-order AR model was used and the evolution of the model coefficients

was solved using the Kalman smoother algorithm.

method on real RR interval data is presented in Fig. 7.9, where it is applied to
data of four different subjects. Each RR series was first interpolated to obtain a
regularly sampled series using a 4 Hz cubic interpolation. The detrending was then
performed using a smoothing parameter £ = 500, which equals a cut-off frequency
of 0.039 Hz. The four RR series with the fitted trends and the corresponding
detrended series are presented in Fig. 7.9 (a).

Three different time-domain parameters SDNN, RMSSD, and pNN50, recom-
mended in [178], were selected to demonstrate the effect of the used detrending
method on time-domain analysis [Fig. 7.9 (b)]. SDNN, which describes the amount
of overall variance of the RR series, is clearly effected the most. Instead only little
effect is focused on RMSSD and pNN50 which both describe the variation between
successive RIR intervals.

The effect of detrending on frequency-domain analysis is presented in Fig. 7.9
(¢), where PSD estimates calculated with Welch's periodogram method and by
AR modeling before and after detrending are compared. AR model order p = 16
was selected according to [178], by using the corrected AIC criterion [53]. In each
original PSD estimate the intensity of the VLF component is clearly stronger than
the intensity of LF or HF component. Each spectrum is, however, limited to
0.035 s2/Hz to enable the comparison of the spectra before and after detrending.
For Welch’s method the VLF components are properly removed while the higher
frequencies are not significantly altered by the detrending. But when AR models of
relatively low orders are used, which is usually desirable in HRV analysis in order
to enable a distinct division of the spectrum into VLF, LF, and HF components,
the effect of detrending is remarkable. In each original AR spectrum, the peak
around 0.1 Hz is spuriously covered by the strong VLEF component. However,
in the AR spectra obtained after detrending the component near 0.1 Hz is more
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Figure 7.10: Sequence technique for estimation of the baroreflex sensitivity.

realistic when compared to the spectra obtained by Welch’s method.

7.7 Baroreceptor reflex sensitivity

The arterial baroreceptor reflex or baroreflex has a fundamental role in main-
taining blood pressure homeostasis and its impairment may result in exaggerated
blood pressure fluctuations and an increased risk of cardiovascular morbid events.
Thus, methods for assessing the gain of baroreflex control of heart rate, commonly
referred to as barorefler sensitivity (BRS), have been developed. In these meth-
ods, BRS is evaluated as the ratio between changes in HR and BP. Traditionally
BRS has been evaluated by measuring the RR interval values in response to in-
crease or decrease of systolic pressure induced by intravenous drug injection [136].
Drawbacks of the traditional method are that it has to carried out in laboratory
environment and it yields only temporary estimates of BRS. With the modern
techniques, on the other hand, BRS can be estimated from the spontaneous HR
and BP fluctuations. The most common such techniques are the sequence method
and the spectral methods. For other kind of approaches, see, e.g., [37, 87, 150].

7.7.1 Sequence method

Perhaps, the most popular modern BRS estimation technique is the so-called se-
quence method [155]. In this method, spontaneous sequences of three or more
heart beats during which systolic BP increases and RR interval lengthens pro-
gressively (RR1/SBP1 sequences) or, vice versa, SBP decreases and RR interval
shortens progressively (RR|/SBP| sequences) are searched for. The changes in
RR interval usually appear within one beat delay [156]. In [157], progressive SBP
increases or decreases of at least 1 mmHg/beat and RR interval lengthenings or
shortenings of at least 5 ms/beat were included. The BRS index is obtained as
the slope of the regression line between the SBI” and RR values within a sequence
as described in Fig. 7.10. Furthermore, by averaging the slopes of several spon-
tancous sequences a more reliable value for BRS index is obtained [see Fig. 7.11
(a)]. These spontanecous sequences occur rather frequently (approximately 80 per
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hour) [135] and, thus, fluctuations of BRS over time can as well be estimated with
the scquence method.

However, all the progressive SBP sequences are not, even in healthy subjects,
coupled with a progressive change in HR. The presence of such uncoupled SBI
sequences might indicate that the baroreflex is not invariably effective. This as-
pect was considered in [157], where a new index, the baroreflex effectiveness index
(BEI), was proposed. This index was defined as

r of RR/SBP sequence
BEL number of RR/SBP sequences (7.13)

number of SBP sequences

where the number of RR/SBI sequences include both RR1/SBPT and RR|/SBP|
sequences, where the RR interval sequence appeared with 0, 1, or 2 beat delay.
The observed average BET in healthy subjects during a 24 hour recording was 0.21.
The lowness of the BEI was justified with other strong enough control mechanisims
of HR (e.g. central neural influences and respiratory activity) that might partially
mask the baroreflex influence of HR.

The sequence technique have been compared to the traditional intravenous
drug injection methods in [137, 147] and a significant correlation between the
two methods was found in both studies. There are, however, two methodological
differences between the two methods that might explain the differences between
the BRS estimates. First of all, the vasoactive drugs used in the traditional method
can change the mechanical properties of the arterial wall where baroreceptors are
located, which may result in a shifted reflex strength [147, 136]. Secondly, the drug
injection method usually produces large BP changes, whercas spontancous BP
changes employed in the sequence technique are considerably smaller. Therefore,
the scquence technique can only provide a portion of the stimulus-response curve
(RR interval as a function of SBI), which in full-range is of sigmoidal shape [137].

7.7.2 Spectral methods

Alternatively, BRS can be assessed through spectral analysis. In spectral methods,
SBP values are considered as system input and RR intervals as output and the
BRS is obtained from the transfer function gain of the system [34, 161] or, more
simply, by using the so-called a-technigue [130]. In the a-technique, BRS index is
estimated as the square root of ratio between RR and SBP powers within LF and

HF bands, that is
BRS.1r = /Prrir/lsspir (7.14)

BRS,ur = \/PRR.HF/PSBP.HF (7.15)

where Prr and Psi3p denote the RR interval and SBIP powers within the specific
frequency bands. The coupling between RR intervals and SBP within the HF
band have been suggested to be of non-baroreflex origin [136] and, therefore, the
LF band may be preferred for BRS evaluation.
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The transfer function gain is, however, meaningful only when the lincar cou-
pling of the input and output signals is strong enough. The lincar coupling between
two signals in frequency-domain can be expressed in terms of coherence function
given in (3.58). Therefore, only those frequencies for which the coherence is suffi-
ciently high (usually over 0.5) should be included in the BRS calculation [see Fig.
7.11 (b)]. The coherence is typically higher within the LF and HF bands and low-
est in the frequencies below the LE band. Another factor describing the coupling
of SBP and RR interval signals is the phase function given in (3.59). The phasc
is typically negative for most frequencies indicating that the SBI’ changes occur
before the RR interval changes [34, 79]. Thus, one should also take the phase into
account when calculating the BRS index.

The a-technique has been found to correlate with the results obtained from the
traditional drug injection method [130, 147, 27]. The advantage of the sequence
method compared to spectral methods is that it provides separate assessment
of RRT/SBPT and RR|/SBP| scquences and, in addition, the effectiveness of
baroreflex can be estimated as given by (7.13). In the spectral methods, on the
other hand, BRS index is evaluated at specific frequencies and, thus, these methods
enable the separate assessment of sympathetic and parasympathetic contributions
of baroreflex HR modulation [136].

7.8 Discussion

The aim of this chapter was to give a short introduction to the analysis of car-
diovascular signals. The origin and derivation of heart rate and blood pressure
ariability signals was given. One problematic feature of these signals that has to
be considered prior to analysis is that they are non-equidistantly sampled. In this
thesis, a cubic spline interpolation was used to overcome this problem. Prior to
analysis, cardiovascular variability signals should also always be checked for arti-
facts. The most common artifact types of these signals were discussed in Scection
7.4. The optimal case would be to include only artifact-free regions in the analysis.
This is not, however, always possible in which case artifacts need to be corrected
in some way before analysis.

Special attention was appointed to the slow trend components that are char-
acteristic to cardiovascular signals. For removing such trend components an ad-
vanced detrending method was presented. The method is based on smoothness
priors formulation and was originally presented in [176] with application to HRV
analysis. The main advantage of the method, compared to methods presented
in [149, 101], is its simplicity. The frequency response of the method is adjusted
with a single parameter. This smoothing parameter « should be selected in such a
way that the spectral components of interest are not significantly affected by the
detrending. Another advantage of the presented method is that the filtering effect
is attenuated in the beginning and end of the data and thus the distortion of data
end points is avoided.

The effect of detrending on time- and frequency-domain analysis of HRV was
demonstrated in Section 7.6. In time-domain, most cffect is focused on SDNN,
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which describes the amount of overall variance of RR series. Instead only little
effect is focused on RMSSD and pNN50 which both describe the differences in
successive RR intervals. In frequency-domain, the low frequency trend compo-
nents increase the power of VLF component. Particularly, it was pointed out
that when relatively low order AR models are used in spectrum estimation the
strong VLF component can distort other components, especially the LF compo-
nent, of the spectrum. By using the detrending, on the other hand, the power of
the VLF component is significantly reduced and the distortion of higher frequency
components avoided.

The presented detrending method can be applied to, e.g., RSA quantification.
The RSA component is separated from other frequency components of HRV by
adjusting the smoothing parameter & properly. For other purposes of HRV analysis
one should make sure that the detrending does not lose any frequency components
which carry useful information. Finally, it should be emphasized that the presented
detrending method is not restricted to analysis of cardiovascular variability signals
only, but can be applied as well to other biomedical signals, e.g., for detrending of
EEG signals in quantitative EEG analysis.

In Section 7.7, two modern methods (sequence method and a-technique) for
estimation of the baroreflex control of heart rate were described. Both methods
evaluate the BRS index from spontaneous HR and BP fluctuations. Even though
these methods are noninvasive and have been found to correlate with the tradi-
tional invasive methods, the general opinion is still that they should not be used in
clinical practice as an alternative, but rather as complementary to the traditional
methods.



CHAPTER VIII

Conclusions

In this thesis, three rather distinet novel methods for the analysis of biosignals
were presented. The novelty within each proposed method lies in the application
itself, not in the theoretical framework. The theories behind the proposed methods
arc well-known from before and they were presented in Chapters 2 4. The three
novel applications were presented in Chapters 5 7.

The first proposed method. originally published in [174, 175], was a PCA based
method for analyzing the patterning of successive GSR measurements. The theory
of PCA is well-known and it was summarized in Section 2.4. PCA has a wide
variety of applications in pattern recognition, but it has not been applied to GSRs
before. A detailed description of the proposed method is given in Chapter 5. As
a specific application the method was applied to GSRs measured from 20 healthy
control subjects and 13 psychotic patients. The best obtained diserimination of
the two subject groups, presented in Fig. 5.12, yicelded the method a sensitivity
of 100% and specificity of 70%. Furthermore, by using the binomial distribution
it was argued that in 95% probability the sensitivity of the method is 75.3-100%
and specificity 45.7-88.1%.

The observed high sensitivity of the method makes it a promising approach to
be used as a screening test in clinical practice for specific risk-groups and prodromal
patients in future. It should, however, be noted that the number of patients
(N = 13) included in the study was rather small and, therefore, the method should
be further validated with larger material before clinical use. One factor that was
not extensively addressed here, but has an essential influence on the results of the
method, is the applied classification technique. Here, an unsupervised classification
method with a rather simple distance function was used, but also other approaches
could be tested in future.

Furthermore, it should be noted that the proposed method is not restricted to
GSR measurements, but can be applied to other kind of biosignals as well. For
example, in [205], the method was applied for discriminating event-related brain
potentials measured in different depths of sedation. With the method a significant
discrimination of the awake, modcrate sedation, and deep sedation states was
obtained.

The second proposed method, originally published in [177, 172, 173], was a

125
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Kalman smoother approach for the estimation of nonstationary EEG signals. The
theory behind the Kalman smoother algorithm, presented in Sections 2.9 and
2.10, was proposed already in 1960ies [78, 153], but this is the first time it has
been used for EEG signals. As a specific application the method was applied
to estimation of event-related changes in occipital alpha rhythm synchronization.
Using the Kalman smoother approach even the short-term changes such as the
“squeak” effect of alpha rhythm could be observed even from single sample spec-
trum estimates. Using the traditional spectrum estimation methods such as the
spectrogram the “squeak” effect could not be observed from single samples, but
only by averaging several consecutive samples. The high time-frequency resolution
of the Kalman smoother approach makes it a promising analysis method, e.g., for
cognitive ERS/ERD experiments where the transition can not be assumed to recur
alike from time to time.

There are two basic decisions in the Kalman smoother approach that have a
decisive effect on the results, namely the model order and the adaptation coeffi-
clent (i.c. the state noise covariance). The model order selection can usually be
based on the stationary case or on prevailing practice. The latter decision, on the
other hand, leads to a trade-off between the time resolution and variance of the
spectrum estimate. In the future studies, the statistics of the estimates could be
further examined and rules for “optimal” adaptation coefficient selection would
be desirable. Once the above decisions can be made, the Kalman smoother spec-
trum estimation method can basically be applied to any other biosignals as well.
For example, in Fig. 7.8, it was applied to HRV time serics measured during an
orthostatic test.

The third proposed method, originally published in [176], was a smoothness
priors based detrending method with application to HRV analysis. The theory
of smoothness priors regularization was summarized in Section 2.5 and as a novel
application it was used for detrending HRV time series in Chapter 7. The details of
the proposed method were presented in Section 7.4 and the effect of the detrending
on time- and frequency-domain analysis of HRV was considered in Section 7.6.
Detrending removes the lowest frequencies from the HRV signal and, therefore,
influences measures which are affected by long-term variability such as the SDNN.
In addition, detrending was found essential when relatively low order AR models
are used in spectrum estimation.

The issue of detrending is an important issue in biosignal analysis in general
since the signal of interest is often desired to be stationary. That is, most of the
ordinary analysis methods assume stationarity. The proposed detrending method
is simple to use since the detrending level can be adjusted with a single parameter.
In practice, one should always make sure that the detrending does not remove any
useful information from the lower frequencies. That is, one should be aware of the
lowest meaningful frequency within the signal and adjust the smoothing parameter
accordingly. For example, when the RSA component of the HRV measurement is
to be analyzed, the smoothing parameter can be set to remove the frequencies
below 0.15 Hy.

In addition to the methodological applications, during the preparation of this
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thesis, various analysis tools for the Biosignal analysis software [1] were developed.
These include analysis tools for both event-related and spontancous GSR measure-
ments, quantitative and time-varying analysis tools for EEG measurements, and
analysis tools for HRV and BPV measurements including BRS estimation tools
(see Figs. 6.3, 7.6, and 7.11). In addition. the developed Biosignal analysis soft-
warce include analysis tools, c.g., for event-related brain potentials and cye blinks.
The whole software has been developed with Matlab® (Mathworks, Inc.). One
noteworthy part of the software is the HRV analysis software, a limited version of
which has also been compiled to a stand-alone Windows application [124], which
has been distributed for free at request for clinicians and researchers worldwide.
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