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ABSTRACT 

Nuclear magnetic resonance spectroscopy is a valuable tool in modern chemical and biochemical re-
search and numerous applications can be found in both biology and medicine. The greatest use for 
NMR spectroscopy has however been in the field of chemistry, which has in recent years been ex-
tended to the measurement of metabolite concentrations in biofluids. This research topic is called me-
tabolomics, which is defined as the analysis and evaluation of static cellular and biofluid concentra-
tions of endogenous metabolites. 
 

Metabolomics deals with the metabolome that represents the complete set of small-molecule 
metabolites. Even though metabolomics can be thought of as a relatively young method, it is neverthe-
less a rapidly growing one that also has the potential to impact our understanding of the molecular me-
chanism of disease. Furthermore, along with various mathematical tools, it also provides a powerful 
instrument for the analysis of individual metabolism, as well as for the examination of perturbations in 
metabolic pathways and networks in human disease. These are the reasons why NMR metabolomics 
has been an increasingly active research topic for the last 20 years, nowadays attempts are made in 
gathering unbiased samples of metabolites that could serve as snapshots of physiological and patholog-
ical states. The differentiation of healthy individuals and individuals that have or might develop a dis-
ease has also become a fundamental goal of research. 
 

To understand brain function and the complexity within, new ideas and approaches are much 
needed. The knowledge of metabolic signatures for central nervous system (CNS) disorders could re-
sult in the identification of disease specific biomarkers and in the ability for disease progression or 
response to therapy analysis. Moreover, as the signatures are the final product of interactions gene ex-
pression, protein expression and the cellular environment, metabolomics provides tools for the process 
of drug development by providing detailed biochemical knowledge about drug candidates, their me-
chanism of action and side effects. 
 

There has recently been explosive growth in this research area driven by the potential for ear-
lier disease detection and ultimately for reaching the goal of personalized medicine. Connecting central 
and peripheral changes in CNS disorders could be the key to defining if and how biochemical changes 
in plasma are related to changes in the brain. Combining metabolomics with imaging methods and 
other omics approaches might be powerful ways to achieve these goals. 
 
 
National Library of Medicine Classification: QU 25, QU 120, WL 141, WL 300, WT 155 
Medical Subject Headings: Metabolomics; Metabolome; Magnetic Resonance Spectroscopy; Diagnos-
tic Techniques, Neurological; Central Nervous System Diseases/diagnosis; Neurodegenerative Diseas-
es/diagnosis; Alzheimer Disease/diagnosis; Biological Markers; Mathematical Computing 
  



  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

You are a fading dream, but one that has been touched by reality.  
Run, dream. Run on into the daylight. And walk into reality. 
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ABBREVIATIONS 

1D   One dimensional 
2D   Two dimensional 
3D   Three dimensional 
6-OHDA   6-Hydroxydopamine 
A�    Amyloid-�-protein 
AD    Alzheimer's disease 
AHB   ��Hydroxybutyrate 
AHIV   ��Hydroxyisovalerate 
ApoE    Apolipoprotein E 
APP    Amyloid precursor protein 
ALS   Amyotrophic lateral sclerosis 
BHB   ��Hydroxybutyrate 
CA1   Cornu ammonis 1 
CAC   Citric acid cycle 
cAMP   Cyclic adenosine monophosphate 
CNS    Central nervous system 
COSY   Correlation spectroscopy 
COX-2   Cyclo-oxygenase 2 
CPMG   Carr-Purcell-Meiboom-Gill 
CSF    Cerebrospinal fluid 
CV   Cross-validation 
DA   Discriminant analysis 
DART   Direct analysis in real time 
DESI   Desorption electrospray atmospheric ionization 
DOPY   Diffusion ordered projection spectroscopy 
DOSY   Diffusion ordered spectroscopy 
DQF   Double quantum filtered 
DSM-IV-TR  Diagnostic and Statistical Manual of Mental Disorders 
DSS   2,2-Dimethyl-2-silapentane-5-sulfonate 
EDTA   Ethylenediaminetetraacetic acid 
EESI   Extractive electrospray ionization 
ER   Endoplasmic reticulum 
FLIPSY   Flip angle adjustable one-dimensional NOESY 
FTD   Frontotemporal dementia 
GABA   ��Aminobutyrate 
GFAP   Glial fibrillar acidic protein 
HD   Huntington’s disease 
HMBC   Heteronuclear multiple bond correlation 
HMDB   Human metabolome database 
HMQC   Heteronuclear multiple quantum correlation 
HO-1   Heme oxygenase-1 
HSA   Human serum albumin 
HSQC   Heteronuclear single quantum correlation 
J-RES   J-resolved spectroscopy 
LBD   Lewy body disease 
LOO   Leave-one-out 
LMO   Leave-many-out 
MHz   Megahertz 
MAP   Microtubule-associated protein 
MAS   Magic angle spinning 
MCA   Middle cerebral artery 
MCI   Mild cognitive impairment 
MDA   Mean decrease accuracy 
MDG   Mean decrease gini 
MLR   Multiple linear regression 
MTL   Medial temporal lobe 
MRI    Magnetic resonance imaging 



MRS   Magnetic resonance spectroscopy 
MS   Multiple sclerosis 
MSI   Metabolomics standards initiative 
NAA   N-acetylaspartate 
NFT    Neurofibrillary tangle 
NINCDS-ADRDA  The national institute of neurological and communicative disorders and stroke and 

the Alzheimer disease and related disorders association 
NMR   Nuclear magnetic resonance 
NOESY   Nuclear overhauser enhancement spectroscopy 
NOESYPRESAT  Nuclear overhauser enhancement spectroscopy with solvent presaturation 
OOB   Out-of-bag 
OPLS   Orthogonal projections to latent structures 
OPLS-DA  Orthogonal projections to latent structures – discriminant analysis 
PB   Phosphate buffer 
PC   Principal component 
PCA   Principal component analysis 
PCR   Principal component regression 
PD   Parkinson’s disease 
PDTC   Pyrrolidine dithiocarbamate 
PET   Positron emission tomography 
PFG   Pulsed field gradient 
PHF   Paired helical filament   
PKA   Protein kinase A 
PKC   Protein kinase C 
PLA2   Phospholipase A2 
PLS   Partial least squares 
PLS-DA   Partial least squares – discriminant analysis 
PR   Pattern recognition 
PRESS   Predictive residual sum of squares 
RF   Random forest 
S-DOSY   Statistical diffusion ordered spectroscopy 
SAP   Stress-activated protein 
SD   Sprague dawley 
SF   Straight filament 
SHY   Statistical heterospectroscopy 
SIMCA   Soft independent modeling of class analogy 
SM   Sammon’s mapping 
SNc   Substantia nigra pars compacta 
SOD   Superoxide dismutase 
SOM   Self organizing maps 
SRMS   Standard metabolic reporting structures 
STOCSY   Statistical total correlation spectroscopy 
T1    Longitudinal relaxation 
T2    Transverse relaxation 
TARDBP   TAR DNA binding protein 
TG   Transgenic 
TG_ES   TG end stage 
TG_PDTC  TG PDTC treated end stage 
TG_PS   TG presymptomatic 
TH   Tyrosine hydroxylase 
tMCAO   Transient middle cerebral artery occlusion 
TOCSY   Total correlation spectroscopy 
TSP   3-(Trimethylsilyl)-propionic-2,2,3,3-d4 acid 
VAD   Vascular dementia 
WT   Wild type 
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1. NMR SPECTROSCOPY IN A NUTSHELL 

Nuclear magnetic resonance (NMR) spectroscopy is a valuable tool in modern chemical and biochemi-

cal research. Numerous applications can be found in both biology and medicine, though the greatest 

use for NMR spectroscopy has been in the field of chemistry. NMR is frequently used in the quantifi-

cation of organic compounds as well as structure analysis and interpretation. In this chapter, the basics 

of NMR spectroscopy are shortly described. The concepts underlying advanced techniques such as 

spectral editing are discussed under the respective subtopics in chapter 3. 

The nuclei of atoms can be described by the nuclear spin quantum number, I. The spin quantum num-

ber can have values greater than or equal to zero, and multiples of ½. When I=0, the mass and atomic 

numbers are both even, and the nuclear spin is not observable with NMR spectroscopy. Fortunately, all 

major organic chemistry elements have at least one nucleus that does possess an observable nuclear 

spin. These are the elements that can be of use in NMR spectroscopy. Examples of biologically useful 

nuclei include 1H, 13C, 31P and 19F. The reason why the nuclear spin is fundamental to the NMR phe-

nomenon is because the spinning nucleus possesses an angular momentum which gives rise to an asso-

ciated magnetic moment. When placed in an external magnetic field, such as the NMR instrument, the 

magnetic moments align themselves relative to the field in a discrete number of orientations, because 

the energy states are quantized. For a spin of magnetic quantum number I, there exist 2I+1 possible 

spin states, which means that for a spin-½ nucleus (a nucleus with an odd mass number) such as the 

proton, there exists two possible spin states denoted –½ and +½. Another example, deuterium with I=1, 

has three spin states, denoted -1, 0, and +1 and so on. The spin-½ nucleus can be thought of having an 

orientation parallel to the external magnetic field (��state), or an orientation antiparallel to the magnet-

ic field (��state). Since the ��state is usually lower in energy, there is a bit more nuclei in that state. 

The energy difference between the two spin levels is rather small and the population difference be-

tween the ���and ��states can be calculated with the Boltzmann distribution; at 500 MHz the differ-

ence is 1 versus 0.9999872. The population difference between the states depends on the strength of 

the external magnetic field and temperature. The drawback is that only the population difference be-

tween the ���and ��states can be detected by means of NMR spectroscopy and this is what makes 

NMR spectroscopy insensitive relative to other techniques such as infrared or ultraviolet spectroscopy. 

The magnetic moment of the spin can be stimulated with short duration radiofrequency energy, called 

a pulse. Because the energy states are quantized, the pulse induces changes in the populations: � � �� 

and � � ���of which � � ��is the more likely one; this meaning that if the pulse is repeated many 

times, the spin populations even out and the system is said to saturate. After the pulse is applied, the 
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emission signal of the energy stored in the nucleus (called the FID, free induction decay) can be de-

tected. As the nuclei emit energy and relax, the population states return to their normal state and can be 

restimulated. The FID, known as the time-domain, can be converted to the frequency-domain spectrum 

by a process known as Fourier transformation (FT). The time-domain-format must be converted, be-

cause it is much harder to interpret than the frequency-domain where one can explicitly see the signals 

arising from nuclei. The domains of time and frequency are functions of intensity versus time, and 

intensity versus frequency, respectively. There is an important relation between the frequency of the 

NMR signal and the chemical structure of a molecule; this can be used to identify specific signals and 

can only be done in the frequency domain. 

The frequency of the signal (versus a reference signal) is called the chemical shift and it depends on 

many factors, both internal, and external. The chemical shift gives information of the chemical envi-

ronment and type of the nucleus. This information is highly affected by electronegativity and the struc-

ture of the molecule in question. 

The spins of different nuclei interact with each other and this creates a phenomenon called spin-spin-

coupling, which can be seen in the NMR spectrum as the splitting of signals. This coupling is not a 

direct magnetic dipolar interaction, but is transmitted via the electrons and is referred to as the coupl-

ing constant. The coupling constant can be used to identify magnetically active neighboring nuclei, and 

it also carries information about the three dimensional structure of the molecule. 

The integral is the calculated area of a signal and if there is no signal overlap, it is also directly propor-

tional to the molar concentration of the nucleus. By using the integral, it is possible to determine quick-

ly for example the amount of protons for all of the signals because the integrals of the signals within 

one molecule are related. If, for example, an internal concentration standard is used, it is easy to calcu-

late the concentration of the components using the integrals (when the concentration of the standard is 

known); in addition, only the number of protons in the standard needs to be known. This procedure is 

well demonstrated by e.g. Maillet et al. [1]. 

By using the information provided by the chemical shifts (expressed in ppm or hertz (Hz)), coupling 

constant (Hz), and integrals, the signals in the spectrum can be identified (assigned). By assigning all 

the signals, the chemical structure(s) of the molecule(s) in the sample can be determined. Furthermore, 

since the integral of the NMR signal is directly proportional to concentration of the component, it is 

possible to measure e.g. metabolite concentrations by acquiring an NMR spectrum. 
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One dimensional (1D) NMR is the most common type of NMR spectroscopy. This is because the ex-

periments are fast to perform, and the spectrum is often quite easy to interpret and therefore, the ap-

proach to e.g. any structural problem of a molecule will eventually start by acquiring a 1D spectrum. In 

normal 1D techniques, a very simple scheme for acquiring spectra is used. The basic procedure is 

demonstrated in Figure 1 where three elements can be seen: i) a delay before the pulse, ii) the pulse, 

and iii) the acquisition time. The delay before the pulse is the relaxation delay for the nuclei. Relaxa-

tion is covered in more detail in chapter 3.2. 

 

Figure 1. The basic 1D NMR acquisition scheme with including the essential elements: the relaxation (re-
covery) delay, the pulse, and the data acquisition period. 

 

The most severe problem in 1D NMR is signal overlap. This means that there might be many signals 

that have a nearly identical chemical shift. These signals are hard to recognize from the spectrum since 

many signals in one spot tend to form one large signal, often called a multiplet or an unresolved signal. 

The multiplet however is a totally different concept than an overlapping or unresolved signal since 

multiplets can usually be seen and identified in the spectra whereas overlapping or unresolved signals 

might not be distinguished at all. The signal overlap can be reduced by using a higher frequency spec-

trometer, but often two or three dimensional (2D, 3D) NMR methods are required. 2D NMR tech-

niques are aimed at determining correlations between spins of the same (homonuclear, e.g. 1H-1H), or 

different (heteronuclear, X-1H, where X is for example 13C, 15N, or 31P) nuclei. Commonly 2D NMR 

methods, including their applications, are collected in Table 1. 
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Table 1. The most commonly used 2D NMR techniques including relevant applications. The X nucleus is a 
nucleus other than 1H, such as 13C, 15N, 19F or 31P. An inverse technique is one in which the good sensitivi-
ty of the 1H nucleus is utilized as an advantage; the X nucleus chemical shift is measured through its con-
nection to the 1H nucleus. Abbreviations: J-RES=J resolved spectroscopy, COSY=correlation spectrosco-
py, DQF=double quantum filtered, TOCSY=total correlation spectroscopy, HMQC=heteronuclear multiple 
quantum correlation, HSQC=heteronuclear single quantum correlation, HMBC=heteronuclear multiple 
bond correlation. 

Technique Principal application Type 

J-RES Separation of homonuclear or heteronuclear couplings from 
chemical shifts. Used to determine the multiplicity of the 
NMR band or to provide direct measurement of coupling con-
stants. 

1H-1H/1H-X 

COSY Correlating coupled homonuclear spins. Typically used for 
correlating protons coupled over 2 or 3 bonds. The basic 
COSY experiment. 

1H-1H 

DQF-COSY Correlating coupled homonuclear spins. Typically used for 
correlating protons coupled over 2 or 3 bonds. Offers higher 
spectral resolution than the basic COSY experiment and also 
removes singlets from the spectra. 

1H-1H 

TOCSY Correlating coupled homonuclear spins and those that reside 
within the same spin system. Powerful technique for analyzing 
complex proton spectra. A selective TOCSY is also available 
for producing 1D subspectra for discrete spin-systems within 
the molecule, potentially revealing multiplet structures that 
were otherwise overlapped or buried. 

1H-1H 

HMQC Correlating coupled heteronuclear spins across a single bond 
and hence identifying directly connected nuclei. Employs 
detection of high sensitivity nuclei e.g. 1H, 19F (an “inverse 
technique”). Well suited for routine structural characterization. 

1H-X 

HSQC Correlating coupled heteronuclear spins across a single bond 
and hence identifying directly connected nuclei. Employs 
detection of high sensitivity nuclei e.g. 1H, 19F (an inverse 
technique). Provides improved resolution over HMQC, but is 
more sensitive to experimental imperfections. 

1H-X 

HMBC Correlating coupled heteronuclear spins across multiple 
bonds. Employs detection of high sensitivity nuclei e.g. 1H, 
19F (inverse technique). Powerful tool for linking together 
structural fragments. 

1H-X 

 

Regardless of dimensions, proton NMR spectroscopy is very popular because of the very favorable 

properties of the nucleus (see below); additionally there are protons practically in every organic mole-

cule. Favorable properties in terms of NMR spectroscopy means that the natural abundance is high 

(99.98% for 1H), and the sensitivity of the nuclei is relatively good. Because the natural abundance and 

relative sensitivity (all other nuclei are usually compared to 1H, hence the word relative) are good, 1H 

spectra are fast to acquire and high concentration samples are not needed. The chemical shifts of pro-

tons are usually in the range of 0-10 ppm. 13C is another commonly used nucleus even though it has a 

poor relative sensitivity (0.016 compared to the proton). 13C NMR is perhaps the most utilized hetero-

nuclear NMR technique used for organic studies, and the second most utilized (31P the most utilized) 

technique in biochemical and metabolite studies. The low natural abundance introduces an advantage 
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in interpreting 13C NMR spectra; 13C-13C coupling is not normally visible in the spectrum which makes 

the chemical shift more readily observable. 13C-enrichment can be used in cases when more sensitivity 

is required. Carbon chemical shifts are spread on a much wider ppm range (-20 to 220 ppm). 

Biologically considered, there are also other useful nuclei. 31P and 15N are useful, but they have some 

drawbacks, which is why they are not used as often as 1H or 13C. 31P has an excellent natural abun-

dance (100%), but its relative sensitivity is only 0.066 due to its low gyromagnetic ratio. These para-

meters make the 31P a quite good nucleus, easy to measure, but the experiment times are quite long 

because of the poor sensitivity. The 31P chemical shifts are usually between -50 to 250 ppm, and even 

though biological phosphates have a smaller shift range, the total shift range is as large as -1000 to 

1000 ppm. Also, the oxidation state of phosphorus can be determined from its NMR spectrum (P(III) 

��������	�
�������������������������������15N is a much more problematic nucleus since its natural 

abundance is only 0.365%. In addition, the 15N nucleus only has a sensitivity of 0.001 compared to the 

proton (again due to its very low gyromagnetic ratio) and a negative nuclear overhauser effect (NOE). 

The chemical shifts of 15N lie between -50 and 400 ppm. Because of the nucleus’s extremely poor 

properties, 15N labeling (or a 1H-15N inverse experiment, see Table 1) is usually required if a good 

spectrum is desired. 
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2. THE AIM OF THIS STUDY 

The aim of this study was to a) build up and assess new NMR spectroscopic methods for use in NMR 

metabolomics, and b) to test the performance of various mathematical multivariate methods in the con-

text of NMR metabolomics. 

The NMR methods will tested and used for the purpose of acquiring more reliable quantification re-

sults, which can then be used in further analyses such as the exploring the neurological relevance of the 

concentration changes of various metabolites in the brain. A new quantification method based on a 

priori constraint information will be developed and its performance evaluated in the context of both 

animal and human models featuring various neurological disorders. The performance of commonly 

used NMR metabolomics tools will also be studied and commented. The multivariate methods that will 

be assessed are ones that are currently commonly used in NMR metabolomics (see chapter 3.3). Al-

though it is commonplace to use multivariate methods for e.g. classification purposes, there currently 

exists no consensus in the NMR community on which method is the most useful one for the different 

types of data. Therefore these methods also deserve some type of review. 

This thesis is presented as a monograph and as such features both published articles and manuscripts. 

The first manuscript outlines the use of various parameters in T2-editing as a spectral editing method 

for NMR metabolomics (Manuscript I: chapter 3.2.6). The second article, recently published in Meta-

bolomics, presenting the constrained total-line-shape (CTLS) NMR quantification method, can be 

found in chapter 3.2.7 as an adapted version (Manuscript II). The applications of the CTLS-method for 

quantification of brain metabolites used in subsequent classification and characterization of the patients 

are outlined in the manuscripts based on both human (Manuscript III: chapter 4.3.2) and animal models 

(Manuscript IV: chapter 4.3.3). The multivariate methods have been assessed to a great extent for the 

human CSF data in manuscript III. 



 

Kuopio Univ. Publ. C. Nat. and Environ. Sci. 267: 1-155 (2009)                                                                                               19 

3. NMR METABOLOMICS 

The measurement of metabolite concentrations in biofluids is not a new concept. The current prin-

ciples, strongly influenced by the pioneering group led by Prof. Jeremy Nicholson and Prof. John C. 

Lindon (both from Imperial College, London), now define two words for this type of research: 1) me-

tabonomics, which is defined as the “quantitative measurement of the time-related multiparametric 

metabolic response of living systems to pathophysiological stimuli or genetic modification” [2, 3] and, 

2) metabolomics, which is defined as the analysis and evaluation of static cellular and biofluid concen-

trations of endogenous metabolites [2]. Metabolomics naturally deals with the metabolome that 

represents the complete set of small-molecule metabolites. These include hormones and other signal-

ling molecules, metabolic intermediates, and secondary metabolites. Thus metabolomics, or metabolic 

profiling, can instantly give a snapshot to the in depth physiology of a sample under scrutiny. NMR 

metabolomics has been an increasingly active research topic for the last 20 years, nowadays attempts 

are made in gathering unbiased samples of metabolites that could serve as snapshots of physiological 

and pathological states. A fundamental goal has become the differentiation of healthy individuals and 

individuals that have or might develop a disease [3]. 

Some form of spectroscopy is a common way of acquiring the metabolite concentration wanted. It does 

not really matter that much which spectroscopic method is used, as long as the datasets are rich in mo-

lecular information, but NMR spectroscopy does have several advantages over other methods. The 

main reason being that this method allows the harvesting of all small molecule metabolite concentra-

tions simultaneously, without complex sample treatment and instrumental calibration [4]. Additionally, 

NMR spectroscopy is the only detection technique which does not rely on separation of the analytes, 

and the sample can thus be recovered for further analyses. Furthermore, NMR is the only method cur-

rently available for studying intact tissue samples [2]. The other common metabolite detection method, 

mass spectrometry (MS), is however more sensitive; detection limits in NMR and MS are in the 	1 

�mol/L and <1 pmol/L range, respectively [5]. Many metabolomics studies do employ some type of 

MS-coupled detection method and the differences of these methods are summarized and compared to 

NMR spectroscopy (see Table 2). The MS-coupled methods feature an earlier separation of analytes 

typically by gas chromatography (GC) or liquid chromatography (LC), the latter currently being the 

most important form of application because of its sensitivity and rich information content [6]. Recent-

ly, other MS methods have also been developed, including extractive electrospray ionization (EESI)-

MS [7], desorption electrospray atmospheric ionization (DESI)-MS [8] and direct analysis in real time 

(DART)-MS [9]. Advantages of these novel methods feature very little or no sample preparation or 

extraction [10]. 
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Table 2. A comparison of different techniques currently commonly used for metabolite concentration mea-
surements, including their advantages and disadvantages. 

Technology Advantages Disadvantages 

NMR spectroscopy Quantitative 
Non-destructive 
Fast (2-3 min/sample) 
No derivatization needed 
No separation needed 
Detects a large scale of organic com-
pounds 
Allows ID of new chemicals 
Robust, mature technology 
Can be used for metabolite imaging (MRS 
or MRSI) 
Large amounts of software and databases 
for metabolite ID 
Compatible with liquids and solids 

Not very sensitive 
Expensive instrumentation 
Large instrument footprint 
Cannot detect or identify salts and 
inorganic ions 
Cannot detect non-protonated com-
pounds 
Requires larger (0.5 ml) samples 
although microprobes can handle as 
little as 10 �l 

GC-MS spectroscopy Robust, mature technology 
Relatively inexpensive 
Quantitative (with calibration) 
Modest sample size needed 
Good sensitivity 
Large amounts of software and databases 
for metabolite ID 
Detects most organic and some inorganic 
molecules 
Excellent separation reproducibility 

Sample not recoverable 
Requires sample derivatization 
Requires separation 
Slow (20-30 min/sample) 
Cannot be used in imaging 
New compound ID difficult 
Only applicable for small molecules 
that are easily vaporized 

LC-MS spectroscopy Superb sensitivity 
Very flexible technology 
Detects most organic and some inorganic 
molecules 
Minimal sample size requirement 
Can be used in metabolite imaging 
(MALDI) 
Requires no separation (direct injection) 
Has potential for detecting the largest 
portion of the metabolome 

Sample not recoverable 
Not very quantitative 
Expensive instrumentation 
Slow (20-30 min/sample) 
Poor separation resolution and repro-
ducibility (vs. GC) 
Less robust instrumentation than 
NMR or GC-MS 
Limited amount of software and da-
tabases for metabolite ID 
New compound ID difficult 

 

An important aspect to note is that while it has been argued that the biggest challenge facing the scien-

tist in NMR based studies is not the analysis itself, which has been shown to be reproducible and ro-

bust, but the reduction of the biological variation of the samples themselves [11]. Even though differ-

ences in “spectrometer output”, based on deviations in solvent suppression or internal spectrometer 

variations, have been reported in the literature [12, 13], these differences are commonly minor when 

compared to those caused by e.g. toxicological effects [14-17]. The largest amount of variability is 

naturally expected, and indeed detected, in human studies. Studies involving animals, such as rodents, 

enable experiment protocols to be more tightly controlled because factors such as diet, environment, 

strain and gender can be monitored and affected, allowing the establishment of “normal” variation 
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[11]. Studies involving humans are commonly complicated by the lack of control over diet, age, life-

style, and the time of sampling [18-22]. However, some studies on the same subjects have shown that 

despite tight dietary and lifestyle control, differences in at least 1H NMR derived urinary and plasma 

profiles can arise [21]. Further information on disease states, perhaps multiple diseases, information on 

administered medication, and pharmacological effects of medication can complicate the data. Moreo-

ver, even the effect of aging is very important and should not be ignored. Because of these numerous 

sources of variation, determining and minimizing the normal variation is crucial for every study, irres-

pective of the analytical technique subsequently used for analysis [11]. 

Key applications of metabolomics include toxicology and toxicity assessment (e.g. the detection of 

changes caused by the toxicity of a chemical), functional genomics (e.g. predicting the function of 

unknown genes by comparison with the metabolic perturbations caused by deletion or insertion of 

known genes), nutrigenomics (e.g. determine a biological endpoint of the metabolism of an individu-

al), metabolic fingerprint creation and various types of disease diagnostics (e.g. early stage detec-

tion of neurological disorders). The relevant applications will be covered in more detail in later chap-

ters. 

Some shifting from biofluid NMR toward in vivo methods has been observed in cases when dealing 

with more invasive biofluid sampling, such as acquiring cerebrospinal fluid (CSF). In vivo studies 

though, while noninvasive, are not as sensitive as biofluid based NMR spectroscopy and therefore 

fewer metabolites are detected and the spectral resolution is compromised. Intact tissues however, are a 

different matter as they can be analyzed by the rapidly developing high-resolution 1H magic angle 

spinning (MAS) NMR spectroscopy. With MAS NMR, the analysis of small pieces of intact tissues 

has become feasible. MAS NMR involves the rapid spinning (c.f. to no spinning in normal biofluid 

NMR) of the sample (typically at ~4-6 Hz) at an angle of 54.7° relative to the applied magnetic field, 

which reduces the loss of information caused be line broadening effects seen in nonliquid samples such 

as tissues. Sample preparation, although manual, is also straightforward. The basic NMR spectroscopy 

experiment on a tissue sample is the same as in solution state NMR and all common pulse techniques 

can be employed in order to study metabolic changes and to perform molecular structure analyses [23]. 
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3.1 From NMR Spectra to concentrations 

An NMR spectrum in itself does not reveal all the information necessary for analytical purposes, sev-

eral identifiable resonances are likely visible, but for a more accurate analysis, integration or quantifi-

cation is needed. Simple integration of the signals is not usually sufficient since, especially in 1D NMR 

spectra, many of the hundreds of signals in the spectrum are overlapped. The selection of the biological 

medium used for the analysis makes a profound difference in signal analysis and therefore the most 

common mediums will be shortly discussed below. Some mediums are more complex than others; 

whereas some contain e.g. a larger concentration of protein which naturally affects the analysis of me-

tabolites. For an example of biofluid complexity, see Figure 2. 

 

Figure 2. A representation of biofluid NMR spectra complexity. Above, part of the aliphatic region of a 500 
MHz 1H spectrum of human urine and, below, the same region from a 500 MHz 1H spectra of human cere-
brospinal fluid. 
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Quantification of metabolites can be done in several ways. The traditional approach is to integrate de-

fined spectral regions or “bins” to reduce a complex spectrum of single peak intensities to a more li-

mited number of spectral variables commonly referred to as bins or “buckets”. This method in itself is 

simple and can also be automated [24] but has its own limitations such as the loss of information and 

the occurrence of artifacts caused by peaks shifts [25]. Many biologically important metabolites such 

as citrate, taurine, and glucose, possess peaks whose chemical shifts vary in an uncontrolled manner 

between samples [26, 27]. This is a result of variation in pH and metal ion concentration and gives rise 

to different levels of ionization or conjugation in the target molecules. More “modern” methods alle-

viating or simplifying quantification include methods based on “intelligent bucketing” [25, 28], artifi-

cial neural networks [29], total-line-shape fitting and deconvolution [26], and curve-fitting [27, 30]. A 

recent study [31] also reports that the combination of ethylenediaminetetraacetic acid (EDTA) and an 

appropriate buffer effectively minimizes both pH dependent frequency shifts and ionic strength depen-

dent variations in urine NMR spectra. Furthermore, practical use can likely be found for the algorithms 

for automated chemical shift calibration presented in another study [32]. 

Prior to quantification, the NMR spectrum in itself can be simplified by applying different types of 

spectral editing methods. These methods are discussed in more detail in chapter 3.2. All of these me-

thods do have at least one aim in common: more reliable quantification of overlapping signals in 1D 

NMR spectra. Once the desired resonances of metabolites have been selected, assigned, and quantified, 

the acquired concentrations can be used for further analyses. 

 

3.1.1 Blood plasma and serum 
Blood plasma and serum are common biofluids in NMR metabolomics for various reasons. Serum is 

preferred over plasma for most experiments since blood clotting corrupts the analysis of small mole-

cule composition [33]. Blood samples are relatively easy to obtain and most of the relevant NMR de-

tectable metabolites have been assigned in literature and furthermore, NMR chemical shift information 

for a large number of metabolites present in different biological mediums are freely available on the 

internet (The Human Metabolome Database) [34-36]. Blood plasma and serum contain both low and 

high molecular weight compounds that feature a wide range of signal line widths. Especially the broad 

bands from protein and lipoprotein signals contribute strongly to the 1H NMR spectra, with sharp 

peaks from small molecules superimposed on them. The broad resonances can be suppressed by using 

various methods of spectral editing (see chapter 3.2 for details) and the large NMR signal arising from 

water, present in all biofluids, is easily eliminated by the use of appropriate standard NMR solvent 



Niko Jukarainen: NMR Metabolomics as an Aid in Neurological Diagnosis 
 

24                                                        Kuopio Univ. Publ. C. Nat. and Environ. Sci. 267: 1-155 (2009) 

suppression methods [23]. The standard chemical shift reference used for biofluids is 3-

(trimethylsilyl)-propionic-2,2,3,3-d4 acid (TSP), but due to its affinity to proteins which likely results 

in quantification errors, it is not recommended as a quantification reference in blood plasma and serum 

because of the high (~5 %) protein content of the mediums [37]. As an alternative, 2,2-dimethyl-2-

silapentane-5-sulfonate (DSS) is commonly used [23, 38]. Some methods for plasma deproteinization 

as a solution to high protein concentration also exist [39]. The study by Daykin et al. presents results 

based on the fact that since several methods (e.g. ultrafiltration and acetonitrile precipitation) are avail-

able, choosing the correct one for use is an essential part of the NMR study of metabolites in human 

blood plasma (e.g. the filtration of proteins will also result in the loss of protein bound metabolites). 

Blood based samples are commonly used for clinical diagnostics because the protein composition 

bears a wealth about the health of an organism. Due to the previous, blood plasma and serum have 

been extensively used in NMR metabolomics studies such as the fat oxidation capacity of blood [40], 

pancreatic cancer studies [41], hepatoxicity [42], dietary studies [43], hypertension [44], and coronary 

heart disease [45]. Many applications also currently include the analysis of blood lipid content [3, 46]. 

For the purposes of future disease diagnostics and large patient populations, several models involving 

high sample throughput and analysis automation have also been in development [47, 48]. 

 

3.1.2 Urine 
Urine is another common biofluid in metabolomics, mainly due to the fact that sample collection is 

even more noninvasive than when dealing with blood. This creates advantages especially in toxicology 

or drug follow-up studies where several samples (e.g. pre dose, after dose) are needed, hence effects 

prior to and post dosing can be monitored effectively. Urine samples can also be pooled, thus averag-

ing variability (exercise, diurnal variation, etc), which is important since variability is a problem in 

some sample cases [11]. Urine contains more metabolites than blood and CSF, which in turn creates 

more overlapping signals in an NMR spectrum, and while urine is one of the simplest fluids in physi-

cochemical terms, the need to maintain homeostasis results in it being one of the most complex in 

composition [49]. 

Many urine studies of toxicology deal with animal models the results of which can however be quite 

easily related to human metabolism. Key applications in urine NMR metabolomics include the profil-

ing of specific metabolic maps in various diseases [50, 51], toxicology studies in animal models [16, 

52-55], drug treatment observation [56-59] and a tool in transplantation success survey [60]. 
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3.1.3 Cerebrospinal fluid 
CSF indirectly reflects the biochemical processes occurring in the brain. Therefore its composition can 

be anticipated to provide information about states of normal or pathological metabolism of the brain. 

The biochemical composition of CSF resembles that of ultrafiltered blood plasma, but it additionally 

contains metabolites which are secreted by the central nervous system (CNS) [1, 35]. Although CSF 

samples are more difficult to obtain than blood or urine samples, for an NMR analysis, CSF possesses 

clear advantages due to the relatively low protein and lipid content and the low viscosity of the me-

dium. The low protein content also makes it possible to use TSP as an internal standard. Additionally, 

signal overlap in CSF is not as serious as in urine or whole blood, because of the fewer metabolites 

present [35]. 

Several NMR studies on CSF have been reported [1, 26, 61-63] and nowadays the cerebrospinal fluid 

metabolome is available for free access on the internet [64]. Because of the invasive nature of the sam-

pling the NMR analysis of CSF tends to lean toward in vivo methods. This is due to medical, technical, 

and ethical constraints and the lack of specific information on metabolic perturbations which are truly 

characteristic of CNS disorders [65-68]. 
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3.2  Methods of spectral simplification  

Several methods for spectral editing are readily available, the most prominent ones being relaxation 

(T1, T1	, and T2) and diffusion editing. The other topics, curve fitting and deconvolution, are not 

strictly spectral editing methods. Instead, these techniques aim to simplify NMR spectra quantification 

by utilizing the underlying quantum mechanics and alleviating the problems of signal overlap and fre-

quency shift. The most commonly used methods, including their advantages and disadvantages, have 

been summarized in Table 3. 

Table 3. A summary of the advantages and disadvantages of commonly used spectral measurement and 
editing methods in NMR metabolomics studies. 

Method Usage Advantages Disadvantages 

Presaturation and NOESY 
(NOESYPRESAT) 

Detects signals from both 
small- and relatively 
large-molecular weight 
metabolites; this is also 
the current 1D sequence 
of choice [23]$ 

Highly quantitative and 
good for high-throughput 
screening 

Spectra are generally 
complex because of the 
presence of both low- and 
high-concentration mole-
cular signals and exten-
sive J coupling 

Flip angle adjustable one-
dimensional NOESY 
(FLIPSY) [69] 

An interesting option for 
replacement of 
NOESYPRESAT as the 
1D sequence of choice for 
metabolomics 

Same as above, except for 
a better signal to noise 
ratio 

Same as above 

Relaxation editing (T2) 
 

Provides signals from 
small molecules by sup-
pressing NMR signals 
from large molecules 

Spectra are easy to interp-
ret due to the simplifica-
tion achieved and are 
good for high-throughput 
screening applications 
using e.g. serum or blood 
plasma samples  

Does not show apprecia-
ble simplification for 
biofluids such as urine in 
which the majority of the 
metabolites are small 
molecules; is also less 
quantitative than normal 
1D sequences 

Diffusion editing Provides information on 
relatively large molecules 
such as lipids 

Simple, good for high-
throughput screening of 
large molecules in serum 
and blood plasma samples 

Not useful for samples 
such as urine where there 
are no appreciable differ-
ences in diffusion coeffi-
cients; is also less quan-
titative than normal 1D 
sequences 

$NOESYPRESAT is the method of choice instead of a “normal” 1D sequence because NOESY spectra 
feature  more efficient water suppression especially in the peak wings. 
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3.2.1 Relaxation editing 
To understand relaxation, we must first understand, what happens when a radiofrequency pulse is ap-

plied to the sample. When a sample is placed in the NMR instrument, it experiences an external mag-

netic field (B0) aligned on the positive z-axis and the nucleus spins around its own axis. In the presence 

of the magnetic field, this axis of rotation will precess around the magnetic field (Figure 3). This pre-

cession occurs at a certain frequency, which is called the Larmor-frequency, specific for each nucleus. 

When applied, the radiofrequency pulse creates an external magnetic field (B1) which lies in the x-y 

plane perpendicular to the internal B0 field along which the net magnetization is aligned. 

 

Figure 3. The magnetic moment vector (M) precessing around the z-axis. 
 
Before the pulse is applied, the nuclear spins are in a relaxed state, and the total magnetic moment is 

on the z-axis (Figure 4). In the following examples, the radiofrequency pulse is applied from the nega-

tive x direction. This pulse perturbs the nuclear spins from their relaxed state and the magnetization 

vector is driven on the y-axis (Figure 4). The pulse is said to be a 
/2 pulse (also called as a 90° pulse) 

if the magnetization is driven all the way to the xy-plane. This is favorable because the receiver is on 

the xy-plane, and by driving the vector 90° from the z-axis to the y-axis, the maximum intensity of the 

signal can be observed. If a longer pulse is applied, the magnetization vector moves even further, i.e. a 


 (180°) pulse would invert the magnetization to the �z-position, and a 2
�(360°) pulse would turn the 

magnetization back to where it was at the beginning. 
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Figure 4. a) The total magnetic moment of the nuclear spins in its relaxed state on the z-axis, b) the mag-
netization vector driven to the y-axis by a 
/2-pulse. 

 
To aid visualization of the occurring NMR processes during the experiment, some conceptual changes 

are employed. After the pulse has been applied, the oscillating B1 field is considered to be composed of 

two counter-rotating vectors in the x-y plane; the resultant of which corresponds exactly to the oscillat-

ing field (Figure 5). Things can be simplified considerably by eliminating one of these vectors and 

simultaneously freezing the motion of the other by picturing events in a rotating frame of reference 

(Figure 6). This way, the set of x, y, and z co-ordinates are viewed as rotating along the nuclear preces-

sion, in the same sense and at the same rate. Because the frequency of oscillation of the rf field exactly 

matches that of the nuclear precession, the rotation of one of the rf vectors is now static in the rotating 

frame whereas the other is moving at twice the frequency in the opposite direction. This latter vector 

precesses at such a high frequency, that it does not interact with the magnetic moment of the nucleus, 

and can therefore be ignored. At the same time, the precessional motion of the spins has been frozen 

because these too are moving with the same angular velocity as the rf vector and hence the co-ordinate 

frame. Also, since this precessional motion was induced by the B0 field, it also is no longer present in 

the rotating frame representation. This simplification aids in understanding the upcoming notions about 

the NMR vector model. 

 
Figure 5. The rf pulse provides an oscillating magnetic field along one axis (here the x-axis) which is 
equivalent to two counter-rotating vectors in the transverse plane. 
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Figure 6. The laboratory and rotating frame representations, where M is the total magnetic moment vector, 
B0 is the external magnetic field produced by the NMR instrument, and B1 is the magnetic field provided by 
the rf pul-se. The difference is that in the laboratory frame the co-ordinate system is viewed as being static, 
whereas in the rotating frame it rotates at a rate equal to the Larmor frequency of the nucleus in question 
(�0). In this representation the motion of one component of the applied rf is frozen whereas the other is far 
from the resonance condition and may be ignored. This provides a simplified model for NMR experiments. 

  

When the pulse has been applied, there exist two types of relaxation, defined as the loss of magnetiza-

tion. The T1-relaxation: also called longitudinal relaxation or spin-lattice relaxation (enthalpic relaxa-

tion), and the T2-relaxation: also called transverse relaxation or spin-spin relaxation (entropic relaxa-

tion). The T1-relaxation time is a constant that represents the "lifetime" of the first order rate process 

that returns the magnetization to the +z-axis. It is thus the time it takes for the signal to recover 1-(1/e) 

of its initial value after being flipped into the magnetic transverse plane (xy-plane). It therefore takes 5 

x T1 for 99.33% of the magnetization to relax back to the +z-axis (Figure 7). The mathematics behind 

T1-relaxation is the Bloch theory of NMR that assumes that the recovery of the +z-magnetization, Mz, 

follows exponential behavior, described by the following equation: 

  

0

1

( )ZZ M MdM
dt T

�
�

 

where M0 is the magnetization at thermal equilibrium, and T1 is the (first order) time constant for this 

process. Starting from the position of no net z-magnetization (Figure 4) the longitudinal magnetization 

as shown in the following at time t will be: 

  
1/

0 (1 )t T
ZM M e�� �  

and so the rate at which magnetization recovers is represented by the rate constant 1/T1 (s-1).  

The difference between the two relaxation methods is that T1-relaxation is the process of losing energy 

to the surrounding nuclei and the magnetization returning to the z-axis (Figure 7, where it was before 
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the pulse); while T2-relaxation occurs when spins in the high and low energy state exchange energy but 

do not loose energy to the surrounding nuclei. The T2-relaxation time is the time it takes for the trans-

verse signal to reach 1/e of its initial value after flipping into the xy-plane (Figure 7). If the nuclei stu-

died possess different properties, they can be differentiated by their T2-relaxation time. This is used for 

advantage i.e. in some 2D NMR experiments, or relaxation edited experiments such as protein-ligand 

interactions. 

 

 
 

Figure 7. a) T1-relaxation. The magnetization vector is returning back to the z-axis, b) T2-relaxation. The 
magnetization vectors of two components (a and b) precessing in the xy-plane.  

 
When the pulse is applied, it takes some time for the relaxation to occur. It is not very useful to apply a 

new pulse before the relaxation has occurred, because that will reduce the signal intensities and even-

tually lead to saturation. The relaxation time is very different depending on the chemical nature of the 

nuclei, molecular size, mobility, and structure. Basically proton relaxation times are usually between 1-

5 seconds, while in some very simple structures they might be as long as 60 seconds. Macromolecules 

on the other hand, have very short relaxation times for protons. Quaternary and carbonyl carbons 

usually have very long (ca 60-90 seconds) relaxation rates, while “normal” carbon atoms with a proton 

have relaxation rates between 2-20 seconds. A unusual case would be very long aliphatic chain struc-

tures (e.g. fatty acids) in which the carbons in the middle of the chain have very short relaxation times, 

while the carbons at the end of the chain have very long relaxation times. A special case with an excep-

tionally long relaxation time would be a small and symmetric molecule such as H2O or chloroform. 

Knowledge of the relaxation times of biologically relevant nuclei is essential for carrying out success-

ful in vivo and solution state NMR spectroscopy. The T1 and T2-values assist in selecting appropriate 

pulse parameters for basic measurements, optimizing signal to noise ratio, and in particular, allow the 

use of spectral editing techniques. T1 and T2 can also provide information about molecular mobility 

and some hints about structure. T2 measurements by using different intervals between 180° pulses can 
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provide information about diffusion rates and pulse sequences that are used for T1 and T2 measure-

ments can also provide a method of simplifying spectra and enhancing resolution. 

The T1-relaxation time is easy to measure for any sample. It is important to note that for a spin to relax 

thoroughly, it is necessary to wait a period of at least 5 x T1 and thus it might be necessary to wait for 

many minutes. This is especially important if quantitative (accurate signal-area values) results are de-

sired. There is however a way to lower the time required for relaxation by applying a shorter pulse, 

which does not drive the magnetization vector all the way to the y-axis. This naturally makes relaxa-

tion much quicker, but signal intensities are much smaller. However, usually a good compromise be-

tween these two aspects can be found. 

The most commonly applied method for T1-relaxation measurements is the use of the inversion recov-

ery sequence. Basically the only thing that needs to be done is to perturb a spin system from equili-

brium, and then devise some means of following its recovery as a function of time. The pulse sequence 

for the inversion recovery experiment is shown in Figure 8. The 180° 
 pulse first inverts the magneti-

zation to �z-position after which there is a recovery delay (). The delay is followed by a normal 
/2-

pulse, which moves the magnetization vector 90° from where it was after the �delay. In the beginning 

of the experiment, the signals will start out inverted because of a short �delay and as the recovery 

time is increased, the signals will recover their equilibrium magnetization and a typical “positive” 

spectrum is obtained. The point when a given signal has zero intensity in this experiment is termed 

NULL. The T1-relaxation can now be calculated as it is approximately 1.44*NULL. For more details, see 

e.g. [70]. 

 

 

Figure 8. The inversion recovery experiment. This sequence consists of a relaxation delay followed by a 

-pulse (180°).  is the delay after the long pulse, followed by the normal 
/2-pulse and acquisition.  

 

The measurement of T2 times features a spin-echo sequence or some variation of it. In a simple spin-

echo sequence a 90° 
/2-pulse first tilts the magnetization to the xy-plane and then the magnetic vec-
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tors fan out during the dephasing period () due to T2 relaxation and magnetic field inhomogeneity 

(Figure 7). A 
�pulse is then applied and this inverts the magnetization on the xy-plane and after time 

�the formation of an echo can be observed (Figure 9). If molecular diffusion is negligible, it is only 

necessary to measure the echo amplitude for several values of �and to use a single exponential fit to 

obtain the T2 time. The T2 time can also be measured from the half-width of the peak of the molecule 

in question but this method is prone to errors because of magnetic field inhomogeneties resulting in 

wider NMR signals. 

 

 

Figure 9. The magnetization inversion in the xy-plane as a result of the 180° pulse. 
 

Measuring T2 times is not however the most useful application of T2 relaxation based sequences. The 

most useful ones deal with spectral editing and for this purpose (and to reduce the effect of molecular 

diffusion) a modification of the spin-echo sequence has been introduced which involves replacing the 

single 180° 
�pulse by a train of 180° pulses at intervals of 2 [71]. There were difficulties related in 

obtaining precise pulse lengths for the inversion however, and an adaptation in the form of another 

modified pulse sequence was created four years after the first modification was presented. This newer 

sequence is commonly known as the Carr-Purcell-Meiboom-Gill (CPMG) sequence [72]. In this se-

quence there is a 90° phase shift between the initial 90° and subsequent 180° pulses (see Figure 10). 

Thus, for the 90° pulse along the x-axis, subsequent 180° pulses are applied on the y-axis. This has two 

important effects: i) the echoes all form along the same direction (y-axis) and, ii) any errors in the ac-

curacy of the 180° pulses tend to cancel out. 
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Figure 10. The CPMG pulse sequence. 
 

The abovementioned CPMG sequence is nowadays routinely used in simplifying 1H NMR spectra in 

cases where the broad macromolecular resonances overlap the sharper and smaller signals of molecu-

larly smaller components such as metabolites [73]. This can be done because of the drastically differ-

ent T2 times of the two molecule sets; a protein molecule is much larger and therefore has a much 

shorter T2 time than a small metabolite. When T2 editing is applied in e.g. a 1H NMR spectrum of 

blood, the metabolite signals remain visible in the spectrum whereas the protein signals disappear (see 

Figure 11). The method has been successfully used in many biofluids and tissues such as blood plas-

ma [74] and liver tissue [73], and while some other approaches, such as different types of mathematical 

transformation of the free induction decay have been assessed [75], T2-editing can be defined as the 

current method of choice in NMR metabolomics [76]. 

 

 

Figure 11. An example of the effect of T2-editing on a 1H NMR spectrum of a synthetic mixture of common 
metabolites and a human serum albumin concentration of 5%. The above spectrum features the non-
edited spectrum in which the broad protein resonances can clearly be seen while the spectrum below 
shows the effect of a 320 ms T2 filter on the same spectrum: the broad protein resonances have complete-
ly vanished revealing the underlying metabolite signals. 
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3.2.2 Diffusion editing 
Diffusion editing aims to simplify over crowded 1D NMR spectra by utilizing the differences in mole-

cular diffusion coefficients either alone or by using a combination of diffusion and relaxation parame-

ters. Therefore, diffusion editing methods are commonly used for the same type of purpose than re-

laxation editing method. These experiments are usually based on two standard types of pulse se-

quences, the spin echo diffusion sequence [77] and the stimulated echo sequence [78]; both of these 

are based on pulsed field gradients (PFGs). All other published sequences can be understood as mod-

ifications of these two sequences. For more details on the diffusion sequences, se e.g. [70]. 

In complex biofluids the combination of both diffusion and relaxation editing brings about considera-

ble spectral simplification leading to an easier resonance assignment and quantification process. Both 

methods can additionally be combined with 2D NMR experiments. It is generally known that the sepa-

ration of slowly diffusing species (generally large macromolecules) can be separated from fast diffus-

ing ones (small metabolites) by diffusion editing [76]. The diffusion properties are most commonly 

used to select macromolecular signals [23]. However, by combining diffusion and relaxation editing 

simultaneously, one can for example remove the peaks of the smallest, fastest diffusing components 

(e.g. solvents such as H2O) and at the same time remove peaks from the fastest relaxing macromolecu-

lar components, thus resulting in a spectrum displaying small metabolites and lipids. A schematic re-

presentation of this experiment is shown in Figure 12. 

 
 

Figure 12. A schematic representation of the resulting spectrum when simultaneous diffusion and relaxa-
tion editing is applied. Some metabolite and lipid signals have been highlighted. 

 



Chapter 3 
 

Kuopio Univ. Publ. C. Nat. and Environ. Sci. 267: 1-155 (2009)                                                                                               35 

Diffusion edited experiments have been applied to studies dealing with protein ligand binding [79, 80]. 

Also protein properties and concentrations can be measured by removing the small metabolite signals 

[81]. Protein-ligand binding studies are nowadays the most common use for diffusion editing and vari-

ous modifications for different types of pulse sequences, including 2D NMR sequences, have been 

presented [82, 83]. Diffusion edited NMR spectra are also commonly used to create baseline data as a 

starting point for more sophisticated methods [84]. 
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3.2.3 Curve fitting 
Curve fitting methods are totally different in regards to the previous methods presented. Curve fitting 

aims to remove peak alignment problems resulting from pH and ionic strength differences in the NMR 

samples therefore providing more reliable data for further analyses and classification of the samples. 

This type of data will also help in the automation of NMR spectra processing and quantification, re-

sulting in reduced experiment times in large studies. For the above reasons, many sophisticated curve 

fitting schemes already exist [85], but these often require some sort of supervision to be effective [27]. 

The previously mentioned “intelligent binning” algorithms could theoretically also be used for the 

same purpose, but regardless of how the bins are defined, the edges of many bins must extend well 

beyond the substantive widths of the associated NMR signals. Such wide bins contain a considerable 

portion of baseline and are more likely to engulf interfering peaks, which may not be present in all 

samples, therefore making calibration across data sets difficult. Additionally, since there is no informa-

tion available on the percent of the noise intensity for a specific bin, there is no way of knowing what 

has been integrated, unless each spectrum is inspected manually [27]. 

Many modern methods used for quantification share much in common with those used for peak align-

ment and are mainly distinguished by the sought end point. Peak alignment is often seen as a prepro-

cessing step in multivariate analysis (see chapter 3.3 for details on multivariate methods). Curve fitting 

precursor methods include e.g. a partial linear fit [86] which requires a lot of manual intervention, peak 

alignment based on genetic algorithms [87], an improved version of the previous by using a beam 

search algorithm instead of a genetic one [88], resulting in an increase in computation time, and an 

algorithm based on the shifting and matching of peak positions by using graph theory [89]. What com-

plicates matters however is the fact that even though peak alignment methods can make the analysis of 

NMR spectra more automatic, it has been shown that variations in peak positions can be linked to bio-

logical of physicochemical phenomena and can provide useful information [90, 91]. The question then 

arises, would it be possible to automate processing and still retain the important information? Solutions 

have been suggested in the form of the automatic alignment of spectral peak-regions [92], by the use of 

a targeted profiling method approach based on pre-fitted model signals of components [93], an ex-

tended version of the previous known as the targeted profiling of unknowns dealing mainly with low 

intensity signals [94], peak alignment using reduced set mapping [95], and a method for stepwise se-

lection of peaks in NMR spectra from multiple groups [96]. These methods have indeed been partially 

successful. 
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As another type of solution, an algorithm featuring an NMR signal “probe” has been introduced by 

Crockford et al. [27]. This method uses a known type of reference signal observed in a pure compound 

spectrum. This probe is then chosen to occupy the narrowest suitable chemical shift range over which 

its distinctive shape is well represented. A search range is then defined which is swept by the probe 

seeking a signal match. Prior knowledge of compounds is important here since it can be used to create 

a choice of suitable probes and chemical shift ranges for the metabolites that need to be detected from 

the multicomponent spectra. This approach has been promising but it does still require regions in the 

multicomponent spectra where the probes can match the pure compounds. Additionally, it has been 

suggested that curve fitting methods may introduce bias to the data [97]. For more details on bias, see 

chapter 3.3.2. 

 

3.2.4 Deconvolution 
Since the area determination for overlapping NMR signals by traditional means (bucketing, integrat-

ing) is problematic and produces inaccurate results, methods using a totally different approach have 

been created. These methods use deconvolution, or total-line-shape (TLS) fitting of the spectral sig-

nals. Deconvolution is based on peak fitting onto the observed spectrum by using a least-squares based 

method. The fitting requires some peak parameters (signal frequency and height, line width and line 

shape), that can be acquired by using prior knowledge, a spectral parameter library, calculations or 

estimates, or by performing peak picking. Deconvolution algorithms however will commonly find the 

local minimum only so in this case prior knowledge is essential in performing a good initial guess thus 

facilitating the finding of the global minimum. 

Many methods commonly in use only make use of a database to acquire the initial values needed. This 

database contains model spectra of pure individual components recorded with certain parameters in 

e.g. a certain pH and the mixture spectrum is created as a linear sum from the model spectra. Programs 

such as LCModel [98-100], Bruker AMIX [101], and the Chenomx NMR Suite [93, 94, 102, 103] have 

been developed for this purpose. Model based approaches however require a huge database since spec-

tral conditions can vary a lot and each condition demands its own entry. Another problem with these 

approaches is that commonly no variation in peak frequencies is allowed. Since the frequencies of 

NMR signals depend on e.g. pH and ionic strength, this can lead to uncertainties of signal positions 

and therefore generate quantification errors. Other applications attempting to overcome the abovemen-

tioned problems have been reported; a method based on weighted least-squared fitting [104], and a 

further one based on linear least-squares fitting by using singular value decomposition [105]. Another 

recently introduced method [106] used total-correlation spectroscopy combined with covariance NMR 
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to deconvolute the mixture spectra into its components, thus allowing the quantification of overlapping 

signals. 

Deconvolution can also be done by simply adding the wanted signals to the spectrum and fitting the 

parameters for each signal. A basic deconvolution is available in many software packages, but pro-

grams fitting hundreds or thousands of signals simultaneously and combining the ever useful prior 

knowledge with a spectral database are rare. So far, only one software package, the PERCH NMR 

Software [107], is available. More specifically, the TLS program included, contains advanced decon-

volution protocols based on a Gauss-Newton type iterative algorithm [108]. Prior knowledge can be 

used to create constraints derived from spectral structures and this data, e.g. chemical shift information, 

coupling constants and multiplet structures, can then be combined to act as a guideline in the TLS fit-

ting. It has previously been demonstrated that constraints describing spectral structures improve the 

statistics of concentrations obtained by TLS analysis [109]. It should however be noted that overlap or 

closeness of very large signals leads to problems in estimation of the signal areas [110]. 

An extension of the “normal” TLS fitting, constrained total-line-shape (CTLS) fitting, applying the 

abovementioned constraints has been recently presented and applied for studies of CSF metabolomics 

and neurological disorders [26]. In the case of CTLS, prior knowledge was used to create spectral 

structures that could be incorporated into the fitting algorithm. The multiplet structures (the relative 

positions and intensities of the signals), can be obtained by measuring a single component spectrum 

and performing the TLS fitting on pure component multiplets, much like described elsewhere [27, 93]. 

However, in CTLS fitting the structures are defined for the program as line positions and intensities or 

constraints instead of prefit lineshape curves. These spectral parameters are then iterated, enabling the 

CTLS algorithm to automatically adapt to small changes in line positions and intensities and, 

furthermore, to baseline differences as well. This approach also suits signals which do not obey any 

strict rules arising from the spinsystem. As another example, lipoprotein sub-fraction signals can be 

treated in this way [111]. For a more detailed description of the CTLS protocol the reader is suggested 

to see the reference in which it was first reported [26]. 
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Figure 13. An example of CTLS fitting performed on human CSF (1H 500 MHz). A few metabolites have 
been assigned and are presented as spectral multiplet structures instead of single peaks: la=lactate, 
mi=myo-inositol, glc=glucose, cre=creatine, crn=creatinine. 

 

3.2.5 Other applicable methods 
Some other novel methods for the purpose of “spectral simplification” have also been created. Al-

though the previous methods have dealt mainly with 1D NMR spectroscopy, a few 2D NMR related 

methods should be mentioned here. Basic 2D NMR experiments are often too time-consuming to be 

included in a metabolomics protocol and therefore experiments based on simplifying or extracting the 

most information possible from 1D NMR data are preferred. 

Statistical Total Correlation Spectroscopy 

One of these methods features the identification of multiple NMR peaks from the same molecule with-

in a complex mixture. This method is based on the concept of Statistical Total Correlation Spectrosco-

py (STOCSY) which has been demonstrated by Cloarec et al. [90]. STOCSY encompasses the compu-

tation of correlation statistics between the intensities of all points in a set of complex mixture spectra, 

thus generating connectivities between signals from molecules that vary in concentration between 

samples. Moreover, this method is not limited to the usual connections (e.g. coupling information) that 

are deducible from more standard 2D NMR experiments. The additional information is available by 

examining lower correlation coefficients or even negative correlations, since this leads to the connec-

tion between two or more molecular species involved in the same biochemical process. The STOCSY 

method can also be combined with chemometric methods if the classification of samples groups is de-
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sired (see chapter 3.3), thus providing a new framework for the analysis of metabolomic data. 

STOCSY has been applied e.g. in cases of population based identification of drug metabolites in hu-

man urine samples [112], for generation of biochemical pathway information [113], and for the identi-

fication of drug metabolite peaks in biofluids and for deconvolution of drug and endogenous metabo-

lite signals [114]. 

The STOCSY approach has also been extended from a homonuclear context to heteronuclear, referred 

to as Statistical Heterospectroscopy (SHY). The SHY method has been applied to the coanalysis of 

both NMR and MS in metabonomic toxicity studies [56, 115]. Other similar methods developed in-

clude a statistical diffusion ordered spectroscopy (S-DOSY), which combines diffusion ordered spec-

troscopy (DOSY) and STOCSY for the analysis of biofluids to give enhanced information about the 

diffusion properties of biomolecules. Additionally, a visualization tool called diffusion-ordered projec-

tion spectroscopy (DOPY) has been developed, in which the apparent diffusion coefficients from dif-

fusion ordered spectra are projected onto a 1D NMR spectrum [83]. 

Other possibilities 

Some advantages to metabolomics have also been found in the form of 2D J-RES spectroscopy. This 

being a method that can provide a proton-decoupled projection of a 1D NMR spectrum, thus simplify-

ing the crowded spectral regions (see Table 1). These projected spectra can then be used in further ana-

lyses as well as supporting information and thus, the relative changes in metabolite concentrations can 

be obtained. A serious drawback of the J-RES method is the lack of quantifiable signals due to the 

spin-echo sequence involved [70]. Even though the experiment times are increased threefold, the bene-

fits of this method may in some cases outweigh the disadvantages and therefore, although the signal-

to-noise ratio is not as good as in normal 1D spectra, this method could even be considered for routine 

analysis [116]. 

In addition to the above, methods based on interpreting the FID resulting from NMR experiments have 

also been devised. The FID is essentially a sum of exponentially damped sinusoidal components, and 

this model has proven to be adequate in a number of applications, including the analysis of solution 

state metabolomics. It is mathematically challenging to identify all the components in a biological ma-

trix of metabolomic data and naturally one would ideally like a method which is fully automated but 

still capable of resolving as many resonances as possible in a complex biological sample. An algorithm 

for the purpose of joint estimation of the number of components and their parameters within a Baye-

sian framework for a NMR spectrum has recently been presented [117]. This algorithm has been suc-

cessfully applied to the processing of both simulated and real data. Additionally, by analyzing the FID 

in the time domain, the approach has provided improved resolution in the time domain of complex 
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mixtures such as blood plasma. Most of the data processing steps used in NMR spectroscopy of mix-

tures such as peak removal and baseline and phase correction can also be automated. This approach 

could therefore greatly facilitate the quantitative use of NMR as well as comparative studies and pat-

tern recognition based techniques such as those used in metabolomics. 

Chemical shift calibration methods have also been assessed to be used as a tool for automatic calibra-

tion in situation when normal internal standards cannot be used due to e.g. high concentrations of pro-

tein [32]. The procedure presented by Pearce et al. is based on locating and calibrating 1H NMR spec-

tra to the ��glucose anomeric doublet. It is also clearly stated that this kind of automation is important 

especially in large-scale metabolomics studies where hundreds or even thousands of spectra may be 

analyzed in high-resolution by pattern recognition analysis. 

3.2.6 Assessment on the effect of various parameters on T2-edited spectra 
(This chapter is loosely based on Jukarainen, N. M., On the effect of acquisition parameters, protein 

concentration and spectral processing on T2-edited metabolite concentrations. Manuscript, 2009.) 

Background 

Previous research on T2-editing has demonstrated, that the use of T2-editing results in systematic errors 

of 5-25 % in peak amplitudes [118]. It is also known that T2-editing is complicated by J-coupling evo-

lution, diffusion and selective signal loss due to different T2 relaxation times [119] and that the varying 

protein concentration of samples might pose issues in quantification reliability [26]. Furthermore, it 

has been reported that baseline distortion and differential metabolite intensities possibly result in addi-

tional quantification errors [120]. Some work in determining optimum parameters in T2 experiments 

has been done [103], and more specifically, the effects of the relaxation delay in the CPMG sequence 

have been explored [74]. It is generally suggested that a recycle delay should ideally be five time the 

longest longitudinal (T1) relaxation time of a particular metabolite in the sample [121]. Interestingly, 

more recent study has shown that by a proper selection of correction parameters, long relaxation times 

are not needed and relatively good quantitativity can nevertheless be achieved [122]. The above natu-

rally applies when absolute quantitative results are desired which is not always the case in metabolom-

ic studies. It is more important to obtain comparable results, which can most definitely be achieved by 

using T2-editing, as long the same acquisition parameters are used for each sample. 

To assess the validity of the above, a set of spectra containing various concentrations of human serum 

albumin (HSA) and common metabolites was created. Because an excellent protocol for performing 

NMR measurements in metabolomics studies already exists [23], this protocol and the parameters sug-

gested therein, was used as a basis for this study. It was then explored what would happen if one de-
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cided to deviate from these parameters and, additionally, the effect of the total protein concentration in 

the samples and its effect on the resulting metabolite concentrations was investigated. Furthermore, it 

was examined whether a different type of processing of the free induction decay (FID) would change 

the results. It should be emphasized that this study is clearly most relevant in the case of blood plasma 

since the protein concentration in plasma is as high as ~5% which, when compared e.g. with CSF, is a 

tenfold concentration and is therefore more likely to affect the analyses performed. 

Methods 

Two sample sets containing HSA in concentrations of 0.01 %, 0.05 %, 0.5 %, 2 % and 5 % were 

created. The normal HSA concentrations in cerebrospinal fluid and blood are 0.5 % and 5.0 %, respec-

tively, and therefore the concentrations in the samples were selected to include these concentrations. 

The metabolites selected for these experiments were ones that are commonly found in various biologi-

cal fluids; histidine, phenylalanine, myo-inositol, creatine, glucose, citrate, acetate, lactate, alanine and 

isoleucine. The metabolites and HSA were dissolved in a deuterated phosphate buffer pH 7 with a po-

tassium concentration of 4 mM. Metabolite concentrations in the samples were used in accordance to 

literature values [36]. Each sample contained the same metabolite concentrations, but a different HSA 

concentration. 

The pulse program used for these experiments was the standard CPMG sequence since no solvent sup-

pression was required. The T2-editing time was varied by the number of loops in the pulse sequence, 

more specifically; values were selected because they fit the range of values used in previous research 

[23, 73, 74, 123]. Values ranging from 50 to 400 loops were used, resulting in a total echo time of 40-

480 ms. The other relevant parameters used were: relaxation delay 4 s, acquisition time 6 s, number of 

scans 64,  delay 400 �s. These parameter values were chosen because they are part of an existing pro-

tocol for biofluid metabolomics [23]. All spectra were measured by using a Bruker AVANCE DRX 

500 instrument operating at 500.13 MHz equipped with a 5.0 mm inverse triple resonance probe. TSP 

was used only as a chemical shift reference and not as a quantification reference since it known to bind 

with proteins [37]. Instead, 1,2,4-triazol was used as a quantification reference.  

All spectral model creation and quantification was performed by using PERCH NMR Software version 

2008.1 (PERCH Solutions Ltd., Kuopio, Finland). Spectral processing was performed i) by zero filling 

and applying a line broadening of 0.5 Hz and ii) by using a trapezoid type function where no zero fill-

ing was performed and only the end of the FID was cut off. The two types of processing were used to 

determine if spectral processing affect the quantification results. For each NMR signal, the frequency, 

line width and intensity were optimized during the fitting. Only one clearly resolved NMR signal was 
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selected for quantification for each metabolite. Quantification results were first proportioned to the non 

T2-edited values and then visualized relative to glucose (Figure 14). 

Results 

It must be noted that these results obtained are indeed interesting, especially the oscillation of myo-

inositol (see below), but at this point still preliminary. Therefore more research is required before the 

publication of all results related to this project. Since the concentrations acquired from the two sets of 

spectra measured were nearly identical, the measurements themselves were deemed accurate enough 

for these preliminary results. 

The results are presented in Figures 14 and 15. Figure 14 (a-d) shows metabolite concentrations of all 

metabolites, visualized relative to glucose, in four different HSA concentrations. Figure 14 (e) shows 

metabolite concentrations when a 480 ms T2-filter was applied, visualized as a function of protein con-

centration. The myo-inositol concentration fluctuations relative to glucose, during various T2-filter 

times, are shown in Figure 14 (f). A representation of baseline distortions created by the T2-editing 

pulse sequence is presented as a stack plot in Figure 15. The results for trapezoid processed spectra 

were not significantly different and are therefore not shown. 
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Figure 14. a-d) The apparent metabolite concentrations of common metabolites in various protein concen-
trations. The y-axis shows the relative deviation from the correct one, when they are related to that of glu-
cose. For example, a value of 0.5 means that the T2-edited concentration is 50% of the correct one. The x-
axis shows the total T2 echo time in ms (x-axis). e) The relative metabolite concentrations of the quantified 
metabolites, when using a total T2 echo time of 480 ms. f) Myo-inositol concentration relative to glucose 
during various T2-editing times. 
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Figure 15. A stackplot of the spectra used in this study. Baseline distortions induced by T2-editing are 
clearly visible. MI=myo-inositol, Glc=glucose, Crea=creatine. 

Discussion 

The results show that there is a lot of variation in the metabolite concentrations. More specifically, if 

short T2 filter times are used, the errors in the concentrations are more intense. On the other hand, con-

centrations are relatively stable when using T2 filter times that are longer than 245 ms. Thus it would 

seem to be best to stick with the longer T2 filter times that are most commonly used in metabolomics 



Niko Jukarainen: NMR Metabolomics as an Aid in Neurological Diagnosis 
 

46                                                        Kuopio Univ. Publ. C. Nat. and Environ. Sci. 267: 1-155 (2009) 

studies. The results also revealed that the differences in spectral processing do not significantly affect 

the quantification results if the line width and shape is fit individually for each signal. 

It can also be seen that the HSA concentration in the samples is relevant when performing T2-editing. 

Very low (0.1-0.5 %) and high (5.0 %) HSA concentrations result in larger errors than a medium (2.0 

%) concentration of protein. This might be a problem if results between different biological mediums 

are compared; the protein content in urine for example is much lower than that of blood plasma. How-

ever, as stated earlier, these results are still preliminary, and furthermore, an explanation to the oscilla-

tion of myo-inositol has not yet been found, care should be taken when interpreting the results at this 

point. More research on the subject is still clearly needed. 

The results obtained in this study suggest that while T2-editing can be used as a means of detecting 

small components when creating a metabolomic model, it should not be the first option when absolute 

quantitative results are desired. However, as earlier stated, and proved in countless metabolomic stu-

dies, absolute quantification is rarely required. 

As an additional note, a recent publication quite thoroughly assesses the effect of T1 and T2 relaxation 

effects on quantitative NMR [122]. This publication also proposes that with the use of correction fac-

tors, T2 editing can be performed by using significantly shorter relaxation delays and, furthermore, 

absolute concentrations can also be acquired. 

Conclusions 

It can be seen that the T2-edited metabolite concentrations vary significantly from the correct ones. The 

amount of deviation depends on the length of the T2 filter time and the amount of protein in the sam-

ple. The good news is that protein signals are effectively removed from the 1D spectrum and, the T2-

edited concentrations (relative to glucose) are fairly constant when typical total echo times of 250-500 

ms are used. The darker side is that the T2-edited concentrations may vary up to ± 150 % from the real 

ones and, moreover, they depend strongly on the protein concentration, which is not necessarily known 

and may vary significantly in biofluids. One should therefore take care to stick to proven protocols, not 

desire absolute quantification and, not compare results acquired from different types of biofluids by 

using the same parameters. 

 

3.2.7 A practical approach toward improved deconvolution 
(This chapter is loosely based on Jukarainen, N. M., Korhonen, S. P., Laakso, M. P., Korolainen, M. 

A., Niemitz, M., Soininen, P. P., Tuppurainen, K., Vepsalainen, J., Pirttila, T., Laatikainen, R. Quanti-
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fication of H-1 NMR spectra of human cerebrospinal fluid: a protocol based on constrained total-line-

shape analysis. Metabolomics, 2008. 4(2): p. 150-160.) 

Background 

CSF is a good choice for a medium when dealing with the biochemical processes occurring in the 

brain. The composition can be anticipated to provide information about states of normal or pathologi-

cal metabolism of the brain. Even though CSF samples are more difficult to obtain than blood samples, 

when considering an NMR analysis, CSF has its advantages because of the relatively low protein and 

lipid content, the low viscosity of the medium, and less severe signal [35]. It is therefore not surprising 

that several NMR studies on CSF have been reported [4, 62, 124, 125] and that some changes in NMR 

observable metabolites in the brain associated with AD have been reported [65]. These include an in-

crease in the myo-inositol concentration and its ratio to creatinine, as well as a decrease in N-acetyl-

aspartate and its ratio to creatinine and myo-inositol. 

A major problem in a human metabolomic model seems to be the physiological variation, attributable 

to several intrinsic and extrinsic factors such as genetics, ageing, gender, dietary variation, smoking, 

stress and physical exercise [126]. The existing NMR analytical protocols do not fully utilize the spec-

tral information. In principle, the information content of biofluid 1H NMR spectra is high, but the 

transformation of this information into concentrations of individual metabolites, essential to many ap-

plications, is not straightforward. Each metabolite may contribute up to tens of individual signals in the 

spectrum and the signals may seriously overlap with each other. Several approaches for solving prob-

lems such as signal shifts and peak overlap and other problems have so far been presented (see chapter 

2). Shortly, these strategies include a 'curve-fitting method' based on pre-fitted model signals of com-

ponents [27, 93], the automatic alignment of spectral peak-regions [92], spectral editing via relaxation 

and diffusion [73], peak alignment using reduced set mapping [89, 95], and a method for stepwise se-

lection of peaks in NMR spectra from multiple groups [96]. Several methods and the validity of the 

results of various methods have also been assessed [127]. 

The objective of this study was to build up and assess approaches for using quantitative 1H NMR anal-

ysis of CSF and to evaluate their applicability for metabolic profiling of neurological patients. A TLS 

fitting based method [109] extended with constraints, hereafter referred to as CTLS, was used to alle-

viate the aforesaid problems. 
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Methods 

CSF samples o f  neurological  controls  

The control group of 45 patients aged 45 ��82 consisted of individuals examined for various neuropsy-

chiatric symptoms, such as depression or headache, but who did not have cognitive decline or a chron-

ic neurological disease. These patients were further divided into two groups: patients with an AD 

marker profile (low �-amyloid42 and/or high tau protein) present in CSF (control class abbreviation: 

C_ADP) and patients that do not have an AD marker profile in CSF (control class abbreviation: 

C_NRM). The C_ADP group consisted of 10 patients of whom 7 were female (females aged 57-79 

years; males aged 57-66 years), the C_NRM group consisted of 34 patients of whom 19 were female 

(females aged 52-81 years; males aged 45-78 years). No other confounding disease states were asso-

ciated with these patients. Lumbar CSF samples were obtained using a standardized protocol. All sam-

ples were placed in a cold gel pack immediately after sample acquirement and frozen within 2 hours. 

The study was approved by the local ethics committee of the University of Kuopio and Kuopio Uni-

versity Hospital, and informed consent for participation in the study was obtained from all subjects. 

Sample preparat ion 

The samples were prepared according to the protocol described by Maillet [1]. First, 1800 �l of each 

sample was subjected to an identical lyophilization protocol for 40 hours. The freeze-dried samples 

were then stored at -20° C in sealed vials until analysis. Prior to the NMR measurements, the samples 

were reconstituted in 600 �l of D2O (99.98%-D, Merck) and 450 �l of this liquid was transferred to a 

separate vial followed by addition of 50 �l of 21.5 mM TSP-d4 in D2O to be used as an internal stan-

dard of known concentration. The pH of the samples was not adjusted, being typically around 

7.00±0.05. This pH can be defined as pH*, which is the reading of the pH meter as measured with a 

standard pH electrode. The pD value is ca. 0.4 units higher than pH*. 

NMR Spectroscopy 

The metabolic profiling was based on a standard 1D 1H NMR spectrum. All spectra were measured by 

using a Bruker AVANCE DRX 500 instrument operating at 500.13 MHz (Bruker-Biospin GmbH, 

Karlsruhe, Germany), equipped with a quadronuclear probe. The Bruker XWIN-NMR software ver-

sion 3.5pl5 running on a standard PC was used for acquisition of all spectra. The relevant parameters 

used in the 1D experiments, were calibrated and used as follows: recycling delay 45 s, acquisition time 

6.5 s, number of scans 128, and a sweep width of 9.5 ppm. A calibrated 90° pulse was used for all 

spectra and all acquisitions were performed on non-spinning samples. To assess the use of relaxation 

editing in spectral simplification, T2�edited 1D NMR spectra were measured. For the three spectra (not 

edited, minimally and heavily edited) measured, a standard 1D CPMG pulse sequence with a 40 ms or 
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320 ms (for minimally edited and fully edited, respectively) T2-filter using a fixed echo delay of �������

that eliminates diffusion and J-modulation effects was used. 

Ident i f icat ion of  metaboli tes  

The assignments of the spectral signals were done according to available chemical shift and coupling 

constant information in the literature [1, 34, 128, 129]. Some metabolites and signals were verified by 

using 2D NMR spectroscopy and by performing 1D spiking experiments. 

Metabolic  concentrat ion analysis  and classi f icat ion 

Metabolite concentrations and ratio relations were analyzed in the hopes of finding patterns within the 

control patient group. Concentrations were assessed by using one way ANOVA as implemented in 

SPSS v14.0. Separation of the two patient classes was explored by using the Self-Organizing Map al-

gorithm (SOM) [130] which uses competitive learning to create a two-dimensional map of the original 

data in such a manner that it conserves the maximum amount of the structure present in the original 

data. The actual analysis was performed by using the SOM_PACK software, version 3.1, freely availa-

ble in the internet. 

Quanti f icat ion analysis  

All spectral processing prior to the model creation was done using the PERCH NMR Software version 

2005/1 (PERCH Solutions Ltd., Kuopio, Finland). The total-line-shape (TLS) fitting tool of PERCH 

NMR Software version 2007.2 was used in the quantification analyses. The local baseline option was 

added to the software during these analyses. 

Magnesium and calcium concentrat ions 

Ca2+ and Mg2+ concentrations were measured by a Perkin Elmer PE 460 AAS and a Perkin Elmer PE 

5100 AAS instrument, respectively, using a multi-element hollow cathode lamp and an air-acetylene 

flame. 

Results and discussion 

Quanti f icat ion:  CTLS f i t t ing 

The positions of the signal frequencies of some metabolites (e.g. citrate and glutamine ��CH2) vary 

significantly (up to 10 Hz) from one spectrum to another, likely reflecting variations in ionic strength 

and Ca2+ and Mg2+ concentrations. This means that the traditional methods based on integrals (buckets) 

would not perform well and, therefore, the analysis was performed using the CTLS method. 

As shown in the following Equation, the 1H NMR spectrum I(v) is sum of the numerous individual 

lines Ln(v) 
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A single compound may produce tens or more lines that may overlap with lines of other metabolites.  

The concentration of the compound is fairly strictly proportional to the area of the lines arising from 

the compound. TLS fitting, or deconvolution, is an efficient way and in fact the only way when dealing 

with 1D NMR spectra, to integrate the area of overlapping multiplets of different protons. However, 

overlap or closeness of very large signals, leads to problems in estimation of the line areas [110]. In 

this work, a CTLS fitting strategy, utilizing constraints derived from spectral structures, was applied. 

As previously shown [109], constraints describing spectral structures improve the statistics of concen-

trations obtained by TLS analysis. In this work, 20 constraints were written to define doublets, triplets, 

quartets and quintets of the most intensive signals arising from the major metabolites. This helps in 

quantification of the smaller signals that are close to major components, such as glucose and lactate 

(see below), and also reduces the number of parameters to be fitted. For example, a triplet can be de-

scribed by 4 parameters (position, intensity, line-width and splitting) instead of the 9 parameters 

needed for three separate lines. Because the number of the parameters is presently limited to 1000, the 

spectrum must usually be fitted in parts. Some parameters are also needed to describe the line-shape 

and the baseline. 

The TLS fitting is a nonlinear problem that can be solved only iteratively. A special problem is formed 

by the baseline arising from instrumental artifacts and broad signals of macromolecules. Another prob-

lem, related to weak signals close to strong signals, is that the real line-shape cannot be completely 

described by the theoretical Lorenzian line-shape. This has been discussed in detail in another publica-

tion [110]. 

The concentration of a metabolite is proportional to the area of the sum of the signals arising from it. 

The standard deviation of the area, and thus that of concentration, can be computed from the normal 

equation (variance-covariance) matrix formed in the iterative protocol, which has been described be-

fore [109]. The protocol also gives estimates of standard deviations of the populations and it is notable 

that the standard deviations must be computed taking the correlations of the individual signal parame-

ters into account. 

The estimate of standard deviation (s) for single line and multiplet area are obtained from the equation 

 

( ) ( )nI v L v��

2 2( ) * 2nn kk nks n rrms A I A W A W� � �
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where In = the intensity of the line, Wn = the half-height width of the line, normalized so that the area = 

I*W,  Akk, Ann and Ank are elements of the inverse matrix of correlation-covariance matrix D,  

corresponding to I and W. The matrix D element Dnk can be approximated by the the equation 

           

where the derivatives �Ii(v)/�In and �Ii(v)/�Wk are computed for the iterative algorithm. Rrms is the 

residual root mean square. 

For the standard deviation estimate of a sum of areas also the correlations of the contributing lines 

need to be taken into account: 

     

 

where n and m refer to the lines belonging to the structure, k, l, i, j are the indices relating the line-

widths and intensities, respectively, to the A matrix. The second sum term is normally negative, which 

means that s2(sum) < �s2(n), which would be the standard deviation of the sum of independent terms. 

This also means that the integration based on deconvolution, while ignoring the correlations and 

spectral structures, may give poor statistics for the quantified area. To illustrate the effects of the 

constraints and the correlations equations we took an example. For example, if the doublet at 2.44 ppm 

(marked by an arrow in Figure 17) is devonvoluted asuming two independent lines, their total area is 

0.400 ± 0.077 (area ± rms, as reported by TLS). If the standard deviation was calculated by assuming 

s2(sum) = �s2(n), the result would be 0.088, reflecting the effect of the correlations to the error 

parameters. If however the lines are defined to form a 1:1 doublet, the total area is 0.408 ± 0.028. 

Similar effects are obtained for many other lines, some of which are marked by arrows in Figure 17. 

Error statistics produced by the CTLS algorithm for a typical CSF case are shown in Table 4. Although 

the estimated standard deviations based on the variance-covariance matrix are usually systematically 

slightly too small, they can be assumed to give a fair picture about the relative reliability of the com-

pound populations, if the fitting is done with a similar protocol for each case. Expectedly, the accuracy 

of major components is better than that of minor ones. This may also depend more on the protocol, 

especially on the number of baseline terms and how the spectrum is divided into fitting segments.  
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Table 4. Error statistics for a typical case for all the metabolites quantified. Table columns as follows: 
area=population of the metabolite, Std.Dev.=standard deviation of the area, REL%=the relative percentage 
of the metabolite in comparison to the total spectral intensity, Std.Dev.%=the standard deviation for the 
REL% value. Labels for metabolites: X=unknown metabolite, AREA=populations for several overlapping 
components. For additional details, see footnote. 

Metabolite Area Std.Dev. REL% Std.Dev% 
     
Tyrosine 0.708 0.070 0.091 0.009 
Histidine 0.161 0.009 0.021 0.001 
Phenylalanine 1.027 0.016 0.132 0.002 
Tryptophan* 0.608 0.010 0.078 0.001 
Formate 0.278 0.006 0.036 0.001 
X1a 0.071 0.003 0.009 0.000 
X2b 0.070 0.003 0.009 0.000 
Lactate 30.953 0.094 3.974 0.012 
Myo-inositol 12.652 0.062 1.624 0.008 
AREA1c 20.382 0.096 2.616 0.012 
Glucose 376.961 0.153 48.390 0.019 
AREA2d 23.414 0.065 3.006 0.008 
AREA3e 4.767 0.211 0.612 0.027 
X3f 1.202 0.072 0.154 0.009 
Creatinine 4.349 0.052 0.558 0.006 
Creatine 3.002 0.050 0.385 0.006 
Citrate 13.244 0.048 1.700 0.006 
Glutamine 15.564 0.054 1.998 0.007 
AREA4g 4.805 0.016 0.617 0.002 
X4h 0.215 0.015 0.027 0.002 
Acetate 11.299 0.069 1.450 0.009 
AREA5i 3.142 0.038 0.403 0.005 
AREA6j 1.412 0.087 0.181 0.011 
��hydroxybutyrate 0.678 0.115 0.087 0.015 
X5k 0.362 0.084 0.046 0.011 
X6l 0.854 0.070 0.110 0.009 
X7m 1.032 0.072 0.133 0.009 
��hydroxybutyrate 1.587 0.068 0.204 0.009 
��hydroxyisovalerate 0.546 0.069 0.070 0.009 
AREA7n 3.728 0.084 0.479 0.011 
Pyruvate 2.766 0.031 0.355 0.004 

 
*Tryptophan + other metabolites underlying its aromatic signal, aUnknown aromatic signal, bUnknown 
aromatic signal, cSeveral overlapping amino acids, dMetabolites in the 3.70-3.56 ppm range, not in-
cluding myo-inositol, eA hump of signals (3.37-3.34 ppm), fA triplet + underlying signals at 3.16 ppm, 
gSeveral overlapping metabolites in the range of 2.37-2.24 ppm, hUnknown signal at 2.13 ppm, iThe 
spectral region 1.56-1.40 ppm, jThe spectral region 1.32-126 ppm, kUnknown doublet at 1.13 ppm, 
lUnknown doublet at 1.07 ppm, mUnknown doublet at 1.03 ppm, nThe spectral region 1.02-0.93 ppm 
 
 

 

Prior  knowledge 

In the CTLS approach, practically any prior knowledge about spectral structures can be easily 

incorporated into the fitting algorithm. The multiplet structure (the relative positions and intensities of 
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the lines), can be obtained by measuring a component spectrum and performing the TLS fitting on pure 

component multiplets, much like described elsewhere [27, 93]. However, in CTLS fitting the structures 

are defined for the program as line positions and intensities or constraints instead of prefit lineshape 

curves. These spectral parameters are then iterated, enabling the CTLS algorithm to automatically 

adapt to small changes in line positions and intensities. This approach also suits signals which do not 

obey any strict rules arising from the spinsystem. As an example, lipoprotein sub-fraction signals can 

be treated in this way [111]. 

There are two ways to create the multiplet structures for a well defined spinsystem. Firstly, one can 

make a TLS fitting for the spectrum of a pure compound in conditions that are close to the system to be 

studied. The structure in certain conditions like CSF, can be obtained by making a perfect TLS fitting 

for one good quality spectrum, in which the signals of the components can also be enhanced by 

spiking. Secondly, one can apply the principle of the "adaptive spectrum library" [131] by making a 

quantum mechanical TLS analysis of the component spectrum [132] thus obtaining the chemical shifts 

and coupling constants of the spinsystem. This information can then be used to simulate the multiplet 

structures at any field strength and also with different chemical shifts, on the condition that the 

couplings constants can be assumed unchanged. When the spectrum has no strong second order effects, 

the multiplet structures are not sensitive to small variations in chemical shifts and the quantum 

mechanical approach allows complete presentation of the multiplet structures, free of spectral artefacts 

that vary from spectrum to another. There are also two ways to define the structure for the fitting. One 

can create a "structure", defined by a list of spectral lines with characteristic relative positions, 

intensities and linewidths. This structure is then exactly preserved during the iteration, while the 

intensity and position of the multiplet and the lineshape parameters are optimized. This mimizes the 

number of the parameters to be optimized. The second way is to use "soft constraints", meaning linear 

equations for peak positions, intensities and linewidths. The amount of allowed deviation from the 

given structure is defined by the weight of the constraint, which is taken into account within the least 

square principle. Soft constraints are useful for signals for which no strict quantum mechanical rules 

are available, or if coupling constants vary from case to case. These constraints can be built up 

automatically. 

The constraints used in our human CSF protocol have been listed in Table 5 along with metabolite and 

constraint type information. Metabolites not identified in Table 5 were defined as multiplets having no 

constraints between spectral lines. These are also examples of constraints that can be easily applied. 

Most of the structures are simple 1:1, 1:2:1 and 1:3:3:1 multiplets, and although in some of these the 

intensity ratio is not exactly 1:1, a more accurate definition of the intensity ratio (which could be easily 
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done) does not improve statistics. The strongly coupled signals for citrate can be expressed as two 1:1 

doublets formed by the outer and inner pairs of lines. 

The glutamine ��CH2 signal at ca. 2.42 ppm forms a special problem. In its very tightly coupled sys-

tem, even very small changes in the chemical shifts change the relative positions and intensity ratios of 

the lines of the multiplet, so that it is not possible to build up a good general structure for the signal. In 

principle, the only way to do the fitting would be to use an iterative quantum mechanical TLS fitting 

which properly accounts for the second order effects. 

Table 5. The constraints used in the fitting protocol along with corresponding metabolites. 

Constraint chemical shift (ppm) Constraint type Metabolite 
   

0.84 doublet ��hydroxyisovalerate 
0.90 triplet ��hydroxybutyrate 
1.03 doublet unknown 
1.07 doublet unknown 
1.13 doublet unknown 
1.20 doublet ��hydroxybutyrate 
1.33 doublet lactate 
1.46 doublet alanine 

2.54 + 2.70 slanted doublets citrate 
3.24 + 3.26 doublets glucose 

3.29 triplet myo-inositol 
3.53 + 3.55 doublets glucose 

3.63 triplet myo-inositol 
3.89 + 3.91 doublets glucose 

4.07 triplet myo-inositol 
4.12 quartet lactate 

6.87 + 7.18 AA’ BB’ multiplets tyrosine 
 
 

Quanti f icat ion:  Fi t t ing Protocol  

Although the protein concentration of CSF is low, and in the spectral ranges of 6.5 – 8.5 ppm and 0.7-

1.3 ppm, it corresponds to great part of the total spectral integral. The protein baseline can be described  

with a global Fourier expansion equation [109] 

 

where �v = the width of the fitting range or, as in this work, using an n term local Fourier-type func-

tion  
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where x = [(v-vn)/ �], with �  = dv/(N-1),  for  vi+� > x > vi-�, otherwise sin2x is set to 0.  Although 

both of the functions give practically the same result with the same number of terms, the local function 

is easier to visualize, store (in form of constants B), and to make continuous when the spectrum is fit-

ted in parts. Because a straight line can be constructed by using equal sin2-terms, the b0 and slope terms 

should not be used in local functions. Figure 16 illustrates how the aromatic region hump can be fully 

described by a 14 terms expansion. 

 

Figure 16. A representation of the local Fourier baseline functions applied for the baseline fit of the 
aromatic hump. The separate Fourier functions and their sum (the baseline) have been separately 
indicated. 

 

In this region the signals are clearly separated from the baseline and the hump can be removed by sub-

tracting the baseline contribution before the TLS fitting. On the other hand, the high field (0.7 � 4.5 

ppm) hump is not so well-defined, because almost the whole range is covered by some signals. There-

fore the baseline must be optimized simultaneously with the TLS fitting. 

After the baseline correction, the spectrum is fitted in parts as follows (see Figure 17). An essential 

question is the number of the baseline terms. When the spectral intensity is formed in large extent by 

the baseline hump, the number of the terms and also the fitting protocol becomes important: a numeri-

cally reasonable fit can be obtained in many ways. The number of baseline terms usually influences the 

obtained populations; however, when using the same fitting protocol and number of terms for all sam-

ples, the bias can be minimized. The following protocol was found to be the most robust: 

� Add as many lines as clearly visible to the model. 

� Set the number of local Fourier baseline terms to 2 – 20 (depending on the fitting range but 10 

is a good guess) and perform the fitting using an option where every line has same line-width. 
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It is essential that the trial line-width is set to a reasonable value, on the basis of some well-

defined typical signal in the range. This should lead to a fairly good fit in this case. If not and 

there exists clear observed minus calculated differences, additional lines can be added to the 

model or the number of the baseline terms can be changed. 

� Refine the fit using an option that allows different line-widths for lines. If two lines are de-

fined to form, for example, a 1:1 doublet, the line-widths are kept the same; this strongly 

guides both the baseline function iteration and iteration of overlapping signals to the correct 

direction. If the baseline is not well-defined, one can use a weighting parameter that forces 

Fourier terms toward zero. 

� Known metabolites are assigned and only clearly resolved signals (if available) are used for 

quantification. For example, when fitting glutamine, the multiplet at 2.42 ppm was used but 

the signals at 2.05 ppm ignored. 

� Signals that cannot be assigned to any known metabolite can be taken into account by group-

ing them into well-defined packages that can be treated in the statistical analysis in the same 

way as the identified compounds. In our data those integrals are marked with Xi (unknown 

metabolites) and Ai (areas with multiple signals). 

 

The spectral range of 0.70 – 1.3 ppm forms a good example of the fitting strategies when determining 

how to fix the fitting parameters. Within this range, the three rightmost lines are broad and poorly de-

fined. If the number of baseline terms is too small, the intensity of those lines may become zero or 

even negative. It is obvious that the intensity of these lines remains somewhat inaccurate, although fair 

relative values can be obtained when the number of baseline terms is set with same criteria for every 

spectrum. To test the robustness of the fitting, we performed the fitting with 10, 20 and 30 baseline 

terms and the obtained populations remained nearly identical with each number of terms. In some cas-

es however, where very small populations were quantified, 30 baseline terms led to erroneous popula-

tions for the metabolites. A typical error range was ± 20 % when compared to populations obtained by 

using 10 – 20 baseline terms and typical metabolites with low concentrations were ��hydroxybutyrate, 

��hydroxybutyrate and ��hydroxyisovalerate. This is because of overfitting: the baseline function 

tries to fit the smallest signals in the spectrum as a part of the baseline. 

Anyhow, consideration of the above aspects evidently leads to the conclusion that each CTLS applica-

tion demands its own validated protocol; our protocol for human CSF is described in detail below. In 

our final fitting protocol the spectrum was divided into 7 parts, for each of which the fitting was per-

formed independently. An essential point is to perform the fitting for the lines with strong intensities 
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first (e.g. like lactate at 1.33 ppm), so that its contribution to the signals close to its root can be interpo-

lated in the fitting. This led to the following total fitting protocol: 

1. Fit the TSP signal (-0.10 – 0.10 ppm) with 3 ��4 lines and 5 baseline terms. Scale the 

spectrum so that the area of these signals together is 100. 

2. Fit the lactate signal (1.30 – 1.40 ppm), with 5 baseline terms. 

3. Fit spectral region 0.6 – 1.75 ppm with 10 – 20 baseline terms. 

4. Fit spectral region 1.75 – 2.8 ppm with 10 – 20 baseline terms. 

5. Fit spectral region 2.9 – 4.2 ppm with 10 – 20 baseline terms. 

6. Fit spectral region 3.57 – 4.3 ppm with 10 – 20 baseline terms. 

7. Fit the aromatic range using 10 baseline terms. 

8. The protein concentration was estimated by quantifying the protein hump for the 

spectral region 0.7 � 4.5 ppm. The hump area was obtained by integrating the opti-

mized baseline function. 

  

Figure 17 shows the assigned spectrum of human CSF with assignment of the metabolite signals. 
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Figure 17. A presentation of a 1H NMR spectrum of human CSF at 500 MHz. a) Higher field aliphatic 
region, with metabolite markings as follows: la=lactate, ahi=��hydroxyisovalerate, 
ahb=���hydroxybutyrate,bhb= 
��hydroxybutyrate, A5 through A7=metabolite areas 5-7, x5 through x7=unknown metabolites. b) Lower 
field aliphatic region: e=glutamate, ac=acetate, py=pyruvate, ci=citrate, A4=several overlapping 
metabolites, x4= unknown metabolite. c) Middle region: la=lactate, cre=creatine, crn=creatinine, 
glc=glucose (� protons not shown), mi=myo-inositol, A1 through A3=metabolite areas 1-3, x3=unknown 
metabolite. d) Aromatic region:  h=histidine, f=phenylalanine, w=tryptophan, y=tyrosine, fm=formate, 
o=others, x1 & x2=unknown aromatic metabolites. For details on the metabolite areas, see Table 4. 
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For each single line, the frequency, line-width and intensity were optimized during the fitting. For mul-

tiplets, the widths of each line were kept equal. The same line-shape [109] was used for every line. The 

use of macros for the quantification and processing of spectra is highly beneficial in the creation of 

automatic protocols, thus ensuring that all the analyses are performed in an identical way. All calcula-

tions were performed on a standard PC (AMD Athlon MP 2800+, dual CPU). Phase correction was 

done manually and the baseline was described as shown above. While the above constraints and those 

defining the structures of multiplets are absolute, further ‘soft’ least-square constraints on frequencies 

(to prevent signals moving far from their original positions), line-widths (to force widths into a similar 

range and to prevent the formation of broad signals to imitate the baseline) and intensities (to level the 

weights of very high and low intensity lines in the least-squares process) were also applied. For the 

range 0.7 – 3.0 ppm a weak constraint was applied to force Fourier terms toward zero. For the gluta-

mine ��CH2-signal and citrate, it was sometimes necessary to manually adjust the trial positions of 

lines prior to iteration. Otherwise the program tolerates a few Hz differences between the trial and final 

positions. The spectral processing and fitting takes less than 2 minutes per spectrum. 

Comparison with T 2  edit ing 

The macromolecular baseline can be avoided by T2 editing [74]. However, this method is complicated 

by J-coupling evolution, diffusion, and selective signal loss due to different T2 relaxation times [74, 

119]. This suggests that while T2 editing is a valuable tool in detecting small components when creat-

ing a metabolomic model, it is not necessarily the best option when absolute quantitative results are 

desired. In order to assess the performance of CTLS and T2 editing, the three measured T2 spectra (not 

edited, minimally and heavily edited) were fitted in the identical way by using the same metabolite 

template. When the spectrum was measured so that some protein baseline was still clearly visible (de-

manding nonlinear baseline), a good correlation of R2 = 0.989 was obtained between the normal 1D 

and T2 edited spectra (using y = ax + b type regression equation). Although the good overall correla-

tion is evidence for the robustness of the baseline correction, up to 25 % bias between some concentra-

tions were seen and when the protein signal was fully removed with a 320 ms T2-filter,  the bias in 

those concentrations increased, while the correlation decreased to R2 = 0.859. For example, the T2 

edited lactate signal was 70 % too large while that of glucose was 35 % too small. Because the protein 

concentration shows huge variations (Table 8) and because the T2 artifacts to the intensities can be 

supposed to be sensitive to them, due to viscosity and metabolite-protein interactions, use of T2 editing 

is not ideal in quantification of CSF metabolites. 

Chemical shi f t  dependence on Ca 2 +  and Mg 2 + concentrat ions  

The positions of signal frequencies of some metabolites (e.g. citrate, glutamine and glucose) varied 

significantly (up to 10 Hz) from one spectrum to another. The good correlation (R=0.96) between the 
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glutamine ��CH2 proton shift and Ca2+ concentration suggests that this shift variation arises mainly 

from Ca2+ concentration (see Table 6). The correlation with Mg2+ was nearly insignificant. The results 

also propose that the glutamine ��CH2 chemical shift can be used as a Ca2+ concentration indicator: a 

high chemical shift indicates a high Ca2+ concentration. Assuming the chemical shift pH dependence 

zero, the correlation follows the equation, �(��CH2) = 1.4562 [Ca2+] + 1143.9, where the shift is given 

in Hz at 500.13 MHz.  

Table 6. Ca2+ and Mg2+ concentration (mg/ml) vs. glutamine ��CH2 signal shift (Hz) at 500 MHz. 

 

Metaboli te  concentrat ions and relevance 

The average populations, their standard deviations and ranges of the metabolites are reported in Table 

7 and Table 8. The concentrations for metabolites are reported as mM concentrations, and in the case 

of areas, as signal areas relative to the 2.15 mM TSP in the samples (the TSP signal was scaled to 100), 

the latter having no specific unit. A single anomalous myo-inositol concentration was observed (56.5 

vs. mean 11.4). The data was first subjected to the Grubb's outlier test and the anomalous value was 

detected as an outlier at probability level p<0.0001 and thus excluded. No further outliers were de-

tected. 

Table 7 and Table 8 reveal the large variation of the concentrations within the groups. ANOVA results 

did not indicate average concentration differences between single metabolites (when comparing 

C_ADP patients and C_NRM patients), with the exception of creatinine (p = 0.027). Creatinine con-

centrations were higher in patients that had an AD marker profile in CSF. This may indicate differenc-

es in cerebral energy metabolism, as previously investigated [133]. Additionally, as previously re-

ported to have significance in AD, the concentration of myo-inositol and its ratio to creatinine was also 

assessed with ANOVA and found to be nearly significant (p=0.053 for the ratio). Interestingly, while 

increased in AD [65], the ratio was now lower in the group having  an AD marker profile. The absolute 

metabolite concentrations in Table 7 were also compared with literature values (if available) obtained 

from the Human Metabolome Database (HMDB) [36]. It should however be noted that the literature 

values vary significantly depending on the patient group examined and are therefore not to be absolute-

Ca2+ concentration 
(mg/l) 

Mg2+ concentration 
(mg/l) 

Glutamine ��CH2 chemical shift in Hz 

    
31.2 16.6 1187.9 

1192.6 
1194.1 
1197.6 
1201.4 

32.6 19.6 
34.0 18.8 
37.2 26.6 
39.6 15.2 
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ly trusted. The concentration ranges in CSF reported for the metabolites in Table 7 are reported normal 

for adults (>18 years) without standard deviations as follows: tyrosine 6-25 �M, histidine 10-21 �M, 

phenylalanine 4-18 �M, 1-20 �M, lactate 800-3000 �M, formate 32 �M, myo-inositol 84-175 �M, 

glucose 1700-5400 �M, creatinine 43-65 �M, creatine 44 �M, 176-400 �M, 425-625 �M, acetate 58-

290 �M, ��hydroxybutyrate 34-50 �M, ��hydroxybutyrate 35-85��M, ��hydroxyisovalerate 4 �M, 

pyruvate 50-150 �M. 

Metabolite concentration correlations and their two-tailed significance were analyzed by using Pearson 

correlation. The most notable of the correlations detected (all with a significance level <0.0005) were: 

tyrosine – phenylalanine (0.809), citrate – lactate (0.744), glucose – citrate (0.751), citrate – glutamine 

(0.679) and x6 – x7 (0.788). 

Table 7. Metabolite concentrations (mM) measured from NMR samples in neurological control patients. 
Standard deviations and concentration ranges for metabolite are also presented. The range is the calcu-
lated difference of the maximum and minimum concentration. Metabolite details as in Table 4. 

 

  

 ABSOLUTE CONCENTRATIONS   NORMALIZED CONCENTRATIONS  

Metabolite 
Concentration in 
C_ADP patients Range 

Concentration in 
C_NRM patients Range 

Concentration in 
C_ADP patients 

Concentration in 
C_NRM patients 

 

                              
Tyrosine 0.015 ± 0.008 0.114 0.014 ± 0.005 0.105 0.003 ± 0.001 0.003 ± 0.001  

Histidine 0.005 ± 0.001 0.007 0.005 ± 0.001 0.018 0.001 ± 0.000 0.001 ± 0.000  

Phenylalanine 0.018 ± 0.010 0.176 0.015 ± 0.005 0.113 0.004 ± 0.002 0.003 ± 0.001  

Tryptophan* 0.008 ± 0.003 0.066 0.007 ± 0.002 0.031 0.002 ± 0.001 0.002 ± 0.000  

Formate 0.022 ± 0.010 0.036 0.024 ± 0.010 0.040 0.005 ± 0.002 0.005 ± 0.002  

Lactate 1.642 ± 0.281 1.041 1.688 ± 0.376 1.295 0.359 ± 0.044 0.355 ± 0.042  

Myo-inositol 0.156 ± 0.056 0.840 0.164 ± 0.038 3.372 0.034 ± 0.011 0.035 ± 0.007  

Glucose 3.542 ± 0.649 13.995 3.732 ± 0.699 18.639 0.767 ± 0.029 0.785 ± 0.027  

Creatinine 0.263 ± 0.052 0.198 0.226 ± 0.042 0.169 0.057 ± 0.008 0.048 ± 0.008  

Creatine 0.163 ± 0.035 0.120 0.172 ± 0.038 0.155 0.036 ± 0.007 0.036 ± 0.005  

Citrate 0.532 ± 0.158 0.783 0.552 ± 0.141 0.964 0.114 ± 0.020 0.116 ± 0.018  

Glutamine 0.409 ± 0.085 0.639 0.388 ± 0.079 0.718 0.089 ± 0.012 0.082 ± 0.013  

Acetate 0.191 ± 0.194 1.610 0.179 ± 0.257 3.550 0.038 ± 0.035 0.034 ± 0.045  

��hydroxybutyrate�� 0.020 ± 0.009 0.090 0.019 ± 0.011 0.183 0.004 ± 0.002 0.004 ± 0.002  

��hydroxybutyrate�� 0.045 ± 0.017 0.161 0.041 ± 0.014 0.214 0.010 ± 0.003 0.009 ± 0.003  

��hydroxyisovalerate�� 0.005 ± 0.003 0.049 0.004 ± 0.003 0.082 0.001 ± 0.001 0.001 ± 0.001  

Pyruvate 0.046 ± 0.016 0.167 0.042 ± 0.021 0.222 0.010 ± 0.003 0.009 ± 0.004  
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Table 8. Metabolite areas relative to 2.15 mM TSP when TSP scaled to 100. Standard deviations and 
concentration ranges for areas are also presented. The range is the calculated difference of the maximum 
and minimum. Metabolite area details as in Table 4. 

In general, surprisingly large variations in metabolite concentrations can be seen. In over half of the 

metabolites quantified, the concentration variances were larger than 30 %, in some cases even over 60 

% (x1, x2, x4, acetate and area6 in C_ADP patients and x3, x4, acetate and ��hydroxyisovalerate in 

C_NRM patients). The overall protein concentration of the samples was also estimated, yielding a very 

large variability of the concentrations (mean = 1435, range = 260 – 5140). In Table 7 also the relative 

concentrations of the metabolites are given: the total concentration of the metabolites was set 100 %, 

which more efficiently reflects the relative variations of the metabolites. Analyses performed on this 

normalized data resulted in the same conclusions as the analyses done on the relative concentration 

data. 

The principal component analysis revealed that 87 % of variance is explained by the first 10 compo-

nents and that there are several components that explain ~2 % of variance. This result suggests that 

significant correlations exist between the metabolites. On the other hand, the ca. 10 independent con-

centrations variables offer a potential mirror for watching CSF in metabolomic applications. 

In order to examine whether the two patient groups can be classified on the basis of the metabolite 

concentrations, we performed a SOM analysis including age and sex into the multivariate model.  The 

 AREA RELATIVE TO TSP   NORMALIZED AREAS 

Metabolite 
Areas in C_ADP 

patients Range 
Areas in C_NRM 

patients Range 
Areas in C_ADP 

patients 
Areas in C_NRM 

patients 
                              

X1a 0.042 ± 0.032 0.097 0.051 ± 0.030 0.122 0.009 ± 0.007 0.011 ± 0.007  

X2b 0.060 ± 0.040 0.127 0.069 ± 0.039 0.149 0.014 ± 0.010 0.014 ± 0.008  

AREA1c 11.604 ± 2.576 8.753 11.257 ± 2.583 10.642 2.546 ± 0.525 2.386 ± 0.444  

AREA2d 10.937 ± 4.001 12.287 10.454 ± 3.413 12.769 2.396 ± 0.842 2.235 ± 0.665  

AREA3e 3.057 ± 0.810 2.615 3.212 ± 1.231 5.595 0.671 ± 0.163 0.678 ± 0.239  

X3f 0.622 ± 0.329 1.123 0.566 ± 0.506 2.377 0.140 ± 0.069 0.121 ± 0.105  

AREA4g 5.248 ± 1.970 5.713 4.995 ± 1.617 6.434 1.118 ± 0.322 1.040 ± 0.253  

X4h 0.790 ± 1.207 4.556 0.824 ± 0.807 3.172 0.174 ± 0.228 0.177 ± 0.155  

AREA5i 1.785 ± 0.721 2.685 1.919 ± 0.667 2.615 0.394 ± 0.141 0.399 ± 0.102  

AREA6j 2.470 ± 2.369 9.068 1.574 ± 0.847 3.855 0.593 ± 0.686 0.345 ± 0.202  

X5k 0.396 ± 0.153 0.639 0.330 ± 0.130 0.639 0.090 ± 0.039 0.072 ± 0.029  

X6l 0.981 ± 0.350 1.334 0.916 ± 0.234 1.068 0.212 ± 0.058 0.193 ± 0.040  

X7m 1.127 ± 0.625 2.503 0.956 ± 0.291 1.165 0.244 ± 0.111 0.201 ± 0.053  

AREA7n 3.902 ± 1.809 6.870 3.191 ± 0.948 3.659 0.852 ± 0.326 0.668 ± 0.154  

Protein 1370.262 ± 1237.306 4721.600 1480.900 ± 1197.683 4814.400 7.692 ± 6.946 8.313 ± 6.723  
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SOM results clearly indicate that the SOM does not adequately separate the groups. We conclude that 

the two groups do not differ enough to be separated on the basis of the metabolite concentrations. 

Conclusions 

In this work a protocol for quantification of a 1H NMR spectrum of hCSF as based on constrained to-

tal-line-shape fitting, was developed. The CTLS approach helps to minimize problems arising from 

signal overlap, chemical shift variations and spectral artifacts, including protein background. In this 

approach, almost any the spectral regularities can be conveniently incorporated into the spectral model. 

The inclusion of prior knowledge significantly improves the metabolite population statistics. 

Up to 85 % of the non-protein signal area could be explained by 17 metabolites. The rest of the area 

was grouped into 7 integrals. Although large variations were observed between individual patients, the 

only difference (p=0.027) between control patients and patients with a normal AD marker profile, was 

the higher creatinine level in the latter group. SOM analysis failed in classification of the patient 

groups. The large variations, with ca. 10 independent principal components, help to profile patient 

neural metabolomics on the basis of CSF NMR analysis. 

 

3.3  From concentrations to results 

The basic scheme of a metabolomics study is as follows: I) acquire samples, II) measure samples, III) 

get the concentrations relevant to your study by some form of quantification or integration, IV) process 

these concentrations to obtain the results. This chapter deals with part IV and focuses on common 

chemometric ways to get some sense into the large amount of multivariate data from previous analys-

es. The point is to discover the variables describing the metabolic variation involved in the particular 

study and to allow categorization and classification of the samples from the study. 

The answer to part IV is pattern recognition (PR) methods. PR methods are based on chemometrics 

and the related multivariate data statistical approaches applied to chemical numerical data [134] and 

they can be used to reduce the complexity and dimensionality of data sets, thereby facilitating the visu-

alization of patterns in the data set. As an alternative, multiparametric data, such as e.g. the integrals 

obtained from a series of blood 1H NMR spectra, can be modeled using PR techniques so that the class 

of an individual sample can be predicted on the basis of a series of mathematical models derived from 

the original data [2]. A statistical analysis therefore typically consists of two steps referred to as the 

calibration (or training) and prediction (or test) steps. During the calibration step the characteristics of 

a set of data are investigated, and an attempt is made to find a mathematical model for its behavior. 
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There are many ways to achieve the above each of which has their own strengths and weaknesses. 

Therefore it is vital which method to use for which problem. The mathematic methods commonly used 

in this type of analyses can be divided into two groups based on the underlying mathematical principle: 

methods based on regression, and methods based on classification. Another possible way to divide the 

techniques is whether they leverage the a priori information or not, these referred to as unsupervised 

and supervised methods. The methods commonly in use in metabolomics are presented in Table 9 

along with the method type as well as some advantages and disadvantages. 

Due to the nature of metabolomic data, the most enlightening example of regression technique is mul-

tiple linear regression (MLR), which is used here to illustrate the basic principle and underlying as-

sumptions of regression techniques. It must however be noted that the linear regression presented here 

is only the simplest form of regression available and often more complex (including nonlinear and pa-

rametric) regression is used. The MLR problem can be stated as follows: different features are meas-

ured for m variables xj ( j=1...m ) and for variable y with the goal of establishing a linear relationship 

between them. If there are n samples, the yi ( i=1…n ) can be written as a column vector y, the weight 

vector b remains the same and the vectors x’j form the rows of matrix X. This stated as an equation, 

results in the form y Xb e� � , where the e is an error term, often called the residual. 

The matrices referred to in the previous can be graphically presented as: 

 

In this case n is the number of samples and m is the number of independent variables. In a regression 

analysis the input data consists of values of a dependent (response) variable (y) and of one or more 

independent variables (x), also known as explanatory variables or predictors. The dependent variable 

in the regression equation is modeled as a mathematical function (which can be generally expressed as 

( )y f x e� � ) of the independent variables, corresponding constant parameters, and the error term. 

The error term is treated as a random variable and represents the unexplained variation in the depen-

dent variable. In an optimal case the residual is zero but in a practical case it is nonzero, though it 

should remain relatively small when compared to the explained variance. 

1                              m             1              1 

m 

n                 n                                           n 

b 
y       =              X                             +     e 
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In contrast to regression techniques the “dependent variable” is not a variable per se but a label 

representing a specific class, which in metabolomics could mean e.g. a specific neurological diagnosis. 

Thus in classification the independent variables should be considered as properties with which the 

samples can be associated to the classes. It should also be noted that the classes are discrete entities 

and as such are not amenable to normal mathematical operations. Thus in classification techniques, all 

operations take place on the right side of the regression equation.  

As stated earlier, another way of dividing PR algorithms is along the line of supervised and unsuper-

vised. In supervised techniques the algorithm is given a set of samples along with the “correct an-

swers” and it is told to formulate a model which most accurately reproduces the given correct answer. 

The great pitfall of supervised techniques is overfitting which means that by using a powerful enough 

supervised technique; it is possible to create a near perfect model of almost any data, even random 

numbers. Thus when using a supervised technique, it is vital that the model is carefully validated to 

weed out the overfitted models. On the other hand, unsupervised techniques only utilizes a set of sam-

ples and tries, without any a priori information, to find patterns in the data which could be used to 

model the internal structure of the data. This means that the unsupervised techniques are more sensitive 

to noise and artifacts present in the data than supervised techniques. On the other hand, they are more 

robust as they are not as prone to overfitting as supervised methods. Unsupervised techniques are espe-

cially useful for comparing pathological samples with control patients, whereas supervised methods 

are preferred when the number of classes is large or when there is a lot of noise in the data. 

Both unsupervised and supervised methods especially require a second independent data set to test or 

validate the class predictions made using the training set. Internal (training set) and external (second 

data set) predictivity are different matters and both must be validated properly. Validation can be done 

e.g. by using cross-validation (CV) techniques in which one (Leave-One-Out, LOO) or many (Leave-

Many-Out, LMO) of the datapoints are excluded from the model building phase to generate an internal 

test set. Then the model constructed from the remaining data is used to predict the omitted test patients. 

LOO is the most commonly used CV method, but for large or homogenous data sets it may be neces-

sary to use LMO. 

Before the development of any kind of mathematical model, it is often convenient to tailor the calibra-

tion set data to make calculations easier. However, in some types of data the methods mentioned below 

only make the results less accurate and so care must be taken when considering which tailoring me-

thods will be used, if any. Very often the values of each variable are used in mean-centered form 

meaning that the average value is calculated from the calibration set and then subtracted from each 

corresponding variable. Quite a few methods for scaling variables also exist, and it is important to note 
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that the dependent and independent variables can be scaled separately There are essentially three ways 

of scaling variables: no scaling at all, variance scaling, and weighted scaling. Usually when dealing 

with data that is measured in the same units in all blocks (such as spectroscopic data), scaling is not 

needed. Variance scaling on the other hand is mostly used when the variables in different blocks are 

measured in different units (e.g. ppm, %, and kg) or when the variables have significantly differing 

values. The scaling itself is done by dividing all the values for a certain variable by the standard devia-

tion for that variable so that the variance for every variable is within the same limits. When using 

weighted scaling, one must decide which variables are less important than others; these are then given 

a smaller weight in calculations [135]. 
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Table 9. The main differences, advantages and disadvantages of the methods commonly used in NMR 
metabolomics. Abbreviations as follows: R=regression, C=classification, S=supervised, U=unsupervised, 
PCA=principal component analysis, SM=Sammon’s mapping, PLS=partial least squares, PLS-DA=partial 
least squares – discriminant analysis, OPLS=orthogonal projections to latent structures, OPLS-DA= ortho-
gonal projections to latent structures – discriminant analysis, SIMCA= soft independent modeling of class 
analogy, LVQ=learning vector quantification, SVM=support vector machine, kNN=k-nearest neighbors, 
DT=decision tree, RF=random forest. 

Method Type Advantages Disadvantages 
PCA U, R Computationally fast 

Easy interpretation of results 
Method well understood 

Very sensitive to colinearity 
Relatively sensitive to noise and artifacts 

SM U, C Computationally relatively fast 
Easy interpretation of results 

Interpreting the results in terms of descriptors 
is difficult 

PLS S, R Computationally fast 
Easy interpretation of results 
Method well understood 

Modestly sensitive to colinearity 
Relatively sensitive to noise and artifacts 
Slightly sensitive to misdiagnosed samples 

PLS-DA S, C (R) Easy interpretation of results  
OPLS S/R Relatively insensitive to coli-

nearity, noise, and artifacts 
Slightly sensitive to misdiagnosed samples 

OPLS-DA S, C (R) Combines the strengths of PLS-
DA and SIMCA 

 

SIMCA S, C Widely used 
Method well understood 

Interpretation of results challenging 
Sensitive to misdiagnosed samples 

LVQ S, C Can handle very heterogeneous 
data 

Computationally challenging for large data 
sets 

SVM S, C Results relatively simple to 
interpret 

Fails if classes overlap 

kNN U, C Computationally fast 
No specific training step 
Can handle very heterogeneous 
data 

Results relatively hard to interpret 
Usually needs variable selection which is not 
trivial 

DT S, C Computationally fast 
Easy interpretation of results 

Cannot detect truly multivariate effects 

RF S, C Computationally fast 
Runs efficiently on large data 
sets 
Gives estimates of what va-
riables are important in the 
classification 

Understanding results can be challenging 
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3.3.1  Commonly used pattern recognition methods in metabolomics 

Principal component analysis 

PCA [136] is a mathematical procedure that transforms a number of possibly correlated variables into 

a (smaller) number of uncorrelated variables called principal components. The principal components 

(PCs) are linear combinations of the original input descriptors with appropriate weighting coefficients, 

such that the first PC contains the greatest amount of variance in the data and subsequent PCs contain 

as much of the variability in the data as possible. By plotting only the first two or three PCs, the origi-

nal N-dimensional data are effectively compressed into two or three manageable dimensions. There-

fore, PCA is actually only a coordinate system transformation where new coordinates are selected so 

that each of them explains the maximum amount of remaining variance in the data. The loadings are 

the components of the PC in the variable space, while the score is the eigenvalue of each sample point 

within the PC. The resulting PCs can be used to visualize any clustering patterns associated with a me-

tabolic response [12]. PCA has been frequently applied in the evaluation of metabolomic data and 

should be the method of choice for obtaining an overview, find clusters, and to identify outliers. For a 

few different examples on applications, the reader is referred to publications [13, 21, 22, 54, 73, 137-

145]. 

Sammon’s mapping 

Sammon’s mapping [146] is an iterative non-linear technique for representing n-dimensional data in 2 

or 3 dimensions with a minimal overlap of data points in the graphical presentation. This method often 

provides a better clustering of the samples than PCA but has not been used that much in metabolomics 

studies. 

Partial least squares 

Partial least squares (PLS) [135] is an iterative regression method, much like PCA, for modeling the 

relationship between a set of independent variables and a set of dependent variables. As an example, a 

patient’s neurological state may be defined as a function of neurotransmitter concentrations present in 

CSF. In principle, PLS uses two PCA analyses, one performed on the dependent variables and the oth-

er on the independent variables, to derive the final correlation coefficients. This improves the tolerance 

for noise and internal correlations in the data. PLS can also be used to examine the influence of time on 

a data set, which is particularly helpful for biofluid NMR metabolomics because data collected from 

samples taken over the progression of a disease, therapy or toxic effect, can be studied directly. A dis-

criminant analysis (DA) can be used as an additional step for classification purposes. The DA builds a 

predictive model for group membership of the samples. The model is composed of discriminant func-

tions based on the linear combinations of the predictor variables that provide the best discrimination 
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between the groups. The functions are generated from a sample of cases for which group membership 

is known; the functions can then be applied to new cases that have measurements for the predictor va-

riables but have unknown group membership. The latter method is referred to as partial least squares 

discriminant analysis (PLS-DA) [147]. For recent examples of the use of PLS and PLS-DA in metabo-

lomics, see references [148-151]. 

Orthogonal Projections to Latent Structures 

Orthogonal Projections to Latent Structures (OPLS) [152-154] is a linear regression method that has 

been employed successfully for prediction modeling in various biological and biochemical applications 

[91, 155, 156]. The benefits of OPLS include the ability to model data containing noise as well as mul-

ti-collinear variables, such as spectral data from metabolic profiling and other omics platforms [90]. 

The OPLS method employs the descriptor matrix X to predict the response matrix Y. In fact, OPLS is 

very much alike PLS, but due to the slightly different mathematical basis it is more noise tolerant than 

standard PLS. The unique property of this method compared to other linear regression methods is its 

ability to separate the modeling of co-varying variation from structured noise, defined as the systemat-

ic variation of X which does not correlate with Y, while simultaneously maximizing the covariance 

between X and Y. A recently introduced extension, a kernel based OPLS (K-OPLS) [157] has also 

been introduced to provide a combination of the strength of kernel based methods (e.g. Support Vector 

Machine, see below) with the OPLS ability to model structured noise. As is the case with PLS, OPLS 

can also be coupled with a discriminant analysis and is thus sometimes called OPLS-DA. Several stu-

dies using OPLS have already been realized [158-160], but since the method is relatively young, the 

bulk of applications are yet to be seen. 

Soft Independent Modeling of Class Analogy 

Soft Independent Modeling of Class Analogy (SIMCA) [161] is a supervised classification method 

based on PCA. The idea is to construct a separate PCA model for each known class of observations 

using the observations belonging to that class. For each of the observations, the so called residual or 

error is computed. These residuals are then analyzed and the 95% confidence interval is determined. 

Then when an unknown sample is classified, its residual for each of the PCAs is computed and if the 

residual is within the 95% confidence interval, the sample classified to that class. The SIMCA method 

is recommended for use for one class cases, i.e. when there is one well-defined class of subjects and all 

other subjects are inhomogeneous [162]. However, when dealing with a study consisting of several 

classes (sick/healthy, treated vs. nontreated, etc.) other supervised methods such as PLS-DA or OPLS-

DA are preferable. SIMCA has been applied to metabolomic studies, a few examples can be found in 

references [137, 163-165]. 



Niko Jukarainen: NMR Metabolomics as an Aid in Neurological Diagnosis 
 

70                                                        Kuopio Univ. Publ. C. Nat. and Environ. Sci. 267: 1-155 (2009) 

Learning Vector Quantification 

LVQ [130] is a supervised form of Vector Quantization which is a feasible method for multi-class 

classification. It requires predefined classes and pre-classified data to be used in the learning process. 

The basic idea of LVQ is to cover the sample space with prototype points often called codebook vec-

tors and then use a learning process to optimize the placement of the points, thus locating the most 

relevant variables for the classification. Most forms of LVQ use derivatives of the competitive learning 

algorithms utilized by the Self Organizing Maps (SOM). The actual prediction is a fast and rather 

straightforward process and it is usually performed by finding the nearest codebook vector and assign-

ing the presented sample to the same class with it. Neural network based methods such as LVQ have 

been extensively used in metabolomics but have recently yielded ground to kernel based methods such 

as Support Vector Machine (see below). 

Support Vector Machine 

SVM [166-169] is a newer classification technique which is closely related to neural networks. Instead 

of optimizing the weight factors of a neural network, SVM uses a statistical learning paradigm to con-

struct a “borderline” (in mathematical terms a parametric hyperplane) in the sample space separating 

the different classes from each other. The statistical learning is a stable and efficient learning method, 

being in many ways superior to the traditional neural networks. Furthermore, SVM needs relatively 

few parameters, and in many cases it can be proven that the statistical learning will inevitably lead to 

the optimal division [170]. Results of SVM are also usually easier to interpret than those of the tradi-

tional neural networks because for SVM there is a clear geometric interpretation available [171]. SVM 

has found its place in metabolomics and is considered in some cases to be a better option than PLS-DA 

[172]. Several other studies using SVM have also been published; see references [50, 173-176] for 

details. 

k-Nearest-Neighbors 

kNN [177] is probably the simplest and computationally easiest classification technique ever presented 

as it relies on the simple assumption that the class of an unknown sample can be predicted by a majori-

ty voting of the classes nearest to its k neighbors (usually k = 3, 5, 7, 9…) [178]. kNN does not require 

a specific teaching step, nor does it make any other assumptions on the nature of the relationship be-

tween the class of a point and its descriptor values. This makes it highly feasible for unevenly distri-

buted datasets as each cluster of samples is automatically used to predict similar samples and other 

remote clusters do not interfere, which is the case with many other techniques [179]. kNN models gen-

erally have more robust external predictivity than the regression models [180]. Even though the actual 

mechanism of kNN is very simple, it is often very difficult to gain insight to the reasons for the ob-

served regularities and physicochemical conditions [181]. Due to the nature of the kNN analysis, it 
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requires the data to be variance scaled and mean centered, or the different value ranges may act as im-

plicit weighting factors thus unduly biasing the results. Because the basic kNN assigns equal weight to 

each descriptor variable, it is very susceptible to noise and co-linearities. It is therefore usually prudent 

to use some form of variable selection prior to the kNN analysis [182]. This method is quite commonly 

used in metabolomics, recent examples are in references [174] and [183], but its usage is hampered by 

the difficulties in gaining an insight for result interpretation. 

A method known as simulated annealing (SA) is sometimes used in selecting the appropriate variables 

for the kNN analysis. The selection is performed by an iterative procedure and commonly leads to rap-

id elimination of variables with poor signal to noise ratio and it will also drastically reduce the number 

of co-linear variables included in the kNN analysis. For a descriptor with a high number of poor quali-

ty variables, the SA analysis can yield significant improvements in both accuracy and computational 

speed. The downside of kNN-SA is that if the teaching set is modified, the optimization must be re-run 

from scratch. The SA optimization is also computationally quite heavy, but the vast majority of com-

putations are performed during the model building phase, and the prediction time computational cost is 

equivalent to the sum of the separate kNN models which make up the ensemble. 

Decision tree 

The DT is a recursive partitioning technique which builds up a tree of binary divisions [184]. At each 

step, the current set of samples is analyzed and the set is divided into two subsets using the variable-

value combination which leads to minimal contamination of the subsets with different classes. If de-

sired, this process is repeated using each subset independently as a new current set. Each of these bi-

furcations becomes a node in the tree and when a subset is no longer divided it becomes a leaf in the 

tree containing the ID of the most numerous classes in the subset. Prediction of an unknown sample is 

performed by using the descriptor values, selecting at each bifurcation either the left or right subtree, 

until a leaf is reached, whereby the sample is classified according to the ID stored in the leaf in ques-

tion [185].  

When constructing a decision tree, it is possible to continue recursive divisions until each subset con-

tains only one class, so that in the extreme case, each set contains only one sample. It is always possi-

ble to generate a tree that classifies the current teaching set with 100 % accuracy, but this would lead to 

overfitting, and the performance of such a tree on external data is usually very poor. In order to avoid 

overfitting, it is imperative that a cross-validation is used to decide the optimal depth of the tree [186]. 

The results of decision tree analysis are conceptually very intuitive and it is very easy to see which 

variables and what values mark the boundaries of the different classes. Therefore it is very easy to link 

the descriptors to the observed differences in classification [187]. DT is also in common use in the 
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metabolomic community, even though it is not among the most popular methods used. For examples, 

see references [173, 187, 188]. 

Random Forest 

Random Forests (RF) is an ensemble learning method which combines two machine learning tech-

niques, viz. bagging and random feature subset selection using a large collection of DTs for predictions 

[189]. The accuracy and computation speed of RF compares favorably with modern machine learning 

methods e.g. SVMs and neural networks. In contrast with many multivariate classifiers, RF is very 

resistant to overfitting. Distinctively, RF includes a built-in cross-validation scheme with extensive 

“Out-of-Bag” data (one third of samples for each tree). The procedure also gives an estimate of the 

prediction error as a by-product so that there is no need for the use of “external” validation sets. 

While RF is originally a classifier, it can be used for distance metric learning [190]. If samples i and j 

land in the same terminal node in an individual DT, the similarity (called as proximity in the terminol-

ogy of RF) between them is increased by one. The final proximity matrix is symmetrized and scaled by 

the number of trees to the interval [0, 1]. Finally, multidimensional scaling (MDS) produces a map that 

puts similar cases near to each other, and different cases far apart. This visualization shows the approx-

imate two-dimensional structure of the data, and can provide important insight. For example, it is poss-

ible to get a “profile” for each sample by counting the votes in each class. The distribution of votes 

gives an estimate for the reliability of the prediction. It should be emphasized that RF uses proximity 

values for clustering instead of original data vectors and thus it may work even if more conventional 

clustering techniques fail. 

RF is a relatively new method in terms of metabolomics and therefore not many applications exist. 

However, some use has already been found in chemical shift prediction [173], and in the prediction of 

a metabolic syndrome status based on dietary and genetic parameters [191]. 

3.3.2 Analytical bias and other considerations 
The use of NMR spectroscopy for complex molecular systems has a long history and with the advent 

of more sensitive NMR spectrometers, the applications are nowadays even more widespread, covering 

combinatorial chemistry libraries [192], protein structures [193], drug mixture protein binding studies 

[194] and cell and tissue extracts [195]. Nevertheless, some problems regarding the interpretation of 

data still remain for metabolomics in particular. A profound example is sorting out the “needles from 

the haystack” in large sets of NMR spectra of biofluids from a group of animals or humans and then 

demonstrating various effects, such as normal physiological variation or drug-induced effects [2]. 
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More problems are likely to arise when considering the amounts of data critically. How does e.g. data 

scaling or normalization affect the final results? What are the main sources of bias in metabolomics 

and how can these sources be minimized? These are important questions which have been addressed to 

some extent by research groups (see below). As briefly discussed previously, the data sets in NMR 

metabolomics yield a wealth of information, but this information is not readily accessible. Further-

more, the data is extensive but redundant: one measurement can result in tens of thousands of data 

points, but the effective dimensionality is much less due to a smaller amount of NMR visible com-

pounds. These data sets therefore commonly require visualization software and chemometric and bio-

informatic methods for interpretation and production of biological fingerprints that have either diag-

nostic or other classification value [3, 76]. 

The reproducibility and reliability of results acquired from discovery-based science has been exten-

sively reviewed in the literature [196-199]. For example, many results have been too dataset specific 

and attempts to reproduce them have been in vain. Furthermore, use of a more rigorous validation ap-

proach than the commonly used LOO-CV has been suggested. The kind of bias resulting from e.g. 

poor validation is a major threat in clinical research and the same applies when dealing with NMR me-

tabolomics. The main problem is the introduction of systematic variations into the data as a result of 

differential handling and analysis of samples, and the bias may not be immediately obvious. When 

dealing with e.g. blood plasma samples, bias can result from for example the type of tube used for 

sample collection or the amount of time the sample has been kept in ice. Sample collection procedure, 

the time of sampling, diet, exercise and medication can also result in an impact on a clinical chemistry 

test result. Additional bias can result from e.g. spectral editing and quantification; problems in the form 

of systematic errors have been detected in the CPMG pulse sequence [118], as well as in curve fitting 

methods used for quantification [97]. 

To detect real pathological variance, the preanalytical and analytical variations must be within accept-

able limits such that they do not influence the clinical interpretation of the results. Therefore, standard 

operating procedures should be employed. A study dealing with the impact of analytical bias in meta-

bolomic studies of blood plasma has recently been published [200]. In this report, the lack of available 

data when dealing with the effects of the sample collection protocol on NMR-derived metabolic pro-

files of plasma and serum was addressed. The variations in the composition of samples were measured 

when blood samples were collected onto and in the absence of ice, over a range of serum clot contact 

times and after freeze-thaw cycling. It was discovered that differences in the abovementioned catego-

ries can compromise the pattern recognition analysis of sample sets. Recommendations for the stan-

dard operating procedure were also presented. Even though it is essential to minimize bias in every 

possible way, it is necessary to note that the physiological variation between individual subjects, result-
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ing from e.g. diet or other similar factors, is often much larger than the bias introduced by e.g. sample 

handling. 

Another major area of possible bias is the preprocessing of the data prior to mathematical processing: 

i.e. normalization, variable selection, and scaling. For variable selection, the solution has been sought 

from genetic algorithms, and has been suggested that these algorithm can be more effective in both 

sample and variable selection than an independent validation samples set [201]. For the scaling prob-

lem, answers have been sought from new scaling methods and recently a protocol for variable stability 

scaling has been presented [202]. Also, a preprocessing approach that shows promise is a practical 

methodology for large-scale human studies in which several well-established steps were combined to 

ensure the minimization of bias, and furthermore, a more rigorous validation was tested and applied 

[203]. Additionally, an attempt to define an optimum approach for urine NMR spectra has been pre-

sented [204]. The results however, were not conclusive and more recently it has been suggested that 

data preprocessing has to be context dependent [205]. It was discovered that in many cases in NMR 

metabolomics, the exploratory data analysis is carried out by varying normalization and scaling proce-

dures in order to obtain an optimum separation of two or more sample classes by using PR methods. 

While this is indeed useful for deriving classification protocols for predicting the class of the subse-

quent samples, the interpretation of the biochemical factors responsible for the classification is not 

straightforward. Moreover, with the increased interest in relating and comparing data sets collected 

from different platforms, or across different levels of molecular biology, it is important to be aware of 

the effects of preprocessing on statistical outcome and to be conscious of the consequences of a chosen 

method of preprocessing and, furthermore, the limitations this will place on the interpretation of the 

chemometric model [205]. 

To overcome the above problems, the process of standardizing NMR metabolomic sampling and re-

porting procedures has been realized. In a recently published report by the Standard Metabolic Report-

ing Structures (SMRS) group, the minimum requirements for designing and recording the results of a 

metabolic study were proposed [206]. One of the main areas highlighted in the report was the need for 

standardization of sample collection and preparation protocols for clinical studies. In a more recent 

report by the Metabolomics Standards Initiative (MSI) group, detailed accounts are reported in the 

form of various standardization protocols and a significant milestone in publishing a complete set of 

draft reporting requirements has been reached [207-210]. Hopefully, these guidelines will be respected 

and utilized in future studies so that the main sources of bias and heterogeneity can be avoided to a 

maximum extent.
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4. NMR METABOLOMICS AND NEUROLOGICAL DISORDERS 

Although NMR metabolomics and metabonomics can and are commonly used in many applications, 

this thesis will only focus on the use of NMR metabolomics in neurological disorders. All in all these 

are wide topics to discuss since there has been an explosive growth on research performed on the ap-

plication of metabolomics and metabonomics for the detection or diagnosis of various diseases. A lot 

of progress has also been made. While the detection of some neurological disorders persistently con-

tinues to elude us, several others can readily be detected by using NMR metabolomics. 

 

4.1 Background 

Millions of people around the world suffer from mental illnesses or neurodegenerative dementias such 

as Alzheimer’s disease (AD), Parkinson’s disease (PD), depression, addiction, schizophrenia, and 

learning disabilities. These, among other diseases, are in need of better treatments, but unfortunately 

the comprehensive understanding of the disease specifics is still needed. It is actually likely that most 

of these disorders are not unitary conditions but may be a combination of various states that are yet to 

be defined. Some progress has been made in the treatment of psychiatric disorders, but many patients 

lack response to current therapies. Also, it cannot be predicted who will respond to which treatment. 

This natural variability in humans, coupled with the fundamental differences in pharmacology, is the 

underlying factor that affects the inability to perform predictions on how a specific patient may re-

spond to a therapy selected by a physician [211]. These facts result in distress in patients and families 

who engage repeatedly in trial-and-error choices in search of “the right solution” and in physicians 

thus resorting in a widespread switching of medications [212] and polypharmacy [213]. The high per-

sonal and societal burden of inadequate trial-and-error management therefore results in an urgent need 

for validated biomarkers that establish a diagnosis, guide drug selection and reliably predict the re-

sponse to treatment [214, 215]. 

To understand brain function and the complexities within, some new ideas and approaches are needed. 

The efforts to develop data production and analysis in neuroscience have been increasing. Genomics, 

including comparative genomics, gene expression databases and the organization of genomic-scale 

projects, gene microarrays, proteomics, imaging studies, and monitoring the activity of individual neu-

rons using multiple electrode recordings, have all provided useful approaches to the study of neurolog-

ical disorders [211]. The newest of the omics, metabolomics, also provides powerful tools for the anal-

ysis of individual metabolism, as well as for the examination of perturbations in metabolic pathways 
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and networks in human disease [216-218]. The metabolome defines a metabolic state that is regulated 

by the net interactions between gene and environment influences and provides information that has the 

possibility to bridge the gap between genotype and phenotype. It therefore provides the missing link to 

the study of diseases of the CNS. The knowledge of metabolic signatures for CNS disorders could re-

sult in the identification of disease specific biomarkers and in the ability for disease progression or 

response to therapy analysis. Moreover, as the signatures are the final product of the interactions be-

tween gene expression, protein expression and the cellular environment (see Figure 18), metabolomics 

also provides tools for drug development by providing detailed biochemical knowledge about drug 

candidates, their mechanism of action, and side effects [211]. 

 

Figure 18. The flow of information from the genetic code to proteins and finally to metabolites. The envi-
ronment and genetic code affect the end products and therefore influence health and disease states. 

 

As previously discussed, metabolomics can be performed by using various different detection methods 

such as GC-MS and NMR spectroscopy. In terms of neurodegeneration, the NMR technology has been 

used extensively, both as an imaging tool to generate anatomical information via the measurement of 

water molecules in different physiological environments, and as magnetic resonance spectroscopy 

(MRS), which provides chemical structure information from in vivo tissues. Basic magnetic resonance 

imaging (MRI) has been solidly established as one of the most important clinical diagnostic tools for 

diseases such as multiple sclerosis (MS) [219, 220] and AD [221]. MRI has also been used for charac-

terization of neural changes in diseases such as Creutzfeldt-Jacob syndrome [222], Huntington’s dis-

ease (HD) [223], Hallervorden-Spatz disease [224], Alexander’s disease [225], Cushing’s syndrome 

[226] and bipolar disorder [227]. Although MRI is an extremely important clinical tool, MRS and 
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high-resolution NMR spectroscopy of biofluids are more useful in the context of systems biology since 

they generate multivariate information on a wide range of molecules during a single scan [4]. 

1H MRS has sufficient sensitivity the detect a range of neurochemicals including amino acids, organic 

acids, and various phosphorus compounds, and its use has been reported in a number of reviews [228, 

229]. Many neurological conditions have also been successfully characterized by MRS; some exam-

ples include epilepsy [230], amyotrophic lateral sclerosis (ALS) [231, 232], PD [233], HD [234], and 

AD [235, 236]. Furthermore, MRS has also been used to increase the specificity of noninvasive diag-

nosis of brain tumors [237]. Unlike MRS however, high-resolution NMR is not compromised by poor 

spectral resolution and can routinely access the CNS metabolites present at micromolar concentrations. 

The use of more specialized NMR probes such as cryoprobes and microprobes offers a further en-

hancement in sensitivity, lowering the effective detection limit to the nanogram range [4]. 
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4.2  Alzheimer’s disease 

4.2.1 Introduction 

A 51-year old woman with progressive cognitive decline and behavioral changes associated with dis-

tinctive neuropathological features was described in 1907 by Alois Alzheimer as the first case of the 

illness that bears his name [238]. In a more modern era, the leading cause of dementia in the elderly is 

AD, accounting for 65-75% of all cases. AD is also the fourth most common cause of death in devel-

oped nations (after heart disease, cancer, and stroke) [239]. The prevalence of AD is age-dependent 

and the number of AD patients doubles approximately every 5 years, becoming 2% at age 65, 4% at 

70, 8% at 75, 16% at 80, and 32% at 85 [239, 240]. The incidence of the disease also increases with 

age, and is estimated at 0.5% per year from ages 65 to 69, 1% per year from ages 70 to 74, 2% per year 

from ages 75 to 79, 3% per year from ages 80 to 84, and 8% per year from age 85 onward [241]. In 

Helsinki, the prevalence of dementia at ages 75, 80, and 85 has been reported to reach 4.6 %, 13.1 % 

and 23.3 %, respectively. The cost for institutionalization of these patients alone is expected to reach 

nearly EUR 1.5 billion in 2030. The disease progression of AD is continuous and gradual but some-

times plateaus may occur. Dementia shortens life expectancy and is classified as a chronic condition, 

significantly influencing the quality of life [242]. Although the knowledge of molecular background of 

other dementing diseases has advanced significantly during the recent years, no markers for other de-

mentias are currently available. Due to heterogeneous pathologies and chemical changes in the brain in 

different dementing diseases, it is highly probable that different markers or marker sets are needed for 

example for early diagnosis or monitoring of therapeutic responses. 

4.2.2 Clinical course 

Not all neurological reasons for Alzheimer’s disease are clear. An important change in the brain is the 

neuronal cell death in the inner parts of the temporal lobe, especially near the hippocampus. Biochemi-

cally, the most significant change is the weakening of acetylcholine activity which can be detected in 

the lower parts of the frontal lobe. The activity of the acetylcholinetransferase enzyme is also de-

creased, and defects in other signaling systems (noradrenalin, serotonin, and dopamine) have been re-

ported [243]. 

Some genetic mutations increase the risk of AD. Mutations have been found in the genes encoding the 

amyloid precursor protein (APP) on chromosome 21 and presenilin-1 and -2 on chromosomes 14 and 

1, respectively [244, 245]. Another significant risk factor for AD seems to be an allelic variation of 

apolipoprotein E (ApoE), especially the ApoE4 allele [246]. Other risk factors include aging, atheros-

clerosis, stroke, diabetes mellitus, lower education, smoking, alcoholism, high fat intake, transient 
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ischemic attack, hyperhomocysteinemia, coronary artery disease, thrombogenic factors, migraine, high 

fibrinogen levels, hemorheologic abnormalities, depression, high serum viscosity, head injury-LOC 

(loss of consciousness), hypotension, menopause, hypertension, microvessel pathology, cardiac arr-

hythmias, and high LDL (low density lipoprotein) cholesterol [247].  

The first cognitive symptoms usually appear as memory deficits [248]. Early memory loss of everyday 

events is characteristic for the first stage. In contrast, short-term memory tends to be preserved early in 

the disease. Language deficits usually occur in the middle stages of the disease, but sometimes they 

might also appear early for example as difficulties in naming objects or expressing ideas [249]. Vi-

suospatial deficits are often manifested by impairment of topographical memory, when patients easily 

get lost. Also, deficits in other cognitive abilities such as judgment, attention, abstract reasoning, prax-

ia, and calculation appear in different phases of the progressing disease. Some patients have symptoms 

like aphasia, visual disorientation, or apraxia [247]. 

Non-cognitive symptoms are very common in AD and they affect the patients and caregivers quality of 

life in a large manner [250, 251]. These include symptoms such as personality changes (about 70% 

have apathy); agitation (60%, this also includes aggressive behavior); manifest depressive features 

(40%) such as anxiety, irritability, dysphoria, and aberrant motor behavior; delusion and hallucinations 

(30-60%); and also euphoria (5%) [252, 253]. In AD, neurodegenerative abnormalities are also com-

mon affecting such things as sleep, appetite, and libido. The occurrence of abnormal motor behavior, 

anxiety, sleep disorders, and psychotic symptoms significantly increases with the progression of the 

illness [247]. 

AD is a complex syndrome with many subtypes and varieties of clinical patterns. The heterogeneity of 

the disease is demonstrated in various aspects; age of onset, duration, clinical course, types and pat-

terns of cognitive and non-cognitive symptoms, response to treatments, and neuropathological findings 

[254]. Several variables are associated with a distinct pattern of symptoms: age at onset, demographics 

factors (including education, and familial and social network), premorbid personality, and early devel-

opment of neuropsychiatric or extrapyramidal signs, co-occurrence of physical diseases [255, 256]. 

Medicinal treatment is available for the symptoms described above, but a definite medicine for AD is 

yet to be found, if such a medicine even exists. The cognitive symptoms can be lessened with medica-

tion. If needed, the disturbing behavior and depression can also be treated with neurological medicine 

[243]. 
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4.2.3 Biological markers 

As a primary degenerative dementia, AD is a proteinopathy [257]. Extracellular deposits of amyloid-

beta (A�) containing plaques and intracellular neurofibrillary tangles (NFTs) composed of paired heli-

cal filaments of hyperphosphorylated tau protein (PHF-tau) are characteristic features in AD brains. It 

is generally thought that the driving force of AD pathology is the formation of toxic A� peptides fol-

lowed by a cascade of secondary pathologies eventually leading to synaptic dysfunction and loss and 

neuronal death [258]. CSF �-amyloid42 and tau- and phospho-tau proteins reflect AD-associated brain 

pathology [259]. Changes of these markers appear early during the course of AD [260-262]. The new 

research criteria (Table 11) for AD include these markers as supporting features for the diagnosis of 

AD [263]. However, many studies have suggested that the levels of these markers are not sensitive for 

monitoring the progression of the disease or therapeutic responses [264-266] possibly due to the fact 

that brain pathology in advanced AD is multifactorial and includes chronic inflammation, oxidative 

changes, excitoxic damage and the dysfunction of many neurotransmitter systems. 

The CSF markers for AD have traditionally included �-amyloid42 (A�42), total-tau- and phospho-tau 

proteins [267-269] and these are also discussed in more detail below. The concentration of A�42 in 

AD is lower and that of total-tau is higher when compared with healthy control patients [267, 268] and 

the concentrations of different phospho-tau epitopes can also be high [270, 271]. 

 

APP and its cleavage 

The amyloid precursor protein belongs to type 1 membrane spanning glycoproteins and the three major 

isoforms are APP695, APP751, and APP770. The isoform present in neurons is APP695 [272, 273]. APP 

matures through the secretory pathway. While moving through the trans-Golgi network different types 

of modifications appear: N- and O-glycosylation, and tyrosyl-sulfation. N-glycosylated APP is cleaved 

in the endoplasmic reticulum (ER) or in cis-Golgi and the mature APP is degraded as it is transported 

to or from the cell surface via either biosynthetic or an endocytic pathway [274]. 

The APP cleavage pathway classification is divided into two pathways depending on the cleavage by 

two enzymes called �� and ��secretase [272]. The cleavage of APP by ��secretase appears in the late 

Golgi or at the plasma membrane in caveolae [274, 275]. The ��secretase pathway results in two 

fragments: sAPP� and p10 and further cleavage of p10 results in a small fragment called p3 [272]. The 

��secretase pathway takes place in the endosomal and secretory compartments of the ER and Golgi 

[276]. The cleavage produces two fragments: sAPP��and a fragment of 11.5 kDa which is the intact 
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A�. The ��secretase pathway also includes further cleaving of A��by���secretase resulting in a smaller 

fragment called A�������. An alternative way of cleavage of APP occurs by caspases (apoptotic pro-

teases), and an increased production of A� peptides by caspases has been detected during apoptosis. 

Caspases appear to play a dual role in the proteolytic processing of APP and the resulting proclivity for 

A� peptide formation, as well as in the apoptotic death of neurons [277]. 

Two main populations of A� exist; the A�1-40 which represents 90% of secreted A� and A�1-42 (A�42, 

10%) [278]. In the AD brain, A�42 has a special role since it seems to form senile extracellular pla-

ques and its production in the brain is also increased. The A�42 exists in water soluble dimers that may 

form the building blocks of insoluble A� filaments [279]. The variety of different amyloid isoforms 

and their role in pathogeneity of AD is often explained by C-terminal heterogeneity of A�, for example 

by differences in the amount of hydrophobic amino acids. Additionally, p3 seems to have the corres-

ponding C-terminal and therefore these two C-terminus fragments are the two main constituents of 

nonfibrillar or diffuse plaques [280].  

The cleavage of APP seems to be regulated by several factors during amyloid-metabolism. An exam-

ple would be the appearance of neurotransmitters�acting via certain receptors having effects on the 

metabolism; e.g. cholinergic agonists show an increase in sAPP release and decrease the production of 

A��in HEK293 cells overexpressing muscarinic acetylcholine receptors [281, 282]. It has also been 

discussed that APP may have a more important physiological role than A��peptides [272]. There also 

seems to appear some short term activation in intracellular signaling pathways, e.g. activation of pro-

tein kinase C (PKC) by phorbol esters increasing the level of sAPP and decreasing the level of 

A�������. Also some PKC-independent pathways are involved in the regulation system of APP such as 

second messenger Ca2+, phopholipase A2 (PLA2), cyclic AMP (cAMP)-dependent protein kinase A 

(PKA), and unidentified tyrosine kinases [272]. 

 

Tau-protein 

Extracellular plaques can also be present in healthy individuals, but the presence of intracellular neuro-

fibrillary lesions correlates more accurately with dementia [284]. The intracellular lesions are found in 

nerve cell bodies and apical dendrites as neurofibrillary tangles (NFTs). The lesions consist structurally 

of paired helical filaments (PHFs) and related straight filaments (SFs). These filaments are made from 

the microtubule-associated protein (MAP) tau, in a hyperphosphorylated state [285]. In other forms of 

dementia, filamentous tau deposits are frequently observed in the absence of amyloid deposits [286]. 

This might be a severe problem since it will be difficult to separate AD from other forms of dementia. 
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A single gene located in chromosome 17 expresses all the six isoforms of tau present in the human 

brain [287]. Within nerve cells tau is mainly present in axons. The morphologically distinct filaments 

consist of all six tau isoforms or they only comprise three-repeat or four-repeat isoforms, differences 

depending on the disease. Generally tau isoforms with four repeats are not very common in the human 

brain [286].  

95% of tau filaments in AD are in the form of PHFs with a diameter of 8-20 nm and a periodicity of 80 

nm [288]. Stress-activated protein (SAP) kinases, mainly SAP kinase-3 and -4, are responsible for tau-

phosphorylation [289]. Additionally, tau in the form of PHFs seems to be hyperphosphorylated as well 

as abnormally phosphorylated when compared to tau in a healthy adult brain. The result is that tau will 

not be able to bind microtubules [286]. Incubation of tau with sulphated glycosaminoglycans (like he-

parin) results in a bulk assembly of tau into AD filaments; so these glycosaminoglycans also stimulate 

the phosphorylation of tau by a number of protein kinases. Additionally, heparin sulphate is detected in 

nerve cells in the early state of neurofibrillary generation [290]. 

 

4.2.4 Diagnosis 
While the patient is still alive, distinction of Alzheimer’s disease from other forms of dementia (e.g. 

VaD and Lewy bodies) rests with clinical assessment. Only a few years ago AD was a diagnosis of 

inclusion based on patient history, neuropsychological testing, laboratory studies, and physical [239]. 

This however, has changed due to recent research and the disease can nowadays be characterized more 

definitively on a phenotypic basis. Several distinct markers of AD are now recognized, as well as 

structural changes in the brain, observable by MRI. These involve the early and extensive involvement 

of the medial temporal lobe (MTL), changes in the cerebrospinal fluid biomarkers and molecular neu-

roimaging changes seen with positron emission tomography (PET) with hypometabolism or hypoper-

fusion in temporoparietal areas [263]. 

For the purposes of research, the diagnosis of AD is based on the criteria of the Diagnostic and Statis-

tical Manual of Mental Disorders, fourth edition (DSM-IV-TR) [291]  and the National Institute of 

Neurological Disorders and Stroke Alzheimer Disease and Related Disorders (NINCDS ADRDA) 

[292] working group. These accepted criteria are utilized in a two part diagnostic process where there is 

first an initial identification of a dementia syndrome and then the application of criteria based on the 

clinical features of the AD phenotype [263]. The original NINCDS ADRDA criteria for AD, are 

shown in Table 10. These criteria have recently been revised and the latest suggested version is pre-

sented in Table 11. These revised criteria are the result of a lot of research in the area; the specifics of 
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AD are nowadays much better known than half a century ago. There is also a need to differentiate e.g. 

mild cognitive impairment from AD as well as to have some way of defining how far progressed the 

patient’s state is. Specific clinical terms have been proposed for use by Dubois et al. [263]; these have 

been collected in Table 12 for clarification purposes. 

A definite AD can still however only be diagnosed by the microscopic examination of brain tissue, 

either by biopsy, or more commonly, autopsy. The neuropathological criteria require the presence of 

neurological plaques and neurofibrillary tangles at specified densities [246]. A considerable amount of 

effort is going into the search for valid, reliable, and easily achieved ways to identify cases very early 

in the disease, when treatment would be most effective. 

The onset of impairment of cognitive functions is not always associated with the diagnosis of demen-

tia. Usually different psychogeriatric or neurological disorders like delirium, major depressive order 

(“pseudodementia”), psychosis (schizophrenia and paraphrenia), and age-related cognitive decline can 

be distinguished. Although delirium is often misdiagnosed, it is still especially common in elderly sub-

jects, particularly in inpatient settings and nursing homes. In two thirds of the cases, dementia and deli-

rium coexist. Cognitive decline represents the main risk factor for the development of delirium in el-

derly subjects. Depression in the elderly is often accompanied by complaints of memory loss, and the 

presence of mild cognitive deficits in neuropsychological tests. Also depression and dementia often 

coexist and this may be interpreted as an early sign of a dementia syndrome [239]. 

If a form of dementia is identified, it is necessary to determine its severity and etiology as the next 

step. This is because many diseases cause dementia and therefore a differential diagnosis is essential 

for therapy and prognosis. A popular way is to interview the patient and informant and the history 

should focus on the general medical condition, with attention to drug use, psychiatric illness, chronic 

diseases (such as cardiovascular and cerebrovascular diseases, hypertension, neurological diseases, and 

metabolic disorders), the presence and severity of non-cognitive symptoms, recent trauma or surgical 

interventions, and the onset and evolution over time of cognitive defects. The family history of demen-

tia, depression, stroke, as well as other related conditions should be evaluated. Also, a comprehensive 

physical examination, including neurological examination and mental status testing, is essential in all 

patients [239]. The mental state screening should include an assessment of cognitive and affective sta-

tus using standardized instruments such as the “Mini Mental State Examination” [293], or the “Blessed 

Information Concentration” [294]. 
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Table 10. The NINCDS/ADRDA clinical criteria for Alzheimer’s disease. 

 

Criteria for the clinical diagnosis of probable Alzheimer’s disease: 
 
Presence of dementia established by clinical examination and documented by neuropsychological tests 
Deficits in at least two areas of cognition 
Progressive deterioration of memory and other cognitive functions 
No clouding of consciousness 
Onset between ages 40 to 90 
Absence of systematic disorders or other brain diseases that could account for the dementia 
 
The diagnosis is supported by: 
 
Progressive deterioration of specific cognitive function 
Impaired activities of daily living and altered pattern of behavior 
Family history of dementia 
Normal lumbar puncture, EEG, and evidence of cerebral cortical atrophy on CT scan with progression docu-

mented by serial observation 
 
Features consistent with the diagnosis: 
 
Plateaus in the course of the disease 
Associated psychiatric symptoms 
Neurological signs, including motor signs, such as increased muscle tone, myoclonus, or gait disorders, especially 

in advanced disease 
Seizures in advanced disease 
Normal CT scan 
 
Diagnosis of Alzheimer unlikely if: 
 
Sudden onset 
Focal neurological signs, such as hemiparesis, sensory loss, visual field deficit, and incoordination early in the 

course of the disease 
Seizures or gait disturbances early in the disease 
�
Criteria for the clinical diagnosis of possible Alzheimer’s disease: 
 
In the presence of atypical onset, presentation, or clinical course 
In a presence of a systematic disease sufficient to produce dementia, but not considered to be the cause of the dis-

ease 
In the presence of a single progressive cognitive deficit 
�
Criteria for diagnosis definite Alzheimer’s disease: 
 
Clinical criteria for probable AD 
Histopathological evidence of the disorder 
�
�� �
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Table 11. The revised diagnostic criteria for Alzheimer’s disease presented by Dubois et al. [263]. 

 

Probable AD: A plus one or more supportive features B, C, D, or E 

Core diagnostic criteria 
A. Presence of an early and significant episodic memory impairment that includes the following features: 

1. Gradual and progressive change in memory function reported by patients or informants over more than 6 
months 

2. Objective evidence of significantly impaired episodic memory on testing: this generally consists of recall 
deficit that does not improve significantly or does not normalize with cueing or recognition testing and 
after effective encoding of information has been previously controlled 

3. The episodic memory impairment can be isolated or associated with other cognitive changes at the onset 
of AD or as AD advances 

 
Supportive features 
B. Presence of medial temporal lobe atrophy 

��Volume loss of hippocampi, entorhinal cortex, amygdala evidenced on MRI with qualitative ratings using 
visual scoring (referenced to well characterized population with age norms) or quantitative volumetry of 
regions of interest (referenced to well characterized population with age norms) 

C. Abnormal cerebrospinal fluid biomarker 
��Low amyloid �1–42 concentrations, increased total tau concentrations, or increased phospho-tau concen-

trations, or combinations of the three 
��Other well validated markers to be discovered in the future 

D. Specific pattern on functional neuroimaging with PET 
��Reduced glucose metabolism in bilateral temporal parietal regions 
��Other well validated ligands, including those that foreseeably will emerge such as Pittsburg compound B 

or FDDNP 
E. Proven AD autosomal dominant mutation within the immediate family 
 
Exclusion criteria 
History 

��Sudden onset 
��Early occurrence of the following symptoms: gait disturbances, seizures, behavioral changes 

Clinical features 
��Focal neurological features including hemiparesis, sensory loss, visual field 
deficits 
��Early extrapyramidal signs 

Other medical disorders severe enough to account for memory and related symptoms 
��Non-AD dementia 
��Major depression 
��Cerebrovascular disease 
��Toxic and metabolic abnormalities, all of which may require specific investigations 
��MRI FLAIR or T2 signal abnormalities in the medial temporal lobe that are consistent with infectious or 

vascular insults 
 
Criteria for definite AD 
AD is considered definite if the following are present: 

��Both clinical and histopathological (brain biopsy or autopsy) evidence of the disease, as required by the 
NIA-Reagan criteria for the post-mortem diagnosis of AD; criteria must both be present 

��Both clinical and genetic evidence (mutation on chromosome 1, 14, or 21) of AD; criteria must both be 
present 
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Table 12. A glossary of dementia terms. 

 

Mild cognitive impairment 

Variably defined but includes subjective memory or cognitive symptoms or both, objective memory or 
cognitive impairment or both, and generally unaffected activities of daily living; affected people do not 
meet currently accepted dementia or AD diagnostic criteria 
Amnestic mild cognitive impairment 

A more specified term describing a subtype of mild cognitive impairment, in which there are subjec-
tive memory symptoms and objective memory impairment; other cognitive domains and activities of 
daily living are generally unaffected; affected people do not meet currently accepted dementia or AD 
diagnostic criteria 
Preclinical AD 

The long asymptomatic period between the first brain lesions and the first appearance of symptoms 
and which concerns normal individuals that later fulfill AD diagnostic criteria 
Prodromal AD 

The symptomatic predementia phase of AD, generally included in the mild cognitive impairment cate-
gory; this phase is characterized by symptoms not severe enough to meet currently accepted diagnostic 
criteria for AD 
AD dementia 

The phase of AD where symptoms are sufficiently severe to meet currently accepted dementia and AD 
diagnostic criteria 
 

Some studies have been conducted to identify biological markers to confirm AD diagnosis during life. 

As a result, lower CSF levels of APP, A�, and other APP fragments have been found. Altered blood 

plasma levels of A�, hyperhomocysteinemia, elevated CSF levels of tau protein, biological abnormali-

ties in peripheral cells (mainly fibroblasts), and platelets (level of platelet A��precursor protein iso-

forms) have also been found in AD patients [295]. 

The exponential growth of knowledge in genetics has given rise to some new methods regarding the 

possibility of using “genetic testing” in the assessment of AD patients. This has raised some moral 

questions. A good example of genetic methods would be the ApoE genotyping, since the ApoE-�4 

allele has a positive predictive value of 94-98% in an individual with suspicion to AD, this would most 

likely improve the specificity of the diagnosis. 

Research involving gene expression analysis of the hippocampal cornu ammonis 1 (CA1) in AD pa-

tients has shown that there are a lot of changes when compared to healthy controls. It is noteworthy to 

mention that there is a significant down-regulation of RNA encoding synaptic elements (these general 

deficits in gene expression profiles for structural molecules that define the cytoarchitecture, and there-

by the signaling capabilities of the neurons), and RNA encoding metal regulatory factors. Also, a sig-
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nificant (over 3 fold) increase in RNA encoding inflammatory, immune, and stress response factors 

(such as cyclo-oxygenase 2 (COX-2), whose up-regulation may be a specific marker of AD), as well as 

alterations in expression levels of other RNA encoding chromatin-modifying factors have been de-

tected. Even some intracellular signaling pathways have been found to have deficits [296, 297]. 
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4.3  Metabolomics applications 

4.3.1 Applications in general 
The key applications in NMR metabolomics include preclinical studies (toxicological and genetic 

models of neurodegenerative diseases), disease progression monitoring, and drug development studies  

[4]. There has recently been an explosive growth of research in this area driven by the potential for 

earlier and earlier disease detection and ultimately for reaching the goal of personalized medicine. 

Even though early studies have been promising, validation studies are still needed to confirm the bio-

markers recognized in various studies. These validation studies commonly include several different 

sample sets for the same disease with even representation to variation creating factors such as gender, 

age, ethnicity, comorbidity with other diseases and geographical origin [10]. 

A majority of metabolomic studies have focused on using a single analytical method, either NMR 

spectroscopy or MS. Given the complexity of biological systems, it would be more useful to combine 

both methods and exploit them in parallel, at least in the developmental stages of the protocol in ques-

tion, to derive more meaningful information on metabolic variations in health and disease. The high 

reproducibility of NMR and the high sensitivity of MS both provide supplementary and complementa-

ry data important for biomarker identification and validation. Combined multivariate analysis of data 

from both methods is likely to provide data that is more useful and important than using a single ap-

proach [10]. 

Toxicological models 

Toxicological studies into numerous neuroactive compounds have given valuable insight into the etiol-

ogy of several common neurodegenerative disorders. Neurotoxins have been administered to animals 

to produce many models with clinical phenotypes that are analogous to human disorders. There are 

some toxins that share the ability to selectively wipe out specific neuroanatomical regions that are pri-

marily associated with specific diseases [4].  

PD is one disease that has been extensively studied through toxicological models involving e.g. envi-

ronmental toxins [298-301], and it would appear that PD is a heterogeneous disease likely to be caused 

by more than one specific etiological factor. This is further supported by the details such as the clinical 

and pathological syndromes associated with environmental agents that are remarkable similar when 

compared to those observed with familial PD cases [4]. Relatively little research has been carried out 

on the metabolic profiling of toxin-induced PD models given the wealth of information from imaging 

studies performed [302-304], however, the perturbations of brain metabolites have been analyzed in a 

primate model of PD [305]. 
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HD is another disease that has been studied through toxicological models and is primarily associated 

with progressive atrophy and the selective neuronal loss of the medium spiny neurons of the striatum. 

The postmortem neuropathological analysis of HD brain also demonstrates a reduction of ca. 300-400 

g in total brain mass when compared with normal controls. An NMR spectroscopic study was useful in 

the study of toxin-induced decreases in several metabolites associated with HD [306]. Subsequent stu-

dies have been performed to assess the possible therapeutic strategies in toxin models of HD, including 

drugs to correct brain energy deficits [234], striatal allografts [307], and neurotrophic factors [308]. 

The potential neurotoxic effects of xenobiotics on animals have also been explored by NMR spectros-

copy, even though it was found to be debatable, whether the use of neurotoxic compounds can be re-

garded as truly neurodegenerative. And furthermore, animal models are limited by their capacity to 

imitate only certain characteristics of a neurodegenerative condition; they can only simulate specific 

aspects of pathogenic, histological, biochemical, or behavioral features. Animal models may however 

be of use in improving the understanding of neurodegenerative mechanisms [4]. 

Genetic models 

These models are transgenic animal models of several neurodiseases that have been created to simulate 

a neuropathologically and clinically similar environment to the clinical disorder in question. One ex-

ample is a transgenic (TG) mouse model overexpressing human ��synuclein which is a major compo-

nent in the formation of Lewy bodies observed in PD. These mice showed ��synuclein positive cytop-

lasmic inclusions, but also revealed motor impairments and a loss of nigrostriatal dopaminergic ter-

minals in the striatum [309]. Other examples include a TG rat model overexpressing human mutant 

G93A-SOD1 (these rats develop a motor neuron disease similar to human ALS), and a TG model con-

taining a doubly mutated form of the human ��synuclein gene, which has been shown to exhibit age-

related reductions in dopamine concentrations and impairments in motor co-ordination [310]. Further 

TG models exist for e.g. HD [310, 311] and Machado-Joseph disease [312] and in both cases NMR 

spectroscopy based data has provided either a good class differentiation between diseased and healthy 

[313], or important metabolite concentrations relevant to the disease studied [312, 314]. 

Disease progression monitoring 

Current research is frantically searching for biomarkers that are hoped to provide more insight into 

neuronal dysfunction, disease progression and response to treatment. To be truly useful, a biomarker 

must be quantifiable, reproducible, and analytically simple to measure. Additionally, it is preferred that 

biomarkers are unaffected by comorbid factors. Biomarkers that can help the detection of neurodege-

nerative diseases in an early or even presymptomatic stage are essential. There is a scarcity of suitable 

biomarkers for assessing disease progression especially in this group of disorders. At this time, the 
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ongoing development of many potential disease modifying therapies, for which biomarkers are urgent-

ly needed, will soon lead to an evaluation in clinical trials. For the study of possibly useful therapies 

the biomarker needs to change with disease progression, also closely correlating with the established 

clinicopathological parameters of disease [315]. There may be situations in which a single metabolite 

or protein will fulfill this requirement, but unfortunately, most diseases are polygenic in origin and 

often have strong environmental influences attached. It is therefore likely that a complex fingerprint of 

molecular markers is associated with the disease state, and that the efficacy or toxicity of administered 

drug will evolve through time. Thus, in reality, combinations of biomarkers are far more likely to form 

the basis of a reliable diagnostic test. The capability of metabolomics to generate a metabolic finger-

print is uniquely suited for the recognition of such combinations of biomarkers. Therefore, as a me-

thod, it can be placed next to the more traditional clinical protocols encompassing specific cognitive 

and neurophysiological testing supplemented with genomic and proteomic profiling. Many different 

approaches are currently being undertaken to recognize biomarkers; these include imaging, neurophy-

siological and cognitive testing, in addition to newer technologies such as biochemical, proteomic, 

metabolomic, and gene array profiling of tissue and biofluids from patients. The metabolomic analysis 

of biofluids is also relatively noninvasive and is a rapid profiling tool. Therefore it is highly suitable 

for monitoring disease progression that requires a multisampling practice [4]. 

Because AD is the most common form of dementia and is also difficult to diagnose in the very early 

stages, the early detection is an urgent challenge, likely demanding a combination of different strate-

gies and methods. The methods based solely on clinical features and exclusions of other possible caus-

es are not sufficient for early diagnoses. The common CSF �-amyloid42 and tau- and phospho-tau pro-

teins reflect AD-associated brain pathology but do not fulfill the criteria for the ideal biomarker [316]. 

Additionally, at this moment, an approved small molecule metabolomic approach for AD and several 

other neurological states is not available. One likely reason to this is the large variation of the personal 

CSF metabolic profiles [26] which hide the possible metabolic characteristics. In recent years more 

attention has been focused in the clinical manifestation of mild cognitive impairment (MCI), which 

may represent an early form of AD in some patients [317]. Currently, no clinical method exists for the 

determination of whether a patient with MCI has incipient AD or has a benign form of MCI without 

progression [318]. Thus there is a great need for diagnostic biomarkers to identify incipient AD in MCI 

cases so that early symptomatic or disease-modifying treatments may be given early in the course of 

disease. Several studies based on NMR spectroscopic methods to better understand the progression and 

nature of AD have been reported [235, 236, 319, 320]. 

PD is another disease that can be very difficult to diagnose in its early stages, partly due to the fact that 

it may be mimicked by other diseases such as essential tremor, progressive supranuclear palsy, and 
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multiple system atrophy. Furthermore, when the patient reaches a point when there is evidence of the 

clinical features of PD, there is already a ~50% reduction in dopaminergic nigral cells [321]. It also 

appears that the preclinical phase of PD lasts for ca. 5 years [322]. It is therefore clear that the treat-

ment in the preclinical phase would be essential in halting the progressing disease. The role of NMR 

metabolomics in the case of PD is essentially the same as in other similar diseases; measuring the rela-

tive concentrations of relevant metabolites in biofluids or brain areas. 

There is a clear genetic test for HD, but the clinical trials remain challenging and only a few double-

blind phase III trials have been conducted. Because the current method of assessment of clinical dis-

ease progression (the Unified Huntington’s Disease Rating Scale) lacks sensitivity and specificity par-

ticularly over short periods of time, the identification of biomarkers that could also be used to track 

disease progression would be invaluable. In addition, markers capable of detecting disease related 

changes in presymptomatic HD gene carriers are likely to be essential for future detection and monitor-

ing of treatments that can delay disease onset. Several NMR spectroscopic studies have been reported 

in the research field of HD [223, 234, 307, 308, 314, 323-328]. 

MS is characterized by the degeneration of the myelin sheath that leads to neuronal damage and loss 

which ultimately results in the irreversibility of the debilitating disorder. NMR spectroscopy has re-

vealed alterations in the levels that are specific for axonal damage, demyelination, and inflammation 

and have been monitored during the remitting-relapsing phases typical for this disease [219, 329, 330]. 

Additionally, numerous in vivo 1H MRS studies in patients with MS have also been conducted [232, 

331-334]. 

In addition to the diseases mentioned above, metabolomics has also been used to study several other 

common disorders, the most prominent ones being cancer (e.g. [164, 335-344]), diabetes [345-347], 

and coronary heart disease [3, 45, 348-351]. Inborn errors of metabolism have also been studied and so 

and it has become increasingly clear that especially NMR metabolomics has become a certified method 

of choice in many areas of study [10]. 

Drug development 

NMR spectroscopy has a long history in the investigation of drug metabolism [134, 352]. Both biofluid 

and 1H MAS NMR analyses have been used to characterize toxicity profiles of several toxins and drug 

candidates and to generate knowledge on important metabolic pathways. NMR spectroscopy is there-

fore also useful as a tool in drug development. Moreover, recent studies have shown that the predose 

metabolic profile can in some instances be used to predict the dominant metabolism of pharmaceutical 

compounds [4]. 
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4.3.2 Neurological state visualizing protocol based on NMR metabolomics 

(This chapter is loosely based on Jukarainen, N. M., Korhonen, S. P., Laakso, M. P., Korolainen, M. 

A., Tuppurainen, K., Pirttila, T., Laatikainen, R. Classification of Dementia Disorders Based on Cere-

brospinal Fluid Metabolite Profiling: a Multivariate 1H NMR Study. Manuscript, 2009.) 

Background 

At this moment, an approved small molecule metabolomic approach for AD and other neurological 

states is not available. NMR methods have been used to some extent for the analysis of metabolites in 

CSF [4]. The most commonly used methods have however been based on MRI [319, 353] or in vivo 

methods [320]. However, as a solution state method, NMR is better suited for the analysis because it 

generates multivariate information on a wide range of molecules with sufficient sensitivity [4] and thus 

allows the harvesting of a combination of numerous metabolite concentrations with just a single scan. 

In NMR metabolomics, experiments can also be performed without complex sample treatment and 

instrumental calibration. Furthermore, the low protein and lipid content of CSF is advantageous be-

cause the spectrum is relatively simple due to the rather low number (ca. 50) of components [354]. 

In our recent work, we used 1D 1H NMR spectroscopy for the metabolic profiling of CSF and devel-

oped a CTLS approach for NMR quantification of CSF metabolites [26]. At this time, it was also dis-

covered that the variations of metabolite concentrations in the personal CSF profiles of two control 

groups with no dementia, were very large. The purpose of this study was to examine if it is possible to 

classify neurological patients on the basis of their CSF metabolic profiles in spite of these large per-

sonal variations. We therefore assessed the performance of the CTLS protocol, together with other 

commonly used spectral integration methods and, secondly, tested several common mathematical tools 

to find optimal classification approaches for patients with various types of dementia. The multivariate 

classification methods assessed were kNN, kNN-SA, PCA, PLS-DA, SVM, DT, and RF. The resulting 

metabolite profiles and disease specific points are discussed. 

Methods 

CSF samples o f  pat ients  with dementia and neurological  controls  

The control group of 45 patients consisted of individuals examined for various neuropsychiatric symp-

toms, such as depression or headache, but who did not have cognitive decline or a chronic neurological 

disease. These controls were further divided into two groups: patients with an AD marker profile (low 

�-amyloid42 and/or high tau protein) present in CSF (control class abbreviation: C/ADP) and patients 
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that do not have an AD marker profile in CSF (control class abbreviation: C). The C/ADP group con-

sisted of 11 patients and the C group consisted of 34 patients. No other confounding neurological dis-

ease states were associated with these patients. Other patient groups included in this study were 76 

patients with probable AD, 59 patients with mild cognitive impairment (MCI), including 22 patients 

with an early stage AD (EAD), 16 patients with vascular dementia (VaD), 9 patients with Lewy body 

disease (LBD), and 16 patients with frontotemporal dementia (FTD). For additional details on patient 

age, sex and other relevant demographics, see Table 13. 

 

Table 13. Demographics of study participants displaying group sizes, sex, means, and standard deviations 
(SD) for patient age and Mini-Mental State Examination (MMSE) score. 

Sex Age MMSE 

Group N Female Male Mean SD Mean SD 

ADa, d 76 52 24 72 ± 7.7 19 4.4 

C/ADPb 11 8 3 67 ± 8.2 26 2.6 

Cb 34 19 15 66 ± 9.5 25 3.2 

FTDc 16 9 7 54 ± 11.1 23 4.8 

LBDd 9 4 5 76 ± 6.0 18 5.7 

EAD 22 13 9 71 ± 6.8 24 2.8 

MCI 37 20 17 71 ± 6.8 24 2.4 

VADd 16 5 11 77 ± 4.6 19 4.0 
 
aThe AD patient class contained more women than expected (significance, P<0.05) and, conversely, 
the VAD patient class contained more men than expected (asymptomatic significance, P<0.05), as as-
sessed with the �2�test.�
bThe control patients are significantly (P<0.01) younger than other patient groups (excluding FTD), as 
assessed with ANOVA. 
cThe FTD patients are significantly (P<0.001) younger than all other patients, as assessed with 
ANOVA. 
dThe AD, VAD, and LBD patients have significantly (P<0.05 for LBD and P<0.001 for AD and VAD) 
lower MMSE scores than other patient groups, as assessed with ANOVA. 
 

This study was approved by the local ethics committee of Kuopio University Hospital, and informed 

consent for participation in the study was obtained from all participants and caregivers of the demented 

patients. The diagnosis of probable AD was made according to the consensus criteria of the National 

Institute of Neurological and Communicative Disorders and Stroke-Alzheimer’s Disease and Related 

Disorders Association (NINCDS-ADRDA) [292]. The individuals with MCI were diagnosed based on 
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criteria presented by Mayo Clinic Alzheimer’s Disease Research Center [355]. The early AD group 

(henceforth referred to as the EAD group) consisted of individuals with MCI who developed AD dur-

ing the follow-up examination which lasted up to 168 months. Those individuals with MCI for whom 

the diagnosis remained as MCI, are hereafter referred to as MCI. 

 VaD refers to patients in whom the cause of dementia symptoms was associated with a cerebrovascu-

lar disorder. VaD was diagnosed according to National Institute of Neurological Disorders and Stroke 

and Association Internationale pour la Recherché et l’Enseignement en Neurosciences (NINDS-

AIREN) criteria [356]. FTD was diagnosed by using the Lund-Manchester diagnostic criteria [357], 

and LBD was diagnosed according to the consensus criteria for LBD [358]. 

Stat is t ical  analysis  

To provide an overview of differences between the neurological classes, an ANOVA analysis with 

two-tailed significance was performed by using patient age and Mini-Mental State Examination 

(MMSE) score as variables. Additionally, a �2�test with two-tailed significance was performed on 

patient sex. See Table 13 for details.�

Sample preparat ion 

Lumbar CSF samples were obtained by using a standardized protocol and the samples were stored at -

70°C until use. The samples were prepared according to the protocol described by Maillet [1]. First, 

1800 �l of each sample was subjected to an identical lyophilization protocol for 40 hours. The freeze-

dried samples were then stored at -20° C in sealed vials until analysis. Prior to the NMR measure-

ments, the samples were reconstituted in 600 �l of D2O (99.98%-D, Merck) and 450 �l of this liquid 

was transferred to a separate vial followed by addition of 50 �l of 21.5 mM 3-(trimethylsilyl)-

propionic-d4 acid in D2O to be used as an internal standard of known concentration. The pH of the 

samples was not adjusted, being typically around 7.00±0.05. This pH can be defined as pH*, which is 

the reading of the pH meter as measured with a standard pH electrode. The pD value is ca. 0.4 units 

higher than pH*. 

NMR Spectroscopy 

The classification was based on standard 1D 1H NMR spectra. All spectra were measured by using a 

Bruker AVANCE DRX 500 instrument operating at 500 MHz (i.e. 11.4 Tesla) (Bruker-Biospin 

GmbH, Karlsruhe, Germany), equipped with a quadronuclear probe. The Bruker XWIN-NMR soft-

ware version 3.5pl8 running on a standard PC was used for acquisition of all spectra. The relevant pa-

rameters used in the 1D experiments, were calibrated and used as follows: recycling delay 45 s, acqui-
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sition time 6.5 s, number of scans 128, and a sweep width of 9.5 ppm. A calibrated 90° pulse was used 

for all spectra and all acquisitions were performed on non-spinning samples. 

Quanti f icat ion 

Quantification for the different models used for classification purposes was performed by using the 

same 31 metabolites and/or signal areas as previously reported as the CTLS protocol [26]. As an ex-

tension, a combined model with metabolite areas and buckets was created. In this model the non-

assigned lines were combined into buckets to form additional variables to reduce the chemical shift 

variation effects. This model is hereafter referred to as CTLSB. All spectral model creation and quanti-

fication was performed by using PERCH NMR Software version 2008.1 (PERCH Solutions Ltd., Ku-

opio, Finland). 

Validat ion 

To remove the influence of the large differences in the metabolite concentrations levels, we used mean 

centering of the data (mean = 0) together with variance scaling, in which the variance of each sample 

value was scaled to have a maximum of 1. In conjunction with the scaling procedure, a variance analy-

sis was performed and metabolites with variance of less than 20% of the total variance were omitted 

resulting in total of 27 metabolites (including several buckets) which were used in further analyses. All 

of the classification methods used in this study employed either standard LOO CV or a more rigorous 

method known as out-of-bag (OOB) CV in which several data points are removed in the model build-

ing phase. 

Random Forest  

Random Forests (RF) is an ensemble learning method which combines two machine learning tech-

niques, viz. bagging and random feature subset selection using a large collection of DTs for predictions 

[189]. The accuracy of RF compares favorably with modern machine learning methods e.g. SVMs and 

neural networks. In contrast with many multivariate classifiers, RF is very resistant to overfitting. Dis-

tinctively, RF includes a built-in CV scheme with extensive OOB data (one third of samples for each 

tree). The procedure also gives an estimate of the prediction error as a by-product so that there is no 

actual need for the use of “external” validation sets. 

While RF is originally a classifier, it can be used for distance metric learning [190]. RF is a good 

choice as a classifier for many reasons; it has excellent accuracy among current algorithms, it runs ef-

ficiently on large data sets, it can handle thousands of input variables without variable deletion and it 

gives estimates of what variables are important in the classification. Furthermore, RF generates an in-

ternal unbiased estimate of the generalization error (OOB) as the forest building progresses and it is 
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also very resistant to overfitting. Multidimensional scaling (MDS) performed on RF data produces a 

map that puts similar cases near to each other, and different cases far apart. 

All calculations were done with the R package randomForest, which is freely available on the Internet 

at http://cran.cnr.berkeley.edu/src/contrib/Descriptions/randomForest.html. 

Results and discussion 

Group Demographics  

The control patients were significantly younger than the patient groups (see Table 13), save for fronto-

temporal dementia (FTD) (F = 6.789, P < 0.05). The FTD patients were significantly (F = 61.749, P < 

0.001) younger than all the other patients, as assessed with ANOVA. This is expected because it is 

typical for FTD to have an early onset. 

The groups were comparable for sex, except for AD and vascular dementia (VaD). The AD group con-

tained significantly more women than men (�2 = 4.632, P < 0.05) and, conversely, the VaD patient 

class contained significantly more men than women (�2 = 5.299, P < 0.05). 

The AD and VaD patients had significantly (F = 57.319 (AD), F = 7.875 (VaD), P < 0.001 in both cas-

es) lower Mini-Mental State Examination (MMSE) scores compared with the other groups. 

Dementia  RF maps 

Classification problems with many weak and overlapping inputs are becoming more common in e.g. 

medical diagnostics - the present task provides a challenging example of these. Initially, a large num-

ber of different classification techniques (kNN, PLS, LVQ …etc.) were tested, but their performance 

proved limited (data not shown). Interestingly, DT qualified best, prompting us to test its advanced 

version, known as Random Forest (a.k.a. Decision Forest). When performing the neurological classifi-

cation, the inclusion of demographic variables such as sex, age and MMSE score improved the dis-

crimination of the neurological groups. 

Previously, it has been shown that RF has the ability to work even with very weak classifiers, in par-

ticular if their correlation is low [189]. Although this condition was not completely fulfilled for this 

data set, it appeared that RF was superior to other methods, including DT. However, it was still not 

sensitive enough for a complete classification with eight classes. The OOB estimate of error rate was 

considerably large (44%), and most small classes including other dementias (LBD, VAD, FTD) were 

predicted incorrectly. The cluster near the origin mainly consisted of these other dementias, together 

with a few samples from all classes, probable AD being the most abundant. This cluster obviously 

caused most of the prediction errors, and contained altogether about 70 samples. 
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A more reasonable model could be derived with three classes: controls (C, C/ADP, MCI), ADs (EAD 

and AD), and other dementias (VAD, LBD, and FTD). In this case it can be considered as an analysis 

between controls, AD-type patients, and other forms of dementia. The OOB estimate of error rate is 

reasonable (28%), and the structure of the RF/MDS map is compact (Figure 19). Note, however, that 

there is still a considerable overlap between ADs and other dementias, and ODs will be predicted 

largely as AD. The corresponding confusion matrix is given in Table 14. The correctly classified pa-

tients are on the diagonal and the other patients and their amount in each case can be seen under the 

class they were classified to. 

 

Figure 19. RF classification with three classes (C, A, and O). Abbreviations as follows: C=control (C/ADP, 
C, MCI), A=AD (EAD, AD), O=other dementia (VAD, FTD, LBD). 
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Table 14. The confusion matrix for the RF classification with 3 neurological classes. O=other dementia. 
The correctly classified patients are on the diagonal and the other patients and their amount in each case 
can be seen under the class they were classified to by the RF method. 

 AD C O Classification error 

AD 79 13 6 0.194 

C 14 66 2 0.195 

O 16 10 15 0.634 

 

An alternative model included four classes: controls (C and C/ADP), M (MCI, including EAD), A 

(probable ADs) and other dementias (O) (Figure 20). The OOB error is slightly larger (30%) than with 

the three-class model, and the confusion statistics are shown in Table 15. Interestingly, the MDS map 

for this model (Figure 20) is symmetric about the origin, and thus its interpretation is easy: the predic-

tions for the samples near the origin cannot be regarded as reliable, while the samples far from the ori-

gin represent “sure” cases. 

Table 15. The confusion matrix for the RF classification with 4 neurological classes. O=other dementia. 
The correctly classified patients are on the diagonal and the other patients and their amount in each case 
can be seen under the class they were classified to by the RF method. 

 AD C M O Classification error 

AD 64 0 6 6 0.159 

C 4 31 7 3 0.311 

M 12 4 41 2 0.305 

O 18 1 4 18 0.561 
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Figure 20. Classification with four classes (C, M, A, and O). Abbreviations as follows: C=control (C/ADP, 
C), A=probable AD, M=MCI, including EAD, O=other dementia (VAD, FTD, LBD). 

 

A practically useful model can be derived by separating the cluster containing ODs (the O cluster in 

the 4 class model, Figure 20) from the rest of the samples to its own category already in the teaching 

phase. The OOB error is 23% and the overall confusion statistics are reasonable (Table 16). Moreover, 

the form of the corresponding RF/MDS map (Figure 21) is highly symmetric, although the O cluster 

(patients with diagnosis X, fourth “arm”, right center) not fully manifested. By this way it is possible to 

distinguish the other forms of dementia from AD almost completely: if a patient belongs in the cluster 

X, he/she is almost surely demented and the right diagnosis is likely LBD, VAD or FTD, rather than 

AD. Admittedly, the model is conceptually somewhat questionable. 
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Figure 21. Classification with the X cluster as its own class in the training phase. Abbreviations as follows: 
A=AD, C=control, M=EAD or MCI, X=VAD, FTD or LBD. 

 

Table 16. The confusion matrix for the RF classification with class X as a separate class in the training 
phase. A=AD, C=control, M=EAD or MCI, X=VAD, FTD or LBD. The correctly classified patients are on the 
diagonal and the other patients and their amount in each case can be seen under the class they were 
classified to by the RF method. 

 A C M X Classification error 

A 43 0 2 13 0.259 

C 2 29 3 6 0.275 

M 4 3 35 6 0.271 

X 8 0 4 63 0.160 
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A very simple predictive model can be constructed with only two classes, i.e. dividing samples to non-

demented subjects (C, C/ADP, MCI, and EAD) and demented (AD, VAD, FTD and LBD). Now the 

OOB error is only about 18%; the confusion statistics are given below (Table 17 EAD group in the 

non-demented class and Table 18 EAD group in the demented class) from which the sensitivity and 

specificity have also been calculated (see below). Interestingly, the members of the class EAD are re-

sponsible for the most prediction errors - be they in the non-demented or demented group, about half of 

them will be misclassified. In general, it should be emphasized that the controls in this particular data 

set are not really healthy persons, but have neurological symptoms, even though no neurodegenerative 

disease was diagnosed. Thus the border between the classes is necessarily more diffuse than usual, 

which is reflected both to sensitivity (79%) and specificity (88%). If the EAD patients are placed to the 

class demented, sensitivity is 80% and specificity is 83% respectively. Overall, the predictive ability of 

the two-class model is encouraging, suggesting that it may be of help even in practical diagnostics. An 

additional two-class model was also tried out in which EAD and AD patients (group A) were com-

pared to all other patients (group O). This model should show if it is possible to separate AD and EAD 

in particular from patients that have no AD symptoms at all. This model resulted in an OOB error of 

only 18.5% and 87% of the group O patients were classified correctly (75% group A). The sensitivity 

and specificity in this model were 75% and 87%, respectively, so this is another clinically interesting 

two-class model. The RF/MDS map for this model is shown in Figure 22 with all 8 patient classes 

shown. 

Table 17. The confusion matrix for the RF classification with 2 neurological classes and with the EAD pa-
tients in the control group. C=control, D=dementia. The correctly classified patients are on the diagonal 
and the other patients and their amount in each case can be seen under the class they were classified to 
by the RF method. 

 C D Classification error 

C 81 23 0.221 

D 10 107 0.085 
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Table 18. The confusion matrix for the RF classification with 2 neurological classes and with the EAD pa-
tients in the dementia group. C=control, D=dementia. The correctly classified patients are on the diagonal 
and the other patients and their amount in each case can be seen under the class they were classified to 
by the RF method. 

 C D Classification error 

C 52 30 0.366 

D 8 131 0.058 

 

Figure 22. The RF/MDS map of the two-class model in which EAD and AD patients were combined as 
one group and compared against the other patients. Patient abbreviation codes are shown as 8 classes for 
clarification even though there were only 2 classes in the classification step. Abbreviations: C=C/NRM, 
P=C/ADP, F=FTD, L=LBD, V=VAD, E=EAD, A=AD, M=MCI. 

 

Finally, it should be emphasized that RF provides a means for “profiling” of an individual patient, 

simply by counting the votes in each class. This is exemplified in Figures 23-27; the profile of an indi-

vidual patient can be compared to the average profile in each class. Thus the analysis gives the whole 

profile of CSF changes in an individual patient and makes it possible to judge the most probable cause 

for the symptoms. 
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Figure 23. A typical “voting” profile for AD patients (main) and class average for AD patients (inset). 

 

Figure 24. A typical “voting” profile for EAD patients (main) and class average for EAD patients (inset). 
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Figure 25. A typical “voting” profile for control patients (main) and class average for control patients (in-
set). 

 

Figure 26. A typical “voting” profile for MCI patients (main) and class average for MCI patients (inset). 
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Figure 27. A typical “voting” profile for an unreliable patient. 
 

Another useful property of RF is the variable importance plot, which reveals the most important va-

riables employing two different performance indices with slightly different results (Figure 28). In this 

case, these variables are the metabolites responsible for the differences in the neurological state mak-

ing classification possible. The shown metabolites in Figure 28 represent the results for the 4 class 

model (Figure 20 and Table 15) which is likely the one with the most clinical significance. The most 

important metabolites contributing to the variability were glucose, acetate, citrate, glutamine and three 

unknown metabolites. 

The variable importance measure of RF is based on the following heuristic: when a descriptor that con-

tributes to the prediction accuracy is "noised up" (e.g. replaced with random noise or permutation), the 

accuracy should degrade considerably. On the other hand, if a descriptor is irrelevant, noising it up 

should have little effect on the performance. A number of specific variable importance measures based 

on this heuristic have been proposed by Breiman [184, 189], Mean Decrease Accuracy (MDA) and 

Mean Decrease Gini (MDG) being the most popular. The MDA is constructed by permuting the values 

of each variable of the test set, recording the prediction and comparing it with the unpermuted test set 

prediction of the variable (normalized by the standard error). The MDG measures the quality of a split 

for every variable (node) of a tree by means of the Gini Index [359]. Every time a split of a node is 

made on a variable the Gini impurity criterion for the two descendent nodes is less than the parent 
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node. Adding up the gini decreases for each individual variable over all trees in the forest gives a fast 

variable importance that is often very consistent with the permutation importance measure. 

 

Figure 28. Variable importance plots with two different indices. The topmost variables are the ones that 
have the largest contribution in the RF model. Abbreviations as follows x2=unknown aromatic signal at ca. 
8.13 ppm, Lac=lactate, MI=myo-inositol, a1=several overlapping amino acid ��protons between 4.05 and 
3.95 ppm, Glc=glucose, a2=metabolites in the 3.70-3.56 ppm range, not including myo-inositol, x3=a triplet 
+ underlying signals at 3.16 ppm, Cre=creatine, Cit=citrate, Gln=glutamine, x4=unknown signal at 2.13 
ppm, Ace=acetate, a5=the spectral region 1.56-1.40 ppm, AHIV=��hydroxyisovalerate, a7=the spectral 
region 1.02-0.93 ppm, GlnGlu=glutamine/glutamate, Bx.yzppm=bucket at x.yz ppm. 

 

ANOVA resul ts  

1. The CMA-model 

In this model, the control patients were compared to both AD and M (MCI+EAD) patients. Sever-

al statistically significant metabolite concentration variations were detected, most of them were 

between the control patients and AD patients or between M (MCI+EAD) and AD patients, i.e. on-

ly one significant variable (age) was found between the control and M groups (Table 19). Patients 
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belonging to the M group were significantly older than control patients. The average metabolite 

concentrations, including standard deviations, for the groups discussed here are shown in Table 

20. For details on the role of the statistically significant metabolites in neurodegenerative disorders 

see Table 23. 

 In the case of control patients vs. AD patients, the following metabolite concentration differ-

ences were statistically significant: histidine, formate, lactate, glucose, area2, creatine, glutamate, 

area5, area6, BHB, x5, x6, and area7. Differences in patient age and the MMSE score were also 

significant. 

 The statistically significant concentration between AD patients and M group patients were 

histidine, formate, area1, glucose, area2, creatinine, creatine, citrate, glutamate, acetate, area5, 

area6, x5, area7, and pyruvate. The MMSE score of these patients was also significant, whereas 

patient age was not. 

 

2. Other dementias 

In the other dementia model FTD, LBD, and VAD patients were compared to control patients. 

Several statistically significant metabolite concentration variations were detected. Additionally, 

the patient’s age in all comparisons was significant, and, furthermore, the MMSE score was signif-

icant for LBD and VAD patients (Table 21). The average metabolite concentrations, including 

standard deviations, for the groups discussed here are shown in Table 22. The metabolites that had 

statistically significant concentration differences have been assessed in more detail in Table 23. 

 When comparing controls with FTD patients, the following metabolite concentration differ-

ences were statistically significant: formate, lactate, glucose, area2, creatine, citrate, glutamate, 

acetate, area5, BHB, x6, AHB, AHIV, and area7. 

In the case of control patients vs. LBD patients the concentrations of histidine, glucose, glu-

tamine, glutamate, acetate, area5, BHB, x5, x6, AHIV, area7, and pyruvate were statistically sig-

nificant. 

 When VAD patients were compared with control patients the relevant metabolites were for-

mate, x2, lactate, area1, glucose, area2, creatinine, creatine, citrate, glutamine, glutamate, acetate, 

area5, BHB, x5, x6, x7, AHB, and area7. 
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Table 19. The level of statistical significance of the metabolite concentrations between control, MCI and AD pa-
tients (the CMA-model, Figure 20). The significances are presented as is (ANOVA). The group column desig-
nates the groups between which the significance exists, e.g. C/A means that there is a significant variance be-
tween the C and A group patients in the level of the metabolite in question. Abbreviations: C=control 
(C/NRM+C/ADP), M=MCI (MCI+EAD), A=AD. Area and unknown metabolites (X) as in Table 4 footnote. 

Statistical significance (ANOVA) 
Metabolite F Sig. Groups 
Age 7.56 0.00 C/A + C/M 
MMSE 57.20 0.00 C/A + A/M 
Tyrosine 2.34 0.10 
Histidine 8.59 0.00 C/A + A/M 
Phenylalanine 1.30 0.28 
Tryptophan 2.68 0.07 
Formate 8.83 0.00 C/A + A/M 
X1 0.40 0.67 
X2 2.12 0.12 
Lactate 5.25 0.01 C/A 
Myo-inositol 1.97 0.14 
AREA1 6.79 0.00 A/M 
Glucose 5.72 0.00 C/A + A/M 
AREA2 9.93 0.00 C/A + A/M 
AREA3 2.96 0.05 
X3 0.07 0.92 
Creatinine 3.75 0.02 A/M 
Creatine 10.65 0.00 C/A + A/M 
Citrate 4.09 0.02 A/M 
Glutamine 0.39 0.68 
Glutamate 4.60 0.01 C/A + A/M 
X4 1.49 0.23 
Acetate 5.25 0.01 A/M 
AREA5 14.86 0.00 C/A + A/M 
AREA6 6.02 0.00 C/A + A/M 
��hydroxybutyrate� 4.19 0.02 C/A 
X5 9.57 0.00 C/A + A/M 
X6 3.92 0.02 C/A 
X7 0.23 0.79 
��hydroxybutyrate� 2.64 0.08 
��hydroxyisovalerate� 0.71 0.49 
AREA7 5.53 0.01 C/A + A/M 
Pyruvate 8.02 0.00 A/M 
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Table 20. Average metabolite concentrations relative to TSP (TSP=100) and standard deviations in the 
CMA-model. Abbreviations: C=control (C/NRM+C/ADP), M=MCI (MCI+EAD), A=AD. Area and unknown 
metabolites (X) as in Table 4 footnote. 

Metabolite Average Concentration (±StDev) 
C M A 

Tyrosine 0.9 ± 0.4 0.7 ± 0.2 0.9 ± 0.7 
Histidine 0.2 ± 0.1 0.1 ± 0.1 0.2 ± 0.1 
Phenylalanine 1.3 ± 0.5 1.2 ± 0.5 1.3 ± 0.7 
Tryptophan 0.6 ± 0.2 0.5 ± 0.1 0.6 ± 0.3 
Formate 0.4 ± 0.2 0.3 ± 0.1 0.4 ± 0.2 
X1 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 
X2 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 
Lactate 26.1 ± 5.2 27.3 ± 7.2 29.8 ± 6.5 
Myo-inositol 10.9 ± 7.4 9.3 ± 3.2 10.5 ± 2.8 
AREA1 11.3 ± 2.7 10.7 ± 2.5 12.4 ± 2.8 
Glucose 348.0 ± 67.9 349.0 ± 92.4 392.8 ± 91.9 
AREA2 10.8 ± 3.3 10.0 ± 3.5 12.9 ± 4.4 
AREA3 3.2 ± 1.2 3.0 ± 1.2 3.7 ± 2.0 
X3 0.6 ± 0.5 0.6 ± 0.3 0.6 ± 0.3 
Creatinine 3.7 ± 0.7 3.7 ± 0.8 4.0 ± 1.0 
Creatine 2.6 ± 0.6 2.5 ± 0.6 3.0 ± 0.6 
Citrate 16.9 ± 4.3 16.8 ± 4.9 18.9 ± 5.1 
Glutamine 12.4 ± 2.7 11.7 ± 3.0 11.9 ± 5.4 
Glutamate 5.2 ± 1.7 5.5 ± 1.9 9.5 ± 13.8 
X4 0.8 ± 0.9 0.6 ± 0.3 0.8 ± 0.6 
Acetate 9.6 ± 12.1 6.5 ± 12.7 14.7 ± 17.7 
AREA5 1.9 ± 0.7 2.3 ± 1.0 3.0 ± 1.3 
AREA6 1.9 ± 1.6 1.0 ± 0.8 1.8 ± 1.9 
��hydroxybutyrate� 0.9 ± 0.5 1.1 ± 0.5 1.2 ± 0.6 
X5 0.3 ± 0.1 0.3 ± 0.1 0.5 ± 0.4 
X6 0.9 ± 0.3 1.0 ± 0.3 1.1 ± 0.5 
X7 1.0 ± 0.4 1.0 ± 0.5 1.1 ± 0.7 
��hydroxybutyrate� 2.0 ± 0.7 2.0 ± 0.8 2.3 ± 1.1 
��hydroxyisovalerate� 0.4 ± 0.3 0.4 ± 0.2 0.5 ± 0.5 
AREA7 3.4 ± 1.3 3.6 ± 1.7 4.3 ± 1.8 
Pyruvate 1.9 ± 0.9 1.7 ± 0.8 2.4 ± 1.1 
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Table 21. The level of statistical significance of the metabolite concentrations between control patients and 
FTD, LBD, and VAD patients (the other dementias-model, Figure 20). The significances are presented as 
is (ANOVA). Area and unknown metabolites (X) as in Table 4 footnote. 

Metabolite Statistical significance (ANOVA) 
FTD LBD VAD 

  F Sig. F Sig. F Sig. 
Age 18.71 0.00 8.48 0.01 21.13 0.00 
MMSE 3.87 0.06 22.66 0.00 46.61 0.00 
Tyrosine 0.00 0.95 1.21 0.28 0.36 0.55 
Histidine 0.03 0.87 4.32 0.04 1.19 0.28 
Phenylalanine 0.42 0.52 0.09 0.77 0.08 0.77 
Tryptophan 0.20 0.66 1.30 0.26 0.40 0.53 
Formate 6.72 0.01 3.61 0.06 10.66 0.00 
X1 0.38 0.54 1.74 0.19 2.84 0.10 
X2 0.25 0.62 0.16 0.69 4.37 0.04 
Lactate 8.60 0.01 2.44 0.12 25.76 0.00 
Myo-inositol 0.07 0.78 0.06 0.81 0.00 1.00 
AREA1 1.04 0.31 1.25 0.27 7.07 0.01 
Glucose 8.15 0.01 4.96 0.03 9.97 0.00 
AREA2 4.18 0.05 3.59 0.06 7.95 0.01 
AREA3 3.87 0.05 2.24 0.14 1.44 0.23 
X3 0.08 0.78 0.40 0.53 2.67 0.11 
Creatinine 0.00 0.92 0.53 0.47 13.93 0.00 
Creatine 8.70 0.01 3.14 0.08 8.83 0.00 
Citrate 12.88 0.00 2.61 0.11 7.69 0.01 
Glutamine 1.13 0.29 11.05 0.00 5.94 0.02 
Glutamate 18.84 0.00 23.77 0.00 30.50 0.00 
X4 2.02 0.16 1.53 0.22 2.35 0.13 
Acetate 16.21 0.00 6.46 0.01 8.61 0.01 
AREA5 24.78 0.00 19.29 0.00 25.18 0.00 
AREA6 0.13 0.72 0.38 0.54 0.56 0.46 
��hydroxybutyrate� 4.80 0.03 11.84 0.00 19.07 0.00 
X5 1.00 0.32 12.40 0.00 8.48 0.01 
X6 17.04 0.00 8.90 0.00 24.82 0.00 
X7 2.56 0.12 0.67 0.42 4.37 0.04 
��hydroxybutyrate� 8.34 0.01 3.86 0.06 12.25 0.00 
��hydroxyisovalerate� 4.20 0.05 9.14 0.00 0.36 0.55 
AREA7 9.55 0.00 9.66 0.00 24.31 0.00 
Pyruvate 0.13 0.72 5.85 0.02 1.33 0.25 
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ANCOVA resul ts  

The ANCOVAs were run with patient age as a covariate, thus removing the effect of age from the re-

sults. The CMA-model and the other dementias model are the same as in the ANOVA results. 

1 The CMA-model 

Most of the statistically significant metabolite concentration variations were between the AD pa-

tients and M (MCI+EAD) group patients (Table 24). In addition to the MMSE score, the signifi-

cant metabolites were histidine, formate, lactate, area1, glucose, area2, area3, creatinine, creatine, 

citrate, glutamate, acetate, area5, area6, x5, x6, area7, and pyruvate. As an interesting detail, the 

significance of area3 was only detected when the effect of patient age was removed. Only two sig-

nificant variables were found between the control patients and M group patients, these being tyro-

sine and area6. 

 

2 Other dementias 

As in the ANOVAs, several statistically significant metabolite concentration variations were 

found when the other dementias were compared to controls. The MMSE score, as well as the le-

vels of glutamate, acetate, BHB, x6, and area7 were significant for all classes (Table 25). Class 

specific metabolite concentrations (in addition to the ones mentioned above) that were statistically 

significant were as follows:  

� formate, lactate, glucose, creatine, citrate, x7, AHB, and AHIV for FTD patients  

� histidine, glutamine, x5, and AHIV for LBD patients  

� formate, lactate, area1, glucose, citrate, glutamine, x5, and AHB in VAD patients 
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Table 24. The level of statistical significance of the metabolite concentrations between control, MCI and 
AD patients (the CMA-model, Figure 20). The significances are presented as is (ANCOVA) with patient 
age as a covariate. The group column designates the groups between which the significance exists, e.g. 
C/A means that there is a significant variance between the C and A group patients in the level of the meta-
bolite in question. Abbreviations: C=control (C/NRM+C/ADP), M=MCI (MCI+EAD), A=AD. Area and un-
known metabolites (X) as in Table 4 footnote. 

Statistical significance (ANCOVA/age) 
Metabolite F Sig. Groups 
MMSE 51.73 0.00 A/M 
Tyrosine 3.21 0.04 C/M 
Histidine 8.54 0.00 A/M 
Phenylalanine 1.38 0.25 
Tryptophan 2.34 0.10 
Formate 8.74 0.00 A/M 
X1 0.40 0.67 
X2 1.82 0.17 
Lactate 4.27 0.02 A/M 
Myo-inositol 1.89 0.15 
AREA1 6.58 0.00 A/M 
Glucose 5.40 0.01 A/M 
AREA2 9.71 0.00 A/M 
AREA3 3.26 0.04 A/M 
X3 0.54 0.58 
Creatinine 3.20 0.04 A/M 
Creatine 10.22 0.00 A/M 
Citrate 3.83 0.02 A/M 
Glutamine 0.32 0.73 
Glutamate 3.92 0.02 A/M 
X4 1.32 0.27 
Acetate 5.05 0.01 A/M 
AREA5 12.87 0.00 A/M 
AREA6 5.73 0.00 C/M + A/M 
��hydroxybutyrate� 3.34 0.04 ! 
X5 9.93 0.00 A/M 
X6 3.30 0.04 A/M 
X7 0.12 0.89 
��hydroxybutyrate� 2.43 0.09 
��hydroxyisovalerate� 0.71 0.49 
AREA7 4.44 0.01 A/M 
Pyruvate 7.73 0.00 A/M 
!No significance post hoc Sidak 
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Table 25. The level of statistical significance of the metabolite concentrations between control patients and 
FTD, LBD, and VAD patients (the other dementias-model, Figure 20). The significances are presented as 
is (ANCOVA) with patient age as a covariate. Area and unknown metabolites (X) as in Table 4 footnote. 

Metabolite Statistical significance (ANCOVA/age) 
FTD LBD VAD 

  F Sig. F Sig. F Sig. 
MMSE 8.87 0.01 22.66 0.00 22.46 0.00 
Tyrosine 0.00 0.99 2.49 0.12 1.70 0.20 
Histidine 0.02 0.89 3.16 0.08 0.36 0.55 
Phenylalanine 1.48 0.23 1.06 0.31 0.55 0.46 
Tryptophan 0.02 0.88 1.30 0.26 0.47 0.50 
Formate 6.51 0.01 3.05 0.09 8.93 0.00 
X1 0.17 0.68 1.76 0.19 1.36 0.25 
X2 0.45 0.51 0.07 0.79 2.44 0.12 
Lactate 9.46 0.00 0.52 0.48 15.01 0.00 
Myo-inositol 0.04 0.85 0.00 0.97 0.07 0.79 
AREA1 1.00 0.32 0.55 0.46 4.90 0.03 
Glucose 10.86 0.00 2.31 0.14 4.21 0.05 
AREA2 3.98 0.05 1.85 0.18 3.15 0.08 
AREA3 1.18 0.28 2.84 0.10 2.78 0.10 
X3 0.77 0.38 0.01 0.94 0.46 0.50 
Creatinine 1.08 0.30 0.01 0.94 3.70 0.06 
Creatine 12.09 0.00 0.46 0.50 1.42 0.24 
Citrate 14.52 0.00 1.26 0.27 5.21 0.03 
Glutamine 1.21 0.28 9.91 0.00 6.74 0.01 
Glutamate 17.80 0.00 19.05 0.00 22.48 0.00 
X4 2.44 0.12 0.89 0.35 1.07 0.31 
Acetate 10.21 0.00 5.15 0.03 3.50 0.07 
AREA5 18.47 0.00 12.20 0.00 15.62 0.00 
AREA6 0.36 0.55 0.15 0.70 0.09 0.77 
��hydroxybutyrate� 7.04 0.01 6.24 0.02 11.10 0.00 
X5 1.09 0.30 8.15 0.01 5.95 0.02 
X6 22.53 0.00 4.12 0.05 11.11 0.00 
X7 4.01 0.05 0.00 0.97 0.70 0.41 
��hydroxybutyrate� 10.51 0.00 1.71 0.20 6.38 0.01 
��hydroxyisovalerate� 4.58 0.04 6.86 0.01 0.13 0.72 
AREA7 10.25 0.00 4.78 0.03 11.91 0.00 
Pyruvate 0.02 0.89 2.89 0.10 0.57 0.46 
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The neurological  relevance of  the resul ts  

Our results show that the CSF metabolite profiles can be used to discriminate between controls, sub-

jects with MCI, and subjects with dementia. While differences in metabolite concentrations were de-

tected between the diseases well enough to gain reasonably good classification, there was some over-

lap between the groups. 

The early diagnosis of AD has become increasingly important due to evolving and possibly disease-

modifying therapies. Recently CSF �-amyloid42 and tau- and phospho-tau proteins are increasingly 

used for the support of early diagnosis since they are known to reflect AD-type brain pathology [259]. 

However, the non-demented elderly may show a heavy burden of AD pathology in autopsy, while 

showing no cognitive decline whatsoever pre mortem [387]. Many studies have suggested that this 

subclinical pathology may be reflected in CSF as well [388, 389]. Thus the current CSF markers do not 

reflect the clinical symptoms of the subjects very well. Our results suggest that the CSF NMR profiles 

are able to discriminate cognitively intact study subjects from cognitively affected subjects including 

subjects with early AD even though part of cognitively intact subjects had a CSF AD profile. These 

results suggest that the onset of clinical symptom in AD involves distinctive brain systems that are 

associated with cognitive decline and can be detected with NMR. Another interesting finding was that 

subjects with MCI formed a separate group from both controls and from demented subjects. Most of 

these subjects had a form of MCI that did not show progression during the extended follow up. The 

reason for mild cognitive decline remained unclear. It is well-known that etiology of MCI is heteroge-

neous and may be related to reversible causes [390]. Our results may suggest that the pathophysiologi-

cal processes including neurotransmitter deficits that are associated with cognitive decline differ be-

tween subjects with dementing diseases and those with MCI due to other reasons. 

The most important metabolites contributing to the variability in the four class model were glucose, 

acetate, citrate, glutamine and three unknown metabolites. The levels of glucose, acetate, citrate, and 

glutamate tended to be higher and glutamine lower in the demented when compared to controls and 

MCI without cognitive decline (Figure 29). All the known metabolites are related to energy metabo-

lism. Glucose and acetate act as fuel for the CAC cycle. The increased tendency of the levels of these 

metabolites in the demented may indicate that they are not used efficiently for energy repair for exam-

ple due to enzymatic deficiencies in the metabolic pathways known to exist in dementia [364-366]. 

Citrate is a metabolite in the CAC cycle and the activities of the enzymes processing citrate to alpha-

ketoglutarate have been shown to be decreased in post-mortem AD brain [365]. The increase in citrate 

levels may be related to the lack of processing it due to deficiencies occurring in the CAC cycle. 

Glutamine is formed from alpha-ketoglutarate via glutamate. The alpha-ketoglutarate dehydrogenase 
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complex is known to be deficient in many neurodegenerative disorders and is thought to be critical in 

the formation of potentially neurotoxic glutamate [378]. The decreased levels of glutamine reflect the 

defective glutamate detoxification into glutamine in astrocytes. Previous studies have indicated that 

glutamine synthase activity and glutamate-glutamine cycling are altered in neurodegenerative disorders 

[379]. Glutamate did not significantly contribute to the classifications. However, the trend was that the 

amount was increased in the demented but not in EAD. This may mean different pathomechanisms 

taking place in early disease when compared to advanced stages. Our data together with the current 

literature supports the hypotheses that mitochondrial dysfunction, glutamate excitotoxicity, and altera-

tions in the glutamate-glutamine cycling are related to different forms of dementia [378, 379]. 

 

Figure 29. Metabolite concentrations for selected metabolites with neurological significance in control and 
demented patients. All concentrations are relative to TSP and were mean centered and variance scaled 
(variance=1), except glucose which is reported relative to TSP (TSP concentration=100). The error bars 
are based on standard deviations. Abbreviations: x4=unknown metabolite 4 (2.13 ppm), B2.15=10 Hz 
bucket at 2.15 ppm, B1.70=10 Hz bucket at 1.70 ppm, B1.30=10 Hz bucket at 1.30 ppm. 

 

There was overlap between different dementing diseases and many subjects with other dementias were 

classified as having AD. These results suggest that the metabolite variations are as complex as the dis-

ease processes. Many studies have shown that various forms of dementia share brain pathologies and 

mixed pathology is common in subjects with cognitive decline [391, 392]. Particularly in the very old 

subjects dementia may develop in the absence of clear neuropathological sequelae and a significant 

proportion of the very old demented subjects do not meet the pathological criteria for AD [393-397]. 

AD patients often have heterogeneous brain pathology and a considerable number of patients also ex-

hibits brain changes indicating the presence of other concomitant neurodegenerative disorders [398]. 
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Patients with clinical diagnoses of VAD or LBD also frequently show AD type neuropathological 

changes [399, 400]. This is likely to explain the least accurate diagnostic accuracy of other dementias 

in this study. 

Marker profiling may offer advantages over the use of single markers in complex diseases such as neu-

rodegenerative diseases. Many studies have suggested that for example diagnostic CSF AD markers do 

not perform well in monitoring the disease progression [264, 265]. Previous studies have mainly ap-

plied different proteomic methods. These studies have suggested that the use of multiple marker panels 

may improve the discrimination between the different diseases [401-405]. A panel of five individual 

markers were shown to distinguish AD from healthy controls with high specificity [405] and larger 

panel of 17 different markers predicted the progression of MCI to AD [404]. One recent study reported 

the classification error rate of 14 % for AD in comparison with various neurological diseases using a 

panel of 23 protein spots [403]. However, there are only few studies that have included relevant patho-

logical control groups, i.e. patients with other types of dementia providing the differential diagnostic 

challenges in clinical routine. Abdi et al. [402] found eight unique markers that discriminated AD, Par-

kinson’s disease and LBD with high sensitivity and specificity in different combinations. To the best of 

our knowledge, this is only the second study having used 1H NMR of CSF to study dementia and the 

first one to feature over 200 patients with several different forms of dementia included. The first study, 

which tapped metabolic alterations in multiple sclerosis and dementia, seems not to have gained much 

interest in scientific community [406]. The proteomics methods used in the previous studies are a labo-

rious two-dimensional gel electrophoresis [403], protein chip arrays requiring multiple steps [401, 404, 

405] or isobaric Tagging for Relative and Absolute protein Quantification (iTRAQ) requiring most 

complex sample handling [402]. Compared to these, the advantages of an NMR method are compre-

hensible: the measurements can be done with minimal sample preparation and instrument calibration. 

The protocol created here is ultimately aimed for use in neurological screening of suspected and exist-

ing dementia patients. The acquired metabolic profile of the patient may be used when assessing the 

need for e.g. pre emptive medication and its forthcoming effects and possibly monitoring the disease 

process. 

In terms of classification, the results for the SVM and DT/RF methods were clearly superior when 

compared to the performance of PCA, PLS-DA, kNN, kNN-SA and Sammon’s mapping. Between the 

two best methods, the SVM results were slightly inferior when compared to the DT/RF results, but 

some classification profiles (e.g. AD) were not discriminated at all, leaving the DT/RF as the only rea-

listic choice of method. Unfortunately, the definitive answer as to why the DT/RF gives best results is 

unclear. The most likely explanation is that the DT/RF uses a recursive decision making process and is 

thus capable of successfully handling very complex datasets. This flexibility does not come without a 
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price as the DT/RF is also prone to overfitting and needs careful validation to ensure the reliability of 

the results. This superiority of DT is directly reflected in the performance of the RF method which 

ultimately provided the results with best clarity and possibilities of visualization, together with a firm 

CV (OOB). 

Our study suffers from some limitations that are common to the vast majority of biomarker studies. 

The diagnoses of AD and other diseases were based on the clinical criteria without pathological con-

firmation. However, neuropathologically verified accuracy of clinical diagnosis of AD in our clinic has 

been reported to exceed 90 % [407]. Even though most controls were free of chronic neurological dis-

ease, they had neurological symptoms and do not represent a healthy population. These factors most 

likely lead to a situation in which the control patients overlap with other neurological groups, which in 

turn creates errors in the classification process. Learning techniques, such as DT/RF, attempt to derive 

a consistent model based on the input data and are therefore particularly sensitive to misdiagnosed pa-

tients. Potential additional problems may arise from physiological variation within human CSF, includ-

ing variations due to genetics, aging, gender, dietary variation, smoking, stress, exercise, and other 

similar factors. It is well known that intra- and interindividual biological variation increases with age-

ing. The number of control patients is small and therefore sensitive to the effects of such sources of 

variation. Moreover, despite the good classification results obtained with the use of 30 variables (me-

tabolites with buckets + age, sex and MMSE score), the number of metabolic variables could, and in 

the future should, be increased in order to improve the diagnostic accuracy. Another issue to be ad-

dressed in the future is how the results provided in this study are converted into clinical practice to 

study individual patients presenting memory disorders. 

In brief, the objective of this study was to find a method for profiling neurological states and to study 

the suitability of these profiles for diagnosis of AD and other forms of dementia based on quantitative 
1H NMR spectra of human CSF. A wide variety of models and mathematical classification methods 

were examined for the purpose of finding the optimal combination. Based on our results, we can con-

clude that the large differences of the metabolite profiles in CSF, hidden under complex relationships 

of the partly unidentified components, reflect the real significant variance of the neurological states in 

the patients under scrutiny. The results suggest that the metabolic profile related to cognitive decline is 

shared between different diseases. AD seems to be a heterogeneous disease and some patients share 

common features with other dementias. As a conclusion, we believe that CSF profiling, based on NMR 

information, offers an invaluable method for studies to understand and probe neural system biology 

and metabolomic intricacies through CSF, the reasons underlying dynamics for the metabolic varia-

tions and, for example, the response to medical intervention. 
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4.3.3 Animal models in NMR metabolomics 

(This chapter is loosely based on Jukarainen, N. M., Korhonen, S. P., Puoliväli, J., Ahtoniemi, T., 

Koistinaho, J., Vepsäläinen, J. Central nervous system disorders studied by 1H NMR metabolomics of 

rat cerebrospinal fluid. Manuscript, 2009.) 

 

Background 

The purpose of this study was to assess the applicability of NMR metabolomics on rat samples espe-

cially in the context of various neurological symptoms or diseases. More specifically, whether or not 

the information on e.g. the neurometabolism gained from the study of animal models would bring 

more insight into the respective human cases. The effects of various drugs was also assessed in the 

case of ischemic and PD rats; specific drug names cannot however be mentioned due to corporate con-

straints. 

NMR spectroscopy was the method of choice, since NMR metabolomics has been proven as an effi-

cient, inexpensive and cost efficient method of analyzing numerous metabolites following disease pro-

gression [10, 50]. 

Methods 

All animal studies were carried out with permission of The Institutional Animal Care and Use Com-

mittee of the University of Kuopio and the Provincial Government according to the National Institute 

of Health guidelines for the care and use of laboratory animals. Rats and mice were housed in groups 

of 2-3 rats in one cage in light and temperature controlled environment with ad libitum water and stan-

dard laboratory rodent chow. 

CSF samples  o f  ra ts  (S troke) 

Transient focal cerebral ischemia was produced by middle cerebral artery (MCA) occlusion in male 

Sprague Dawley (SD) rats according to Longa and co-workers [408]. The right carotid arteries were 

exposed through a mid-line cervical incision and sterile silk sutures (5/0) were looped around the 

common carotid, external carotid, and internal carotid arteries. The arterial braches of the external ca-

rotid artery were all exposed and divided using diathermy forceps leaving a stump of ~2-3 mm in 

length, and a microvascular clip was placed on the end of the stump to assist haemostasis. The ptery-

gopalatine artery was exposed by developing a plane alongside the internal carotid artery, and ligated 

at its origin with fine silk (5/0) leaving the extracranial carotid circulation contiguous. Aneurysm clips 

were placed across the common carotid and internal carotid arteries, and an arteriotomy was made in 

the external carotid artery stump allowing the introduction of a blunted, rounded length of monofila-
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ment nylon suture. This was secured in place with a silk suture and the aneurysm clip on the internal 

carotid artery was removed. The suture was advanced into the internal carotid artery and placed into 

the intracranial circulation to lodge in the narrower lumen of the proximal anterior cerebral artery, ap-

proximately 17-21 mm distal to the carotid bifurcation, thereby occluding the origin of the MCA. The 

cervical wound was then closed using sutures. 

90 min post occlusion the rats were re-anesthetized and the skin sutures were removed. An aneurysm 

clip was re-applied to the common carotid artery and the filament slowly and completely was with-

drawn. The arteriotomy was closed with diathermy and haemostasis rechecked. The cervical wound 

was then sutured. 

Following MCA occlusion and induction of reperfusion, anaesthesia was discontinued and the animals 

were allowed to regain consciousness and righting reflex under strict observation. The rats were fed 

with standard laboratory diet suspended in tap water on days 0-7 after the tMCAO. To prevent dehy-

dration all rats were given an i.p. injection of saline (5 ml per rat) once-a-day for 14 days. 

Two months after the tMCAO, the rats were deeply anesthetized with pentobarbital (60 mg/kg Mebu-

nat, Orion Pharma, Finland). A rat was placed prone on the stereotaxic instrument. A sagittal incision 

of the skin was made inferior to the occiput. After blunt dissection of the tissue and neck muscles 

through the midline, the dura was penetrated between the third and fourth vertebra by a 26G needle, 

and 100μl of CSF was collected. 

The term “sham” is generally used for sham-operated rats. This means normal rats operated as a con-

trol, but not the same mutants as the test or not treated in the same way. 

CSF samples  o f  ra ts  (PD) 

In order to generate partial retrograde degeneration into the substantia nigra pars compacta (SNc), 6-

OHDA lesioning was carried out according to Sauer and Oertel with modifications [409]. Male Wistar 

rats were anesthetized with ketamine/xylazine and placed in a stereotaxic frame. The rectal tempera-

ture was maintained at 37.0 ± 1.0°C with a homeothermic blanket system. The right brain hemisphere 

was exposed through a small craniectomy to the skull. The dura mater was carefully removed with fine 

forceps and a stereotaxic injection of 6-OHDA (4 μg/μl) was made into the right striatum. A total of 8 

μl of 6-OHDA was infused at a speed of 0.5 μl/min and was equally distributed between 4 sites at the 

following coordinates: AP +1.0, ML +2.8, DV –6.0, -5.5, -5.0 and –4.4 mm. The cannula was left in 

place for another 5 min before being withdrawn. The hole in the skull was subsequently filled with 

repair material and the skin was closed and disinfected. The rats were allowed to recover from anesthe-
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sia and were carefully monitored for possible post surgical complications. The animals were returned 

to the home cages with ad libitum access to food and water. 

Six weeks (44 days) after the 6-OHDA injections, animals were, one by one, anaesthetized and placed 

prone on the stereotaxic instrument. A sagittal incision of the skin was made inferior to the occiput. 

After blunt dissection of the tissue and neck muscles through the midline, the dura was penetrated be-

tween the third and fourth vertebra by a 26G needle, and 100μl of CSF was collected. 

CSF samples o f  ra ts  (ALS) 

ALS is a neurodegenerative disease characterized by the combined degeneration of central motor neu-

rons and peripheral motor neurons, whose cell bodies are located in the motor cortex, and in the spinal 

cord and brainstem, respectively [410, 411]. Only one specific biomarker has so far been found and is 

known as the TAR DNA binding protein (TARDBP, also known as TDP-43) [412]. Due to the lack of 

specific biomarkers, the clinical diagnosis for ALS is based on medical history, clinical examination, 

electromyography, and exclusion of alternative differential diagnoses [413]. This inevitably leads to 

diagnosis difficulties because of the phenotypic heterogeneity of the disease and conditions similar to 

ALS that represent about 7% in population-based studies [414]. Several concentration changes of CSF 

molecules, as well as smaller (NMR-detectable) metabolites have also been reported. These include the 

changes in concentrations of glutamate and N-acetylaspartate (NAA) and its ratio with choline contain-

ing compounds and creatine [415-418]. 

TG rats expressing human mutant G93A-SOD1 [Tac:N:(SD)]-TgN(SOD1G93A)L26H [Emerging 

Models, sponsored by Amyotrophic Lateral Sclerosis Association, Taconic, Hudson, NY, USA] devel-

op a motor neuron disease similar to human ALS [419]. Hemizygous rats over-express human mutant 

G93A-SOD1 at levels increasing from 8-fold over endogenous superoxide dismutase (SOD1) in pre-

symptomatic rats to 16-fold in end stage animals. Disease onset is determined by limb gait and occurs 

on average at 115 days (16 weeks). From the onset the disease progresses rapidly to end stage within 

11 days. The end stage of the disease was determined by righting reflex test, where the animal was 

placed on its side and if the rat was not able to right itself in 30 seconds, it was scored as death and 

sacrificed. Righting reflex failure typically coincides with complete paralysis of both hind limbs and 

one forelimb as a result of substantial loss of spinal cord motor neurons, as well as marked increases in 

gliosis and degeneration of muscle integrity and function. 

The TG and wild type (WT) were aged (and sacrificed) as follows: TG presymptomatic: 3 males, ages 

12w, 16w, 16w; 3 females, ages 14w, 14w, 15w, TG end stage:  3 males, ages 19w, 20w, 20w; 3 fe-

males, ages 19w, 21w, 21w, TG PDTC end stage:  3 males, ages 18w, 18w, 20w; 3 females, ages 14w, 

14w, 15w, WT:  3 males, ages 14w, 16w, 16w; 3 females, ages 21w, 21w, 21w. Sacrificed animals 
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were anaesthetized with 40mg/kg pentobarbital and perfused transcardially with saline and extracted 

tissues were frozen in liquid nitrogen and stored at –80°C. G93ASOD1 rats were also treated with pyr-

rolidine dithiocarbamate (PDTC) on a dose of 50 mg/kg/day (for females) 25 mg/kg/day (for males) 

and starting at 70 days of age. The TG_PS, TG_ES, and WT rats received plain water. PDTC treated or 

untreated animals were anesthetized with 40mg/kg pentobarbital, perfused transcardially with saline 

and extracted tissues were either frozen in liquid nitrogen and stored at –80C or post-fixed with 4% 

paraformaldehyde for 24 h, cryoprotected with 30% sucrose for three days and then frozen in liquid 

nitrogen and stored at –80°C. 

A rat was anaesthetized and placed prone on the stereotaxic instrument. A sagittal incision of the skin 

was made inferior to the occiput. After blunt dissection of the tissue and neck muscles through the 

midline, the dura was penetrated between the third and fourth vertebra by a 26G needle, and 100μl of 

CSF was collected. 

Stat is t ical  analysis  

To provide an overview of the amount of rats in each disease category, the sample amounts are pre-

sented in Table 26. Furthermore, an ANOVA analysis with multiple comparisons was performed on 

the data. The results are presented in Table 27 (stroke), Table 29 (PD), and Table 31 (ALS) with signi-

ficances flagged according to post hoc tests. Additionally, average metabolite concentrations relative to 

TSP (TSP=100) were calculated and are presented along with standard deviations in Table 28 (stroke), 

Table 30 (PD), and Table 32 (ALS). 
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Table 26. Rat sample amounts showing class and group sizes for the different rats that were analyzed. 
Abbreviations: TG_PS= TG presymptomatic, TG_ES=TG end stage, TG_PDTC=TG PDTC treated, 
WT=wild type. 

Diagnosis Number of samples 

ALS 

Total 24 
TG_PS 6 
TG_ES 6 

TG_PDTC 6 
WT 6 

Stroke 

Total 50 
Sham 11 

Vehicle 14 
Drug1 13 
Drug2 12 

PD 

Total 81 
Sham 10 

Vehicle 15 
Drug1 15 
Drug2 14 
Drug3 11 
Drug4 16 

NMR Spectroscopy 

The NMR samples were prepared according to the following protocol: The original samples with a 

volume of ca. 100 �l were subjected to an identical lyophilization protocol for ca. 24 hours. The 

freeze-dried samples were then stored at -20°C in sealed vials until analysis. Prior to NMR measure-

ments, all samples were reconstituted in 75 �l of D2O (99.98%-D, Merck). Five microliters of 21.5 

mM TSP-d4 (3-(trimethylsilyl)-propionic-2,2,3,3-d4 acid) in D2O was added and used as an internal 

standard of known concentration. All spectra were measured using a Bruker AVANCE DRX 500 in-

strument operating at 500.13 MHz (Bruker-Biospin GmbH, Karlsruhe, Germany) equipped with a 

broadband inverse probe (2.5 mm BBI  BB, 1H, Z-Grad). The Bruker XWIN-NMR software version 

3.5 pl 6 was used for acquisition of all spectra. The pH of the samples was not adjusted, being typically 

around 7.00±0.05. This pH can be defined as pH*, which is the reading of the pH meter as measured 

with a standard pH electrode. The pD value is ca. 0.4 units higher than pH*. The relevant parameters 

used in the 1D experiments, were calibrated and used as follows: recycling delay 45 s, acquisition time 

6.5 s, number of scans 128, and a sweep width of 9.5 ppm. A calibrated 90° pulse was used for all 

spectra and all acquisitions were performed on non-spinning samples. The metabolite concentrations 

used in the analyses were derived from standard 1D 1H NMR spectra. 
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Quanti f icat ion 

Quantification for the different models used for classification purposes was performed by using the 

CTLS protocol previously used in human studies [26]. A slightly different collection of metabolites 

was however used because of a) the presence of anesthetic metabolites in the CSF and, b) because of 

the fewer amount of metabolites present in rat CSF (when compared with human CSF). All spectral 

model creation and quantification was performed by using PERCH NMR Software version 2008.1 

(PERCH Solutions Ltd., Kuopio, Finland). 

Results and discussion 

Stroke 

No statistically significant differences between the vehicle and sham groups were detected in ischemic 

rats (Table 27). This is likely due to the experimental conditions; the vehicle (i.e. “diseased”) samples 

were acquired two months after tMCAO. The rats recovered spontaneously from the blood loss in the 

brain resulting in nearly identical metabolite concentrations than in the sham (i.e. control) rats. 

Statistically significant differences in formate and area1 metabolite concentrations were still discov-

ered between vehicle rats and rats belonging to drug group 2 (Table 27). Rats treated with drug2 had 

significantly lower levels of formate and area1 metabolites (Table 28). This little tidbit of information 

is however not very useful in determining disease progression and neurologically significant metabo-

lite correlations. 

  



Chapter 4 
 

Kuopio Univ. Publ. C. Nat. and Environ. Sci. 267: 1-155 (2009)                                                                                               127 

 

Table 27. The level of statistical significance of the metabolite concentrations in stroke rats. The signific-
ances are presented as is (ANOVA). The group column designates the groups between which the signific-
ance exists (if significance still exists post hoc Sidak), e.g. V/D1 means that there is a significant variance 
between the V and D1 group rats in the level of the metabolite in question. Abbreviations as follows: 
S=sham, V=vehicle, Dn=drug group n. 

ANOVA/STROKE 
Metabolite F Sig. Groups 
��hydroxybutyrate 1.87 0.15 
Lactate 0.33 0.80 
AREA1 (1.25-1.30 ppm) 3.43 0.02 V/D2 
AREA2 (1.05-1.10 ppm) 2.06 0.12 
AREA3 (1.38-1.48 ppm) 0.45 0.72 
Leucine/Lysine 0.51 0.68 
Acetate 3.26 0.03 ! 
Glutamine/Glutamate 0.09 0.97 
��aminobutyrate 2.25 0.10 
Pyruvate 1.42 0.25 
Glutamate 0.34 0.79 
Glutamine 0.05 0.98 
Citrate 0.03 0.99 
AREA4 (2.98-3.03 ppm) 0.15 0.93 
Creatine 0.49 0.69 
Creatinine 0.44 0.73 
Glucose 0.14 0.94 
Myo-Inositol 0.06 0.98 
Hippurate 0.69 0.56 
Formate 7.73 0.00 S&V/D2 
!No significance post hoc Sidak in 
sham/vehicle groups 
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PD 

As in the stroke rats, no statistically significant differences between the vehicle and sham groups were 

detected in PD rats (see Table 29). This is again likely due to the experimental conditions; the vehicle 

samples were acquired 6 weeks after treatment. Statistically significant concentration differences were 

detected when comparing the sham and vehicle groups with several drug groups: area1 metabolite con-

centrations were significantly higher in the sham and vehicle groups than in drug groups, area3 con-

centrations were higher in vehicle rats than in drug2 treated rats, leucine and lysine concentrations 

were higher in sham and vehicle rats than in drug2 and drug4 treated rats, acetate concentrations were 

higher in sham rats than in drug2 treated rats, and ��aminobutyrate (GABA) concentrations were high-

er in vehicle rats than in drug4 treated rats (Table 30). Still, without knowledge of the drug names or 

types of effect, one can only conclude that the drugs do have an effect on some aspects of the disease, 

but no specifics can be deduced on the basis of this limited knowledge. 

Table 29. The level of statistical significance (ANOVA) of the metabolite concentrations in PD rats. Details 
and abbreviations as in Table 27. 

ANOVA/PD 
Metabolite F Sig. Groups 
��hydroxybutyrate 1.83 0.12 
Lactate 2.04 0.08 
AREA1 (1.25-1.30 ppm) 12.81 0.00 S & V/ALL DRUG G 
AREA2 (1.05-1.10 ppm) 1.29 0.28 
AREA3 (1.38-1.48 ppm) 3.70 0.01 V/D2 
Leucine/Lysine 5.21 0.00 S&V/D2 + S&V/D4 
Acetate 3.03 0.02 S/D2 
Glutamine/Glutamate 1.91 0.10 
��aminobutyrate 3.68 0.01 V/D4 
Pyruvate 0.32 0.90 
Glutamate 1.80 0.12 
Glutamine 2.43 0.04 ! 
Citrate 2.10 0.08 
AREA4 (2.98-3.03 ppm) 2.19 0.06 
Creatine 0.53 0.75 
Creatinine 1.53 0.19 
Glucose 1.67 0.15 
Myo-Inositol 1.48 0.21 
Hippurate 1.41 0.23 
Formate 1.13 0.35 
!No significance post hoc Sidak in 
sham/vehicle groups 
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ALS 

In the ALS rats, many statistically significant concentration differences between groups were found 

(Table 31); most of these were between the TG_PS and TG_ES groups (��hydroxybutyrate, lactate, 

glutamine, glutamate, citrate, area4, and creatine). Differences in concentrations were also detected 

between TG_PS and TG_PDTC groups (area2, glutamine, citrate, glucose, and myo-inositol), between 

TG_PS and WT groups (glutamine and formate), and also between TG_ES and WT groups 

(��hydroxybutyrate). The variations of the metabolite concentrations can also be seen in Table 32 with 

standard deviations included. The statistically significant metabolites are nearly the same as in human 

neurodegenerative disease models (Table 23) even though there was no ALS model in the human stu-

dies performed. The only exceptions were myo-inositol and hippurate which have not so far been re-

ported as significant metabolites in ALS [413]. Additionally, the WT type animals have rather different 

metabolite concentrations than the TG groups (Table 32) which might reflect the genetic modification 

of the animals. 

Table 30. The level of statistical significance (ANOVA) of the metabolite concentrations in ALS rats. Ab-
breviations as follows: TG_PS=TG presymptomatic, TG_ES=TG end stage, TG_PDTC=TG PDTC treated 
end stage, WT=wild type. 

ANOVA/ALS 
Metabolite F Sig. Groups 
��hydroxybutyrate 5.11 0.01 TG_PS/TG_ES + TG_ES/WT 
Lactate 3.50 0.03 TG_PS/TG_ES 
AREA1 (1.25-1.30 ppm) 1.20 0.34 
AREA2 (1.05-1.10 ppm) 3.94 0.02 TG_PS/TG_PDTC 
AREA3 (1.38-1.48 ppm) 3.00 0.06 
Leucine/Lysine 2.37 0.10 
Acetate 1.17 0.35 
��aminobutyrate 1.45 0.26 
Pyruvate 1.20 0.33 
Glutamate 2.68 0.08 
Glutamine 7.70 0.00 TG_PS/TG_ES + TG_PS/TG_PDTC + TG_PS/WT 
Citrate 6.18 0.00 TG_PS/TG_ES + TG_PS/TG_PDTC 
AREA4 (2.98-3.03 ppm) 3.93 0.02 TG_PS/TG_ES 
Creatine 3.91 0.02 TG_PS/TG_ES 
Creatinine 2.19 0.12 
Glucose 3.96 0.02 TG_PS/TG_PDTC 
Myo-Inositol 3.74 0.03 TG_PS/TG_PDTC 
Hippurate 1.08 0.38 
Formate 3.99 0.02 TG_PS/WT 
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Conclusions 

On the basis of the results, it can be concluded that NMR metabolomics is an efficient method of ac-

quiring metabolite concentrations to be used in further analyses. A further advantage in the use of ani-

mal models in metabolomics studies is that the variation between samples is not as great as in human 

studies because of inbred animals with a standardized environment. And even though the number of 

NMR detectable metabolites is lower in rats than in human, several key metabolites related to neuro-

degenerative disorders can relatively easily be detected and quantified.  
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5. FUTURE PROSPECTS 

Metabolomics is still a relatively new but rapidly (if not exponentially) growing field that has the po-

tential to impact our understanding of the molecular mechanism of disease. A state of disease com-

monly disrupts metabolism and leaves behind signatures that can be identified and defined by using 

metabolomics protocols. A deeper understanding of global perturbations in biochemical pathways in 

complex diseases such as AD, and upon treatment with drugs, could provide valuable insight to the 

mechanisms of disease, drug effects, and variation in drug response and provide needed diagnostic, 

prognostic and surrogate biomarkers. Additionally, metabolomics could provide biochemical labels to 

the diverse clinical manifestations of CNS diseases leading to a more extensive and thorough classifi-

cation of disease based on different etiologies and biochemical perturbations. This could in turn 

streamline clinical trials and improve outcomes. It should however be noted that this is still the learn-

ing phase and therefore the research at this stage represents the first steps toward the development of a 

metabolic signature as a biomarker for a disease or its treatment [211, 420]. Many confounding factors 

exist and the sample sizes have been relatively small so far. The proper matching of patients and con-

trols for age, gender, ethnic background, and many other factors should be considered carefully be-

cause a change or difference in only one of these factors (e.g. a different ethnic background if several 

patients) can result in a large effect in the final results. All of the above, and furthermore, drugs and 

environment, immensely contribute to human biocomplexity and identification of subtle metabolic 

variations associated with various diseases is a great challenge. A close monitoring of diet and exercise 

and the possible effects of medication should also be considered along with other possible disease 

states. Longitudinal studies are required to confirm and expand on these initial findings, and further-

more, replication studies and blinded studies are needed to validate the markers identified. Connecting 

central and peripheral changes in CNS disorders could be the key to defining if and how biochemical 

changes in plasma are related to changes in the brain. Combining metabolomics with imaging ap-

proaches and other omics approaches might be powerful ways to achieve these goals [211]. 

Currently, the metabolomics applications of NMR spectroscopy and MS to diseases have provided 

better insights into the altered metabolic pathways and disease pathogenesis. However, for applications 

in early diagnosis the technology is still in its evolutionary stages. Further studies focused on the de-

convolution of confounding effects are required. NMR generally detects relatively highly concentrated 

metabolites and it is normally thought to lack sufficient sensitivity to detect more specific biomarkers 

featuring a low concentration. Although the latest technological advancements have demonstrated a 

dramatic reduction in the detection limit of NMR using pure substances, such methods are still not 

considered high throughput for routine biological sample analysis. By combining the latest advance-
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ments in NMR methods and targeted metabolite profiling using sensitivity enhanced approaches, such 

as isotope labeling or others, a breakthrough in biomarker detection may be achieved. While MS is 

more sensitive than NMR, it may not be the solution at this stage since there are problems with repro-

ducibility arising from the chromatography of biofluids and with factors such as matrix effects and ion 

suppression. Anyhow, due to recent technological advancements, the future outlook for NMR and MS 

based metabolomics does look promising [10, 421]. 

The future is therefore likely to bring a significant role for metabolomics into different areas of disease 

and drug research. This can in turn help us toward the ultimate goal in personalized medicine: provid-

ing the right medicine to the right patient at the right time [422]. Combining different techniques and 

omics can also lead to an even more widespread application base for metabolomics, hopefully resulting 

in more accurate disease progression monitoring and diagnosis. 
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