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ABSTRACT

Polyamines (putrescine, spermidine and spermine) are ubiquitous low molecular weight amines
that are positively charged under physiological conditions. Homeostatic control of intracellular
polyamine levels is achieved by regulating the synthesis, catabolism and transport of these
molecules. Spermidine/spermine N1-acetyltransferase  (SSAT)  is  the  key  enzyme  in  the
catabolism of polyamines. The overexpression or loss of this enzyme leads to the corresponding
activation or deficiency of polyamine catabolism. Polyamines are involved in many cellular
processes such as cell growth, signal transduction, stabilization of negative charged
macromolecules, modulation of potassium and calcium channels and stimulation of transcription
and translation. Since transgenic mice overexpressing SSAT (SSAT mice) surprisingly exhibited
reduced subcutaneous white adipose tissue (WAT) mass, the role of polyamine catabolism in the
regulation of glucose, energy and lipid metabolism was investigated using transgenic mice
overexpressing or deficient for SSAT.

The characterization of SSAT mice revealed that these mice exhibited severely reduced
whole body WAT mass, elevated energy expenditure, high insulin sensitivity, a low tissue
triglyceride content, increased number of mitochondria and overexpression of the oxidative
phosphorylation genes coordinated by increased levels of peroxisome proliferator activated

receptor � co-activator 1� (PGC-1�) in WAT. The induction of PGC-1� was attributable to
activated polyamine catabolism-mediated depletion in the cellular ATP pool which activated the

cellular energy sensor, 5’-AMP-activated protein kinase (AMPK) and PGC-1�. These results
suggest that the enhancement of cellular ATP consumption is an efficient way to reduce body
WAT mass and improve glucose metabolism.

Furthermore, activated polyamine catabolism caused a significant reduction in plasma
total cholesterol levels in SSAT mice by increasing the elimination of cholesterol from the body
via bile acid synthesis. The hepatic expression of cholesterol 7�-hydroxylase (CYP7A1), the
rate-limiting gene in bile acid synthesis, was induced by PGC-1�, the protein stability and
activity of which was increased most likely due to the reduction in the protein levels of Akt
evoked by activated polyamine catabolism. Therefore, activation polyamine catabolism is a novel
way of inducing bile acid synthesis and lowering circulating total cholesterol levels.

The deficiency in polyamine catabolism resulted in insulin resistance in aged SSAT
knockout (KO) mice. Thus, the maintenance of normal glucose homeostasis seems to require
functional polyamine catabolism. However, the deficiency of polyamine catabolism did not
evoke any major changes in body WAT mass or lipid metabolism in SSAT-KO mice.

Our results demonstrate that polyamine catabolism is involved in the regulation of energy
balance, and glucose and cholesterol metabolism in mice.

National Library of Medicine Classification: QU 61
Medical Subject Headings: Polyamines/metabolism; Metabolism; Acetyltransferases; Animals,
Genetically Modified; Mice, Transgenic; Homeostasis; Glucose/metabolism; Energy
Metabolism; Lipid Metabolism; Cholesterol/metabolism; Bile Acids and Salts/metabolism;
Adipose Tissue, White/growth & development; Adipose Tissue, White/cytology; Liver; Gene
Expression; Trans-Activators/genetics; Trans-Activators/metabolism; AMP-Activated Protein
Kinases; Cholesterol 7-alpha-Hydroxylase.
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ABCA1 ATP binding cassette protein A1
ABCG5 ATP binding cassette protein G5
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ACAT2 Acyl CoA:cholesterol acyltransferase 2
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AMPK 5’-AMP-activated protein kinase
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GLUT4 Glucose transporter 4
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NRF Nuclear respiratory factor
NRF-1 Nuclear respiratory factor 1
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1 INTRODUCTION

Energy is required for all cellular processes (Alberts et al., 1994). Energy homeostasis occurs

when energy intake is matched to energy expenditure through complex peripheral and

central regulatory pathways. Energy obtained from the chemical bonds present in nutrients is

released  during  cellular  respiration  and  this  energy  is  used  to  form  the  cellular  energy

currency, ATP, through oxidative phosphorylation (OXPHOS) in mitochondria.

Glucose is a vital source of energy in the cell (Murray et al., 1993; Aronoff et al.,

2004). In particular, the brain is entirely dependent upon glucose as a fuel. The circulating

glucose level is under the homeostatic control in order to maintain a near-constant glucose

level to protect the brain from fuel deprivation. Several hormones, particularly insulin and

glucagon, act to control glucose levels. An increase in the glucose concentration stimulates

the pancreas to release insulin, and insulin in turn promotes glucose uptake in peripheral

tissues. A low glucose level stimulates the pancreas to release glucagon which promotes the

hepatic conversion of organic molecules such as lactate, pyruvate, glycerol and amino acids

to glucose through gluconeogenesis. In addition, glucagon stimulates glycogen breakdown to

glucose to normalize the blood glucose levels.

Cholesterol is an important membrane component serving as a precursor for the

synthesis of bile acids, steroid hormones and D vitamin (Murray et al., 1993). Bile acids are

known to be important for the solubilization of other lipids but they also act as regulatory

molecules (Hylemon et al., 2009). Bile acids enhance energy expenditure via cyclic AMP

(cAMP)-dependent thyroid hormone activation (Watanabe et al., 2006) and control glucose

homeostasis by inducing insulin signaling in the liver (Dent et al., 2005). The intracellular

cholesterol content is regulated via coordinated control of cholesterol synthesis, secretion

and uptake (Dietschy et al., 1993). The balance of bile acid synthesis, biliary excretion and

reabsorption from the small intestine plays a pivotal role in the regulation of cellular

cholesterol homeostasis.

Peroxisome proliferator activated receptor � co-activator  1  (PGC-1) � (PGC-1�)  is  a

key factor regulating energy and glucose homeostasis by stimulating mitochondrial

biogenesis, fatty acid oxidation, OXPHOS, uncoupling, thermogenesis, gluconeogenesis and

glucose transport (Puigserver and Spiegelman 2003). Overexpression of PGC-1� in white

adipose tissue (WAT) reduces WAT mass, increases metabolic rate, uncoupling and insulin

sensitivity in mice (Cederberg et al., 2001; Tsukiyama-Kohara et al., 2001). In addition to

being the key regulator of energy metabolism, PGC-1� also participates in the control of
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cholesterol homeostasis because it stimulates the rate-limiting gene in hepatic bile acid

synthesis, cholesterol 7�-hydroxylase (CYP7A1) (Shin et al., 2003).

The naturally occurring polyamines, putrescine, spermidine and spermine, are small

cationic molecules that are found in all eukaryotic cells (Jänne et al., 2005). One well-known

function of polyamines is their ability to promote cell growth and neoplastic transformation.

The polyamine content in the cell is regulated through the complex control of synthesis,

catabolism, uptake and excretion. The rate-limiting enzyme in polyamine catabolism is

spermidine/spermine N1-acetyltransferase (SSAT). Overexpression of this enzyme activates

polyamine catabolism leading to the accumulation of putrescine and a reduction in the

spermidine and/or spermine pools. Transgenic mice having ubiquitous overexpression of

SSAT (SSAT mice) were originally generated for cancer research. Since SSAT mice had

severely reduced subcutaneous WAT mass (Pietilä et al., 1997), we investigated the

involvement of polyamine catabolism in the regulation of glucose, energy, and cholesterol

metabolism and especially in the control of PGC-1� expression in WAT and liver using

mice either overexpressing or deficient for SSAT.
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2 REVIEW OF LITERATURE

2.1 Polyamine metabolism

2.1.1 Overview of polyamines

The polyamines, putrescine, spermidine and spermine, are small aliphatic molecules that

exists in all eukaryotic cells (Cohen 1998). They have two or more primary amino groups and

are positively charged at physiological pH. Due to their cationic nature, polyamines can

interact very tightly via hydrogen bonding, ionic and covalent linkages, and hydrophobic

interactions with negatively charged molecules such as DNA, RNA, proteins and

phospholipids  and  this  way  they  can  change  their  structure  and function. Polyamine

metabolism can be more preferably viewed as a cycle rather than as two distinct linear

pathways consisting of synthesis and catabolism (Fig. 1).
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Figure 1. Polyamine cycle. Spd, spermidine; Spm, spermine; Met, methionine and AdoMet,
S-adenosylmethionine. Modified from (Jänne et al., 2005).

2.1.2 Synthesis

2.1.2.1 Overview

The enzymes involved in the biosynthesis of polyamines are ornithine decarboxylase (ODC),

S-adenosylmethionine decarboxylase (AdoMetDC), spermidine synthase (SPDSy) and
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spermine synthase (SPMSy) (Fig. 1) (Cohen 1998). The first rate-limiting step in the

synthesis of polyamines is the formation of putrescine by decarboxylation of L-ornithine,

which is catalyzed by ODC (EC 4.1.1.17). This is followed by the conversion of S-

adenosylmethionine to decarboxylated S-adenosylmethionine (dcAdoMet) by AdoMetDC

(EC 4.1.1.50). The addition of dcAdoMet to putrescine leads to the synthesis of spermidine

via the action of SPDSy (EC 2.5.1.16). The addition of dcAdoMet to spermidine then leads to

synthesis of spermine catalyzed by SPMSy (EC 2.5.1.22). In mammals, ornithine is an

exclusive precursor for de novo synthesis of polyamines. It can be derived from the

circulation or it can be synthesized within the cell from arginine by the enzyme arginase.

2.1.2.2 Ornithine decarboxylase

Eukaryotic ODC is a pyridoxal phosphate-dependent enzyme which acts as a homodimer

(Coleman et al., 1994). ODC has a very low half-life (~10-30 min) (Davis et al., 1992). The

stability of ODC is regulated by a protein termed antizyme (AZ) which binds to ODC

monomer and directs ODC to degradation by the 26S proteosome (Elias et al., 1995). A

decline in polyamine concentrations triggers a decrease in the transcription and translation of

AZ while high levels of polyamines increase AZ content by increasing synthesis and reducing

degradation (Nilsson et al., 1997). The effect of AZ on ODC can be blocked by antizyme

inhibitor which binds AZ more tightly than ODC and thereby releases ODC from the ODC-

AZ complex (Murakami et al., 1996; Nilsson et al., 2000). Another level of the control of the

ODC protein amount is translational regulation by polyamines through cap-dependent and –

independent mechanisms (Shantz and Pegg 1999; Pyronnet et al., 2000). Third level

regulation of ODC occurs in transcription which is affected by many factors e.g. hormones,

growth factors and oncogene c-myc (Pegg 2006). A specific inhibitor of ODC,

difluoromethylornithine (DFMO) has been evaluated as a cancer chemopreventive agent due

to its capability to deplete intracellular polyamine content (Gerner and Meyskens 2004).

2.1.2.3 S-adenosylmethionine decarboxylase

The second rate-limiting enzyme in the biosynthesis of polyamines is AdoMetDc which has a

moderately rapid turnover (a half-life about 1-3 h) (Stjernborg and Persson 1993).

AdoMetDC  is  a  pyruvoyl  enzyme  which  is  synthesized  as  a  proenzyme  that  undergoes  an

intramolecular cleavage reaction forming �- and �-subunits (Pegg et al., 1998). In mammals,

AdoMetDC exists as a tetramer consisting of two pairs of �- and �-subunits. Growth factors



19

and hormones like insulin increase the transcription of AdoMetDC (Soininen et al., 1996).

Putrescine increases the activity of AdoMetDC and accelerates the cleavage of proenzyme

(Pegg et al., 1988; Stanley et al., 1994). High levels of spermidine and spermine suppress the

transcription and mRNA translation of AdoMetDC whereas depletion of these higher

polyamines increases the mRNA and protein synthesis (Shirahata and Pegg 1986; White et

al., 1990; Shantz et al., 1992).

2.1.2.4 Spermidine synthase and spermine synthase

SPDSy and SPMSy share similar properties. Both consist of two identical subunits, they are

constitutively expressed and the proteins are substantially more stable than ODC and

AdoMetDC (Pegg 1986; Kajander et al., 1989; Seiler 1990). These enzymes have been less

extensively studied since they do not play a rate-limiting role in polyamine biosynthesis.

2.1.3 Catabolism

2.1.3.1 Overview

Intracellular polyamine concentrations are also controlled by catabolism, allowing the

conversion of spermine and spermidine back to putrescine (Cohen 1998). The polyamine

catabolism involves acetylation of spermidine and spermine by the rate-limiting enzyme

SSAT (Fig. 1) (EC 2.3.1.57). Acetyl-CoA is the acetyl group donor for this reaction in which

SSAT transfers the acetyl group from acetyl-CoA to the N1-positions of spermidine and

spermine. Thereafter, polyamine oxidase (PAO) (EC 1.5.3.11) converts acetylated

polyamines into spermidine and putrescine, respectively (Fig. 1). In addition, spermine can be

converted directly to spermidine without acetylation by spermine oxidase (SMO) (Fig. 1.)

(EC 1.5.3.3) (Vujcic et al., 2003).

2.1.3.2 Spermidine/spermine N1-acetyltransferase

Human SSAT gene is located on chromosome Xp22.1 (Xiao et al., 1992) and it encodes a 20

kDa protein consisting of 171 amino acids (Casero et al., 1991). The SSAT gene contains six

exons which encode mRNAs of about 1.3 and 1.5 kb (including polyA) (Fogel-Petrovic et al.,

1993). An alternative splice variant including an additional 110 bp exon between exons 3 and

4 has also been identified (Hyvönen et al., 2006). The promoter region of SSAT lacks a

TATA box but contains putative recognition sequence(s) for polyamines and transcription
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factors such as Sp1, AP1, nuclear factor �B, CCAT/enhancer binding protein �, cAMP

response element binding protein (CREB) and peroxisome proliferator activated receptor

(PPAR) � (PPAR�) (Wang et al., 1998; Tomitori et al., 2002; Ignatenko et al., 2004; Pegg

2008).

SSAT is considered to be predominantly a cytosolic enzyme, but recent studies have

revealed that SSAT also localizes into nucleus and mitochondria (Holst et al., 2008; Uimari et

al., 2009). SSAT acts as a homodimer (Bewley et al., 2006) and has a rapid turnover rate

having a half-life less than 30 min (Matsui and Pegg 1981; Persson and Pegg 1984). Under

basal conditions, the SSAT activity is very low but SSAT shows high inducibility in response

to several factors including polyamines and polyamine analogues (Pegg 2008), stress, fasting,

hormones, growth factors, toxic agents, nonsteroidal anti-inflammatory drugs (Babbar et al.,

2006) and resveratrol (Ulrich et al., 2006). The induction of SSAT activity by polyamines

and polyamine analogues occurs through several mechanisms. Gene transcription is increased

by polyamines via nuclear factor erythroid 2-related factor 2 which binds to the polyamine

response element in the promoter of SSAT gene (Wang et al., 1998). Polyamines and

polyamine analogues increase the stability of SSAT mRNA (Fogel-Petrovic et al., 1993;

Fogel-Petrovic  et  al.,  1996;  Hyvönen et  al.,  2006),  mRNA translational  efficiency  (Parry  et

al., 1995) and stabilize SSAT protein by preventing its ubiquitination and targeting to

proteosomal degradation (Coleman and Pegg 2001). The other inducers of SSAT differs from

polyamines and polyamine analogues in that they may increase SSAT activity by elevating

the cellular content of polyamines either by increasing polyamine synthesis or by releasing

polyamines from bound sites but also by increasing the transcription through the multiple

binding sites for the transcription factors (Pegg 2008). N1,N11-diethylnorspermine

(DENSPM), an N-alkylated polyamine analog, is the most potent and widely used SSAT

activator which has been demonstrated to cause growth inhibition e.g. by depleting polyamine

pools, inhibiting mitochondrial protein synthesis and production of reactive oxygen species

(Snyder et al., 1994; Casero et al., 2005).

The activation of polyamine catabolism by overexpression of SSAT in vivo causes a

massive putrescine accumulation, the appearance of N1-acetylspermidine and a reduction in

spermidine and/or spermine pools (Pietilä et al., 1997). The initial fall in the spermidine and

spermine pools compensatorily increases polyamine biosynthesis, leading to a continuous

supply of polyamines for acetylation by SSAT. This accelerates the turnover rate of

polyamine cycle and the overall flux of polyamines (Jänne et al., 2006). As a consequence of

the enhanced polyamine flux, the consumption of the SSAT co-factor acetyl-CoA, a central
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metabolic intermediate, increases. Indeed, markedly reduced acetyl-CoA pools have been

detected in prostate and WAT of SSAT mice (Kee et al., 2004; Jell et al., 2007).

2.1.3.3 Polyamine oxidase and spermine oxidase

PAO is a flavin adenine dinucleotide-dependent amino oxidase which uses mainly acetylated

polyamines as its preferred substrates (Seiler 1987). PAO is a constitutively expressed protein

having a long half-life (seven days) (Seiler et al., 1980) but N-alkylated polyamine analogues

have been shown to induce the enzyme slightly (Vujcic et al., 2003). A recently discovered

enzyme, SMO, is a flavoenzyme which can use only spermine as a substrate (Vujcic et al.,

2003). Its expression is induced by polyamine analogues mainly at the mRNA level (Wang et

al., 2001). Both PAO and SMO produce cytotoxic H2O2 as a by-product (Seiler 1987; Vujcic

et  al.,  2002).  It  has  been  noted  that  the  release  of  H2O2 is  mainly  derived  from  SMO,  not

PAO, in polyamine analogue –treated breast cancer cells (Pledgie et al., 2005). Other

products of PAO and SMO are reactive aldehydes, acetamidopropanal and aminopropanal,

respectively (Seiler 1987; Vujcic et al., 2002).

2.1.4 Transport

Polyamine transport (uptake and export) is also one of the main ways to control the

intracellular content of polyamines. However, the transport mechanisms in mammalian cells

are not well characterized. In general, the uptake of polyamines is stimulated when the

intracellular polyamine content decreases e.g. due to the inhibition of ODC, whereas the

accumulation of polyamines stimulates export of polyamines out of cells (Seiler et al., 1996).

Extracellular source of polyamines is diet and polyamines can be also released from intestinal

microbes and other cells. The uptake is mediated through an energy-requiring transport

system but transporter gene(s) have not been cloned yet in mammals. However, a protein that

downregulates polyamine uptake has been identified. AZ, in addition to inhibiting of ODC,

reduces polyamine uptake in order to prevent the accumulation of polyamines to toxic levels

(Sakata et al., 2000). The function of polyamine exporter system is not fully understood. It

appears to be carrier-mediated and presumably not facilitated by the transporter involved in

the uptake (Seiler et al., 1996). However, AZ has been also shown to stimulate polyamine

excretion (Sakata et al., 2000). The main polyamines exported from the cell are acetylated

polyamines and putrescine whereas the predominant intracellular polyamine pool consists of

spermidine and spermine (Wallace and Mackarel 1998). Thus, polyamine export seems to be
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a selective and regulated process. Since polyamine catabolism produces acetylated

polyamines, it does appear that polyamine catabolism and export are regulated by the same

factors.

2.1.5 Functions of polyamines and polyamine metabolism

The  most  apparent  function  of  polyamines  is  their  requirement  for  cell  growth  (Tabor  and

Tabor 1984; Jänne et al., 2005). Elevated activity of ODC and the subsequent increase in

polyamine concentrations stimulate cell proliferation (Auvinen et al., 1992). In addition,

polyamines seem to regulate expression of p53, the key factor controlling the cell cycle, (Li

et al., 1999) and polyamines are required for cell cycle progression (Oredsson 2003).

Polyamines have also been shown to play an important role in the regulation of

differentiation though this effect seems to be cell-type specific. Differentiation is inhibited by

polyamines in many tumor cells (Teti et al., 2002) but in other situations polyamines are

essential e.g. during adipogenesis in 3T3-L1 cells (Bethell and Pegg 1981; Vuohelainen et al.,

2009). A very recent study revealed that spermidine is needed to support expression of the

key regulators of adipocyte differentiation, PPAR� and CCAAT/enhancer binding protein �

(CEBP/�) (Vuohelainen et al., 2009). In addition to cell proliferation and differentiation,

polyamines modulate many types of ion channels such as inward-rectifier potassium channels

(Oliver et al., 2000; Phillips and Nichols 2003), voltage dependent Ca2+ channels,  and  N-

methyl-D-aspartic acid receptors (Williams 1997) Furthermore, polyamines stimulate

transcription and translation (Coffino 2000), stabilize DNA (Tabor 1962) and act as signaling

molecules (Bachrach et al., 2001).

The role of polyamines in glucose and lipid metabolism has been largely unexplored.

Spermidine and spermine can mimic insulin in isolated rat adipocytes (Lockwood and East

1974) and increase the stability of insulin mRNA (Welsh 1990) and stimulate proinsulin

biosynthesis (Sjöholm 1993). Furthermore, polyamines, especially spermidine and spermine,

possibly increase the activities of 1,2-diacylglycerol acyltransferase (Jamdar and Osborne

1983) and lipoprotein lipase (LPL) (Giudicelli et al., 1976) but inhibit lipolysis induced by

epinephrine (Lockwood and East 1974). In contrast, a recent study demonstrated that

spermidine is essential for the expression of hormone sensitive lipase (HSL), the rate-limiting

enzyme for lipolysis, and fatty acid synthase (Vuohelainen et al., 2009). The role of

putrescine in glucose metabolism has remained unclear due to controversial results regarding

its effect on glucose transport (Lockwood et al., 1971; Shelepov et al., 1990). Putrescine
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together with spermine has been shown be important for the maintenance of mitochondrial

respiratory chain activity in tumor-bearing mice (Ushmorov et al., 1999).

2.1.5.1 Physiological effects of SSAT overexpression

In humans, SSAT overexpression has been claimed to be involved in some disease states.

Keratosis follicularis spinulosa decalvans is a rare X-linked syndrome, which is caused by the

duplication of X-chromosomal region containing the SSAT gene (Fig. 2) (Gimelli et al.,

2002). This disease causes follicular hyperkeratosis, alopecia and alterations that affect

vision. Isolated fibroblasts from these patients display increased SSAT activity and putrescine

accumulation.
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Figure 2. Effects of SSAT overexpression. KFSD, keratosis follicularis spinulosa decalvans.
(Modified from (Pegg 2008). The shading of the boxes presents the most likely cause for the
physiological change.

The characterization of transgenic mice ubiquitously overexpressing SSAT has revealed

a variety of effects of increased SSAT activity on normal physiology. SSAT mice have a

permanent  hair  loss  at  the  age  of  3  to  4  weeks,  reduced  subcutaneous  fat  mass  and  female

infertility due to the lack of a corpus luteum (Fig .2) (Pietilä et al., 1997). Furthermore,

behaviour and neurological changes like hypoactivity and spatial learning impairment have

been observed (Kaasinen et al., 2004). Most of these changes were proposed to be related to
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putrescine accumulation. Indeed, elevated putrescine accumulation has been shown to disturb

keratinocyte differentiation in vitro and a reduction in the putrescine levels by inhibition of

putrescine biosynthesis was sufficient to stimulate hair regrowth in SSAT mice (Pietilä et al.,

2005). Transgenic rats overexpressing SSAT under the control of the metallothionein

promoter have markedly elevated SSAT activity and thus exhibit a subsequent depletion of

spermidine and spermine pools in the pancreas and liver and these animals have been noted

to experience acute pancreatitis and a blockage of liver regeneration (Fig. 2) (Alhonen et al.,

2000; Alhonen et al., 2002). Since the treatment with stable spermidine analogues was able to

protect them from the onset of pancreatitis and to restore liver regeneration, it was concluded

that spermidine seemed to be the critical polyamine needed for the maintenance of normal

tissue integrity and growth in pancreas and liver, respectively (Räsänen et al., 2002; Hyvönen

et al., 2007).

It has been hypothesized that increased SSAT activity and a subsequent reduction in

spermidine and spermine pools would impair tumorigenesis. However, there is evidence for

and against this hypothesis (Fig. 2). For example, SSAT mice have decreased tumor

incidence in the skin when challenged in a two-stage tumorigenesis test (Pietilä et al., 2001).

Opposite results were obtained with a mouse line in which SSAT cDNA was driven by

keratin 6 promoter (Coleman et al., 2002). In addition, SSAT overexpression has been

reported to enhance tumorigenesis in mice susceptible to intestinal cancer, APCMIN/+ mice

(Debruyne et al., 2001; Tucker et al., 2005). It has been proposed that the increased number

of tumors in mice overexpressing SSAT maybe be attributable to a compensatory increase in

the biosynthesis of polyamines. Another possibility is that the generation of reactive oxygen

species from by-products of polyamine catabolism, H2O2 and reactive aldehydes, contribute

to tumor formation.

Recent studies have shown that altered SSAT expression can change WAT metabolism

in mice (Jell et al., 2007). SSAT overexpression leads to severely reduced whole body WAT

mass with a reduction in acetyl-CoA and malonyl-CoA in WAT (Fig. 2). In SSAT knockout

(SSAT-KO) mice, an opposite relationship between the metabolic intermediates and WAT

mass was observed. Malonyl-CoA is formed from acetyl-CoA in a reaction catalyzed by

acetyl-CoA carboxylase (ACC). Malonyl-CoA is considered to be a key regulator of energy

metabolism because it is an intermediate used for fatty acids synthesis (Wakil et al., 1983)

and it inhibits the rate-limiting enzyme in fatty acid oxidation, carnitine palmitoyltransferase

I (CPT-I) (McGarry and Brown 1997). Jell and coworkers suggested that the accelerated

polyamine flux would result in a diversion of acetyl-CoA to polyamine acetylation instead of



25

the formation of malonyl-CoA (Jell et al., 2007). Consequently, the low malonyl-CoA levels

then activate fatty acid oxidation and inhibit fatty acid synthesis as observed in ACC2 knock-

out mice (Oh et al., 2005). Conversely, a SSAT deficiency increases the availability of acetyl-

CoA for the formation of malonyl-CoA which causes increased fatty acid synthesis and

reduced fatty acid oxidation with a concomitant increase in WAT accumulation. Therefore,

polyamine catabolism does seem to be an important regulator of lipid and energy metabolism.

2.2 Regulation of glucose homeostasis

2.2.1 Overview

Lower blood glucose

Higher blood glucose

� - cells release
glucagon

glycogen breakdown
and gluconeogenesis

�- cells release

insulin stimulates
glucose uptake by
peripheral tissues and
glycogen synthesis

Between meals

Food

stimulates

-

BetweenLower blood glucose

Higher blood glucose

� - cells release
glucagon

glycogen breakdown
and gluconeogenesis

�- cells release

insulin stimulates
glucose uptake by
peripheral tissues and
glycogen synthesis

Between meals

Food

stimulates

-

Between

Figure 3. The maintenance of glucose homeostasis.

The maintenance of blood glucose concentration at a near-constant level is crucial to ensure a

continuous supply of glucose to the brain (Murray et al., 1993). Glucose homeostasis is

controlled very similarly in humans and mice through insulin secretion by the pancreas,

hepatic glucose output, and glucose uptake by liver and peripheral tissues (skeletal muscle

and WAT) (Aronoff et al., 2004). The main hormones regulating glucose homeostasis are

insulin and glucagon, and the balance between these two hormones is the key factor in the

control of glucose homeostasis. Other important hormones are e.g. epinephrine and

glucocorticoids.

Glucose can enter the circulation from three sources: intestinal absorption after the

digestion of food, glycogen breakdown and gluconeogenesis (Aronoff et al., 2004). When the

blood glucose concentration raises, pancreatic �-cells release insulin into the circulation (Fig.

3.). The result is a lowering of blood glucose concentration. When blood glucose is low,
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pancreatic �-cells release glucagon into the circulation thereby elevating the blood-glucose

concentration to the desired level (Fig. 3).

2.2.2 Insulin

Insulin is the key anabolic hormone which reduces glucose levels by stimulating glucose

uptake in peripheral tissues, increasing glycogen synthesis and inhibiting hepatic glucose

production (Murray et al., 1993; Aronoff et al., 2004). Insulin promotes the storage of lipids

by increasing triglyceride (TG) synthesis, inhibiting lipolysis, enhancing hydrolysis of TGs

from either hepatic very-low-density lipoproteins (VLDLs) or dietary chylomicrons and

inhiting the conversion of diet-originated free fatty acids (FFAs) to TG-rich VLDL particles.

In addition, insulin promotes the storage of proteins by increasing the synthesis and

enhancing the cellular uptake of amino acids in liver and skeletal muscle.
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Figure 4. Simplified overview of insulin signalling pathways. Grp2, growth receptor binding
protein 2; SOS, Son of sevenless; IRS, insulin receptor substrate proteins; CAP, Cbl-
associated protein and Cbl, c-Cbl proto-oncogene.
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The effects of insulin are mediated through the integrated network of insulin signalling

molecules (Fig. 4). The initial step in the signal transduction cascade is the binding of insulin

to its receptor which undergoes autophosphorylation of tyrosine residues (Taniguchi et al.,

2006). Increase in insulin receptor tyrosine kinase activity results in the phosphorylation of

insulin receptor substrate proteins which mediate the signal via either the

phosphatidylinositol 3 –kinase (PI3K)–Akt–Akt substrate of 160 kDa (AS160) pathway or

down the Ras-mitogen activated protein kinase (MAPK) pathway. The PI3K–Akt-AS160

pathway regulates the metabolic actions of insulin such as glucose transporter (GLUT) 4

(GLUT4) translocation and synthesis of glycogen, lipids and proteins. The Ras–MAPK

pathway regulates gene expression and stimulates cell growth and differentiation

cooperatively with PI3K-Akt pathway. In addition, the insulin receptor tyrosine kinase

phosphorylates c-Cbl proto-oncogene which forms a complex with Cbl-associated protein,

resulting in the activation of GTPase TC10 and an increase in GLUT4 translocation.

However, the importance of c-Cbl proto-oncogene/Cbl-associated protein pathway in insulin

signal transduction is not clear.

2.2.3 Glucagon

Glucagon is the key catabolic hormone consisting of 29 amino acids (Aronoff et al., 2004). It

is secreted from pancreatic �-cells, and its secretion is stimulated by low and inhibited by

high concentrations of glucose. The metabolic actions of glucagon are the opposite to those

of insulin. Glucagon stimulates hepatic endogenous production of glucose and ketogenesis

and inhibits hepatic glycogen synthesis and glycolysis (Aronoff et al., 2004; Agius 2007).

2.2.4 Glucose uptake

After  an  oral  glucose  load,  approximately  one-third  of  the  total  glucose  amount  is  equally

taken up by peripheral, splanchnic (liver and intestine) and non-insulin-dependent (brain and

kidney)  tissues  (DeFronzo  2004;  Meyer  et  al.,  2002).  Skeletal  muscle  is  the  major  site  for

insulin-stimulated glucose disposal whereas only 5-10% is accomplished by WAT (DeFronzo

2004). Glucose is a hydrophilic molecule and therefore specific transport proteins are

required to allow it to enter cells (Bouche et al., 2004). In mammals, energy-independent

transport of glucose is mainly accomplished by 13 different isoforms of facilitative glucose

transporters (GLUT1-13) (Uldry and Thorens 2004). GLUT1 is a widely expressed isoform

which facilitates glucose transport in many cells under basal conditions. GLUT2 is present in

pancreatic �-cells and in tissues exposed high glucose flux like intestine and liver. GLUT4
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mediates insulin-stimulated glucose uptake in skeletal and cardiac muscle, WAT and brown

adipose tissue (BAT) (Uldry and Thorens 2004). GLUT4 is found in the intracellular storage

vesicles and insulin increases the rate of GLUT4 translocation from its storage  site  to  the

plasma membrane through the mechanisms shown in Figure 4. Exercise also stimulates the

movement of GLUT4 to the cell surface through insulin-independent mechanisms including

the action of 5’-AMP-activated protein kinase (AMPK), calcium/calmodulin-dependent

protein  kinase  and  protein  kinase  C (PKC)  (Rose  and  Richter  2005).  After  transport  to  the

cell, glucose is phosphorylated to glucose-6-phosphate by different isoforms of hexokinase

(HK) (HKI-III, glucokinase) (Wilson 1995). HKII is the main isoform in insulin-sensitive

tissues whereas glucokinase is expressed in the liver and pancreas.

2.2.5 Glycolysis and glucose oxidation

Glycolysis  is  the  main  pathway  for  glucose  utilization  (Murray  et  al.,  1993;  Bouche  et  al.,

2004). It occurs in the cytosol of all mammalian cells and it represents the formation of

pyruvate from glucose. The first phase, conversion of glucose to fructose 1,6-bisphosphate, is

the energy requiring phase and the second phase, degradation of fructose 1,6-bisphosphate to

pyruvate, is considered as an energy-yielding phase. Under anaerobic conditions (e.g. in

exercising muscle), pyruvate is metabolized to lactate in a reaction catalyzed by lactate

dehydrogenase. In the presence of oxygen, pyruvate goes down two mitochondrial steps,

citric acid cycle and respiratory chain, to produce ATP (glucose oxidation). Three irreversible

reactions catalyzed by hexokinase (or glucokinase), phosphofructokinase and pyruvate kinase

are the major sites for the regulation of glycolysis. These enzymes are under allosteric control

and  their  rate  of  transcription  is  regulated  by  insulin  and  glucagon.  The  pyruvate

dehydrogenase (PDH) complex determines the conversion of pyruvate to acetyl-CoA in

mitochondria and is the major indicator of the rate of glucose oxidation. The regulation of

PDH activity is complex, involving allosteric, post-translational and transcriptional control

mechanisms (Patel and Korotchkina 2006).

2.2.6 Endogenous production of glucose

Gluconeogenesis means the formation of glucose from noncarbohydrate sources, such as the

breakdown of muscle proteins (alanine), anaerobic glycolysis (lactate) and the glycerol

portion of fats (Murray et al., 1993; Bouche et al., 2004). The liver is the main tissue

responsible for gluconeogenesis but the kidneys can also participate to some exent in times of
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extreme starvation. Glucose-6-phosphatase (G6Pase), the enzyme necessary for the release of

glucose into the circulation, catalyzes the rate-limiting enzyme step but phosphoenolpyruvate

carboxykinase (PEPCK) plays also an important role in this process. Transcription of G6Pase

and PEPCK is stimulated by glucagon, epinephrine and glucocorticoids whereas it is

suppressed by insulin (Barthel and Schmoll 2003). Glucose storage occurs in skeletal muscle

and in liver where glucose is converted to glycogen through glycogenesis (Murray et al.,

1993; Bouche et al., 2004). Insulin stimulates the rate-limiting enzyme in glycogenesis,

glycogen synthase, by promoting its dephosphorylation while glucagon and epinephrine

induce glycogen synthase phosphorylation and inhibit its activity. Complete breakdown of

glycogen to glucose is accomplished through glycogenolysis by the concomitant action of

glycogen phosphorylase and glycogen debranching enzyme. Glucagon and epinephrine

promote glycogenolysis by increasing phosphorylation and activation of glycogen

phosphorylase whereas insulin has an opposite effect on the phosphorylation status of

glycogen phosphorylase, leading to inactivation of this enzyme (Jiang and Zhang 2003;

Bouche et al., 2004). The liver can release the newly formed glucose into the circulation for

uptake by other cells (Murray et al., 1993; Bouche et al., 2004). In contrast, skeletal muscle

uses glycogen as a source of energy only within muscle tissue itself due to the lack of G6Pase

enzyme. Both gluconeogenesis and glycogenolysis represent sources of glucose during

fasting and exercise.

2.2.7 Insulin secretion

Insulin is a peptide hormone consisting of 51 amino acids, and it is secreted from pancreatic

�-cells  when  the  glucose  concentration  rises  above  a  stimulatory  level  (~5  mM)  in  the

circulation (Barg 2003). Glucose is transported into the cell via GLUT2 where it is

phosphorylated to glucose 6-phosphate by glucokinase. The increased availability of glucose-

6-phosphate increases the rate of glycolysis and the subsequent increase in ATP/ADP ratio

closes ATP-sensitive potassium channels in the plasma membrane. Elevated potassium levels

depolarize the cell, causing opening of calcium channels and an influx of calcium through

voltage dependent L-type Ca2+.channels. Finally, an increase in the intracellular free calcium

concentration triggers the release of insulin.

Insulin secretion after glucose stimulation is biphasic. The first phase of insulin

secretion is a rapid release (5–10 min) of preformed insulin while the second, prolonged,

phase is exocytosis of newly synthesized insulin. While glucose is the most potent stimulator,

insulin secretion can also be triggered by increased concentration of some amino acids, such
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as leucine, arginine, and lysine, and gastrointestinal hormones e.g. glucose-dependent

insulinotropic peptide, and glucagon-like peptide-1 (Vilsboll and Holst 2004).

2.3 Regulation of energy homeostasis

2.3.1 Overview

The maintenance of energy homeostasis is critical for the survival of all species (Alberts et

al., 1994). In humans and mice, several complex but nevertheless very similar mechanisms

regulate energy intake and energy expenditure. ATP is the major energy currency molecule in

the cell. All living cells need to maintain a relatively high concentration of ATP and this is

achieved by adjusting the rate of ATP production to match the rate of ATP utilization. In

eukaryotes, mitochondria are responsible for the ATP synthesis through OXPHOS (Fig. 5.).

ATP production is controlled via the action of several key regulators e.g. AMPK, PGC-1�

and sirtuin 1 (SIRT1).

2.3.2 Regulation of food intake

The food intake is controlled by signals from the periphery that influence the central nervous

system. The chief brain area involved in the control food intake is the arcuate nucleus (ARC)

of hypothalamus (Cone et al., 2001). Satiation signals such as cholecystokinin, glucagon-like

peptide-1, peptide tyrosine-tyrosine and ghrelin (Strader and Woods 2005; Valassi et al.,

2008) which are secreted from the gastrointestinal tract during the meal reach the nucleus of

the solitary tract in the caudal brainstem via the vagus nerve. From the nucleus of the solitary

tract, afferent fibers project to ARC where satiety signals interact with adiposity signals.

These adiposity signals are mediated by leptin and insulin which enter the brain across the

blood-brain barrier. Neurons in ARC synthesize proopiomelanocortin, neuropeptide Y and

agouti-related peptide. Proopiomelanocortin is cleaved to �-melanocyte-stimulating hormone

which binds to melanocortin 3 and 4 receptors in other hypothalamic areas to reduce food

intake. Agouti-related peptide is an antagonist of melanocortin 3 and 4 receptors and

therefore counteracts the effects of melanocyte-stimulating hormone. In addition,

neuropeptide Y binds to so-called Y receptors to stimulate food intake. ARC neurons are

indirectly or directly sensitive to the action of satiation signals. The effects of adiposity

signals, ghrelin and nutritional state on food intake are mediated by hypothalamic AMPK

which modulates the expression of neuropeptides (Minokoshi et al., 2008). For example both
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fasting and ghrelin activate AMPK which increases food intake (Andersson et al., 2004;

Minokoshi et al., 2004; Minokoshi et al., 2008) while feeding, leptin and insulin inhibit

AMPK, leading to suppression of food intake.

2.3.3 Cellular respiration
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Figure 5. Cellular respiration in the mitochondrion.

Cellular respiration is a mitochondrial process in which the chemical energy of food is

released and captured in the form of ATP in the presence of oxygen (Fig. 5) (Alberts et al.,

1994). Glucose, amino acids and FFAs can all be used as fuels in cellular respiration. The

breakdown of glucose and FFAs through glycolysis and �-oxidation, respectively, generates

acetyl-CoA which is then oxidized to carbon dioxide in citric acid cycle in the mitochondrial

matrix (also known as Krebs or tricarboxylic acid cycle). Amino acids can also enter the

citric acid cycle after they have been converted to various intermediates of the citric acid

cycle. The energy gathered in oxidation reactions in the citric acid cycle is conserved as the

reducing equivalents NADH and FADH2 which are oxidized in the mitochondrial respiratory

chain to form ATP via OXPHOS. The mitochondrial respiratory chain is composed of five

enzyme complexes (I-V) embedded in the inner mitochondrial membrane and of two electron

carriers, ubiquinone and cytochrome c. The reducing equivalents, NADH and FADH2, enter

into the mitochondrial respiratory chain by complex I and complex II, respectively. From

there, the electrons are transferred downhill to ubiquinone, complex III, cytochrome c,

complex IV through sequential reduction-oxidation reactions. The ultimate destination for the
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electrons is molecular oxygen which is reduced to two molecules of water. The free energy

liberated in this process is used to pump protons from mitochondrial matrix to inner

mitochondrial membrane by complexes I, III and IV. The influx of the protons back to

mitochondrial matrix through complex V (ATP synthase) allows phosphorylation of ADP

into ATP. However, not all of the energy liberated in the respiratory chain is coupled to ATP

synthesis; some is consumed by proton leak reactions in which protons pumped out of the

mitochondrial matrix are able to pass back into the mitochondria through proton conductance

pathways in the inner membrane which bypass ATP synthase (Brand 1990). This means that

some of the energy derived from the oxidation of food is dissipated and released as heat. The

uncoupling proteins (UCPs) are mitochondrial inner membrane proteins that can dissipate the

proton gradient before it can be used to provide the energy for OXPHOS (Echtay 2007).

2.3.4 The key regulators of energy expenditure

2.3.4.1 5’-AMP-activated protein kinase

AMPK  is  a  cellular  energy  sensor  that  is  found  in  all  eukaryotic  cells.  AMPK  is  a

heterotrimeric enzyme consisting of a catalytic �-subunit and regulatory �- and �-subunits

(Hardie et al., 1998; Winder 2001). In mammals, each subunit has two or three isoforms

designated as �1, �2, �1, �2, �1, �2 and �3. All possible combinations of these isoforms

appear to be expressed. The �-subunits contain an N-terminal protein kinase catalytic

domain, a central autoinhibitory region and a C-terminal domain involved in binding of

regulatory subunits (Fig. 6). The �-subunits contain a glycogen-binding domain, the function

of which is not clear, but it is involved in the association of AMPK with glycogen particles

(Fig. 6). The �-subunits also contain a domain participating in the formation of complexes

with  �-  and  �-subunits.  The  �-subunits  contain  four  tandem  repeats  of  a  motif  known  as  a

cystathionine beta synthase domain (Fig. 6). These domains represent the binding sites for

regulatory nucleotides AMP and ATP.

AMPK is activated by an increase in the AMP/ATP ratio in mammals (Hardie et al.,

2003). AMP activates AMPK by three mechanisms. AMP allosterically activates AMPK

through the binding to its �-subunit. In addition, AMP can stimulate phosphorylation of a

critical threonine residue (Thr-172) in the activation loop of catalytic �-subunit by an

upstream kinase LKB1 (Fig. 6). Furthermore, AMP inhibits dephosphosphorylation of Thr-

172 by protein phosphatases. These effects of AMP are antagonized by the high

concentrations of ATP. The activators of AMPK are glucose deprivation, ischemia, hypoxia
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and oxidative stress that interfere with ATP production. In addition, exercise and muscle

contraction activate AMPK by increasing ATP consumption (Winder and Hardie 1996;

Hutber et al., 1997).
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Figure 6. Structure of AMPK subunits. GB, Glycogen binding domain and CBS,
cystathionine beta synthase domain.

AMPK controls energy homeostasis by increasing energy intake and energy

expenditure. Once activated, AMPK initiates cellular responses aimed at restoring the ATP

levels. AMPK enhances energy expenditure by activating pathways producing ATP, such as

fatty acid oxidation, glucose uptake and glycolysis. One of the important functions of AMPK

is the regulation of lipid metabolism through its ability to control the intracellular content of

malonyl-CoA. AMPK phosphorylates and inhibits both isoforms of ACC (ACC1 and ACC2),

which catalyze the formation of malonyl-CoA from acetyl-CoA (Abu-Elheiga et al., 1995),

leading to reduced malonyl-CoA synthesis (Winder and Hardie 1996). In addition, AMPK

stimulates malonyl-CoA degradation by phosphorylating and activating malonyl-CoA

decarboxylase (Saha et al., 2000). A reduced level of malonyl-CoA decreases the rate of fatty

acid synthesis and this relieves CPT-I from its inhibition resulting in increased fatty acid

oxidation. In several tissues, AMPK is known to inhibit fatty acid synthesis also by reducing

the expression of ACC1, fatty acid synthase and sn-glycerol-3-phosphate acyltransferase

(Woods et al., 2000; Zhou et al., 2001). The mechanism by which AMPK exerts its actions

on mitochondrial biogenesis in skeletal and cardiac muscle seems to depend on the activation
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of PGC-1� and nuclear respiratory factor (NRF) 1 (NRF-1) (Bergeron et al., 2001; Zong et

al., 2002). AMPK suppresses lipolysis by phosphorylating and inhibiting HSL (Daval et al.,

2006). AMPK also regulates several aspects of glucose metabolism. It stimulates glucose

uptake in skeletal muscle by activating GLUT4 translocation in resting muscle (Merrill et al.,

1997; Koistinen et al., 2003). This effect seems to be mediated via inhibitory phosphorylation

of AS160 (Sano et al., 2003). AMPK stimulates glucose utilization by activating the

transcription of HKII (Stoppani et al., 2002), by phosphorylating and activating

phosphofructokinase 2 (Marsin et al., 2000) and by increasing the activity of PDH (Smith et

al., 2005). In line with the role of AMPK as an intracellular energy gauge, AMPK reduces

energetically expensive processes such as gluconeogenesis and glycogen synthesis by

downregulating the expression of the key gluconeogenic enzymes (G6Pase and PEPCK)

(Lochhead et al., 2000) and phosphorylating the rate-limiting enzyme, glycogen synthase

(Miyamoto et al., 2007), respectively.

2.3.4.2 Peroxisome proliferator activated receptor � co-activator 1�

PGC-1� is a member of a small family of transcriptional coactivators including PGC-1�,

PGC-1� and PGC-1-related coactivator which all share common functions in the regulation

of mitochondrial biogenesis and oxidative metabolism (Andersson and Scarpulla 2001).

Human PGC-1� is mapped to chromosome 4p15 (Esterbauer et al., 1999) and it encodes

about 90 kDa protein containing an N-terminal transcriptional activation domain including a

major nuclear hormone receptor interacting LXXLL motif, a central regulatory/repression

domain and C-terminal RNA-binding and arginine-serine (RS) rich domains (Fig. 7)

(Puigserver and Spiegelman 2003). Since it is a transcriptional coactivator, PGC-1� interacts

directly with several transcription factors, such as nuclear receptors which bind to the DNA

promoter regions in the nucleus.
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Figure 7. Architecture of PGC-1� protein.
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Transcription of PGC-1� is induced by exercise (in muscle), cold exposure (in BAT and

skeletal muscle), fasting (in liver) and energy demand. The effect of exercise on PGC-1�

expression is mediated by CREB (Herzig et al., 2001), myocyte enhancement factor 2 (MEF-

2) (Handschin et al., 2003) and AMPK (Fig. 8) (Terada et al., 2002). The induction of PGC-

�� transcription by cold and fasting is accomplished by increased cAMP levels which

activate CREB (Fig. 8) (Gomez-Ambrosi et al., 2001; Herzig et al., 2001).
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Figure 8. Function of PGC-1� in skeletal muscle (modified from (Scarpulla 2008)).
CaMKIV, calcium/calmodulin-dependent protein kinase IV and mt, mitochondrial.

The activity and stability of PGC-1� are also affected by post-translational

modifications. Phosphorylation of PGC-1� by stress-activated p38MAPK in the repression

domain increases protein stability and the transcriptional activity of PGC-1� (Fig. 7). Fasting,

cytokines and oxidative stress elicit their effect on PGC-1� through this mechanism

(Puigserver et al., 2001; Cao et al., 2005; Kim et al., 2006). In contrast, phosphorylation of

PGC-1� by glycogen synthase kinase 3 � (GSK-3�) targets PGC-1� protein to ubiquitin-

mediated proteolysis iniated by E3 ubiquitin ligase SCFCdc4 (Olson et al, 2008). AMPK also

phosphorylates PGC-1� resulting in a more active protein (Fig. 7) (Jager et al., 2007). PPAR�

increases PGC-1� protein levels in the absence of any increase in PGC-1� mRNA levels

(Hancock et al, 2008) and fasting-induced SIRT1, class III histone deacetylase, deacetylates

PGC-1� leading to an increase in gluconeogenic action of PGC-1� (Fig. 7) (Rodgers et al.,

2005). In addition, methylation of PGC-1� by protein arginine methyltransferase I (PRMT1)
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at C-terminus has been observed to be essential for the coactivator function of PGC-1� (Fig.

7) (Teyssier et al., 2005). In contrast, insulin inhibits PGC-1� through Akt which

phosphorylates PGC-1� at the RS domain (Fig. 7) (Li et al., 2007; Rodgers et al., 2005).

Adaptations to exercise include induction of mitochondrial biogenesis (Scarpulla 2002),

fatty acid oxidation (Vega et al., 2000), OXPHOS (Mootha et al., 2003)), glucose uptake and

fiber type switching (Puigserver and Spiegelman 2003), processes which are all stimulated by

PGC-1� (Fig. 8). The effect of PGC-1� on mitochondrial biogenesis is mainly mediated by

NRF-1, NRF-2 and estrogen-related receptor � (ERR�) (Fig. 8) (Scarpulla 2002; Schreiber et

al., 2004). PGC-1� stimulates fatty acid oxidation through ERR� and PPAR�, both of which

activate the key enzyme(s) in the �-oxidation of fatty acids (Fig. 8) (Vega et al., 2000; Huss

and Kelly 2004). Exercise-induced PGC-1� stimulates the conversion of muscle fibers from

type II (fast twitch) to type I (slow twitch) i.e. to fibers having a high oxidation capacity via

MEF-2 (Handschin et al., 2003). PGC-1� increases the expression of GLUT4 mainly via

MEF-2 in skeletal muscle and stimulates glucose uptake (Michael et al., 2001) (Fig. 8). In the

liver, PGC-1� is induced in the fasted state. Once PGC-1� is induced, it binds and coactivates

forkhead box O1, hepatocyte nuclear factor (HNF) 4 (HNF-4) and the glucocorticoid receptor

to increase the expression of gluconeogenic genes (G6Pase and PEPCK) (Puigserver et al.,

2003; Rhee et al., 2003). The stimulation of fatty acid oxidation is mediated via ERR� and

PPAR� coactivation similarly to the situation in skeletal muscle (Vega et al., 2000; Louet et

al., 2002; Huss and Kelly 2004). PGC-1� also activates CYP7A1, the rate-limiting gene in

bile acid synthesis (Shin et al., 2003) and represses low-density lipoprotein (LDL) receptor

(LDLR) gene expression (Jeong et al., 2009). Therefore PGC-1� is also involved in the

control of cholesterol homeostasis. In BAT in rodents, cold exposure strongly induces the

expression of PGC-1�, with the consequence of the stimulation of heat production through

UCP1 (Puigserver et al., 1998).

2.3.4.3 Sirtuin 1

Sirtuins are a class of NAD+-dependent protein deacetylases which utilize the cofactor NAD+

to deacetylate lysine residues of protein substrates (Blander and Guarente 2004). Of the seven

mammalian sirtuins (sirtuin 1-7), SIRT1 has been most extensively studied. SIRT1 is induced

by elevated  concentrations  of  NAD and/or  the  ratio  of  NAD/NADH (Revollo  et  al.,  2004).

Fasting, exercise and oxidative stress induce SIRT1, most likely elevating the NAD/NADH

ratio.
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SIRT1 participates in the control of energy expenditure. It increases the activity of PGC-1�

through deacetylation. In the liver, fasting-induced SIRT1 stimulates PGC-1� which evokes

an increase in gluconeogenesis and a suppression of glycolysis (Rodgers et al., 2005). In

WAT, SIRT1 suppresses adipogenesis and enhances the release of FFA through lipolysis by

repressing PPAR� (Picard and Auwerx 2002; Picard et al., 2004). In vitro studies have

revealed that SIRT1 has a possible regulatory role in the insulin signalling pathway since

inhibition of SIRT1 reduces insulin-induced Akt and insulin receptor substrate-2 protein

tyrosine phosphorylation (Zhang 2007). In mice, treatment with the SIRT1 activator,

resveratrol, has been shown to result in beneficial changes in glucose and energy metabolism.

Resveratrol increases mitochondrial number and activity in the liver, skeletal muscle and

BAT, improves aerobic capacity, enhances energy expenditure and is protective against high-

fat diet-induced insulin resistance through SIRT-mediated induction of PGC-1� and AMPK

(Baur et al., 2006; Lagouge et al., 2006).

2.4 Regulation of cholesterol homeostasis

2.4.1 Overview
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Figure 9. Cholesterol homeostasis.

Cholesterol is an essential constituent of mammalian cellular membranes and a precursor for

the  synthesis  of  steroid  hormones,  vitamin  D and  bile  acids  (Murray  et  al.,  1993).  Humans

and mice exhibit major differences in cholesterol metabolism but cholesterol homeostasis is

similarly achieved by controlling cholesterol biosynthesis, cholesterol absorption, cholesterol
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conversion to bile acids and excretion of bile acids in both species (Fig. 9) (Dietschy et al.,

1993). Cholesterol in the body is derived from two sources, hepatic de novo synthesis and the

diet.  Cholesterol is  ultimately eliminated from the body by the conversion to bile acids and

secretion into bile.

Cholesterol is transported in the circulation by lipoproteins which are classified

according to their density and composition: 1) chylomicrons, 2) VLDL, 3) intermediate-

density lipopoteins (IDL), 4) LDL and 5) high-density lipoprotein (HDL) (Murray et al.,

1993). In humans, the proportion of HDL cholesterol from total cholesterol is 20% of total

cholesterol whereas LDL cholesterol represents more than 50% of total cholesterol (Argmann

et al., 2006). In contrast, mouse HDL cholesterol varies between 65 to 75% of total

cholesterol and correspondingly the LDL cholesterol fraction is only between 10 to 20 %.

Lipoproteins contain a variety of lipids such as TGs, phospholipids, cholesterol and

cholesteryl esters (CEs) (Murray et al., 1993). Chylomicrons and VLDL particles are TG-rich

particles whereas LDL and HDL particles contain predominantly cholesterol and

phospholipids, respectively. IDL particles have equal amounts of CEs, TGs and

phospholipids.

Chylomicrons transport dietary cholesterol and TG absorbed from the small intestine to

the liver (Murray et al., 1993). In the circulation, TGs of chylomicrons are hydrolyzed by

LPL leading to the formation of chylomicron-remnants which are cleared by the liver through

the LDLR related protein. The cholesterol entering the liver can then be used for lipoprotein

formation, bile acid synthesis, secretion to bile, or storage as CEs.

The assembly of VLDL is a two step lipidation process (Olofsson et al., 2000; Adiels et

al., 2008)]. In the first step, apoliporotein B100 is lipidated by microsomal transfer protein

which  leads  to  the  formation  of  pre-VLDL.  In  the  second  step,  pre-VLDL  is  converted  to

VLDL by ADP ribosylation factor-1. In the circulation, TG-rich VLDLs are hydrolyzed by

LPL and converted to IDL. The subsuquent hydrolysis of IDL particles by hepatic lipase

produces LDL particles which deliver cholesterol to the extrahepatic tissues where the uptake

of cholesterol is facilitated by LDLRs. LDL particles are catabolized mainly by hepatic

uptake via LDLRs. The rate of hepatic LDL clearance is significantly greater in mice than in

humans (Dietschy and Turley 2002).

The biosynthesis of HDL begins in the liver where apolipoprotein A-I interacts with

ATP binding cassette protein A1 (ABCA1) and apolipoprotein A-I is then secreted into the

circulation as a lipid-poor particle (Rader 2006). These particles then recruit more

phospholipids and free cholesterol from peripheral tissues through the action of ABCA1,
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which is expressed on the surfaces of macrophages in the arterial wall, forming nascent HDL2

particles. Lecithin:cholesterol acyltransferase within nascent-HDL particles esterifies free

cholesterol resulting in the formation of mature small HDL3-particles. The fusion of two

small HDL3 particles by phospholipid transfer protein generates one larger size HDL2

particle. In mice, the expression of phospholipid transfer protein is significantly higher than

in humans. Hepatic lipase and endothelial lipase degrade HDL2 lipoproteins to HDL remnant

particles which are cleared from the circulation by hepatic class B type 1 scavenger receptor

(SR-BI). The cholesterol acquired from peripheral tissues by HDLs can be also transferred to

VLDLs and LDLs via the action of HDL-associated enzyme, cholesteryl ester transfer protein

(CETP), in humans but not in mice which do not express CETP (Hogarth et al., 2003). The

function of CETP allows peripheral cholesterol to be returned to the liver as LDL particles

via LDLRs.

2.4.2 Cholesterol synthesis

The major part of cholesterol is synthesized in the liver. The murine liver is relatively more

important as a site for cholesterol synthesis than its human counterpart (Dietschy and Turley

2002). Cholesterol biosynthesis can be divided into five steps (Fig. 10): 1) synthesis of

mevalonate from acetyl-CoA, 2) formation of isoprenoid units, 3) formation of squalene from

six isoprenoid units 4) conversion of squalene to lanosterol, and 5) conversion of lanosterol to

cholesterol either through desmosterol or demethyl- or methylsterols (Murray et al., 1993).

The rate-limiting step is the formation of mevalonate from 3-hydroxy-3-methylglutaryl-CoA,

catalyzed by 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) (Goldstein and Brown

1990). After the synthesis, acyl CoA:cholesterol acyltransferase 2 (ACAT2) esterifies

cholesterol to CEs which can be stored or used in the formation of lipoproteins (Chang et al.,

2001).

The rate of cholesterol formation is highly responsive to changes in the intracellular

cholesterol level in humans and mice. This feedback regulation is mediated primarily by

changes  in  the  amount  and  activity  of  HMGCR  which  is  controlled  at  four  levels.  First,

degradation of HMGCR is stimulated by cholesterol whose binding to a transmembrane

sterol-sensing domain activates the degradation of the enzyme via the 26S proteasome

(DeBose-Boyd 2008). Second, sterol regulatory element binding proteins (SREBPs) activate

the transcription of HMGCR and other genes involved in cholesterol biosynthesis (Brown

and Goldstein 1997). When cholesterol levels are low, SREBPs induce HMGCR but

cholesterol accumulation decreases the expression of SREBPs. Third, the rate of translation
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of HMGCR mRNA is inhibited by sterol and nonsterol end-products of mevalonate

metabolism and dietary cholesterol (DeBose-Boyd 2008). In addition to feedback regulation,

HMGCR activity is inhibited by phosphorylation through the action of AMPK when the

cellular ATP content is low (Clarke and Hardie 1990). Hepatic de novo synthesis and

intestinal absorption are reciprocally regulated, e.g. when cholesterol absorption decreases,

cholesterol synthesis increases and vice versa (Grundy et al., 1969).
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Figure 10. Cholesterol biosynthesis in mammals.

2.4.3 Cholesterol absorption

Cholesterol absorbed from the intestinal lumen originates from three sources, diet, bile and

turnover of intestinal epithelium (Vuoristo and Miettinen 2000). The amount of dietary

cholesterol absorbed varies between 30-70% in humans and mice (Dietschy and Turley

2002). Only free cholesterol can be effectively absorbed and thus, CEs are de-esterified by

the pancreatic cholesterol esterase (Vuoristo and Miettinen 2000). Cholesterol, which is



41

insoluble in an aqueous environment, needs to be incorporated into bile acid micelles prior to

absorption. The micelles are then transported to the brush border membrane of enterocytes

where cholesterol passes through a diffusion barrier that is located at intestinal lumen-

enterocyte membrane interface. Cholesterol absorption was previously thought to be simple

passive diffusion process. However, cholesterol uptake transporter protein, Niemann–Pick

C1-like 1 protein (NPC1L1), was recently identified in the jejunum (Altmann et al., 2004).

SR-BI and CD36 are the two other transporters that facilitate cholesterol transport (Nauli et

al., 2006; Labonte et al., 2007). In addition to cholesterol uptake transporters, there are three

cholesterol efflux transporters in the brush border membrane, ABCA1, ATP binding cassette

protein G5 (ABCG5) and ATP binding cassette protein G8 (ABCG8) which excrete

cholesterol back into the intestinal lumen and limit cholesterol absorption (Vuoristo and

Miettinen 2000). After absorption, cholesterol is esterified by ACAT2 to CEs, incorporated

into  chylomicron  particles  through  the  action  of  the  microsomal  tranfer  protein   and

transported via the lymph to the circulation.

Any factor that can change cholesterol transport from intestinal lumen to the enterocyte

can influence intestinal cholesterol absorption (Vuoristo and Miettinen 2000). The genetic

control of cholesterol absorption is clearly evident. For example mouse strains display

significant differences in absorption rates when fed a high cholesterol diet (Carter et al.,

1997), and human and mouse studies have also shown a high variation in cholesterol

absorption efficiency between different human individuals (25 to 75%) and mice (22 to 66%)

(Miettinen and Kesaniemi 1989; Schwarz et al., 2001). Dietary fiber, especially viscous fiber,

inhibits cholesterol absorption by disturbing micellar solubilization and/or increasing the

diffusion barrier (Vuoristo and Miettinen 2000). In addition, dietary plant sterols such as

those found in vegetable oils, inhibit cholesterol absorption by displacing cholesterol from

micelles and inducing cholesterol efflux (Plat and Mensink 2002). Changes in hepatic output

and  the  size  of  bile  acid  pool  markedly  influence  cholesterol  absorption.  For  example,  the

expansion of the total bile acid pool inhibits cholesterol absorption by decreasing the

expression of NPC1L1 in mice (Ratliff et al., 2006).

2.4.4 Cholesterol elimination through bile acid synthesis

In mammals, liver controls the elimination of cholesterol from the body. The hepatic

formation of bile acids is mainly accomplished through the neutral/classic pathway in humans

and mice. The rate-limiting enzyme responsible in this pathway is hepatic CYP7A1 (Russell

and  Setchell  1992;  Fuchs  2003).  The  second  pathway  termed  as  the  acidic  (or  alternative)
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pathway is initiated by sterol 27-hydroxylase (CYP27A1). The major bile acids in humans

are cholic acid and chenodeoxycholic acid. Since murine chenodeoxycholic acid is converted

to muricholic acid, cholic acid and muricholic acid are the main bile acids found in rodents

(Houten  et  al.,  2006).  After  synthesis,  bile  acids  are  conjugated  with  taurine  or  glycine  in

humans but only taurine conjugates exist in mice. Bile acids are exported from hepatocytes to

biliary canaliculi by a bile salt export pump, secreted into bile and stored in the gallbladder

(Russell and Setchell 1992; Fuchs 2003). After the meal, the gallbladder secretes bile into the

intestine where bile acids are converted to secondary and tertiary bile acids by intestinal

bacteria. Most bile acids are reabsorbed in the ileum by the action of apical Na+-dependent

bile acid transporter or ileal bile acid binding protein and transported back to the liver via the

portal circulation. Hepatic uptake of bile acids is mainly facilitated by Na+-taurocholate

cotransporting polypeptide (NTCP) and Na+-independent organic anion transporting

polypeptide (OATP1) (Meier and Stieger 2002). The function of bile acids is to emulsify

lipids in the intestine and to act as signalling molecules (Hylemon et al., 2009).

The conversion of cholesterol into bile acids is controlled by CYP7A1 which is mainly

regulated at the gene transcriptional level by bile acids, nutrients, cytokines and hormones

(Jelinek et al., 1990; Fuchs 2003). In mice, dietary cholesterol activates CYP7A1

transcription through liver X receptor � (LXR�) whereas the human CYP7A1 promoter lacks

the LXR� binding site (Chiang et al., 2001). Important activators of CYP7A1 transcription

are HNF-4�, COUP-TFII, �-fetoprotein transcription factor, liver receptor homolog 1 and

PGC-1� in humans and rodents (Galarneau et al., 1996; Nitta et al., 1999; Hayhurst et al.,

2001; Shin et al., 2003). PGC-1� activates CYP7A1 transcription by increasing HNF-4�-

mediated transactivation of CYP7A1 (De Fabiani et al., 2003; Shin et al., 2003). One well-

conversed repression mechanism between species is the activation of small heterodimer

partner by bile-acid induced farnesoid X receptor (FXR). Small heterodimer partner inhibits

HNF-4-, �-fetoprotein transcription factor- or liver receptor homolog 1-mediated

transactivation of CYP7A1 transcription (Makishima et al., 1999; Lu et al., 2000). The

transcription of CYP27A1 is also suppressed by bile acids but this effect is less potent than

that occuring at the CYP7A1 gene (Chiang et al., 2001).
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3 AIMS OF THE STUDY

The main purpose of this study was to investigate the effects of activated and inactivated

polyamine catabolism on glucose, energy and lipid metabolism in mice.

The specific aims were:

1. To characterize the metabolic phenotype of SSAT mice and to elucidate the

molecular mechanism explaining the phenotype (I)

2. To investigate the effect of activated polyamine catabolism on cholesterol and

bile acid metabolism in SSAT mice and to determine the molecular mechanism

leading to these changes (II)

3. To characterize the metabolic phenotype of SSAT-KO mice (III)
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4 MATERIALS AND METHODS

4.1 Animals (I-III)

The mice used in these studies were as follows (the mouse strain is shown in parentheses): a)

transgenic mice overexpressing SSAT under endogenous SSAT promoter (DBA/2 x Balb/c)

(Pietilä et al., 1997), b) Hairless (hr/hr) or normally haired (hr/+) (HsdOla) mice purchased

from Harlan, UK and c) SSAT-KO mice (C57BL/6J) generated in collaboration with

Karolinska Institute, Sweden. The animals were housed under standard conditions and were

fed a regular laboratory chow (R3, Lactamin AB, Stockholm, Sweden). The study protocols

were approved by the Animal Care and Use Committee of the University of Kuopio and the

Provincial government. Generation of SSAT-KO mice was performed as followed. The

SSAT targeting vector (Niiranen et al., 2002) was electroporated into the mouse RW-4

embryonic  stem cell  line.  The  correctly  targeted  SSAT-KO embryonic  stem cell  clone  was

injected into C57Bl/6J blastocysts which were transplanted into pseudopregnant females. The

SSAT-KO mice were backcrossed in the C57BL/6J mouse strain for at least six generations

to dilute the 129/SvJ genetic background originating from embryonic stem cells.

4.2 Polyamine analogues, antibodies and primers (I-III)

DENSPM was synthesized in the University of Kuopio as previously published (Rehse et al.,

1990). DFMO was a gift from Ilex Oncology Inc, USA. The antibodies used in these studies

were  as  follows:  PGC-1� (Millipore,  Billerica,  MA,  USA),  HNF-4� (Santa  Cruz

Biotechnology,  Inc.,  Santa  Cruz,  CA,  USA),  LXR� (Abcam,  UK),  FXR  (Santa  Cruz

Biotechnology, Inc., Santa Cruz, CA, USA), phosphorylated �-subunit of AMPK (Thr172)

(Cell Signaling Technology Inc, Danvers, MA, USA), SIRT1 (Millipore, Billerica, MA,

USA), dually phosphorylated p38 MAPK (Thr180/Tyr182) (Cell Signaling Technology Inc,

Danvers,  MA,  USA),  PRMT1  (Cell  Signaling  Technology  Inc,  Danvers,  MA,  USA),

phosphorylated Akt (Ser473) (Cell Signaling Technology Inc, Danvers, MA, USA), Akt (Cell

Signaling  Technology  Inc,  Danvers,  MA,  USA),  PI3K  (Cell  Signaling  Technology  Inc,

Danvers, MA, USA), phosphorylated GSK-3� (Ser21/9) (Cell Signaling Technology Inc,

Danvers, MA, USA), GSK-3� (Cell Signaling Technology Inc, Danvers, MA, USA), PPAR�

(Santa  Cruz  Biotechnology,  Inc.,  Santa  Cruz,  CA,  USA),  and  actin  (Santa  Cruz

Biotechnology, Inc., Santa Cruz, CA, USA). Quantitative RT-PCR primers and probes were

designed using Assay-by-Design system from Applied Biosystems, USA.
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4.3 Data and statistical analyses (I-III)

Affymetrix data was analyzed using Affimetrix Microarray Suite 5.0, GenMAPP (Dahlquist et

al., 2002) and MAPPFinder (Doniger et al., 2003) software. Statistical analysis was performed

with Student's two-tailed t-test when applicable. In the multiple comparisons, two-way ANOVA

was used. A p value less than 0.05 was considered significant.

4.4 Analytical methods, and in vitro and in vivo experiments (I-III)

Table 1 shows methods used to measure plasma, serum, fecal or tissue metabolite concentrations

in the original publications I-III. Plasma or serum samples were taken from the saphenous or tail

vein in the fed or fasted state (12-18 h fasting). Fecal samples and tissues were collected in the

fed state. Table 2 summarizes methods or kits used in the different analyses in the original

publications I-III. Tables 3 and 4 summarize in vivo and in vitro studies performed in original

publications I-III, respectively. A detailed description of all methods is provided in the original

publications I-III given in Tables 1-4 and in the references provided in Table 2.

Table 1. Analysis of plasma, serum, fecal or tissue metabolites in publications (Publ) I-III.

ELISA, Enzyme-linked immunosorbent assay; GLC, gas-liquid chromatography and HPLC,
high pressure liquid chromatography.

Metabolite Method Equipment/Kit Publ
Plasma TG Enzymatic Microlab 200 analyzer I, III
Serum FFA Enzymatic TG detection kit (Wako) I
Plasma alkaline phosphatase Colorimetric Microlab 200 analyzer II
Plasma alanine
aminotransferase

Kinetic Microlab 200 analyzer II

Plasma glucose Enzymatic Microfluorometry I, III
Plasma insulin ELISA Rat insulin kit (Chrystal Chem) I, III
Plasma leptin ELISA Mouse leptin kit (Chrystal Chem) I
Serum �-hydroxybutyrate Enzymatic Hitachi 717 analyzer I
Plasma glycerol Enzymatic Microfluorometry I
Plasma total cholesterol Enzymatic Microlab 200 analyzer III
Plasma, liver and fecal
total cholesterol

GCL Gas chromatography II

Serum HDL cholesterol Enzymatic Hitachi 717 analyzer II
Plasma cholesterol precursors GCL Gas chromatography II
Plasma cholesterol
absorption markers

GCL Gas chromatography II

Serum total bile acids Enzymatic Spectrophotometry II
Fecal bile acids GCL Gas chromatography II
Tissue polyamine content HPLC HPLC I, III
Adipocyte ATP content Chemiluminesence ATPlite one step kit (Perkin Elmer) I
Tissue DENSPM content HPLC HPLC III



46

Table 2. Methods used in the original publications (Publ) I-III.

Method                          Reference/Kit Publ

Magnetic resonance imaging (Harrington et al., 2002) I
Tissue TG content using glycerol assa (Wieland 1974)1] I
Indirect calorimetry (McLean and Tobin 1990) I
Telemetric core temperature and
activity measurement

(Hohtola et al., 1991) I

Fatty acid oxidation (Mannaerts et al., 1979; Osmundsen 1981) I
Isolation of mitochondria (Pallotti and Lenaz 2001) I
Histology (Rantala and Lounatmaa) I-III
Macrophage staining (Leppanen et al., 1998) I
Adipocyte isolation (Rodbell 1964) I
Adipocyte cell sizing (Krotkiewski et al., 1983) I
Electron microscopy (Lounatmaa and Rantala 1991) I
Affymetrix MG-U74A-v2 chip analys Affymetrix protocols I
RNA isolation RNAeasy kit (Qiagen),

(Chomczynski and Sacchi 1987)
I, II

Mitochondrial DNA isolation (Straus 1998) I
DNAse treatment DNA freeTM kit (Ambion) I, II
cDNA synthesis High capacity archive kit (Applied Biosystem I, II
Sodium dodecyl sulfate (SDS) page (Laemmli 1970) I, II
Immunoblotting and -detection (Gallgher et al., 2008) I, II
SSAT activity (Bernacki et al., 1995) I, III
Protein concentration Bio Rad Protein Assay I-III
Double-stranded DNA amount (Giles and Myers 1964) I
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5 RESULTS

5.1 Effect of activated polyamine catabolism on glucose and energy
metabolism in mice (I)

Characteristics of body composition and white adipose tissue. After birth, female and

male SSAT mice were slightly lighter than their littermates until they were 8 weeks old while

female  SSAT  mice  tended  to  have  a  higher  body  weight  at  the  age  of  3-  to  4-months.

Activated polyamine catabolism severely reduced WAT mass (Table 5) and this was already

evident at the age of 4 weeks. Furthermore, the tissue TG content was significantly reduced

in SSAT mice. Adipocytes in SSAT mice were smaller than in wild-type mice but otherwise

the morphology of the adipocytes was normal showing typical unilocular cells (Fig. 11).

Transmission electron microscopic analysis of WAT revealed that SSAT mice had an

increased size and number of mitochondria in WAT as compared with wild-type mice (Fig.

11). The expression of the key factors regulating adipocyte differentiation, PPAR�, CEBP/�

and SREBP1c were increased in WAT of SSAT mice. Surprisingly, activated polyamine

catabolism caused enlargement of internal organs in female SSAT mice while adult males

exhibited only an enlarged spleens. Furthermore, lean body mass was significantly higher in

female SSAT mice as compared with female wild-type mice (Table 5). In contrast, the weight

of skin was increased both in female and male SSAT mice (Table 5).

Wild type Transgenic

TEM

Light
Microscopy

Wild type TransgenicWild type Transgenic

TEM

Light
Microscopy

Figure 11. Morphology of WAT in SSAT and wild-type mice. TEM, transmission electron
microscopy.
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Table 5. Characteristics of female SSAT mice as compared to wild-type mice.

WAT, white adipose tissue; bw, body weight; Glc, glucose; Ins, insulin; AUC, area under the
curve; GTT, glucose tolerance test, ITT, insulin tolerance test; RQ, respiratory quotient.
Results are means ± SEM of 5-19 mice. *, p<0.05; **, p<0.01 and ***, p<0.001.

Glucose and lipid metabolism. SSAT mice had significantly reduced fasting glucose

and insulin levels (Table 5). Furthermore, SSAT mice displayed improved glucose tolerance

and increased insulin sensitivity based on glucose and insulin tolerance tests (Table 5). The

protein and mRNA levels of two important factors increasing glucose transport, PGC-1� and

AMPK, were upregulated in WAT of SSAT mice. In addition, expressions of the genes

involved in glucose phosphorylation and glucose oxidation (HKII and PDH E1 component �-

subunit) were significantly increased in WAT of SSAT mice. In the fasting state, TG levels,

glycerol, 3-hydroxybutyrate and leptin levels were significantly lower in SSAT mice as

compared to wild-type mice whereas FFA levels were unaltered (Table 5).

Energy homeostasis. Activated polyamine catabolism increased oxygen consumption

(VO2) in young haired and adult hairless SSAT mice (Table 5). Consistent with the increased

energy expenditure, food intake was higher in SSAT mice than in wild-type mice (Table 5)

whereas locomotor activity was lower in SSAT mice, especially during the night-time. The

respiratory quotient (RQ) was significantly lower in the fasting and active state in SSAT mice

Parameter Wild type SSAT

Whole body WAT mass (% of bw) 26.5 ± 0.5     9.4 ± 2.8**

Lean body mass (% of bw) 60.3 ± 0.5  69.8 ± 2.8*

Skin mass (% of bw) 13.2 ± 0.3  20.8 ± 0.6*

Fasting Glc (mM) 10.3 ± 0.5        8.5 ± 0.2***

Fasting Ins (ng/ml)   0.6 ± 0.2    0.3 ± 0.1*

Glucose AUC during GTT 1913 ± 191 1320 ± 95*

Insulin sensitivity index, ITT   0.13 ± 0.02     0.22 ± 0.03*

Fasting plasma TG (mM)   1.4 ± 0.1    1.1 ± 0.1*

Fasting plasma glycerol (mM)    1.16 ± 0.12    0.88 ± 0.05*

Fasting serum 3-hydroxybutyrate (mM)    2.45 ± 0.42        0.58 ± 0.43***

Fasting plasma leptin (ng/ml)    2.9 ± 0.8    0.3 ± 0.1*

Fasting serum FFA (mM)   0.67 ± 0.05   0.72 ± 0.06

VO2 (ml/min/kg), young haired  34.2 ± 0.1     40.6 ± 0.1**

VO2 (ml/min/kg), adult hairless 22.8 ± 0.4       32.2 ± 0.4***

Food intake (g/day/mouse)   3.03 ± 0.08     4.67 ± 0.24*

RQ, active and fasting state   0.86 ± 0.01     0.82 ± 0.01*

Palmitate oxidation in WAT (pmol/µgDNA),
pooled samples

75.7 144.9
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as compared with wild-type mice (Table 5) indicating higher fatty acid oxidation in SSAT

mice. Indeed, the rate of palmitate oxidation was enhanced in isolated adipocytes of SSAT

mice (Table 5) but not in skeletal muscle and liver. Correspondingly, the expressions of the

genes involved in �-oxidation of fatty acids (acyl-CoA dehydrogenases) and fatty acid uptake

(CD36, fatty acid transport protein 1 and adipocyte-specific fatty acid-binding protein 4)

were elevated in WAT of SSAT mice. With respect to the key factors regulating fatty acid

oxidation, PGC-1�, ERR� and PPAR�, were unregulated in WAT of SSAT mice. The genes

governing fatty acid synthesis (e.g. ACC1 and fatty acid synthase) and lipolysis (HSL) were

upregulated in WAT of SSAT mice.
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Figure 12. Proposed molecular mechanism causing the phenotype of SSAT mice. Spd,
spermidine, Spm, spermine; Met, methionine and AdoMet, S-adenosylmethionine.
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The mechanism leading to the induction of peroxisome proliferator activated

receptor �� co-activator 1�. Our mechanistic studies demonstrated that the factor connecting

activated polyamine catabolism and PGC-1� is AMPK, i.e. both isoform expression and

protein amount of this enzyme were significantly elevated in WAT of SSAT mice. Since

AMPK is activated by the increase in the AMP/ATP ratio, we hypothesized that the enhanced

polyamine catabolism may have evoked a depletion of the ATP pool in WAT of SSAT mice

because each polyamine cycle theoretically consumes 4 ATP equivalents (2 ATP and 2

acetyl-CoA) (Fig. 1 and Fig. 12). Indeed, SSAT mice had approximately ~50 % lower ATP

concentrations in isolated adipocytes than wild-type mice. In addition, DENSPM treatment

reduced significantly ATP concentrations in isolated mouse fetal fibroblasts during nutrient

deprivation. Therefore, it is hypothesized that the depletion of ATP levels activates AMPK

which in turn induces PGC-1� in WAT of SSAT mice. (Fig. 12)

Since SSAT overexpression accelerates the rate of polyamine cycle and the overall flux

of polyamines, we tested whether a reduction in the rate of polyamine flux will increase ATP

concentrations and reverse the phenotype of SSAT mice by blocking ODC using DFMO (Fig.

12). Indeed, the lowered rate of polyamine cycle, detected by significantly decreased

putrescine concentrations in WAT of SSAT mice, elevated ATP concentrations in the

adipocytes with a concomitant increase in perigonadal WAT mass. DFMO treatment also

restored the changes in gene expression in WAT of SSAT mice to the levels resembling those

observed in wild-type mice.

5.2 Effect of activated polyamine catabolism on cholesterol homeostasis in
mice (II)

Cholesterol metabolism. During characterization of the metabolic phenotype of SSAT mice,

it  was  observed  that  mice  with  SSAT  overexpression  exhibited  low  plasma  total  and  HDL

cholesterol  levels  but  increased  serum  total  bile  acid  concentrations.  In  contrast,  fasting

plasma alkaline phosphatase and alanine aminotransferase were similar compared with wild-

type values indicating normal liver function. To determine the reasons behind these changes,

we analysed variables of cholesterol metabolism and expression of the genes involved in the

regulation of cholesterol homeostasis. Plasma cholesterol precursors were significantly

elevated in SSAT mice interpreted as evidence of increased cholesterol synthesis. This result

was verified by analyzing expression of cholesterol biosynthetic genes. Indeed, HMGCR,

squalene synthase and 7-dehydrocholesterol reductase were upregulated in the livers of SSAT

mice (Fig. 13). Since the plasma cholesterol absorption markers were lowered and expression
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of cholesterol transporters, NPC1L1 and SR-BI, were decreased in jejunum in SSAT mice

(Fig. 13), it seemed that cholesterol absorption was reduced in SSAT mice. This concept was

verified by measuring cholesterol absorption efficiency which proved to be significantly

lower in SSAT mice. Unaltered hepatic expression of LDLR and SR-BI in SSAT mice

excluded the possibility that enhanced hepatic clearance of cholesterol led to lowered

cholesterol levels in SSAT mice (Fig.13). Interestingly, we observed that hepatic expression

of ACAT2 was significantly reduced in the fed state, indicating that VLDL assembly may

have been disturbed. Moreover, expression of ABCA1, the key regulator of HDL lipidation,

was similar in SSAT mice as compared with wild-type.

Bile acid metabolism. When bile acid metabolism was investigated, it was noticed that

SSAT mice had enhanced bile acid synthesis since there were elevated expressions of the

rate-limiting genes in the neutral and acidic bile acids synthesis pathways, CYP7A1 (Fig. 13)

and CYP27A1. In contrast, hepatic bile acid transporters responsible for bile acid uptake,

NTCP and OATP1, were significantly downregulated in the fed state (Fig. 13). Intestinal bile

acid absorption was comparable to that of wild-type mice since bile acid absorption

efficiency and expression of apical Na+-dependent bile acid transporter and ileal bile acid

binding protein were unchanged (Fig. 13). Since the fecal bile acid content was increased in

SSAT mice, it appears very likely that bile acid secretion was increased. However, gene

expression studies did not reveal increase in the expression of bile salt export pump.

Cholesterol secretion to bile was not presumably increased since mRNA levels of biliary

cholesterol exporters, ABCG5 and ABCG8, remained unchanged.

The mechanism leading to increased bile acid synthesis. In order to investigate the

mechanism for the activation of main bile acid synthesis pathway, we analyzed hepatic

expression of factors activating or repressing CYP7A1 transcription (PGC-1�, HNF-4�,

LXR�, FXR, pregnane X receptor, constitutive androstane receptor, SREBP1c, PPAR�,

histone deacetylase 7 and HNF-6). Gene expression analyses did not reveal any marked

alterations in the expression of these factors. Therefore, the next step was to analyze the

protein levels of these factors. The results showed that the protein levels of the key activator

of CYP7A1, PGC-1�, were significantly elevated in SSAT mice in the fasting and fed state

(Fig. 13). As mRNA levels of PGC-1� were unchanged in the livers of SSAT mice, it was

concluded that post-translational modification of PGC-1� most likely was responsible for the

elevated PGC-1� protein levels. The first candidate considered to cause this effect was

AMPK because enhanced polyamine catabolism is known to induce AMPK in WAT of

SSAT mice by depleting the ATP pool. Surprisingly, despite a slightly decreased ATP pool in
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the liver (unpublished data), phosphorylated AMPK levels were reduced in the fasting state in

the livers of SSAT mice while protein levels were unchanged in the fed state.

As more active and/or stable PGC-1� protein is achieved through deacetylation by

SIRT1, phosphorylation by p38MAPK, inhibition of phosphorylation by GSK-3� or

methylation PRMT1, the protein levels of these modulators were analyzed. PRMT1, SIRT1

and phosphorylated, i.e. active, p38MAPK and GSK-3� were unaltered in the fed state

whereas the protein amounts of inhibitor of PGC-1�, phosphorylated and i.e. active Akt, were

significantly reduced in the livers of SSAT mice in the fed state (Fig. 13). A reduction in the

activity of Akt may lead to decreased PGC-1� protein phosphorylation resulting in a more

stable protein as proposed by Rodgers and coworkers (Rodgers et al., 2005). The effect of

activated polyamine catabolism on phosphorylation of Akt seems to be Akt protein

degradation- and PI3K pathway-independent since protein levels of total Akt and an upstream

regulator of Akt, PI3K, were not altered in SSAT mice. Since it is well-established that a

SSAT activator, DENSPM, can reduce phosphorylation of Akt in glioblastoma (Jiang et al.,

2007) and breast cancer cells (Nair et al., 2007), we investigated whether activated polyamine

catabolism could cause this effect also in hepatocytes. Indeed, a reduction in the protein

amount of phosphorylated Akt was detected in DENSPM-treated human hepatoma HepG2

cells at 48 h as compared with untreated cells.

Figure 13. Main findings in cholesterol metabolism in SSAT mice. Chol, cholesterol;
FDFT1, squalene synthase; DHCR7, 7-dehydrocholesterol reductase; BA, bile acid; pAkt,
phosphorylated Akt; ASBT, Apical Na+-dependent bile acid transporter and I-BABP, ileal
bile acid binding protein.
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5.3 Effect of deficiency of polyamine catabolism on the metabolic
phenotype in mice (III)

Polyamine homeostasis. In order to investigate whether deficiency of polyamine catabolism

has an opposite effect on metabolism as compared with activated polyamine catabolism, we

characterized the metabolic phenotype of SSAT-KO mice. However, first the effect of

polyamine catabolism deficiency on polyamine homeostasis was investigated. The absence of

inducible SSAT activity was initially confirmed by carbon tetrachloride and DENSPM

treatments and as anticipated, no inducible SSAT activity was observed in SSAT-KO mice

whereas these treatments caused typical activated catabolism-caused changes in tissue

polyamine content in wild-type mice. Under basal conditions, SSAT activity was close to the

wild-type mice level in SSAT-KO mice and a small amount of N1-acetylspermidine was also

detected. The SSAT deficiency caused only minor changes in the polyamine pool since only

a slight increase in spermidine concentrations was manifested during aging in all analyzed

tissues, with the exception of the pancreas. Since activated polyamine catabolism has been

shown to cause enhanced sensitivity to the toxicity of DENSPM in SSAT mice (Alhonen et

al., 1999), it was hypothesized that SSAT deficiency confers resistance against the

DENSPM-induced harmful effects. Therefore, SSAT-KO and wild-type mice were subjected

to daily injections of DENSPM. Surprisingly, SSAT-deficient mice (median=5 day) died

approximately 3 days earlier than wild-type mice (median=8 day). The DENSPM treatment

significantly induced SSAT activity and evoked the typical changes of activated polyamine

catabolism in the polyamine concentrations in several tissues of wild-type mice. In contrast,

DENSPM did not have any effect on the tissue polyamine content in SSAT-KO mice

although  the  extent  of  DENSPM  accumulation  was  similar  in  both  genotypes.  Histological

examination  of  tissues  did  not  reveal  any  differences  between DENSPM-treated  SSAT-KO

and wild-type mice.

Body composition and energy homeostasis. SSAT deficiency did not affect body

weight when the average body weights of SSAT-KO mice were compared to those of wild-

type mice. However, a subgroup of animals having a higher body weight was observed.

Furthermore, no change in whole body WAT mass was detected in the magnetic resonance

imaging or weight of the perigonadal WAT pads. Consistent with these results, plasma leptin

levels did not differ from wild-type mice (unpublished data). Adipocyte morphology and

organ weights were similar as those encounted in wild-type mice (unpublished data) while

histological examination of kidneys of aged SSAT-KO mice revealed dilation of Bowman’s

space and tubules of inner medulla, atrophy of glomeruli and associated cells, and
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inflammation and necrosis of renal papillae. Oxygen consumption and other parameters

related to energy expenditure were not analyzed in SSAT-KO mice. However, the food intake

of these mice was observed to be rather similar to that of wild-type counterparts.

Glucose and lipid metabolism. SSAT deficiency led to the development of increased

fasting blood glucose levels after the age of 12 months. A glucose tolerance test in 16-month-

old SSAT-KO mice showed similar glucose disposal from the circulation but significantly

elevated insulin levels in SSAT-KO mice (Fig. 14). The presence of peripheral insulin

resistance was confirmed using an insulin tolerance test which displayed significantly higher

glucose  levels  in  response  to  insulin  at  all  time  points  in  SSAT-KO  mice  (Fig.  14).  The

deficiency of SSAT did not cause alterations in plasma total cholesterol and TG levels in

young or aged in SSAT-KO mice. Plasma HDL and LDL cholesterol or other parameters

involved lipid metabolism were not analyzed in SSAT-KO mice.
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Figure 14. Glucose and insulin tolerance tests in SSAT-KO and wild-type mice. Fasted 16-
month-old SSAT-KO and wild-type male mice were subjected to A) intraperitoneal glucose
tolerance (2 mg/g D-glucose) and B) insulin tolerance (0.25 mU/g insulin) tests. Results are
means ± SEM of 10-12 mice. p<0.05 and **, p<0.01.
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6 DISCUSSION

SSAT is the rate-controlling enzyme in the catabolism of polyamines (Jänne et al., 2004).

The  overexpression  or  loss  of  SSAT  is  sufficient  to  cause  the  corresponding  activation  or

deficiency of polyamine catabolism. We determined the role of polyamines and polyamine

metabolism in the regulation of glucose, energy and lipid metabolism.

Activated polyamine catabolism, white adipose tissue and body composition (Study

I). A novel finding in our study was that the endogenous SSAT promoter targeted the highest

SSAT activity into WAT. This resulted in severely reduced whole body WAT mass in young

and adult mice, a phenomenon also demonstrated by Jell and coworkers (Jell et al., 2007).

Since  the  adipocytes  of  SSAT  mice  were  smaller  but  their  number  was  unchanged,  the

reduction in WAT mass seemed to be due to diminished TG accumulation and not due to

impaired differentiation of the adipocytes. This concept was supported by the finding that the

expressions of key factors regulating adipogenesis, PPAR�, CEBP/� and SREBP1c, were

upregulated in WAT of SSAT mice. Furthermore, the levels of spermidine, which has been

observed to be necessary for adipogenesis (Bethell and Pegg 1981; Vuohelainen et al., 2009),

were not reduced in WAT of SSAT mice. The reduced TG accumulation in the adipocytes of

SSAT mice was attributable to the increased expression of PGC-1�, the critical regulator of

energy metabolism which is also involved in the differentiation of preadipocytes to brown

adipocytes (Puigserver and Spiegelman 2003). In WAT, the expression of PGC-1� is

normally low (Puigserver and Spiegelman 2003) but ectopic expression of PGC-1� in

adipocytes can induce a conversion of white adipocytes into brown-like adipocytes leading to

activation of UCP1, OXPHOS and fatty acid oxidation (Tiraby and Langin 2003). Indeed, the

adipocytes  of  SSAT  mice  were  transformed  from  fat-storing  white  adipocytes  towards  fat-

burning brown adipocytes as mitochondria number, palmitate oxidation and expression of

genes involved in OXPHOS were elevated in the adipocytes. No induction of UCP1 was

observed  in  WAT  of  SSAT  mice  whereas  UCP3  was  elevated.  However,  it  has  been

suggested that UCP3 does not participate in the regulation of thermogenesis in the same way

as UCP1 but it promotes fatty acid oxidation (MacLellan et al., 2005). In line with our results

that the adipocytes of SSAT mice were converted to fat-burning cells, Jell and coworkers

have demonstrated that the content of malonyl-CoA levels were significantly decreased in

WAT of SSAT mice leading to increased fatty acid oxidation and reduced fatty acid synthesis

(Jell et al., 2007) as occurs in mice lacking ACC2 (Oh et al., 2005). In disagreement with the

results of Jell and coworkers, it was noticed that expression of fatty acid synthase was
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elevated in WAT of SSAT mice but this may be a compensatory increase in response to the

reduced activity of fatty acid synthase. Based on gene expression studies, it seemed that FFA

uptake was enhanced in the adipocytes of SSAT mice because all of the studied FFA

transporters were upregulated. Furthermore, release of FFAs through lipolysis seemed to be

diminished in WAT of SSAT mice because circulating glycerol levels were significantly

reduced in SSAT mice during fasting and serum FFA levels were unaltered. Moreover,

AMPK,  the  inhibitor  of  HSL,  was  upregulated  in  WAT  of  SSAT  mice.  The  expression  of

HSL was enhanced in WAT of SSAT mice but again this may represent compensating for the

decreased activity of HSL. Taken together, circulating FFAs seems to be channelled into

WAT of SSAT mice for combustion, leading to severely reduced WAT mass.

Although activated polyamine catabolism resulted in reduction in WAT depots, this led

to the development of organomegaly and an increase in lean body mass, especially in female

SSAT mice. An increase in tissue size is typically caused by accumulation of substances e.g.

fat, glycogen and iron, hypertrophy or hyperplasia of the cells or congestion from heart

failure. In SSAT mice, the TG contents of internal organs and skeletal muscle were

significantly reduced and glycogen accumulation was only evident in the heart (unpublished

data) thereby excluding the possibility that the accumulation of these substances could

account for the organomegaly in SSAT mice. Histological examination demonstrated that the

cell size of internal organs was unaltered and there was no sign of malignant transformation,

suggesting that benign hyperplasia contributes to the development of the organomegaly.

Since polyamine depletion caused by activated polyamine catabolism has been shown to

reduce cell growth (Casero and Pegg 1993; Hughes et al., 2003), other factors than

polyamines are enhancing the proliferation of cells in the internal organs of SSAT mice. The

underlying mechanisms need to be investigated in future studies.

Activated polyamine catabolism slightly affected the body weights of SSAT mice

because they were smaller after birth until the age of 2 months but otherwise body weights

remained unchanged or were slightly higher. The reduction in body weights in young SSAT

mice  is  explained  by  the  loss  of  WAT mass  which  was  observed  already  after  weaning.  In

adult mice, the development of organomegaly and the heavier skin most likely even up the

body weights of SSAT mice. In disagreement with our results, Jell and coworkers reported

that body weights of SSAT mice were lowered at the age of 30 weeks (Jell et al., 2007). One

reason to account for these inconsistencies may be the fact that Jell and coworkers had their

SSAT mice in a C57Bl/6 mouse strain. However, in agreement with our unpublished results,
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Jell and coworkers demonstrated that SSAT mice are protected from gaining weight if fed a

high-fat diet (Jell et al., 2007).

Activated polyamine catabolism and energy metabolism (Study I). The involvement

of polyamines in the regulation of energy metabolism has previously been poorly understood.

Our studies showed that activated polyamine catabolism enhances energy expenditure since

oxygen consumption was increased in SSAT mice. In line with the enhanced energy

expenditure, SSAT mice exhibited increased food intake. This may be at least partially

related to low leptin levels which stimulate food intake in hypothalamus. Hairlessness per se

did not seem to increase energy expenditure in SSAT mice because oxygen consumption was

increased before and after hair loss in SSAT mice. Organomegaly may increase energy

expenditure in SSAT mice because larger tissues consume more oxygen through metabolism

but enhanced energy expenditure was also evident in young SSAT mice when they did not

display organomegaly. In addition, an increase in locomotor activity accelerates energy

expenditure but this present and previous studies (Kaasinen et al., 2004) have demonstrated

that SSAT mice are hypoactive. The reduction in WAT mass may per se increase energy

expenditure because the loss of a metabolically rather inactive organ elevates oxygen

consumption. However, the enhanced rate of WAT mitochondrial oxidative capacity and

fatty acid oxidation most likely contributed to enhanced energy expenditure in SSAT mice as

has been observed in another mouse model overexpressing PGC-1� in WAT (Tsukiyama-

Kohara et al., 2001). However, one unanswered question is whether enhanced fatty acid

oxidation only in WAT was sufficient to increase the oxygen consumption and lower the RQ

values so markedly in SSAT mice. Ketogenesis, which occurs mainly during high rates of

fatty acid oxidation when large amounts of acetyl-CoA are generated, may reduce RQ values

but it is likely that ketogenesis was reduced, not elevated, in the livers of SSAT mice as

serum 3-hydroxybutyrate levels were decreased in SSAT mice in the fasting state. To clarify

the impact of WAT on whole-body energy metabolism in SSAT mice, fatty acid metabolism

needs to be investigated in more detail in skeletal muscle and liver. Furthermore, mice having

WAT-specific overexpression of SSAT could also provide valuable information.

Activated polyamine catabolism and glucose metabolism (Study I). The impact of

polyamines  on  the  control  of  glucose  homeostasis  has  remained  largely  unexplored.  It  was

observed that SSAT mice exhibited increased insulin sensitivity as demonstrated by their

increased insulin-stimulated peripheral glucose uptake in insulin tolerance test, improved

glucose tolerance and lowered fasting insulin levels. These results are consistent with the

leaner  phenotype  and  reduced  tissue  TG  content  which  are  known  to  correlate  with  higher
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insulin sensitivity (Krssak et al., 1999; Heilbronn et al., 2004). Corresponding with the

enhanced peripheral glucose uptake, the protein amount of plasma membrane GLUT4 was

greater in WAT and skeletal muscle in SSAT mice than in wild-type mice (unpublished data).

In  WAT,  this  was  most  likely  related  to  the  overexpression  of  AMPK  and  PGC-1�.  In

addition, the enhanced glucose oxidation in WAT demonstrated by Jell and coworkers (Jell et

al., 2007) was apparently attributable to the AMPK-induced increase in glucose utilization

since expressions of HKII and PDH E1 component �-subunit were elevated. Given the fact

that AMPK and PGC-1� induce muscle glucose transport in response to exercise (McGee and

Hargreaves 2006), it would be worthwhile to investigate whether increased plasma membrane

GLUT4 content in skeletal muscle was also mediated by these two factors. Consistent with

the increased insulin action in SSAT mice, gluconeogenesis was impaired in the livers of

SSAT mice since they had significantly reduced fasting glucose levels. Interestingly, SSAT

mice had elevated hepatic expression of PGC-1� which stimulates gluconeogenesis through

the transcription factor forkhead box O1. The ability of PGC-1� to induce gluconeogenesis is

largely regulated through deacetylation by SIRT1. Since hepatic SIRT1 was significantly

reduced in the fasting state, acetylation of PGC-1� was most likely increased, leading to a

lowered capability to induce gluconeogenesis. However, mechanisms leading to impaired

gluconeogenesis and increased insulin sensitivity in WAT, skeletal muscle and liver need to

be investigated in more detail. Our observations in SSAT mice indicate that enhanced energy

expenditure is associated with increased insulin sensitivity which has also been observed e.g.

in resvaratrol–treated mice (Baur et al., 2006; Lagouge et al., 2006). Moreover, our findings

support the results of a recent report that the levels of circulating bile acid correlate with

insulin sensitivity (Shaham et al., 2008) i.e. SSAT mice had both elevated serum total bile

acids and increased insulin sensitivity.

Polyamines have been suggested to stabilize insulin mRNA (Welsh 1990) and to be

necessary for proinsulin biosynthesis in pancreatic �-cells (Sjöholm 1993). However,

polyamine depletion increases the insulin content and sensitivity to some secretory stimuli,

but not to glucose, in DFMO-treated rat insulinoma cells (Sjöholm et al., 1993). In SSAT

mice, it would be important to determine the islet polyamine content, and insulin biosynthesis

and secretion because the levels of higher polyamines are significantly decreased in pancreas

(Pietilä et al., 1997). In our study, circulating insulin levels were significantly reduced in

SSAT mice but this was likely to be attributable to increased insulin sensitivity rather than

impaired insulin secretion. However, since spermine is important for the function of inward

rectifying potassium channels (Williams 1997; Phillips and Nichols 2003), it would be
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interesting to determine the effect of activated polyamine catabolism on glucose-stimulated

activation of potassium calcium channels in pancreatic �-cells.

Activated polyamine catabolism and cholesterol metabolism (Study II). It was

observed that plasma total cholesterol levels were significantly lowered in SSAT mice in the

fed and fasting states. Lowering of circulating cholesterol levels in the body can be achieved

via reducing cholesterol synthesis, impairing intestinal cholesterol and bile acid absorption or

enhancing bile acid synthesis. SSAT mice displayed enhanced bile acid synthesis and

reduced cholesterol absorption while cholesterol synthesis was increased and intestinal bile

acid absorption was not altered. Based on these findings, it is likely that the primary cause of

the reduced cholesterol levels was CYP7A1-mediated enhanced conversion of cholesterol

into bile acids. If increased cholesterol synthesis was the primary cause in SSAT mice, this

would cause induced bile acid synthesis by elevating the hepatic cholesterol pool which

augments CYP7A1 transcription via LXR� (Russell 1999). Given that the mRNA and protein

levels of LXR� and hepatic cholesterol pool were unchanged in SSAT mice, increased

cholesterol synthesis cannot be the primary cause for the alterations in cholesterol

homeostasis in SSAT mice. Impaired cholesterol absorption is not likely the primary

mechanism to account for the low cholesterol levels in SSAT mice as reduced cholesterol

absorption would lead to the induction of hepatic de novo cholesterol synthesis and as

discussed above, cholesterol synthesis was not influencing bile acid synthesis. The increased

cholesterol synthesis observed in SSAT mice was most probably a mechanism to compensate

for the increased bile acid synthesis in order to keep hepatic cholesterol pool size unchanged.

Increased hepatic de novo cholesterol synthesis subsequently most likely reduced intestinal

cholesterol absorption in SSAT mice due to reciprocal regulation of these pathways. Another

possibility is that a CYP7A1-mediated expansion of the hepatic bile acid pool reduced

cholesterol absorption by decreasing the expression of jejunal NPC1L1, as was previously

demonstrated by Ratliff and coworkers (Ratliff et al., 2006). The conclusions presented above

are supported by the observations in CYP7A1 overexpressing rodent models which also

display lowered total plasma cholesterol values, compensatorily increased cholesterol

synthesis and reduced cholesterol absorption (Spady et al., 1995, 1998; Miyake et al., 2001;

Ratliff et al., 2006).

The reduction in total cholesterol levels observed in SSAT mice was due to declines in

the LDL/VLDL/IDL and HDL fractions. Since hepatic cholesterol clearance was not

enhanced  in  SSAT  mice  as  evident  from  the  results  of  the  gene  expression  studies,  the

mechanism responsible for the reduction in both LDL/VLDL/IDL and HDL fractions was
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apparently enhanced channelling of newly synthesized cholesterol to bile acid synthesis,

leading to decreased formation of lipoproteins. At least, VLDL formation was likely reduced

in SSAT mice since the ACAT2 expression was decreased in the fed state most likely

impairing the formation of CEs and the assembly of VLDL particles. The second finding in

support of the lowered VLDL formation was that fasting plasma TG levels were significantly

reduced in SSAT mice. A measurement of the lipoprotein formation rate needs to be

performed to verify these concepts.

Since most bile acids are cytotoxic, there are a variety of hepatoprotective mechanisms

intended to prevent the accumulation of abnormally high levels of bile acids. Irrespective of

the enhanced bile acid formation in the livers of SSAT mice, no liver damage was observed

based on plasma alkaline phosphatase and alanine aminotransferase levels. Therefore, SSAT

mice have most likely developed mechanisms to minimize hepatic bile acid accumulation.

One preventive mechanism was reduced uptake of hepatic bile acids as the expressions of

hepatic bile acid transporters NTCP and OATP1 were decreased. Another mechanism was

increased biliary bile acid excretion demonstrated by higher bile acid content in feces.

However, the latter mechanism together with unaltered intestinal bile acid absorption

probably caused prolonged exposure of the intestine to elevated bile acid concentrations in

SSAT mice. This provides a novel mechanism to explain why SSAT overexpression could

enhance tumorigenesis in mice susceptible to intestinal cancer, APCMIN/+ mice (Debruyne et

al., 2001; Tucker et al., 2005).

The enhanced CYP7A1-mediated bile acid synthesis in SSAT mice was attributable to

increased expression of PGC-1� in the livers of SSAT mice. PGC-1� has been demonstrated

to be a critical activator of CYP7A1 in mice and humans (Shin et al., 2003). Nonetheless, the

consequence of stable hepatic overexpression of PGC-1� on cholesterol homeostasis has not

yet been demonstrated in vivo. However, transient adenoviral hepatic overexpression of PGC-

�� has been shown to elevate total cholesterol levels by increasing VLDL production (Lin et

al., 2005). Thus, this present study is the first to demonstrate that the activation of CYP7A1

through PGC-1� is an efficient way to reduce plasma total cholesterol levels in vivo.

Molecular mechanisms leading to the activation of peroxisome proliferator

activated receptor �� co-activator 1� in  white  adipose  tissue  and liver  (Study I-II). The

metabolic phenotype of SSAT mice was attributable to the increased expression of PGC-1�

both in WAT and liver. When we investigated the activator of PGC-1� in WAT, it was

confirmed that the known and presumed consequences of activated polyamine catabolism

such as hairlessness, putrescine accumulation, oxidative stress and elevated cytokines do not



63

have any influence on PGC-1� expression in SSAT mice. Our mRNA and protein analyses of

WAT samples demonstrated that the effect of activated polyamine catabolism on PGC-1�

was most likely mediated by AMPK (Fig. 15) which induces PGC-1� in response to exercise

in skeletal muscle. This interaction of AMPK and PGC-1� in WAT has now been observed

also in recent studies (Crowe et al., 2008; Sutherland et al., 2008; Gaidhu et al., 2009). In the

liver, instead of AMPK, Akt was most likely the key modulator of PGC-1� protein stability

and activity (Fig. 15).

It is postulated that SSAT overexpression accelerates the overall flux of polyamines in

the polyamine cycle and the continuous supply of putrescine and dcAdoMet produced by

ODC and AdoMetDC keeps the cycle running. The consequences of accelerated polyamine

flux are ATP and acetyl-CoA depletion. Low ATP levels then induce the cellular energy

sensor AMPK (Fig. 15) which inhibits the formation of malonyl-CoA. Furthermore,

enhanced consumption of acetyl-CoA reduces the availability of acetyl-CoA for malonyl-

CoA synthesis. This polyamine flux theory was tested in SSAT and wild-type mice by

blocking the putrescine formation through ODC by administering DFMO. The DFMO

treatment clearly reduced the rate of polyamine flux which led to a subsequent increase in

ATP concentrations in the adipocytes of SSAT mice and to the reversal of the metabolic

phenotype of SSAT mice. This confirmed our hypothesis that the polyamine cycle can be

considered as a futile cycle and the shortage of ATP in WAT was the key contributing factor

leading to the metabolic phenotype of SSAT mice.

Interestingly, accelerated polyamine catabolism did not activate AMPK in the liver

although a slight reduction in ATP concentrations was observed (unpublished data). In

contrast, polyamine catabolism caused a reduction in the phosphorylation of Akt in the livers

of SSAT mice and also in human hepatoma HepG2 cells which has been previously noticed

in glioblastoma (Jiang et al., 2007) and breast cancer cells (Nair et al., 2007). The interaction

of activated polyamine catabolism with Akt in the liver cells is poorly understood but

activated polyamine catabolism did not have any effect on the protein levels of total Akt and

the upstream regulator of Akt, PI3K in SSAT mice. Further studies will be needed to

investigate the mechanism leading to the reduction of Akt phosphorylation. Therefore, the

mechanism causing the activation of PGC-1� in the liver seems to be different from that

observed  in  WAT of  SSAT mice.  It  is  tempting  to  speculate  that  because  SSAT activity  is

lower in the livers (4-fold) of SSAT mice as compared with that in WAT (22-fold), the

depletion of ATP pool, as a consequence of activated polyamine catabolism, does not reach

the threshold needed to activate AMPK in the livers of SSAT mice. Another possible
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explanation is that the mechanism to account for why activated polyamine catabolism can

induce PGC-1� is tissue-specific. This is not unexpected  because the function of AMPK

differs in liver and in WAT. AMPK induces fatty acid oxidation and inhibits the production

of cholesterol, TG and glucose in the liver whereas in WAT, the main purpose of AMPK is to

stimulate basal glucose transport and to inhibit lipolysis (Winder and Hardie 1999).

Therefore, the induction of AMPK by activated polyamine catabolism in the liver could

disrupt normal homeostasis. Instead, Akt is involved in controlling vital cellular functions

such as apoptosis,  cell  cycle progression and glucose metabolism in several  tissues (Franke

2008). Whether Akt is also involved in the signal transduction between activated polyamine

catabolism and PGC-1� in WAT will require further investigation.

Deficiency of polyamine catabolism and glucose, energy and lipid metabolism

(Study III). To study the effect of SSAT deficiency on glucose, energy and lipid metabolism,

the metabolic phenotype of SSAT-KO mice was investigated. Under basal conditions, SSAT-

KO mice had SSAT activity comparable to that of wild-type mice and exhibited traces of N1-

acetylspermidine which most likely reflects the presence of other acetylases than SSAT. The

deficiency of polyamine catabolism did not have as dramatic effects on tissue polyamine

homeostasis in mice as the activation of polyamine catabolism. In SSAT-KO mice, only

slightly increased spermidine pools appeared in several tissues including WAT similar to

those observed in vitro in SSAT-deficient embryonic stem cells (Niiranen et al., 2002). SSAT

has been proven to be the key enzyme in the backconversion of spermidine to putrescine

(Niiranen et al., 2002) whereas the catabolism of spermine is mainly achieved by the action

of SMO (Vujcic et al., 2002). Thus, this slight increase in spermidine levels in SSAT-KO

mice was best explained by the lowered rate of polyamine cycle due to the absence of SSAT

with the concomitant compensatory increase in the conversion of spermine to spermidine by

SMO.

Since SSAT-KO deficient embryonic stem cells are more resistant to the effect of

DENSPM (Niiranen et al., 2002), it was a surprise that SSAT-KO mice were more sensitive

to DENSPM-induced toxicity. The cytotoxic effect of DENSPM has been considered to be

related to its ability to induce SSAT, depleting spermidine and spermine pools, increasing

cellular oxidative stress through the generation of H2O2 and inhibiting mammalian target of

rapamycin-mediated protein synthesis (Snyder et al., 1994; Casero et al., 2005; Jiang et al.,

2007). As expected, DENSPM treatment had only a negligible effect on tissue polyamine

content in SSAT-KO mice and the tissue accumulation of this SSAT inducer did not differ

between the mouse lines. Therefore, the mechanism leading to cytotoxicity of DENSPM in
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SSAT-KO mice is not attributable to the size of tissue polyamine pool. One possible

explanation is that as SSAT is not only the target of DENSPM, the binding of DENSPM to

SSAT may protect from harmful effects caused by other targets (Pegg 2008).

SSAT-KO mice did not have increased WAT mass when compared to their body-

weight matched wild-type mice. However, Jell and coworkers observed that a ~20% portion

of mice showed higher WAT mass than wild-type mice even if body weights were not

elevated in SSAT-KO mice (Jell et al., 2007). Furthermore, they demonstrated that a SSAT

deficiency led to increased susceptibility to high-fat diet-induced obesity which is in

disagreement with our unpublished data. The reason for these differences between the studies

is unknown but Jell and coworkers did not use littermates as controls and they may have had

their mice in a different C57Bl/6 mouse strain which could account for these discrepancies

between results. Taking into account the fact that WAT mass was not changed and there was

no significant difference in food consumption between SSAT-KO and wild-type mice, the

conclusion is that most likely energy expenditure is not altered in SSAT-KO mice. Indeed,

SSAT-KO mice have been reported to have unaltered energy expenditure (Jell et al., 2007).

Our study showed that glucose homeostasis was altered in aged SSAT-KO mice because they

had increased fasting glucose levels. Insulin resistance with a concomitant reduction in

peripheral glucose uptake was also evident as seen from the results of the insulin tolerance

test (Fig. 15). Moreover, Jell and coworkers demonstrated that glucose oxidation was

impaired in WAT of SSAT-KO mice (Jell et al., 2007). However, glucose tolerance was not

impaired in SSAT-KO mice because insulin resistance was compensated by higher insulin

secretion from the pancreas. Interestingly, histological examination of aged SSAT-KO mice

revealed renal alterations resembling the characteristics of diabetic nephropathy (Fig. 15).

SSAT-KO mice were insulin resistant and therefore, one could expect that these mice

show hypertriglyceridemia and hypercholesterolaemia as insulin resistance causes e.g.

enhanced production of TG-rich VLDL and cholesterol-rich LDL particles (Taskinen 2003).

In  contrast  to  our  expectations,  no  changes  in  plasma  TG  levels  and  total  cholesterol  were

observed in SSAT-KO mice. As SSAT-KO mice were hyperinsulinemic, this may

compensate for the hepatic insulin resistance and thus maintain lipoprotein production within

the normal range.

Jell and coworkers have suggested that the obese phenotype of SSAT-KO mice is

attributable to increased acetyl- and malonyl-CoA levels which enhance fatty acid synthesis

and downregulate fatty acid oxidation (Jell et al., 2007). In addition, the deficiency of SSAT

may decrease ATP consumption causing the subsequent reduction in the AMP/ATP ratio that
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will reduce the activity of AMPK and possibly also PGC-1�. The mechanism responsible for

insulin resistance will have to be investigated in SSAT-KO mice in future studies.

PGC-1�

pAkt pAMPK

Bile acid synthesis Glucose transport

Mitochondrial biogenesis

OXPHOS

Fatty acid oxidation

SSAT

- +

Overexpression Deficiency

Diabetic nephropathy

Insulin resistance

Figure 15. The main findings in SSAT and SSAT-KO mice.
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7 CONCLUDING REMARKS

Our results summarized in Figure 16 provide new evidence that activated polyamine

catabolism, but not the polyamines themselves, can enhance energy expenditure, increase

insulin sensitivity, reduce circulating total cholesterol levels and cause organomegaly.

Furthermore, we observed that the deficiency of polyamine catabolism results in insulin

resistance.

SSAT

Hair loss

KFSD

Liver regeneration

Pancreatitis

Fat mass

Carcinogenesis

Cholesterol

Energy expenditure

Insulin sensitivity

Organ size

Depletion of higher polyamines

Elevated putrescine content

Reactive oxygen species

Reduced acetyl-CoA and ATP

Reduced Akt

Unknown

SSAT

Hair loss

KFSD

Liver regeneration

Pancreatitis

Fat mass

Carcinogenesis

Cholesterol

Energy expenditure

Insulin sensitivity

Organ size

Depletion of higher polyamines

Elevated putrescine content

Reactive oxygen species

Reduced acetyl-CoA and ATP

Reduced Akt

Unknown

Figure 16. Physiological consequences of SSAT overexpression. KFSD, keratosis follicularis
spinulosa decalvans. The shading of the boxes presents the most likely cause for the
physiological change.

Our studies revealed for the very first time that the polyamine cycle can be considered

as a futile cycle and the acceleration of the rate of polyamine cycle due to SSAT

overexpression causes depletion of the cellular ATP pool. The high AMP/ATP-ratio results

then in the activation of AMPK with the concomitant induction of PGC-1� which improves

glucose and energy metabolism. Moreover, the activation of AMPK suppresses ACC, the

enzyme converting acetyl-CoA to malonyl-CoA explaining why the formation of malonyl-

CoA from acetyl-CoA is impaired in WAT of SSAT, the previously suggested reason for the

lean  phenotype  of  SSAT  mice  (Jell  et  al.,  2007).  Therefore,  our  findings  deepened  the

understanding of the mechanisms underlying the altered body WAT mass in SSAT mice.
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Our results provide evidence that the ideal concept for drug development for obesity

and type 2 diabetes is the enhancement of ATP consumption and basal metabolic rate since

these are associated with weight loss and beneficial changes in glucose homeostasis.

Currently, promising anti-hyperglycemic agents are SIRT1 activators which enhance energy

expenditure, increase insulin sensitivity and protect against high-fat diet-induced obesity

(Lagouge et al., 2006; Milne et al., 2007).

Another novel finding in our studies was that polyamine catabolism is a potential new

target to augment CYP7A1 expression and bile acid synthesis in the liver. In other words,

activated polyamine catabolism increased the stability and activity of PGC-1�, the critical

activator of CYP7A1, by reducing activity of Akt. Thus, our studies provide support for

previous observations that the activation of CYP7A1 and bile acid synthesis is an effective

way of lowering circulating total cholesterol levels at least in mice.

Our findings open several possibilities for future studies. For example, it would be

important to elucidate the cause for organomegaly and especially for cardiac enlargement in

SSAT mice. Second, the molecular mechanisms by which activated and deficiency of

polyamine catabolism affect insulin sensitivity and gluconeogenesis on chow and high-fat

diet need to be clarified. Furthermore, the detailed mechanisms to explain why activated

polyamine catabolism causes low cholesterol levels and the phosphorylation of Akt should

also be investigated.

In future studies, to overcome the undesired effect of SSAT overexpression in nontarget

tissues, mice having WAT- and liver-specific overexpression of SSAT would be feasible

study models. Although the regulation of energy and glucose metabolism is similar in mice

and humans, and CYP7A1 is also induced by PGC-1� in humans, it should be investigated

whether these results can be duplicated in humans. If the future studies support the role of

polyamine catabolism as a potential drug target, the development of WAT- and liver-specific

SSAT activators would be of interest.
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8 SUMMARY

The main aim of this study was to investigate the effects of activated and inactivated

polyamine catabolism on glucose, energy and lipid metabolism in mice. The following results

were obtained:

I  SSAT mice had reduced fat mass, low tissue TG content, increased mitochondria

number, enhanced basal metabolic rate, high insulin sensitivity and OXPHOS accompanied

by increased levels of AMPK and PGC-1�. Activated polyamine catabolism caused depletion

of the ATP pool in WAT of SSAT mice resulting in the induction of AMPK which in turn

activated PGC-1�.

II Activated polyamine catabolism reduced significantly plasma total cholesterol levels in

mice by enhancing CYP7A1-mediated conversion of cholesterol to bile acids. The activation

of CYP7A1 was attributable to an increased stability and activity of PGC-1� which was most

likely elicited by activated polyamine catabolism–induced reduction in the activity of Akt.

III SSAT-KO mice maintained normal polyamine homeostasis but showed abnormal

glucose homeostasis during aging. Increased fasting glucose levels and insulin resistance

were observed in aged SSAT-KO mice.
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