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ABSTRACT

Impaired insulin secretion and insulin resistance are the two main mechanisms leading to type 2
diabetes mellitus. Both abnormalities can be detected long before the onset of overt diabetes, at
the pre-diabetic stage (impaired fasting glucose, IFG, impaired glucose tolerance, IGT, and
combination of IFG and IGT), and are partially genetically determined. Since the prevalence and
incidence of type 2 diabetes are rapidly increasing, it is important to get new information on the
pathophysiology and genetics of this disease. However, previous studies on the
pathophysiology of prediabetes and diabetes have often yielded inconclusive results, most
probably due to the small sample size of many studies. Recent studies have identified 20 genetic
loci convincingly associated with type 2 diabetes, but the mechanisms whereby these risk genes
exert their effects have remained largely unknown. The aims of this study were to describe the
pathophysiology of the prediabetic state, and to determine gene variants regulating insulin
secretion, proinsulin conversion, and insulin sensitivity in two large studies of carefully
phenotyped non-diabetic European subjects.

Impairment of peripheral insulin sensitivity was observed already at a relatively low fasting
(FPG)  and  2-hour  glucose  (2hPG)  levels  within  the  normoglycemic  range.  In  contrast,  the
impairment of insulin secretion progressed substantially only in the diabetic range of FPG and
2hPG. Compensatory insulin secretion was entirely missing when FPG increased from the
normal range to the IFG range, but it was present within the normal and IGT range of 2hPG.
Peripheral insulin resistance was a predominant feature of isolated IGT, whereas impaired
insulin secretion characterized isolated IFG. These findings suggest that type 2 diabetes develops
through  at  least  two  distinct  pathways:  via  elevation  of  FPG,  where  insulin  secretion  plays  a
crucial role, and via elevation of 2hPG, where insulin resistance seems to dominate. We also
found that out of 18 type 2 diabetes-related loci, eight loci (TCF7L2, SLC30A8, HHEX, CDKN2B,
CDKAL1, MTNR1B, KCNJ11, and IGF2BP2) were associated with impaired early-phase insulin
release.  In carriers of �11 risk alleles at these loci, insulin secretion was 32% lower than that of
carriers of �3 risk alleles. Moreover, CDKAL1 and HHEX SNPs  were  also  associated  with
impaired first phase insulin release. Effects of TCF7L2, SLC30A8, HHEX, and CDKAL1 on insulin
secretion could be explained, at least in part, by impaired conversion of proinsulin to insulin.
HHEX, KCNJ11 and TSPAN8 could  also  affect  peripheral  insulin  sensitivity.  In  summary,  our
studies contribute new knowledge of the pathophysiology and genetics of type 2 diabetes.

National Library of Medicine Classification: WD 200.5.G6 , WK 810

Medical Subject Headings: Diabetes Mellitus, Type 2; Finland/epidemiology; Glucose
Intolerance/genetics; Glucose Metabolism Disorders/ physiopathology; Glucose Tolerance Test;
Insulin/secretion; Insulin Resistance; Polymorphism, Single Nucleotide; Proinsulin
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1. Introduction
Type 2 diabetes mellitus is a common metabolic disorder characterized by
chronic hyperglycemia with disturbances in carbohydrate, fat and protein
metabolism. The two major pathophysiological defects in type 2 diabetes are
impaired insulin secretion and insulin action (1). These metabolic
abnormalities lead to long-term damage of various organs, causing their
dysfunction and failure. Therefore, diabetes substantially increases the
morbidity and mortality of affected individuals. Diabetes-related
microvascular complications are responsible for the majority of new cases of
blindness, kidney failure, and nontraumatic amputations. Furthermore,
macrovascular complications such as stroke and cardiovascular disease-related
deaths are 2–4 times more frequent in adults with diabetes than in the general
population (2). These complications of type 2 diabetes are among the leading
causes of mortality worldwide, and cause a significant decrease in the life-
expectancy of diabetic patients.

The prevalence and incidence of type 2 diabetes is constantly increasing
in almost all countries. The World Health Organization (WHO) estimates that
approximately 180 million individuals are affected worldwide, and this
number is expected to be doubled by the year 2030 (3). Moreover, the age of
onset of type 2 diabetes is decreasing, and type 2 diabetes is increasingly
observed in children (4). This increase in the incidence and prevalence is
mainly due to adverse environmental factors of modern society, such as diets
rich in carbohydrates and fat, and physical inactivity, although aging of the
population and genetic factors also play important roles.

A considerable number of studies have been carried out to investigate
the mechanisms leading to diabetes, and the genetic background of this
disease. In spite of undisputable progress achieved over the recent years, our
knowledge is far from complete. Moreover, findings across different studies
are often inconsistent or even conflicting. One of the important reasons for
these inconsistencies is the insufficient power of most of the studies due to a
small sample size. Therefore, there is a need for large and thoroughly
phenotyped cohorts, using accurate methods to estimate the metabolic
parameters.

The aim of this study was to determine the characteristics of the
pathophysiology of prediabetes, and to assess the possible effects of type 2
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diabetes risk loci on insulin secretion and insulin sensitivity, based on two
independent large cohorts of carefully phenotyped individuals.

2. Review of the literature
2.1 DEFINITION OF TYPE 2 DIABETES

Diagnosis of type 2 diabetes is based on fasting plasma glucose (FPG)
concentration and/or 2-hour plasma glucose (2hPG) concentration during an
oral glucose tolerance test (OGTT). The diagnostic cut-off points for diabetes
are FPG 7.0 mmol/l, and 2hPG 11.1 mmol/l (Table 1).

2.2 DEFINITION AND CHARACTERISTICS OF PRE-DIABETIC STATES

Type 2 diabetes is preceded by a pre-diabetic state, characterized by mild
elevation of fasting and/or postprandial glucose levels. This asymptomatic
phase may last for years, and about one third of individuals with pre-diabetes
finally develop type 2 diabetes (5). The pre-diabetic state is defined by an
OGTT, and includes impaired fasting glucose (IFG, characterized by an
elevated FPG), impaired glucose tolerance (IGT, characterized by an elevated
2hPG) or a combination of these (6). The diagnostic criteria for IFG and IGT are
shown in Table 1. Two definitions of IFG have been presented: according to the
American Diabetes Association (ADA) and WHO in 1997 (7), IFG is defined by
FPG �6.1 and <7.0 mmol/l. In 2003, the ADA lowered this threshold to 5.6
mmol/l (6) in order to achieve a reasonable balance between sensitivity and
specificity for diabetes prediction.

Table 1. Diagnostic criteria of glucose tolerance categories according to the
WHO (7) and ADA (6) criteria.

FPG 2hPG

WHO ADA

NFG, NGT <6.1 <5.6 <7.8

IIFG �6.1 & <7.0 �5.6 & <7.0 and <7.8

IIGT <6.1 <5.6 and �7.8 & <11.1

IFG+IGT �6.1 & <7.0 �5.6 & <7.0 and �7.8 & <11.1

Diabetes �7.0 �7.0 and/or �11.1
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FPG = fasting plasma glucose, 2hPG = 2-hour plasma glucose during an OGTT, NFG =
normal  fasting  glucose,  NGT  =  normal  glucose  tolerance,  IIFG  =  isolated  impaired
fasting glucose, IIGT = isolated impaired glucose tolerance.

Both IFG and IGT predict similarly incident diabetes (8-10). In a large
meta-analysis (11), the absolute annual incidence of diabetes in individuals
with IFG or IGT varied from 5 to 10%, and was higher for individuals with a
combination of IFG and IGT. IFG and IGT not only predict the development of
type 2 diabetes, but are also associated with an increased risk of cardiovascular
disease. This association is well established especially for IGT. In a large
longitudinal Whitehall study (N=18,403), subjects with IGT had approximately
double the risk of cardiovascular mortality compared with those with normal
glucose tolerance (12). Several other studies have reported similar results (13,
14). Although conflicting reports have been published on the association
between IFG and cardiovascular risk (15-18), results of the Framingham Heart
Study showed that IFG was associated with increased risk of coronary heart
disease in women, but not in men (19). Furthermore, a meta-analysis of 20
studies examining the relationship between glucose and incident
cardiovascular events showed that progressive relationship exists already
below the diabetic threshold for glucose levels (20).

In spite of similarities between IFG and IGT in predicting the risk of
diabetes, they represent different metabolic states, and identify two distinct
populations with only partial overlap. In most populations, IGT is more
prevalent than IFG, increases with aging, is more common in women (18, 21),
and is more strongly associated with cardiovascular disease than is IFG (5).
These differences suggest that IFG and IGT are likely to have different
pathophysiology.

2.3 PATHOPHYSIOLOGY OF TYPE 2 DIABETES AND PRE-DIABETES

Impaired insulin secretion and insulin resistance are the two main metabolic
disturbances in the pathogenesis of type 2 diabetes. Both abnormalities often
coexist in the same individuals (22). There is a strong link between insulin
secretion and insulin sensitivity, and changes in one of these two produce
adaptation in the other (23). There is no consensus on which one of the two
abnormalities is the primary defect in the development of type 2 diabetes.
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However, most researchers accept that type 2 diabetes develops when the
pancreas is unable to secrete more insulin to compensate for existing insulin
resistance. This is in accordance with an observation that insulin resistance is
present early in the natural history of type 2 diabetes, whereas marked beta-
cell dysfunction is a rather late event (24). Both impaired insulin secretion and
insulin resistance are influenced by genetic and environmental factors.

2.3.1 Impaired insulin secretion

Insulin release from the beta-cells of the pancreatic islets in response to
changes in blood glucose concentration is a complex phenomenon. Briefly, the
process is initiated by the transport of glucose into the beta-cells through
diffusion facilitated by GLUT2 transporters. In the beta-cell, glucose is
metabolised to generate ATP, the central energy molecule, and the ATP/ADP
ratio increases. This induces the closure of cell-surface ATP-sensitive K+

channels, and leads to the depolarization of the cell-membrane. Next,
transmembrane voltage-dependent Ca2+ channels are opened due to
depolarisation, facilitating the influx of extracellular Ca2+ into the beta-cell.
Finally, a rise in free cytosolic Ca2+ triggers the exocytosis of insulin (25)
(Figure 1).

Figure 1: Insulin secretion by the beta-cell of the pancreatic islets (26).
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Insulin is released form the pancreatic beta-cells in a biphasic manner in
response to a rapid increase in blood glucose concentration. The first phase,
which is a short-lasting (few minutes) increase in insulin secretion, is followed
by  a  more  slowly  evolving  second  phase,  which  lasts  as  long  as  the  glucose
level is elevated. On the other hand, a slow increase in plasma glucose level
induces a gradually larger secretion without the first phase (27).

In type 2 diabetic patients, the first phase of insulin release is
substantially lower than in healthy subjects, and often absent. The second
phase is also lower than in non-diabetic controls (28). Impairment of both first
and second phase insulin release occurs early in the natural history of diabetes
(29), and blunted first-phase insulin release can be demonstrated even in
normoglycemic first-degree relatives of type 2 diabetic patients (30).
Furthermore, beta-cell function deteriorates over the years following the
diagnosis of type 2 diabetes (31).

There are several potential causes of beta-cell dysfunction in type 2
diabetes (32), e.g. reversible metabolic abnormalities (glucotoxicity and
lipotoxicity), hormonal changes (inadequate incretin secretion and action),
reduction of beta-cell mass due to apoptosis, and genetic abnormalities.

Chronic hyperglycemia has been shown to induce beta-cell dysfunction
and apoptosis in animal models (33) and also in humans (34) (glucotoxicity).
The mechanisms proposed include mitochondrial dysfunction with the
production of reactive oxygen species, endoplasmic reticulum stress, and
increased levels of intracellular calcium.

Elevation of free fatty acids (FFAs) has been shown to promote
proapoptotic effects on beta-cells (35), possibly as a result of endoplasmic
reticulum stress (36) (lipotoxicity). Moreover, high levels of FFAs can also
contribute to beta-cell dysfunction through the intracellular accumulation of
triglycerides as a response to the activation of the sterol regulatory element-
binding  proteins  (SREBP)  (37),  or  by  increased  expression  of  uncoupling
protein 2 (UCP2), which regulates cellular ATP production (38). The
deleterious effects of FFAs are observed predominantly in the presence of high
glucose.

Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic
polypeptide (GIP) are important gut hormones, called incretins, which are
released after food intake, and they increase insulin release. In addition, GLP-1
acts as an inhibitor of secretion of glucagon, a protein secreted by pancreatic
alpha-cells which contributes to hyperglycemia by stimulating hepatic glucose
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production. Furthermore, both proteins have been shown to increase beta-cell
proliferation and decrease beta-cell apoptosis (39). Attenuated release of GLP-1
has been found in patients with type 2 diabetes or IGT after the ingestion of a
mixed meal (40).

Apoptosis of beta-cells is 3- to 10-fold more frequent in diabetic subjects
than in weight-matched non-diabetic controls. Moreover, a 40% deficit in
relative beta-cell volume has also been found in subjects with IFG (41),
indicating that the loss of beta-cells is an early process in the pathogenesis of
type 2 diabetes. The main mechanisms leading to increased beta-cell apoptosis
include glucotoxicity, lipotoxicity, and deposits of islets amyloid polypeptide
(IAPP). IAPP, which is co-secreted with insulin from beta-cells, exerts several
physiological functions. Although IAPP is normally maintained in the form of
soluble monomers, cytotoxic oligomers inducing apoptosis of beta-cells can
also be formed. There are several possible mechanisms leading to the
formation of oligomers (42), including insulin resistance which
disproportionately increases the expression of IAPP compared with insulin
expression (43, 44).

Gene variants may affect insulin secretion in type 2 diabetes through
their effects on glucose-stimulated insulin release, incretin sensitivity or
incretin secretion, proinsulin conversion, beta-cell proliferation, apoptosis etc.

2.3.1.1 Impaired proinsulin conversion as a marker of beta-cell dysfunction

The insulin gene is translated into proinsulin, a precursor of insulin. During
insulin maturation, which takes place in the endoplasmic reticulum and Golgi
apparatus of the beta-cells, proinsulin is cleaved by protein convertases 1 and 2
and carboxypeptidase E into mature insulin molecule and C-peptide (Figure
2). Normally, only <10% of synthesised proinsulin escapes this process and
gets into the circulation. Therefore, the increased proinsulin/insulin ratio
reflects the efficiency of proinsulin conversion.
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Figure 2: Scheme of insulin processing (26).

Individuals with type 2 diabetes typically exhibit an elevated proinsulin-
to-insulin ratio (45), which has been shown to correlate with decreased acute
insulin response to glucose (46). Moreover, hyperproinsulinemia has also been
detected in individuals with pre-diabetes (47, 48), suggesting that impaired
conversion of proinsulin to insulin is an early event in the development of type
2 diabetes.

2.3.2 Insulin resistance

Insulin exerts its biological functions by interacting with membrane-spanning
insulin receptor (IR). Binding of insulin to IR elicits autophosphorylation of the
IR,  leading  to  binding  of  various  scaffold  proteins  such  as  insulin  receptor
substrate (IRS) proteins. Phosphorylation of IRS proteins leads to their
association with the p85 regulatory subunit of phosphatidylinositol 3-kinase
(PI3K) and its activation. The subsequent steps, which involve PI3K-mediated
actions of phopshoinositide-dependent protein kinase-1 (PDK1) and protein
kinase  B  (PKB  or  Akt),  lead  to  the facilitation of the translocation of glucose
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transporter-4 (GLUT4)-containing vesicles to the cell surface (49). Finally,
GLUT4 transports glucose into the cell. Other effects of insulin, such as its
effects on glycogen synthesis, protein synthesis, lipogenesis, and supression of
hepatic gluconeogenesis, are also mediated by PKB (50) (Figure 3).

Figure 3: Scheme of insulin action [modified from (51, 52)].

The main insulin-sensitive tissues are skeletal muscle (accounting for 60-
70% of whole-body glucose uptake), liver (�30%) and adipose tissue (�10%).
Insulin resistance can be defined as the inability of these tissues to respond
properly to normal circulating concentrations of insulin. To maintain
euglycemia, the pancreas compensates by secreting increased amounts of
insulin. However, elevated insulin levels can compensate for poor insulin
action only for a limited time. After a period of compensated insulin resistance,
pre-diabetes or diabetes usually develops, especially in coexistence with
impaired beta-cell function. An early appearance of insulin resistance in the
natural history of diabetes was demonstrated by Vaag et al., who found that
young healthy offspring of diabetic parents commonly exhibit insulin
resistance and impaired skeletal muscle insulin signalling many decades
before the onset of overt type 2 diabetes (53).

Although the mechanisms resulting in insulin resistance are largely
unknown, multiple abnormalities in the insulin signalling pathway have been
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identified. The most important sites are IRS (-1 and -2), PI3K and PKB.
Mutations in the IRS1 gene in humans are associated with insulin resistance
(54), and IRS-2 knockout mice show insulin resistance in muscle, fat and liver,
and develop diabetes resulting from beta-cell failure (55). Reduced activation
of the PI3-kinase/Akt signalling pathway can lead to reduced glucose transport
and utilisation in the skeletal muscle and adipocytes (32). Mice lacking the
PKB� isoform are insulin-resistant and develop a phenotype closely
resembling type 2 diabetes in humans (56, 57). Consistent with this finding,
mutations in PKB� have been identified in a family of severely insulin resistant
patients (58).

Several environmental and lifestyle factors also affect insulin sensitivity,
such as nutritional factors in utero, diet, physical activity, smoking, drugs, and
particularly obesity. Obesity, and especially visceral adiposity, is strongly
associated with insulin resistance and type 2 diabetes.

2.3.2.1 Adipose tissue and insulin sensitivity

Adipose tissue can modulate whole body glucose metabolism by regulating
the levels of circulating FFAs, and also by secreting adipokines, thereby acting
as an endocrine organ (50).

Insulin-resistant visceral adipose tissue is resistant to the antilipolytic
effects of insulin and releases excessive amounts of FFAs. Metabolic overload
of the liver and muscle with FFAs causes mitochondrial dysfunction with
impaired FFA oxidation. In the liver, impaired FFA oxidation leads to
redirection of FFAs into lipid species localized in ER and cytoplasm, which
promotes the development of hepatic steatosis and hepatic insulin resistance.
In skeletal muscle, metabolic overload and physical inactivity lead to
incomplete oxidation of FFAs, and lipid-derived intermediates accumulate in
mitochondria, contributing to both mitochondrial stress and insulin resistance
(49). Moreover, elevated levels of plasma FFAs can increase insulin resistance
also by affecting the insulin signalling cascade, particularly abolishing the
insulin activation of IRS-1-associated PI3K-activity (59).

Adipokines secreted by the adipose tissue affect insulin sensitivity in
either a positive (adiponectin, leptin, interleukin-10, etc.) or a negative way
(TNF�, resistin, interleukin-6, retinol binding protein 4, monocyte
chemoattractant protein-1, plasminogen activator inhibitor-1 etc.). The best
understood are the mechanisms whereby TNF� and adiponectin affect insulin
sensitivity.
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TNF� is the main factor that triggers the secretion of FFAs from the
adipose tissue into the circulation (60). Furthermore, it mediates the repression
of  many  genes  responsible  for  glucose  and  FFA  uptake  and  storage.  The
enhanced release of FFAs and cytokines as a result of TNF� action impairs
insulin signalling in insulin responsive tissue, especially in skeletal muscle.
TNF� has also been shown to downregulate the genes encoding adiponectin,
GLUT4, IRS-1 etc.

Adiponectin improves insulin sensitivity by various mechanisms,
resulting in a decrease in plasma FFA and glucose levels. In the liver,
adiponectin induces FFA oxidation, decreases lipid synthesis, decreases uptake
of FFA and represses gluconeogenesis. In skeletal muscle, adiponectin
increases glucose and FFA oxidation. Adiponectin also suppresses the
secretion of TNF� (61).

2.3.2.2 Liver and insulin sensitivity

Although the liver accounts for only �30% of the whole-body glucose
metabolism, hepatic insulin resistance plays an important role in the
pathogenesis of type 2 diabetes. In the insulin-resistant liver, insulin does not
inhibit sufficiently two key enzymes of gluconeogenesis
(phosphoenolpyruvate carboxykinase and glucose-6-phosphatase catalytic
subunit). Consequently, this leads to increased hepatic glucose production in
the fasting state and to fasting hyperglycemia.

2.3.2.3 Brain and insulin sensitivity

Recent observations have shown that the brain is also an important insulin-
sensitive organ, even though glucose uptake by the brain is insulin-
independent. Experimental studies in mice have shown that neuronal insulin
signalling is required for intact control of body fat mass and glucose
homeostasis (62-65). Impaired neuronal signalling by insulin (and also by
leptin and nutrient-related signals) leads to hyperphagia, weight gain, and
hepatic insulin resistance. One proposed mechanism of neuronal insulin
resistance is the disruption of the IRS-PI3K signalling pathway, which
mediates the neuronal actions of both insulin and leptin (66).
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2.3.3 Hepatic glucose production

Increased hepatic glucose production resulting from unsuppressed
gluconeogenesis and enhanced glycogenolysis in hepatocytes is an important
mechanism contributing to hyperglycemia in type 2 diabetes. Hepatic glucose
production is regulated by insulin and glucagon, which have opposite effects.
Insulin suppresses both gluconeogenesis and glycogenolysis, and increased
glucose hepatic output is therefore a consequence of insulin resistance in the
liver. In contrast, glucagon stimulates gluconeogenesis and glycogenolysis,
and increased glucagon secretion or enhanced hepatic glucagon sensitivity can
contribute to the dysregulation of glucose production (67).

2.3.4 Insulin resistance and impaired insulin secretion in pre-diabetes

Epidemiological studies have shown that IFG and IGT represent two distinct
subgroups of abnormal glucose tolerance (5, 68-70), which differ in their age
and sex distribution (71, 72) and associated cardiovascular risk (73). Therefore,
IFG and IGT are likely to have different pathophysiology. Many investigators
have studied the role of insulin resistance and impaired insulin secretion in the
pathogenesis of IFG and IGT. However, these studies have yielded
contradictory results (69-88).

Most of the studies using the clamp method to assess insulin sensitivity
in different categories of glucose tolerance have shown impairment of
peripheral insulin sensitivity in IGT, whereas subjects with IFG have been
shown to have normal or impaired (similarly as in IGT) peripheral insulin
sensitivity (74-79). When insulin resistance was assessed using HOMA-IR
(describing mainly hepatic insulin resistance), several studies (77, 83, 86, 88)
reported increased insulin resistance in subjects with IFG, whereas others did
not (74, 84, 85).

Studies on insulin secretion disturbances in IFG and IGT have reported
conflicting results. While some studies applying the intravenous glucose
tolerance test (IVGTT) or clamp methods to assess insulin secretion have
reported impaired first-phase insulin secretion only in IFG but not IGT (74, 75,
78, 81), other studies have reported impaired first- and also second-phase
insulin secretion in isolated IGT (76, 82). Studies assessing insulin secretion on
the basis of fasting glucose and insulin levels or OGTT have reported even
more controversial results, reporting impaired insulin secretion in IFG (85, 87),
in IGT (83, 88), or in both (84, 86). Inconsistencies across these studies could be
explained by differences in study populations, study designs and methods to
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assess insulin sensitivity and insulin secretion, and most importantly by a
small sample size.

The categorization of glucose tolerance is based on arbitrary cut-off
points of glucose levels, and therefore different subgroups cannot fully account
for changes in beta-cell function and insulin action when glycemia increases.
Only a few studies have examined insulin secretion and/or insulin sensitivity
as a function of glucose concentrations (78, 89-93). These studies have been,
however, relatively small and most of them have been conducted in non-
European populations.

2.4 GENETICS OF TYPE 2 DIABETES

2.4.1 Heritability of type 2 diabetes

It is generally agreed that type 2 diabetes has a strong genetic component.
There are several lines of evidence supporting this view (94). For one thing, the
prevalence of type 2 diabetes differs across different ethnic groups. For
example, the prevalence of type 2 diabetes in Europeans is �2%, whereas in
Pima Indians in Arizona it reaches 50% (95). Moreover, type 2 diabetes often
exhibits familial aggregation. Siblings of type 2 diabetic probands have nearly
a 4-fold increased risk for type 2 diabetes compared with the general
population (96). Furthermore, in twin studies there is a high concordance of
type 2 diabetes in monozygotic twins (concordance rates 0.29-1.00), whereas in
dizygotic twins the concordance is about 50% lower than in monozygotic twins
(0.10-0.43) (97-100). Finally, there is a strong heritability of intermediate
phenotypes, since both insulin sensitivity and insulin secretion have an
important genetic component (heritability estimates 0.50-0.58 for insulin
secretion, and 0.26-0.37 for insulin sensitivity) (99, 101).

The genetic contribution to type 2 diabetes arises from genetic variations
in several genes, each conferring a small increase in the risk (94). These gene
variations do not cause diabetes but increase its risk by interacting with other
diabetes-susceptibility genes, the metabolic environment of the body (e.g.
glucotoxicity and lipotoxicity) and life-style factors (e.g. sedentary life, excess
calories, smoking, stress and chronic inflammation) (102). The most studied
genetic variations determining the individual predisposition to type 2 diabetes
(as well as to other complex diseases) are single nucleotide polymorphism
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(SNPs), which cover ~90% of the sequence variation within the human genome
(103).

2.4.2 Strategies in the search for the genes for type 2 diabetes

2.4.2.1 Candidate gene approach and linkage studies

The candidate gene approach focuses on the search for an association between
type 2 diabetes and sequence variants in or near biologically defined candidate
genes which have been chosen based on their known pathophysiological
function. The importance of these variants is tested by comparing their
frequency in diabetic and control individuals, or by testing their association
with continuous outcomes. This approach cannot be used to identify novel
genes and pathways (94).

The linkage strategy assumes that a disease-predisposing allele will pass
from generation to generation with the variants at tightly linked loci. Linkage
studies directly examine the transmission across the generations of both
disease phenotype and marker alleles, trying to identify the causal loci. First,
the susceptibility locus is localized to a chromosomal region. The specific gene
and sequence variants are then identified within this region based on their
physiologic impact. Alternatively, a dense map of markers is tested in cases
and controls across the region of linkage. No prior knowledge about the gene
or gene effects is necessary. This approach is very labour-intensive, since the
chromosomal regions identified often encompass up to hundreds of genes.

Both approaches have led to the identification of a plethora of potential
candidate genes for type 2 diabetes. However, most of the reported
associations could not be replicated in other populations. However, at least
three true type 2 diabetes candidates have been discovered by these
approaches: PPARG and KCNJ11 identified by the candidate gene approach,
and TCF7L2 identified by a linkage study. The low reproducibility of linkage
and genetic association studies is due mostly to the insufficient power of these
studies, over-interpretation of results, and incomplete knowledge of the
etiopathogenesis of type 2 diabetes. Therefore, large-scale, biology-agnostic
studies are necessary for further progress.

2.4.2.2 Genome-wide association (GWA) studies

The GWA strategy makes it possible to investigate genetic variation across the
entire human genome and to identify genetic associations with continuous
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traits or the presence or absence of the disease. This approach became feasible
thanks to the sequencing of the human genome and the development of high-
throughput genotyping technologies. An important step towards effective
GWA studies was the completion of Stages I and II of the International
HapMap Project (104, 105), which provided a set of informative single
nucleotide polymorphisms (SNPs) to tag variation throughout the genome
(106). Two main platforms for genome-wide SNP genotyping are available,
Affymetrix and Illumina, containing up to �1 000 000 SNPs selected from all
three HapMap phases, the 1,000 Genomes Project, and published studies to tag
common variations, taking linkage disequilibrium (LD) patterns into account.
These SNP chips can capture > 90% of the common genetic variation reported
in the HapMap (107).

The first GWA scans were published in 2007 (108-112), identifying six
novel diabetes-susceptibility genes: SLC30A8, HHEX-IDE, CDKN2A/2B,
IGF2BP2, CDKAL1 and FTO. The first scan (108) replicated the previously
known association between TCF7L2 and type 2 diabetes, and discovered SNPs
in SLC30A8, HHEX-IDE, EXT2-ALX4 and LOC387761 as novel type 2 diabetes
loci. Three other GWA scans (WTCCC, DGI and FUSION) (109-111) confirmed
the known PPARG, KCNJ11 and TCF7L2 loci as well as SLC30A8 and HHEX-
IDE, and identified CDKN2A/2B, IGF2BP2, CDKAL1 as novel diabetes-
susceptibility loci. Simultaneously, deCODE investigators reported SLC30A8,
HHEX-IDE, and CDKAL1 signals (112). The associations of EXT2-ALX4 and
LOC387761 found in the first scan were not confirmed in these four subsequent
scans. Furthermore, SNPs in FTO were found to be associated with obesity and
therefore contribute indirectly to the risk of type 2 diabetes (113).

In 2008, a meta-analysis (DIAGRAM) including four previous GWA
scans (WTCCC, DGI, FUSION and deCODE) identified six additional diabetes-
susceptibility genes: JAZF1, CDC123/CAMK1D, TSPAN8/LGR5, THADA,
ADAMTS9 and NOTCH2 (114). At the end of 2008, two GWA scans conducted
in Japanese samples identified SNPs in KCNQ1 robustly associated with type 2
diabetes (115,116). Most recently, a meta-analysis of multiple GWAS (MAGIC,
The Meta-Analyses of Glucose and Insulin-related Traits Consortium)
confirmed the MTNR1B locus as a candidate for type 2 diabetes, with major
effects on fasting glucose and insulin secretion (117).  A total of 20 confirmed
type 2 SNPs with their effect sizes from the original GWA scans are presented
in Figure 4.
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Figure 4. Confirmed type 2 diabetes-related SNPs with their effect sizes (odds ratios) in
chronological order.

2.4.3 Type 2 diabetes loci identified by candidate gene approach or linkage
studies

PPARG encodes for the peroxisome proliferator-activated receptor gamma
(PPAR�), a member of the nuclear hormone receptor superfamily which
regulates the transcription of various genes after binding to their PPAR
response elements (PPREs). PPAR� regulates mainly the expression of adipose-
specific genes, and acts as an important regulator of adipocyte differentiation.
PPAR� also contributes to the regulation of FFA metabolism by stimulating
uptake, storage, and oxidation of FFAs in adipocytes (118), thereby decreasing
their plasma levels. These actions, together with effects of PPAR� activation on
the concentration of circulating pro-inflammatory proteins and adiponectin,
can modulate insulin sensitivity. PPAR� also  acts  as  a  modulator  of
intracellular insulin-signalling events. Moreover, it may act as a tumor
suppressor gene, inhibiting the growth of several cell types and inducing
apoptosis.

A missense mutation Pro12Ala (rs1801282) in exon B of PPARG2 was
identified in 1997 (119). The association of the common Pro allele with an
increased risk of type 2 diabetes was first reported in 1998 (120) and was
replicated in several studies including a meta-analysis (121) and GWA studies
(109-111). Although the effect size is small (carriers of Pro/Pro genotype have
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1.25-fold increase in the risk of type 2 diabetes), the high frequency of the Pro
allele (~85% in Europeans) leads to a considerable population-attributable risk
of type 2 diabetes (25%) (121).

The association of the Pro12Ala variant with diabetes is explained, at
least in part, by its effect on whole-body insulin sensitivity. Since exon B
harbouring the Pro12Ala polymorphism is only present in the PPAR�2
isoform, which is expressed in adipose tissue, it is probable that the Pro12Ala
polymorphism exerts its insulin-sensitizing effect directly in the adipose tissue.
Insulin-resistant adipose tissue releases FFAs into the circulation, which may
further impair insulin sensitivity in skeletal muscle and the liver. The effect of
PPARG2 on insulin sensitivity is supported by the fact that PPAR� is the
specific molecular target of thiazolidinediones, the insulin-sesitizing
antidiabetic drugs (122).

KCNJ11 (Potassium inwardly-rectifying channel, subfamily J, member 11)
encodes for the Kir6.2 subunit of the ATP-sensitive potassium channel (KATP).
KATP channels regulate the flux of K+ ions across the cell membranes, and their
importance in insulin secretion was established 25 years ago (123). Rare
activating mutations of KCNJ11 cause permanent neonatal diabetes mellitus
with a severe defect in insulin secretion (124), due to permanent opening of
KATP channels in the plasma membrane of beta-cells (125). On the other hand,
common polymorphisms in KCNJ11 predispose to type 2 diabetes.

A missense mutation E23K (rs5219, Glu23Lys), was first shown to be
associated with type 2 diabetes in 2003 (126). Several subsequent studies
confirmed the original findings (127, 128), including GWAS (109-111).
Although the effect size is small (odds ratio (OR) ~1.2), the high frequency of
the risk allele (~50%) leads to a sizeable population-attributable risk. The
mechanism is thought to be a beta-cell dysfunction due to a small increase in
KATP channel activity (129).

TCF7L2 (transcription factor 7-like 2) encodes for the high mobility group box-
containing transcription factor that serves as a nuclear receptor for �-catenin. It
mediates the wingless-type MMTV integration site family (WNT) signalling
pathway, a key developmental and growth regulatory mechanism of the cell.
Wnt signalling has also been shown to regulate pancreatic beta-cell
proliferation (130), and heterodimerization of TCF7L2 with �-catenin induces
transcription of several genes implicated in glucose metabolism, such as
proglucagon (the prohormone of glucagon), glucagon-like peptide 1 (GLP-1)
and GLP-2 (131).
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In 2006, Grant and colleagues showed a significant association between a
microsatelite marker (DG10S478), located in intron 3 of TCF7L2, and the risk of
type 2 diabetes in an Icelandic cohort (132). Since then, the association of
rs7903146, which is in strong linkage disequilibrium with DG10S478, with type
2 diabetes has been replicated in several studies (133-140). Moreover, in GWAS
rs7903146 appeared as the strongest signal for diabetes risk reported to date,
with OR ~1.4 (108-112). The mechanism behind this association is likely to be
impaired insulin secretion (135).

WFS1 (Wolfram syndrome 1) encodes a ubiquitously expressed
transmembrane glycoprotein, wolframin, which maintains calcium
homeostasis of the endoplasmic reticulum. Mutations in this gene cause
Wolfram syndrome (DIDMOAD), which includes diabetes insipidus, diabetes
mellitus, optic atrophy, and deafness (141). Several intronic SNPs in WFS1
were found to be associated with the risk of type 2 diabetes (142). The
mechanism explaining this association could be impaired insulin secretion,
since wolframin deficiency in Wfs1 knockout mice leads to beta-cell loss,
probably due to endoplasmic reticulum stress leading to beta-cell apoptosis
(143), and consequently to insufficient insulin secretion (144).

HNF1B (Hepatocyte nuclear factor 1 homeobox B) encodes a transcription
factor expressed in the liver, pancreatic islets, kidney, and uterus (145).
Mutations in HNF1B are a rare cause of maturity-onset diabetes of the young
(MODY), accounting for approximately 1% of MODY cases, but are a relatively
common cause of non-diabetic renal disease, particularly cystic renal disease
(145). Common variants in HNF1B were associated with the risk of type 2
diabetes and also with prostate cancer in a GWA study (146).

2.4.4 Type 2 diabetes loci identified by GWA studies

2.4.4.1 CDKAL1 and HHEX

CDKAL1 (cyclin-dependent kinase 5 regulatory subunit associated protein 1–
like 1) encodes a protein of unknown function which shares protein domain
similarity with CDK5 regulatory subunit–associated protein 1 (CDK5RAP1).
CDK5RAP1 is a neuronal protein that specifically inhibits the activation of
cyclin-dependent kinase 5 (CDK5) (147). CDK5 is a small serine/threonine
protein kinase recognized as an essential molecule in the brain, but it also
displays several extraneuronal effects (148), and is thought to play a role in the



18

pathophysiology of beta-cell dysfunction and predisposition to type 2 diabetes
(149). CDKAL1 is also expressed in human pancreatic islets (109). Therefore, it
is likely that CDKAL1 and CDK5-mediated pathways in beta-cells are related.

GWA studies have identified several SNPs (rs7756992, rs7754840,
rs10946398, rs4712523 and rs9465871) in intron 5 of CDKAL1 associated with
type 2 diabetes (109-112). The strongest association signals were observed for
two SNPs (rs7754840 and rs10946398), which are in complete linkage
disequilibrium (r2 = 1.0 according to HapMap CEU). Moreover, the type 2
diabetes risk alleles of rs7756992 and rs7754840 were also associated with
impaired insulin secretion (110, 112). Therefore, impaired insulin secretion
represents a plausible mechanism of increased diabetes risk associated with
CDKAL1 variants.

HHEX (hematopoietically expressed homeobox) encodes for a member of the
homeobox family of transcription factors, which are involved in
developmental processes. HHEX is also involved in the Wnt signaling
pathway, which is fundamental for cell growth and development (150, 151).
HHEX is expressed in the embryonic ventral-lateral foregut, which gives rise to
the ventral pancreas and the liver (152), and is highly expressed in both tissues
(109). Knockout of this gene was shown to impair proliferation of endodermal
epithelial cells, positioning of ventral foregut endoderm cells relative to the
mesoderm, and budding and morphogenesis of the ventral pancreas,
provoking lethality during mid-gestation (152).

SNP rs11117875, located within 13kb from the HHEX gene, has been
shown to be associated with type 2 diabetes in GWAS (108-112). Regarding the
role of HHEX in pancreas development and its high expression in beta-cells, it
is likely that this SNP confers a diabetes risk by affecting beta-cell function.
However, a potential contribution of another two genes within the locus
tagged by rs11117875 (IDE encoding insulin degrading enzyme, and KIF11
encoding kinesin family member 11) to the association with type 2 diabetes
cannot be excluded.

2.4.4.2 Other loci

SLC30A8 (solute carrier family 30 (zinc transporter), member 8) encodes for a
pancreatic beta-cell-expressed zinc transporter, ZnT8. It is located in the
secretory granules, where it provides zinc for insulin maturation and storage
(153). Previous studies have demonstrated a relationship between
perturbations in zinc metabolism and carbohydrate metabolism (154). An



19

association between the rs13266634 (Arg325Trp) polymorphism in SLC30A8
and type 2 diabetes has been shown in several GWA studies (108-112).
Subsequent studies have reported an association of this SNP with pancreatic
beta-cell dysfunction (155-160). Moreover, ZnT8 knockout mice were found to
have impaired glucose tolerance with reduced insulin secretion (161).

CDKN2B (cyclin-dependent kinase inhibitor 2B) encodes for a cyclin-
dependent kinase inhibitor, which forms a complex with cyclin-dependent
kinase 4 (CDK4) or CDK6, and prevents their activation. It functions as a cell
growth regulator that controls cell cycle G1 progression. This gene lies adjacent
to the tumor suppressor gene CDKN2A in a region that is frequently mutated
and deleted in a wide variety of tumours (162). Both proteins encoded by
CDKN2B and CDKN2A are expressed in pancreatic islets (109-111) and play a
role in the regulation of pancreatic beta-cell replication (163-165). A
polymorphism rs10811661 located 125kb from CDKN2B and CDKN2A has been
associated with type 2 diabetes in three genome-wide association studies (109-
111) and in several subsequent studies (166-170).

IGF2BP2 (insulin-like  growth  factor  2  mRNA  binding  protein  2)  encodes  for
the protein IMP2, a member of the insulin-like growth factor 2 (IGF-II) mRNA-
binding protein (IMP) family. It regulates IGF2 translation, and is implicated in
RNA localization and stability (171). IMP proteins (IMP1-3) are expressed in
developing embryos and are essential for normal embryonic growth and
development. Only IMP2 is expressed in adult organs, such as the gut, brain,
muscle, and pancreatic islets (171). An association of SNPs in intron 2 of
IGF2BP2 with type 2 diabetes was inferred from a series of GWA studies (109-
111) and several subsequent replication studies in different populations (157,
159, 160, 166, 169, 170, 172, 173). The reported association with the IGF2BP2
locus based on all studies (OR 1.14) represents a 3% difference in allele
frequency between the case and control groups in over 34,000 subjects (174).

FTO (fat mass and obesity associated) is a member of the non-heme
dioxygenase superfamily, which encodes for a 2-oxoglutarate-dependent
nucleic acid demethylase. Fto mRNA is abundant mainly in the brain,
particularly in the hypothalamic nuclei governing energy balance, and it has
been shown to change its expression according to the feeding/starvation state
in mice (175). A cluster of common SNPs in intron 1 of FTO was found to be
significantly associated with type 2 diabetes (113). However, the association
was completely abolished after adjustment for BMI (body mass index),
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suggesting that FTO confers diabetes risk through its association with obesity.
Subsequent studies confirmed FTO as an "obesity candidate" (176-180).
Moreover, FTO may influence cerebrocortical insulin sensitivity, since
rs8050136 in FTO has been associated with impaired insulin-stimulated
cerebrocortical activity (181).

JAZF1 (JAZF zinc finger 1) encodes for a nuclear protein with three C2H2-type
zinc fingers, and functions as a transcriptional repressor of the transcription
factor NR2C2 (nuclear receptor subfamily 2, group C, member 2) gene (182).
NR2C2 is widely expressed, and Nr2c2-/- knockout  mice  display  growth
retardation and hypoglycemia due to reduced gluconeogenesis (183, 184).
JAZF1 is expressed in the pancreas (182), and it is speculated that a gain-of-
function variant in this gene may lead to postnatal growth restriction which
also affects pancreatic beta-cell mass and function. The meta-analysis of 3
GWA studies identified rs864745 in intron 1 of JAZF1 as being associated with
type 2 diabetes (114). Another SNP in JAZF1 was found to be associated with
prostate cancer in a GWA study (185).

CDC123 (cell  division  cycle  123  homolog  [S. cerevisiae]) and CAMK1D
(calcium/calmodulin-dependent protein kinase I delta) are the closest genes to
rs12779790, associated with type 2 diabetes in GWA meta-analysis (114). This
SNP is located ~90 kb from CDC123 and ~63.5 kb from CAMK1D. CDC123
encodes for a protein involved in cell cycle regulation and nutritional control
of gene transcription (184). CAMK1D regulates granulocyte function (186). The
mechanisms whereby these genes increase the risk of type 2 diabetes are not
known.

TSPAN8 (tetraspanin 8) encodes for a member of the transmembrane 4
superfamily. Tetraspanin 8 is a widely expressed cell surface glycoprotein
known to form complexes with integrins to regulate cell motility in cancer cell
lines (187). Since 6-integrin binding to laminin has been shown to negatively
affect pancreatic beta-cell mass maintenance (188), it is possible that variation
in TSPAN8 biologically influences pancreatic beta-cell function. TSPAN8 is also
expressed in carcinomas of the colon, liver, and pancreas. SNP rs7961581,
shown to be associated with type 2 diabetes in GWA meta-analysis (114),
resides 110 kb upstream of TSPAN8.

THADA (thyroid adenoma associated) is a widely expressed gene with
unknown function, although there is evidence suggesting that it may be
involved in the death receptor pathway and apoptosis (189). It was found as a
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target gene of specific chromosomal rearrangements observed in thyroid
benign tumors (189). A nonsynonymous SNP rs7578597 in exon 24 of TSPAN8
was shown to be associated with type 2 diabetes in a GWA meta-analysis (114).

ADAMTS9 (ADAM metallopeptidase with thrombospondin type 1 motif, 9)
encodes a member of the ADAMTS (a disintegrin and metalloproteinase with
thrombospondin motifs) protein family. ADAMTS9 is a secreted
metalloprotease expressed in many tissues including skeletal muscle and  the
pancreas (114). ADAMTS9 is located on chromosome 3p14.3-p14.2, an area
known to be lost in hereditary renal tumors. SNP rs4607103, found to be
associated with type 2 diabetes in GWA meta-analysis (114), resides ~38 kb
upstream of ADAMTS9.

NOTCH2 (Notch homolog 2 [Drosophila]) encodes for a member of the Notch
family, playing a role in a variety of developmental processes by controlling
cell fate decisions. In mice, Notch2 is expressed in embryonic ductal cells of
branching pancreatic buds during pancreatic organogenesis, the likely source
of endocrine and exocrine stem cells (190). SNP rs10923931, found to be
associated with type 2 diabetes in GWA meta-analysis (114), resides within
intron 5 of NOTCH2.

KCNQ1 (potassium voltage-gated channel, KQT-like subfamily, member 1)
encodes for the pore-forming subunit of the voltage-gated potassium channel.
It is mainly expressed in the heart, where it is required for the repolarization
phase of the action potential in cardiac muscle (191), and in other tissues
including the brain, adipose tissue, liver, pancreas and pancreatic islets (192-
194). Mutations in KCNQ1 are associated with cardiac arrhythmias (192, 195,
196). The contribution of KCNQ1 to the molecular pathogenesis of type 2
diabetes is not clear, although it might play a role in beta-cell function (116,
197). SNPs in KCNQ1 were robustly associated with type 2 diabetes in two
GWA studies conducted in Japanese populations (115, 116).

MTNR1B (melatonin receptor 1B) encodes for one of two subtypes of a
receptor for melatonin. Melatonin is a hormone predominantly secreted by the
pineal gland, playing an important role in the regulation of circadian and
seasonal rhythms of several biological functions. There is evidence that
melatonin has inhibitory effects on insulin secretion (198), and might be
involved in circadian lowering of nocturnal insulin levels (199). Melatonin
receptors are members of the G protein-coupled receptor family. They are
mainly expressed in the brain (suprachiasmatic nucleus, hippocampus), but
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they have also been found in human and rodent pancreatic islets, MTNR1A
predominating in glucagon producing alfa-cells, and MTNR1B in insulin-
producing beta-cells (reviewed in 200). Two SNPs, rs1387153 and rs10830963,
were reported to be associated with type 2 diabetes, elevated fasting plasma
glucose, and impaired insulin secretion measured by HOMA-B (117, 201). SNP
rs10830963 is located within the single intron of MTNR1B.

LOC387761 (a hypothetical gene). Two SNPs (rs7480010 and rs9300039) near
this gene have been associated with type 2 diabetes in two GWA studies (108,
111). The function of the protein product of LOC387761 is not known.
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3. Aims of the study
The  main  aim  of  this  study  was  to  describe  the  pathophysiology  of  the
prediabetic state, and to assess the possible effects of type 2 diabetes risk loci
on insulin secretion, proinsulin conversion, and insulin sensitivity.

The specific aims of the study were:

1. To describe the changes in insulin secretion and insulin sensitivity across the
entire range of fasting and 2-hour plasma glucose from normal glucose
tolerance to type 2 diabetes in a large population-based study

2. To investigate the association of the HHEX locus with insulin secretion and
insulin sensitivity in non-diabetic offspring of type 2 diabetic patients

3. To investigate the association of the CDKAL1 locus with insulin secretion
and insulin sensitivity in non-diabetic offspring of type 2 diabetic patients

4. To investigate the association of 18 type 2 diabetes risk loci with insulin
secretion, proinsulin conversion, and insulin sensitivity in a large population-
based study.



24

4. Subjects and methods
4.1 SUBJECTS

The METSIM study (Studies I, IV)
A total of 6,414 men from the ongoing population-based cross-sectional
METSIM Study (Metabolic  Syndrome  in  Men Study) were included in the
study. The subjects, aged from 45 to 70 years, were randomly selected from the
population register of the town of Kuopio, in eastern Finland (population
95 000). Every participant had a one-day outpatient visit to the Clinical
Research Unit at the University of Kuopio, including an interview on the
history of previous diseases and current drug treatment, and an evaluation of
glucose tolerance and cardiovascular risk factors. Fasting blood samples were
drawn after 12 hours of fasting followed by an OGTT. The study was approved
by the Ethics Committee of the University of Kuopio and Kuopio University
Hospital, and carried out in accordance with the Helsinki Declaration.

The EUGENE 2 Study (Studies II, III)
The subjects in this study were healthy non-diabetic offspring of patients with
type 2 diabetes. One of the parents (a proband) had to have type 2 diabetes,
and the spouse a normal glucose tolerance in an OGTT or a lack of history of
type 2 diabetes in first-degree relatives. The probands (N=536) were randomly
selected among type 2 diabetic subjects living in the regions of five study
centers in Europe constituting the EUGENE2 consortium: the Lundberg
Laboratory for Diabetes Research (Gothenburg, Sweden), the Polyclinic Mater
Domini of the University Magna Graecia (Catanzaro, Italy), the Steno Diabetes
Center (Copenhagen, Denmark), the Kuopio University Hospital (Kuopio,
Finland), and the Tübingen University Hospital (Tübingen, Germany). Type 2
diabetes among the probands was defined according to the WHO criteria (7).
The offspring (children of a diabetic proband and his/her spouse) were invited
to the study. Altogether 846 offspring from the five European clinical centres
were included in the study, as follows: Catanzaro, Italy (N=110), Copenhagen,
Denmark (N=270), Gothenburg, Sweden (N=100), Kuopio, Finland (N=217) and
Tübingen, Germany (N=149). A standard medical history was obtained from
all participants, and they underwent physical examination, routine blood tests,
and OGTT. A subgroup of 758 subjects underwent an IVGTT on a separate
occasion, followed by a hyperinsulinemic-euglycemic clamp in four centres (N
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= 575). The study protocol was approved by appropriate Institutional Review
Boards. All study subjects gave informed consent.

Table 2: Baseline characteristics of EUGENE2 and METSIM study populations.

EUGENE2 METSIM
(Studies II,

III)
All (Study

I)
Non-diabetic
(Study IV)

Men / women 368/478 6414/- 5327/-

Age (years) 40.0 ± 10.2 57.7 ± 6.8 58.4 ± 6.5

Body mass index (kg/m2) 26.7 ± 5.0 27.0 ± 3.9 26.8 ± 3.8

Fasting plasma glucose (mmol/l) 5.1 ± 0.5 5.8 ± 0.8 5.7 ± 0.5

2-hour plasma glucose (mmol/l) 6.3 ± 1.5 6.5 ± 2.4 6.1 ± 1.7

Fasting plasma insulin (pmol/l) 51 ± 57 52 ± 38 49 ± 34

2-hour plasma insulin (pmol/l) 328 ± 294 331 ± 341 313 ± 315

4.2 METHODS

Clinical measurements (Studies I-IV)
Height and weight were measured to the nearest 0.5 cm and 0.1 kg,
respectively. BMI was calculated as weight (kg) divided by height (m) squared.
Waist (at the midpoint between the lateral iliac crest and lowest rib) and hip
circumference (at the level of the trochanter major) were measured to the
nearest 0.5 cm.

Oral glucose tolerance test (Studies I-IV)
A 2-h OGTT (75 g of glucose) was performed, and samples for plasma glucose
and insulin were drawn at  0,  30 and 120 min in the METSIM study, and at  0,
30, 60, 90, and 120 min in the EUGENE2 study. Glucose tolerance was
evaluated according to the WHO criteria (7) in Studies II, III, and according to
the ADA criteria (6) in Studies I, IV.

IVGTT and the euglycemic hyperinsulinemic clamp (Studies II-III)
IVGTT was performed to determine the first-phase insulin secretion capacity
after an overnight fast. A bolus of glucose (300 mg/kg in a 50% solution) was
injected within 30 seconds into the antecubital vein. Samples for the
measurement of plasma glucose and insulin (arterialized venous blood) were
drawn at –5, 0, 2, 4, 6, 8, 10, 20, 30, 40, 50, and 60 minutes. At 60 min after the
glucose bolus, the euglycemic hyperinsulinemic clamp was started to evaluate
insulin sensitivity (insulin infusion of 240 pmol/m2/min) (202). Glucose was
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clamped at 5.0 mmol/l for the next 120 minutes by the infusion of 20% glucose
at various rates according to glucose measurements performed at 5-minute
intervals. The mean amount of glucose infused during the last hour was used
to calculate the rates of whole-body glucose uptake (presented as M-value).

Laboratory determinations
In the METSIM study (Studies I, IV), plasma glucose was measured by
enzymatic hexokinase photometric assay (Konelab Systems Reagents, Thermo
Fischer Scientific, Vantaa, Finland), insulin by immunoassay (ADVIA Centaur
Insulin IRI, no. 02230141, Siemens Medical Solutions Diagnostics, Tarrytown,
NY, USA), and proinsulin by immunoassay (Human Proinsulin Ria kit, Linco
Research, St. Charles, MO, USA). Proinsulin data were available for 2,697
subjects.

In the EUGENE2 study (Studies II, III), plasma glucose was measured by
the glucose oxidase method (Glucose & Lactate Analyzer 2300 Stat Plus,
Yellow  Springs  Instrument  Co.,  Inc,  Ohio,  USA)  in  all  centers.  Since  plasma
insulin levels were measured by different methods (except for the Gothenburg
center, which had their insulin measured in Tubingen), the assay applied in
Tubingen (microparticle enzyme immunoassay; Abbott Laboratories, Tokyo,
Japan) was selected as a reference assay.

Genotyping (Studies I-IV)
DNA was isolated from whole blood using commercial DNA isolation kits. In
the EUGENE2 study, CDKAL1 rs7754840 and HHEX rs1111875 were
genotyped. In the METSIM study, a total of 19 confirmed type 2 diabetes-
related SNPs were genotyped (PPARG rs1801282, KCNJ11 rs5219, TCF7L2
rs7903146, SLC30A8 rs13266634, HHEX rs1111875, LOC387761 rs7480010,
CDKN2B rs10811661, IGF2BP2 rs4402960, CDKAL1 rs7754840, HNF1B rs757210,
WFS1 rs10010131, JAZF1 rs864745, CDC123 rs12779790, TSPAN8 rs7961581,
THADA rs7578597, ADAMTS9 rs4607103, NOTCH2 rs10923931, KCNQ1
rs2283228). Genotyping of all SNPs except MTNR1B rs10830963 was performed
with the TaqMan Allelic Discrimination Assay (Applied Biosystems). MTNR1B
rs10830963 was genotyped by Sequenom iPlex gold SBE (Sequenom). In the
EUGENE2 study, the genotyping success rate was 99.7%, and the error rate
was 0% among 3.3% of DNA samples regenotyped. In the METSIM study, the
TaqMan genotyping call rate was 100%, with an error rate of 0% among 4.5%
of DNA samples genotyped in duplicate, and the Sequenom iPlex call rate for
MTNR1B rs10830963 was 96.8%, with an error rate of 0% among 4.2% of DNA
samples genotyped in duplicate. All SNPs were consistent with Hardy-
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Weinberg equilibrium (P>0.05) except for HNF1B rs757210 (P<0.0001). This
SNP was therefore omitted from all statistical analyses.

Calculations (Studies I-IV)
The trapezoidal method was used to calculate the glucose, insulin, and
proinsulin area under the curve (AUC) during the OGTT (Studies I-IV), and
insulin and glucose AUC during the first (0-10 min), second (10-60 min) and
entire (0-60 min) phase of IVGTT (Studies II-III). Surrogate indices of insulin
sensitivity and insulin secretion (including Matsuda ISI, HOMA-IR, HOMA-B,
insulinogenic index, corrected insulin response) were calculated according to
published formulas (80, 90, 203-206). The index of early-phase insulin release
(InsAUC0-30/GluAUC0-30) during an OGTT was calculated as the total insulin
area under the curve divided by the total glucose area under the curve during
the  first  30  min  of  an  OGTT (Studies I, IV). Four indices of proinsulin
conversion were calculated (Study IV): proinsulin/insulin ratio in the fasting
state (Proins0/Ins0), an index of proinsulin conversion to insulin during the first
30 min (ProinsAUC0-30/InsAUC0-30), 30 to 120 min (ProinsAUC30-120/InsAUC30-120)
and 0 to 120 min (ProinsAUC0-120/InsAUC0-120) of an OGTT. Clamp-derived
insulin sensitivity (M-value) was calculated as the glucose infusion rate
necessary to maintain euglycemia during the last 60 min (steady state) of the
clamp (in μmol/kg/min), or as an insulin sensitivity index (SI) derived from an
IVGTT (207) (Studies II, III).

Statistical analysis

Study I:  Data were presented as means ± SD, median (25th, 75th percentile) for
continuous variables or as count (percentage) for categorical variables.
Variables with a non-normal skewed distribution were logarithmically
transformed before analysis. Continuous variables were compared across the
categories of glucose tolerance by the analysis of variance (ANOVA) or after
adjustment for covariates using the general linear model. Pair-wise
comparisons between the groups were performed by Bonferroni post-hoc tests
(with P-value adjustment for multiple testing for each variable). Categorical
variables were examined by the �2 test. Spearman's rank correlation was used
to compare the surrogate indices with the reference measures. P-value <0.05
was considered statistically significant.

Studies II, III: The results for continuous variables were given as means ± SD.
Odds ratios were presented with the 95% confidence intervals. Variables with
skewed distribution were logarithmically transformed for statistical analyses.
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The differences between the groups were assessed by the ANOVA for
continuous variables and by the �2 test for non-continuous variables. The linear
mixed  model  and  logistic  regression  analysis  were  applied  to  adjust  for
confounding factors. For mixed model analysis we included center and
pedigree as random factors, genotype and gender as fixed factors, and
continuous variables adjusted for as covariates. Power calculations were
performed using G*power software available at http://www.psycho.uni-
duesseldorf.de/aap/projects/gpower/. P-value <0.05 was considered statistically
significant.

Study IV: Effects of SNPs on continuous traits were presented as effect sizes [B
(SE)] per copy of the type 2 diabetes risk allele, estimated and adjusted for
covariates by linear regression, using untransformed dependent variables. P
values were calculated using logarithmically transformed variables (all except
for age) due to their skewed distribution. The effect of genetic risk score on
InsAUC0-30/GluAUC0-30 was analyzed by linear regression adjusted for age, BMI
and Matsuda ISI due to the significant association of genetic risk score with
these covariates. Hardy-Weinberg equilibrium was tested by the �2 test. P<0.05
was considered nominally significant, P<6.9x10-4 calculated using Bonferroni
correction for multiple comparisons was considered statistically significant,
given 72 independent tests for 18 SNPs and 4 outcomes measured [obesity
(BMI), insulin release (InsAUC0-30/GluAUC0-30), insulin sensitivity (Matsuda
ISI), and proinsulin conversion (ProinsAUC0-30/InsAUC0-30)].  The power of  the
sample was estimated using the Bioconductor’s GeneticsDesign package
version 1.1 (http://www.bioconductor.org/packages/2.3/bioc/html/Genetics
Design.html).

All analyses except for the power calculations were conducted with the SPSS
v.14 programs (SPSS, Chicago, IL, USA).
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5. Results

5.1 CHANGES IN INSULIN SENSITIVITY AND INSULIN RELEASE IN

RELATION TO GLYCEMIA AND GLUCOSE TOLERANCE IN THE METSIM STUDY

(Study I)

Baseline characteristics. Out of 6,414 subjects included (Table 2), 2,168 (34%)
had NGT, 2,859 (45%) had IIFG, 217 (3%) had IIGT, 701 (11%) had a
combination of IFG and IGT, and 469 (7%) had newly diagnosed type 2
diabetes (NewDM). A total of 492 subjects with previously diagnosed diabetes
were excluded from statistical analyses.

Insulin sensitivity according to fasting and 2-hour plasma glucose
concentration. Categories of FPG (steps by 0.5 mmol/l) and 2hPG (steps by 1.0
mmol/l) were generated, and categories with FPG � 5.0 mmol/l and 2hPG � 5.0
mmol/l were set as the reference categories. We observed a considerable
decrease (by 17%) in age- and BMI-adjusted peripheral insulin sensitivity
(Matsuda ISI) within the normal range of FPG, compared with the reference
category. Insulin sensitivity further decreased to -50% within the range of IFG,
and decreased to -67% in the diabetic range of FPG (Figure 5A). A substantial
decrease in insulin sensitivity (-37%) was also observed within the normal
range of 2hPG. Insulin sensitivity further decreased to -51% within the IGT
range, and to -57% within the diabetic range of 2hPG (Figure 5B).

Insulin release according to fasting and 2-hour plasma glucose concentration.
Age- and BMI-adjusted early-phase insulin release (InsAUC0-30/GluAUC0-30)
decreased only slightly (-4%) within the normal range of FPG. It further
decreased within the range of IFG and diabetes to -25% and -70%, respectively
(Figure 5C). The early-phase insulin release decreased by -6% within the
normal range of 2hPG, and further decreased to -23% and -50% within the
range of IGT and diabetes, respectively (Figure 5D). Age- and BMI-adjusted
total insulin release (InsAUC0-120/GluAUC0-120) decreased to -13% within the
range of IFG, and to -70% within the diabetic range of FPG (Figure 5E). Total
insulin release increased by 14% with higher 2hPG up to 9.9 mmol/l, and then
decreased to -45% within the diabetic range of 2hPG (Figure 5F). The largest
decreases in both early-phase (-32% to -50%) and total (-17% to -45%) insulin
release were observed within the range of FPG from 7.0 to 7.9 mmol/l (Figure
5C and 5E).
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Figure 5. Insulin sensitivity (Matsuda ISI, A,B), early-phase insulin release (InsAUC0-

30/GluAUC0-30, C,D) and total insulin release during OGTT (InsAUC0-120/GluAUC0-120,

E,F) across the categories of fasting (FPG) and 2-hour plasma glucose (2hPG). Bars
display the value of insulin sensitivity or insulin release relative to the reference
category (fasting plasma glucose < 5.0 mmol/l, 2-h plasma glucose < 5.0 mmol/l).
Calculations were based on geometric means, adjusted for age and BMI with the
general linear model. Cut-off values for different categories of FPG in mg/dl: 90.1 (5.0
mmol/l), 99.1 (5.5 mmol/l), 108.1 (6.0 mmol), 117.1 (6.5 mmol/l), 126.1 (7.0 mmol/l),
135.1 (7.5 mmol/l), 144.1 (8.0 mmol/l), 153.2 (8.5 mmol/l), 162.2 (9.0 mmol/l). Cut-off
values for different categories of 2hPG in mg/dl: 90.1 (5.0 mmol), 108.1 (6.0 mmol),
126.1 (7.0 mmol/l), 144.1 (8.0 mmol/l), 162.2 (9.0 mmol/l), 180.2 (10.0 mmol/l), 198.2
(11.0 mmol/l), 216.2 (12.0 mmol/l), 234.2 (13.0 mmol/l).
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Disposition index.  The early-phase DI30 and total  DI120 decreased with higher
FPG within the normal range by -21% and -18%, respectively. Within the IFG
range, the reduction in DI30 and DI120 reached -63% and -57%. As a function of
2hPG, DI30 and DI120 decreased to -41% and -30% in the normal range, and
further decreased to -60% and -48% in the IGT range.

Compensatory insulin secretion.  Compensatory  insulin  secretion  was  not
observed in spite of a significant decrease in insulin sensitivity within the
normal range of FPG, but in contrast the early-phase insulin release started to
fall. However, compensatory total insulin secretion started already at low
2hPG levels and insulin release increased up to 10 mmol/l, and then started to
fall. A decrease in DI indices was substantial already in the normal ranges of
FPG and 2hPG.

Insulin sensitivity and insulin release according to glucose levels in non-obese
and obese individuals. No significant interaction between BMI and glucose
levels in determining insulin sensitivity or insulin release was found.

Insulin sensitivity and insulin release in categories of glucose tolerance. Age-
and BMI-adjusted peripheral insulin sensitivity (Matsuda ISI) was significantly
lower  by  26%  in  IIFG,  by  30%  in  IIGT,  by  42%  in  IFG+IGT,  and  by  46%  in
NewDM,  compared  with  NGT  (Figure  6A).  Matsuda  ISI  was  significantly
lower in individuals with IIGT than in individuals with IIFG (P=0.0016). A
significantly greater decrease in IIFG than in IIGT (-31% vs. -16%; P=0.0028)
was found when insulin sensitivity was assessed with 1/HOMA-IR. 1/HOMA-
IR was reduced by 39% in the IFG+IGT group, and by 45% in NewDM (Figure
6B). Categories of glucose tolerance status differed significantly also with
respect to other indices of insulin sensitivity.

Compared with NGT, the age- and BMI-adjusted early-phase insulin
release (InsAUC0-30/GluAUC0-30) was significantly lower by 8% in IIFG, not
changed in IIGT, lower by 16% in IFG+IGT and by 43% in NewDM (Figure 6C).
The difference between IIFG and IIGT was not statistically significant (-8% vs.
0%, P=1.0). The total insulin release (InsAUC0-120/GluAUC0-120) was significantly
lower in IIFG (-6%) and in NewDM (-29%), whereas no significant changes
were observed in IIGT or in IFG+IGT compared with NGT (Figure 6D).
Individuals with IIFG had significantly lower total insulin release than
individuals with IIGT (-6% vs. +16%, P=0.001).

Disposition index.  The early-phase DI30 was lower in IIGT than in IIFG (-36%
vs. -29% compared with NGT, P=0.0003). In the IFG+IGT group, DI30 was 53%
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lower, and in NewDM 68% lower than in NGT (Figure 6E). In contrast, the
total DI120 was lower to the same extent in IIFG and IIGT (by 27%). DI120 was
44%  lower  in  the  IFG+IGT  group  and  62%  lower  in  NewDM  than  in  NGT
(Figure 6F).

Figure 6. Insulin sensitivity (Matsuda ISI, A; 1/HOMAIR, B), early-phase (InsAUC0-

30/GluAUC0-30, C)  and  total  insulin  release  (InsAUC0-120/GluAUC0-120, D), disposition
index for early insulin release (DI30 = Matsuda ISI x InsAUC0-30/GluAUC0-30, E), and
disposition index for total insulin release (DI120 = Matsuda ISI x InsAUC0-120/GluAUC0-

120), F)  in  different  categories  of  glucose  tolerance.  Bars  show  the  percentage  of  each
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index relative to NGT (reference, 100%). Calculations were based on geometric means,
adjusted for age and BMI (ANCOVA). All pairwise comparisons were statistically
significant (P<0.05, Bonferroni posthoc test) except for those marked: aP>0.05 vs. NGT,
bP>0.05 vs. IIFG, cP>0.05 vs. IIGT, dP>0.05 vs. IFG+IGT.

5.2 ASSOCIATION OF CDKAL1 RS7754840 POLYMORPHISM WITH

IMPAIRED  INSULIN  SECRETION  IN  THE  EUGENE2  AND  METSIM  STUDIES

(Study II)

The EUGENE2 study

Baseline characteristics. Altogether, 846 subjects from the EUGENE2 study
were included in the study (women 56.5%) (Table 2). Of these, 17% had
abnormal glucose tolerance (IFG and/or IGT). The frequency of the minor C
allele of rs7754840 was 0.33 (96 homozygous and 373 heterozygous carriers of
the C allele among 846 subjects). The genotype distribution followed the
Hardy-Weinberg equilibrium (P=0.911).

OGTT data. The glucose and insulin responses during an OGTT according to
genotypes of rs7754840 are shown in Figure 7. The type 2 diabetes risk C allele
was significantly associated with higher glucose levels at 30 min (P=0.034) and
60 min (P=0.005), as well as with higher glucose AUC (P=0.016). With respect to
insulin response, the C allele was significantly associated with lower insulin
levels at 30 min (P=0.011). Insulin levels at 0, 60, 90 and 120 min, and insulin
AUC also tended to be lower in CC homozygotes.  A significant difference in
the insulinogenic index (IGI, P=0.001) and corrected insulin response to an oral
glucose load (CIR, P�0.001) was observed between the genotypes. IGI was 53%
lower and CIR 26% lower in the CC homozygotes compared with the GG
homozygotes. No significant difference in the HOMA-beta index was
observed.

Insulin sensitivity. No significant difference was observed between the
genotypes in the M-value (Figure 8A) or HOMA-IR index, but there was a
significant difference in SI values in the Copenhagen center (P=0.006). There
was a significant negative correlation between the M-value and HOMA-IR (r=-
0.479; P�0.001), as well as between SI and HOMA-IR (r=-0.650; P�0.001),
therefore we adjusted our results for HOMA-IR, available from all study
centres.
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Insulin release. Figure 8 (B, C) shows the first-phase (0-10 min) and second-
phase  (10-60  min)  glucose  and  insulin  responses  in  an  IVGTT.  Under  the
additive model the C allele was associated significantly with higher glucose
AUC over basal glucose during the second-phase of the IVGTT (P=0.003),
resulting in a 15% difference between the GG and CC genotypes. No
significant effect on first-phase glucose response was observed. Furthermore,
the C allele was significantly associated with lower first-phase insulin AUC
over basal insulin levels (P=0.002). The first-phase insulin release was 11%
lower in the GC heterozygotes than in the GG homozygotes, and 13% lower in
the CC homozygotes thank in the GC heterozygotes, suggesting an additive
effect of the C allele on the first-phase insulin release. No significant effect of
rs7754840 on the second-phase insulin release was observed. We also found a
significant association between the disposition index (M-value x first phase
insulin release) and the CDKAL1 genotype under the recessive model
(P=0.028). Under the additive model this association was no longer significant.

Figure 7. Plasma glucose (A) and insulin (B) levels during an OGTT, and glucose (C)
and  insulin  (D)  levels  under  the  curve  (AUC)  during  an  OGTT  according  to  SNP
rs7754840 in all subjects. P-values are adjusted for age, BMI, gender, family and center,
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and are calculated over the three genotype groups (ANOVA). *P�0.05, **P�0.01. In A
and B, black squares and the solid line indicate GG, white triangles and the dashed line
indicate GC, and white circles and the dotted line indicate CC. In C and D, the filled
bars  indicate  GG,  striated bars  indicate  GC and open bars  indicate  CC.  Insulin levels
are log-transformed in statistical analyses. Data are given as adjusted means ± SE.

Figure 8. Insulin sensitivity measured by clamp (A), the first-phase and second-phase
glucose levels under the curve over basal glucose (B) and first-phase and second-phase
insulin  levels  under  the  curve  over  basal  insulin  (C)  during  the  IVGTT  according  to
SNP rs7754840 in all subjects (Copenhagen was excluded from analyses of insulin
sensitivity and second-phase insulin secretion). P-values are adjusted for age, BMI,
gender,  family  and  center,  and  are  calculated  over  the  three  genotype  groups
(ANOVA). Insulin levels are log-transformed in statistical analyses. Filled bars indicate
GG, striated indicate GC and open bars indicate CC. Data are given as adjusted means
± SE.

The METSIM study

Baseline characteristics. An independent sample of 3,900 middle-aged Finnish
men from the ongoing population-based study was studied. Of 3,367 non-
diabetic subjects (mean age 59.0±5.8 years; BMI 26.9±3.8 kg/m2), 2,405 (71.4%)
had NGT, 632 (18.8%) had IFG and 330 (9.8%) had IGT. To examine the
association of rs7754840 with type 2 diabetes, 533 diabetic subjects were
compared with subjects having NGT.

Association of rs7754840 with type 2 diabetes. We observed a significant
association of rs7754840 with type 2 diabetes under the recessive model 	OR
1.346 (1.044; 1.120); P=0.022
 indicating a 1.3-fold higher risk in the CC
homozygotes than in carriers of the G allele. Under the additive model, the
effect was signifficant only when comparing the GG and CC homozygotes 	OR
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1.422 (1.072; 1.882); P=0.014
 and remained significant also after adjustement
for age and BMI.

OGTT data.  In subjects with NGT, a significant assocation of the C allele with
lower insulin AUC was observed (P�0.001). After the adjustment for age, BMI
and the HOMA-IR index the effect remained significant (Padjusted=0.041).
Furthermore, we observed an association of the C allele with significantly
lower values of IGI (Figure 9), being 9% lower in GC heterozygotes than in the
GG  homozygotes  and  2%  lower  in  the  CC  homozygotes  than  in  GC
heterozygotes (P�0.001; Padjusted=0.012). Analyses of all non-diabetic subjects
provided very similar results.

Figure 9. Insulinogenic  index  values  according  to  SNP  rs7754840  in  subjects  with
normal glucose tolerance from the replication sample of Finnish middle-aged men. P-
value  is  adjusted  for  age,  BMI  and  HOMA-IR,  and  is  calculated  over  the  three
genotype  groups  (ANOVA).  Insulinogenic  index  and  HOMA-IR  values  are  log-
transformed in statistical analysis. Data are given as adjusted means ± SE.
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5.3 ASSOCIATION OF A POLYMORPHISM NEAR THE HHEX LOCUS  WITH

IMPAIRED ACUTE GLUCOSE-STIMULATED INSULIN RELEASE IN THE

EUGENE2 STUDY (Study III)

Baseline characteristics. Altogether, 844 subjects from the EUGENE2 study
were included in the study (women 57%, age 40±10 year, BMI 26.6±4.9 kg/m2).
Of these, 691 (82%) had NGT, and 153 (18%) had IFG and/or IGT. The
frequencies of the minor alleles of rs1111875 and rs7923837 were 0.39 and 0.34,
respectively. The genotype distributions followed the Hardy-Weinberg
equilibrium (P>0.05). Both SNPs were in strong, but not complete, linkage
disequilibrium (r² = 0.779). The two SNPs were not associated with
anthropometric data such as age, weight, height, BMI, or waist and hip
circumference.

OGTT data. Neither rs1111875 nor rs7923837 were associated with fasting
glucose and insulin levels, 2-hour glucose levels, insulin levels at 30 min of an
OGTT,  or  the  AUCs  of  the  glucose  and  insulin  during  an  OGTT  before  and
after adjustment for centre, family relationship, gender, age, and BMI (Table 3).
However, additional adjustment for HOMA-IR and glucose levels at 30 min
revealed a trend towards lower insulin levels at 30 min in the carriers of the
type 2 diabetes risk A allele of rs7923837 (P=0.066).

Insulin sensitivity. Neither rs1111875 nor rs7923837 were associated with the
M-value or HOMA-IR, although association of rs1111875 with HOMA-IR
became slightly significant after adjustment for centre, family relationship,
gender, age and BMI (Table 3).

Insulin release. HHEX rs7923837 was significantly associated with first-phase
insulin release (both unadjusted, P=0.013, and adjusted for centre, family
relationship, gender, age, BMI, and HOMA-IR, P=0.014) (Table 3). In contrast,
HHEX rs1111875 was not associated with either first-phase or second-phase
insulin release during the IVGTT (Table 3). To assess whether the association
of rs7923837 with first-phase insulin release is already detectable before the
alteration of glucose tolerance, we analysed 691 subjects with NGT. In this
subgroup, the effect of rs7923837 on insulin release was no longer significant,
which could be due to reduced sample size
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Table 3. Associations of HHEX SNPs rs1111875 and rs7923837 with metabolic
parameters (N = 844).

SNP (MAF) HHEX rs1111875 (0.39) HHEX rs7923837 (0.34)

Genotype CC CT TT P1 P2 P3 GG GA AA P1 P2 P3

N 303 418 123 - - - 356 395 91 - - -

Fasting glucose (mM)
5.1 5.09 5.01

0.3 0.11 -
5.11 5.08 5.01

0.4 0.3 -
± 0.55 ± 0.54 ± 0.44 ± 0.56 ± 0.52 ± 0.43

Glucose 120 min OGTT
(mM)

6.28 6.25 6.2
1 0.8 -

6.27 6.27 6.15
0.9 0.8 -

± 1.58 ± 1.53 ± 1.42 ± 1.56 ± 1.54 ± 1.40

AUC glucose OGTT
(mM·min)

872 862 863
0.7 0.9 -

870 863 862
0.9 0.9 -

± 175 ± 181 ± 151 ± 177 ± 178 ± 152

Fasting insulin (pM)
48.3 54.2 44.4

0.22 0.06 -
48.1 54.4 44.8

0.5 0.2 -
± 32.5 ± 73.8 ± 29.9 ± 31.7 ± 75.9 ± 27.5

Insulin 30 min OGTT
(pM)

360 403 385
0.11 0.15 -

362 407 382
0.13 0.4 -

± 225 ± 282 ± 234 ± 220 ± 288 ± 240

AUC insulin OGTT
(pM·min)

247�575 263�378 246�755
0.4 0.7 -

244�007 268�633 242�962
0.4 0.7 -

± 154�834 ± 188�720 ± 135�307 ± 147�702 ± 194�318 ± 133�361

AUC insulin 0-10 min
IVGTT (pM·min)*

��580 ��013 ��616
0.17 0.19 0.23

��433 ��173 ��647
0.013 0.046 0.014

± 2�842 ± 3�232 ± 2�359 ± 2�434 ± 3�514 ± 2�209
AUC insulin 0-10 min
IVGTT over basal
insulin (pM·min)*

��062 ��471 ��198
0.15 0.2 0.21

��956 ��602 ��220
0.016 0.049 0.025

± 2�502 ± 2�749 ± 2�206 ± 2�282 ± 2�919 ± 2�061

AUC insulin 10-60 min
IVGTT (pM·min)*

11�164 11�450 ��576
0.3 0.4 1

10�559 11�877 ��652
0.19 0.7 0.4

± 11�340 ± 10�699 ± 7�098 ± 9�987 ± 11�649 ± 6�086
AUC insulin 10-60 min
IVGTT over basal
insulin (pM·min)*

��601 ��737 ��449
0.3 0.5 0.8

��205 ��006 ��491
0.14 0.5 0.22

± 9�316 ± 8�177 ± 6�222 ± 8�810 ± 8�526 ± 5�196

HOMA-IR (mM·μU/ml)
11.1 12.8 10

0.17 0.04 -
11.1 12.9 10.1

0.4 0.17 -
± 8.2 ± 20.6 ± 7.0 ± 7.9 ± 21.1 ± 6.5

M-value
(μmol/kg/min)**

42.7 41.1 41
0.5 0.6 -

42.8 41.2 40
0.4 0.5 -

± 16.5 ± 16.6 ± 16.4 ± 17.2 ± 16.5 ± 14.2

Data are presented as means ± SD. P1 values are unadjusted, P2 values are adjusted for
centre, family relationship, gender, age, and BMI, and P3 values are adjusted for centre,
family relationship, gender, age, BMI, and HOMA-IR. *IVGTT data were available from
758 subjects, and ** clamp data from 575 subjects.
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5.4 ASSOCIATION OF 18 CONFIRMED SUSCEPTIBILITY LOCI FOR TYPE 2

DIABETES WITH INDICES OF INSULIN RELEASE, PROINSULIN

CONVERSION, AND INSULIN SENSITIVITY IN THE METSIM STUDY (Study

IV)

Baseline characteristics. A total of 5,327 nondiabetic men (Table 2) were
included in the study. Of these, 3,594 (68%) subjects had NGT, 884 (17%) had
isolated IFG, 503 (9%) had isolated IGT, and 346 (6%) had both IFG and IGT.
Subjects with type 2 diabetes (N=898) were excluded from the analyses.

Insulin sensitivity. None of the 18 SNPs had a significant effect on Matsuda ISI
in the primary analyses carried out under the additive model adjusted for age.
Two SNPs, HHEX rs1111875 and KCNJ11 rs5219, were nominally associated
with Matsuda ISI, with effect sizes ranging from +2% to +4% per risk allele
(P=0.010 and 0.005) (Table 4). Adjustment for BMI did not have a major impact
on these associations, but revealed another nominal association between
TSPAN8 rs7961581 and Matsuda ISI (P=0.008, effect size -2% per risk allele).
However, both KCNJ11 rs5219 and HHEX rs1111875 were also associated with
InsAUC0-30/GluAUC0-30. Adjustment for InsAUC0-30/GluAUC0-30 abolished the
effect of KCNJ11 rs5219 (P=0.906), but strengthened the effect of HHEX
rs1111875 on Matsuda ISI (P=3.6x10-5).

Insulin release. Altogether, eight SNPs (in or near KCNJ11, TCF7L2, SLC30A8,
HHEX, CDKN2B, IGF2BP2, CDKAL1, and MTNR1B) were nominally or
significantly associated with InsAUC0-30/GluAUC0-30. The largest effects on
InsAUC0-30/GluAUC0-30 (from -6% to -9% per risk allele) were observed for
TCF7L2 rs7903146, HHEX rs1111875, CDKAL1 rs7754840, and MTNR1B
rs10830963, and were statistically significant in both primary analyses and
analyses adjusted for age, BMI and Matsuda ISI (Table 4). Effect sizes of the
SNPs in/near KCNJ11, SLC30A8, CDKN2B, and IGF2BP2 were <-5% per risk
allele. Adjustment of the effects of these SNPs for BMI and Matsuda ISI in
addition to age attenuated the initially significant effect of KCNJ11 rs5219
(P=0.024), strengthened the associations of SLC30A8 rs13266634 and CDKN2B
rs10811661 to a significant level (P=3.2x10-4, and 1.7x10-4), and did not change
the nominal association of IGF2BP2 rs4402960 with InsAUC0-30/GluAUC0-30

(P=0.004) (Table 4).
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Table 4. Associations of 18 SNPs with early-phase insulin release (InsAUC0-

30/GluAUC0-30), proinsulin conversion (ProinsAUC0-30/InsAUC0-30), insulin
sensitivity (Matsuda ISI), and disposition index (DI= InsAUC0-30/GluAUC0-30 x
Matsuda ISI) in non-diabetic subjects.

Gene Alleles InsAUC0-30 / GluAUC0-30 ProinsAUC0-30 / InsAUC0-30 Matsuda ISI Disposition index

SNP
MAF
(%)

Effect size
B (SE) P P*

Effect size
B (SE) P P*

Effect size
B (SE) P P†

Effect size
B (SE) P P†

PPARG
rs1801282

C/G
15.5 0.63 (0.57) 0.316 0.664 0.14 (0.45) 0.991 0.560 -0.11 (0.11) 0.364 0.054 -0.30 (1.99) 0.958 0.810

KCNJ11
rs5219

G/A
47.7 -1.14 (0.41) 3.8E-04 0.025 0.49 (0.32) 0.115 0.531 0.25 (0.08) 0.005 0.008 -1.32 (1.40) 0.362 0.231

TCF7L2
rs7903146

C/T
17.7 -1.78 (0.53) 3.9E-05 9.8E-07 0.75 (0.42) 0.002 6.0E-04 0.12 (0.11) 0.228 0.920 -6.51 (1.87) 8.3E-05 3.4E-06

SLC30A8
rs13266634

C/T
39.1 -0.83 (0.41) 0.013 3.2E-04 0.73 (0.33) 1.9E-05 1.2E-05 -0.00 (0.08) 0.871 0.679 -4.19 (1.46) 0.001 4.2E-04

HHEX
rs1111875

C/T
46.9 -2.73 (0.40) 3.2E-12 1.4E-14 0.80 (0.32) 9.7E-06 6.5E-06 0.17 (0.08) 0.010 0.017 -8.89 (1.42) 2.5E-09 1.2E-10

LOC387761
rs7480010

A/G
17.5 -0.51 (0.54) 0.540 0.290 -0.33 (0.44) 0.829 0.194 0.17 (0.11) 0.087 0.345 3.57 (1.91) 0.094 0.189

CDKN2B
rs10811661

A/G
14.5 -1.15 (0.58) 0.021 1.7E-04 0.31 (0.47) 0.285 0.211 -0.03 (0.12) 0.847 0.413 -6.30 (1.99) 4.3E-04 0.001

IGF2BP2
rs4402960

C/A
32.1 -1.34 (0.43) 0.004 0.004 0.14 (0.34) 0.263 0.368 0.08 (0.09) 0.182 0.440 -4.22 (1.53) 0.038 0.014

CDKAL1
rs7754840

G/C
37.0 -1.68 (0.42) 3.4E-05 2.2E-06 0.32 (0.34) 3.1E-04 0.001 0.12 (0.08) 0.181 0.176 -5.25 (1.48) 1.6E-04 6.4E-05

WFS1
rs10010131

G/A
45.0 -0.56 (0.41) 0.048 0.397 0.01 (0.33) 0.402 0.081 0.14 (0.08) 0.055 0.100 0.23 (1.44) 0.986 0.808

JAZF1
rs864745

A/G
48.5 0.15 (0.41) 0.551 0.554 -0.25 (0.32) 0.792 0.968 -0.10 (0.08) 0.198 0.067 -1.31 (1.43) 0.301 0.241

CDC123
rs12779790

A/G
21.5 -0.82 (0.49) 0.059 0.062 -0.07 (0.39) 0.486 0.598 0.07 (0.10) 0.369 0.433 -2.36 (1.73) 0.196 0.043

TSPAN8
rs7961581

A/G
19.4 0.23 (0.51) 0.525 0.891 -0.29 (0.41) 0.120 0.310 -0.15 (0.10) 0.343 0.008 -0.75 (1.80) 0.635 0.308

THADA
rs7578597

A/G
5.0 -2.09 (0.93) 0.263 0.232 -1.24 (0.73) 0.425 0.267 0.04 (0.18) 0.659 0.373 -3.51 (3.27) 0.355 0.410

ADAMTS9
rs4607103

G/A
26.1 -0.66 (0.47) 0.335 0.221 -0.04 (0.37) 0.087 0.069 -0.04 (0.09) 0.809 0.587 -2.13 (1.65) 0.308 0.332

NOTCH2
rs10923931

C/A
13.8 -0.56 (0.59) 0.228 0.668 -0.95 (0.47) 0.360 0.080 0.16 (0.12) 0.054 0.060 1.21 (2.09) 0.244 0.300

KCNQ1
rs2283228

A/C
6.2 -1.03 (0.84) 0.161 0.093 0.31 (0.66) 0.176 0.353 0.10 (0.17) 0.701 0.284 -3.29 (2.96) 0.162 0.221

MTNR1B
rs10830963

C/G
36.0 -2.02 (0.42) 1.4E-07 1.0E-13 -0.21 (0.33) 0.301 0.189 0.03 (0.08) 0.577 0.436 -9.65 (1.47) 6.7E-11 3.8E-13

Effect  size  shown is  B-coefficient  (SE)  per  copy of  the type 2  diabetes  risk allele,  and
was calculated using untransformed variables adjusted for age by linear regression. P
values  were  calculated  using  log-transformed  variables  (due  to  their  skewed
distribution) by linear regression. P values are adjusted for age; P* values are adjusted
for  age,  BMI,  and  Matsuda  ISI; P† values  are  adjusted  for  age  and  BMI.  In  the  entire
cohort, the means�SE  of  the  examined  parameters  and  the  number  of  subjects  with
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available data were as follows: InsAUC0-30/GluAUC0-30 30.4�0.29 pmol/mmol (N=5298),
ProinsAUC0-30/InsAUC0-30 12.5�0.23 (N=2697), Matsuda ISI 7.03�0.06 [mg/dl, mU/l]
(N=5295), and DI 163.7�1.02 (N=5295). P values significant after correction for multiple
testing (P<6.9x10-4)  are  in  bold.  Risk  alleles  are  underlined.  Results  for  the  additive
model are presented.

Table 5. Associations of 4 SNPs with proinsulin/insulin ratio at fasting state
(Proins0/Ins0),  during  0  to  30  min  (ProinsAUC0-30/InsAUC0-30), 30 to 120 min
(ProinsAUC30-120/InsAUC30-120) and 0 to 120 min (ProinsAUC0-120/InsAUC0-120) of
an OGTT in non-diabetic subjects

Gene Alleles Proins0 / Ins0 ProinsAUC0-30 / InsAUC0-30 ProinsAUC30-120/InsAUC30-120 ProinsAUC0-120/InsAUC0-120

SNP
MAF
(%)

Effect size B
(SE) P P*

Effect size B
(SE) P P*

Effect size B
(SE) P P*

Effect size B
(SE) P P*

TCF7L2
rs7903146

C/T
17.7 1.20 (1.22) 0.042 0.021 0.75 (0.42) 0.002 6.0E-04 0.55 (0.44) 0.005 1.1E-03 0.57  (0.43) 0.004 0.001

SLC30A8
rs13266634

C/T
39.1 1.59 (0.96) 0.006 0.003 0.73 (0.33) 1.9E-05 1.2E-05 0.64 (0.35) 1.1E-04 4.2E-05 0.64  (0.34) 8.2E-05 2.8E-05

HHEX
rs1111875

C/T
46.9 0.74 (0.94) 0.365 0.622 0.80 (0.32) 9.7E-06 6.5E-06 0.69 (0.34) 0.002 0.002 0.71  (0.33) 0.001 6.6E-04

CDKAL1
rs7754840

G/C
37.0 -0.39 (0.98) 0.313 0.775 0.32 (0.34) 3.1E-04 0.001 0.36 (0.35) 0.003 0.009 0.35  (0.35) 0.002 0.005

Effect  size  shown is  B-coefficient  (SE)  per  copy of  the type 2  diabetes  risk allele,  and
was calculated using untransformed variables adjusted for age by linear regression. P
values  were  calculated  using  log-transformed  variables  (due  to  their  skewed
distribution) by linear regression. P values are adjusted for age, P* values are adjusted
for  age,  BMI  and  Matsuda  ISI.  In  the  entire  cohort,  the  means�SE  of  the  examined
parameters and the number of subjects with available data were as follows:
Proins0/Ins0 36.3�0.67 (N=2712), ProinsAUC0-30/InsAUC0-30 12.5�0.23 (N=2697),
ProinsAUC30-120/InsAUC30-120 14.1�0.24 (N=2693), ProinsAUC0-120/InsAUC0-120 13.8�0.24
(N=2692). P values significant after correction for multiple testing (P<6.9x10-4) are in
bold. Risk alleles are underlined. Results for the additive model are presented.

Proinsulin conversion. Four SNPs (in/near HHEX, SLC30A8, TCF7L2, and
CDKAL1) were associated with ProinsAUC0-30/InsAUC0-30, with effect sizes
ranging from +3% to +6% per risk allele (Tables 4 and 5). For HHEX rs1111875
and SLC30A8 rs13266634 the effects were significant regardless of the
adjustments used (adjusted for age: P=9.7x10-6 and 1.9x10-5;  adjusted  for  age,
BMI and Matsuda ISI: P=6.5x10-6 and 1.2x10-5). In contrast, adjustment for BMI
and Matsuda ISI attenuated the significant effect of CDKAL1 rs7754840 to a
nominal level (P=0.002), and strengthened the nominal effect of TCF7L2
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rs7903146 to a significant level (P=6.0x10-4). Similar results, although slightly
attenuated, were obtained when alternative indices of proinsulin conversion
based on proinsulin and insulin AUCs during 0-120 min or 30-120 min of an
OGTT were used (ProinsAUC0-120/InsAUC0-120 and ProinsAUC30-120/InsAUC30-120,
Table 5). SLC30A8 rs13266634 and TCF7L2 rs7903146 were also nominally
associated with the fasting proinsulin/insulin ratio (Proins0/Ins0, Table 5).
Overall, these results were consistent with associations of TCF7L2, SLC30A8,
HHEX and CDKAL1 with insulin release, since the risk alleles associated with
lower insulin release were also associated with higher proinsulin/insulin ratio.

Combined effect of risk alleles on insulin release. To evaluate the combined
effect of multiple type 2 diabetes risk alleles (denoted as the risk allele
throughout the text) on InsAUC0-30/GluAUC0-30 we calculated a genetic risk
score as the sum of weighted risk alleles (47) at SNPs significantly or nominally
associated with InsAUC0-30/GluAUC0-30 in initial analyses (KCNJ11, TCF7L2,
SLC30A8, HHEX, CDKN2B, IGF2BP2, CDKAL1 and MTNR1B). For each
subject, the number of risk alleles (0, 1, or 2) per SNP was weighted for their
effect sizes (shown in Table 4; average effect size per allele among 8 SNPs was
1.58, which was considered as one weighted risk allele), and the sum of
weighted alleles for each subject was rounded to the closest integer. Subjects
with �3 and �11 weighted risk alleles were pooled to obtain larger numbers.
InsAUC0-30/GluAUC0-30 gradually decreased with an increasing number of risk
alleles (relative effect size -4% per allele, P=9.3x10-44 adjusted for age, BMI, and
Matsuda ISI). Subjects with �11 weighted risk alleles (N=190) had 32% lower
InsAUC0-30/GluAUC0-30 than subjects with �3 weighted risk alleles (N=163)
(Figure 10). We also performed similar analysis using non-weighted risk
alleles. The difference in InsAUC0-30/GluAUC0-30 between subjects with �3 and
�11 risk alleles was -37% (relative effect size -4% per risk allele, P=3.8x10-28).
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Figure 10. Early-phase insulin release (InsAUC0-30/GluAUC0-30)  according  to  the
number  of  risk  alleles  in  8  insulin  secretion-related  SNPs  (KCNJ11 rs5219, TCF7L2
rs7903146, SLC30A8 rs13266634, HHEX rs1111875, CDKN2B rs10811661, IGF2BP2
rs4402960, CDKAL1 rs7754840 and MTNR1B rs10830963). For each subject, the number
of type 2 diabetes risk alleles (0, 1, 2) per SNP was weighted for their effect sizes
(shown  in  Table  4;  average  effect  size  per  risk  allele  among  8  SNPs  was  1.58,  which
was considered as one weighted risk allele). The effect of the number of the risk alleles
on InsAUC0-30/GluAUC0-30 was significant (P=9.3x10-44,  adjusted  for  age,  BMI  and
Matsuda ISI). Data are shown as means±SE (adjusted for age, BMI and Matsuda ISI).
Bars show numbers of subjects in each category.
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6. Discussion

6.1 REPRESENTATIVENESS OF THE STUDY SUBJECTS AND EVALUATION OF

THE METHODS

This work was based on the results from two cohorts (EUGENE2 and
METSIM), both of them exceptional for their large size and detailed
phenotyping of the participants.

Studies I and IV were performed in >6000 (>5000 non-diabetic) Finnish
middle-aged men from the ongoing population-based METSIM study. The
large sample size of this study and careful phenotyping of the participants
allowed us to investigate both the pathophysiology of the prediabetic state,
and the genetics of insulin secretion and insulin sensitivity. Inconclusive
results of previous studies on the pathophysiology of prediabetes indicate that
large population-based studies are needed to obtain reliable results. In the
METSIM study, the entire spectrum of glucose tolerance status from NGT to
diabetes allowed us to examine in detail the changes in insulin secretion and
insulin sensitivity with increasing glycemia. Large cohorts with sufficient
statistical power are also necessary for genetic-association studies, since the
effects of type 2 diabetes risk variants on (pre)diabetic phenotypes are modest.
The limitation of the METSIM study is that it includes only Finnish men, and
therefore the validity of the results for women, or for other populations is
uncertain. Previous studies have not reported sex differences in insulin
secretion, but in some studies women have been more insulin sensitive than
men (208-210). On the other hand, there is no indication that the association of
type 2 diabetes risk variants with parameters of glucose metabolism is
dependent on gender (68-71). Due to the large size of the METSIM Study we
could not use the most accurate methods to evaluate insulin sensitivity (clamp)
and  insulin  secretion  (IVGTT  or  hyperglycemic  clamp)  or  hepatic  insulin
sensitivity (tracer techniques). However, we validated our OGTT-derived
indices of insulin secretion and insulin sensitivity against the gold-standard
measures in the Kuopio sample from the EUGENE2 study. Finally, in spite of
the large sample size we did not have sufficient power (>80%) to detect small
effects (<6% per allele) of the examined SNPs on Matsuda ISI and InsAUC0-

30/GluAUC0-30,  which  may  explain  the  negative  findings  for  9  of  18  SNPs  in
Study IV.
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The EUGENE2 study (Studies II, III) included 846 young and healthy
non-diabetic offspring of patients with type 2 diabetes. Offspring of type 2
diabetic patients are known to have increased risk of type 2 diabetes, and
display abnormalities in insulin secretion and/or insulin action long before the
onset of type 2 diabetes. Therefore, such a population is ideal for association
studies of gene variants and early disturbances in insulin secretion and insulin
action. Insulin secretion and insulin sensitivity in the EUGENE2 study were
measured by IVGTT and euglycemic hyperinsulinemic clamp, considered as
"gold standard" methods providing the most accurate results. The limitation of
the EUGENE2 study is that it included five different European populations,
and therefore genetic differences between the populations might influence the
results. However, similar results have been also found in other European
populations.

6.2 PATHOPHYSIOLOGY OF THE PREDIABETIC STATE: INSULIN

SENSITIVITY AND INSULIN SECRETION IN RELATION TO HYPERGLYCEMIA

(Study I)

Subjects with prediabetes (IFG and/or IGT) are at increased risk of developing
type 2 diabetes (211-213) and cardiovascular disease (214). Previous studies
have suggested that IFG and IGT, defined by fasting and 2-hour glucose levels,
might have different etiologies, metabolic profile and prognostic importance.
However, no large-scale population-based studies on the relationship of
hyperglycemia with insulin secretion and insulin sensitivity have been
conducted.

Hyperglycemia as a continuous trait

We observed that insulin sensitivity (Matsuda ISI) decreased substantially
already at relatively low glucose levels within the normal range of FPG and
2hPG. Insulin sensitivity further decreased through the IFG/IGT range, and
reached its minimum within the diabetic range of FPG and 2hPG. In contrast,
early-phase insulin release (InsAUC0-30/GluAUC0-30) decreased only slightly
within the normal range of FPG and 2hPG, but declined substantially through
the diabetic range of FPG and 2hPG. Compensatory insulin secretion was
entirely missing when FPG increased from the normal range to the IFG range,
but was observed within the normal and IGT range of 2hPG.
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Previous studies addressing this question have been considerably
smaller in size (78, 89-92), but some of them have shown similar trends in
changes of insulin secretion and insulin sensitivity with increasing glycemia
(89, 90, 92). In one study (89), a decrease in insulin sensitivity (measured by
clamp) with higher 2hPG levels within the NGT group was associated with
higher BMI, suggesting that the observed effect is caused by obesity. In
contrast, we found that insulin sensitivity decreased comparably in both non-
obese and obese individuals within the non-diabetic range of 2hPG, suggesting
that obesity does not affect insulin sensitivity related to hyperglycemia.
Changes in early-phase and total insulin secretion with increasing glycemia
were also independent of obesity in our study. A previous study demonstrated
that the dynamic aspects of beta-cell response to glucose were unaltered in
morbidly obese non-diabetic subjects (215).

Hyperglycemia categorized to IFG and IGT

We demonstrated that peripheral insulin resistance (Matsuda ISI) was a
predominant feature of IIGT, whereas impairment in early and total insulin
release during an OGTT characterized IIFG. This finding provides support for
the notion that IFG and IGT result from distinct metabolic abnormalities.

Results of previous studies have been inconsistent with respect to
differences in insulin sensitivity between IIFG and IIGT. Lower peripheral
insulin sensitivity in subjects with IIGT compared with subjects with IIFG has
been reported in some studies using the clamp method or IVGTT (74, 75, 77,
79), but similar impairment in insulin action has also been found in both IIFG
and IIGT (78, 81). In two studies the decrease in insulin sensitivity in IIGT
compared with IIFG was related to obesity (76, 82). In our study, the decrease
in insulin sensitivity was significantly greater in IIGT than in IIFG. The
decrease was quite similar in non-obese and obese subjects with IIGT,
indicating that the reduction in peripheral insulin sensitivity in IIGT was not
explained by obesity.

Conflicting  findings  have  also  been  published  on  1/HOMA-IR,
reflecting mainly hepatic (but also peripheral) insulin sensitivity (76, 77, 79, 83-
88).  In  our  study  1/HOMA-IR  was  more  reduced  in  IIFG  than  in  IIGT.
However, reliable results on hepatic insulin sensitivity can be obtained only by
using the tracer techniques (78, 216).

Examination of insulin secretion revealed that individuals with IIFG
had impairment in both early-phase and total glucose-stimulated insulin
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release, whereas individuals with IIGT had increased total insulin release.
Some  previous  studies  assessing  insulin  secretion  by  IVGTT  or  clamp  have
similarly reported impaired insulin release in individuals with IIFG (74, 75, 78,
79, 81), although others have found impaired insulin release in individuals
with IGT (76, 80). Studies based on OGTT measurements have reported
impaired early-phase insulin secretion (the insulinogenic index) in individuals
with IGT only (86, 88), or in individuals with IGT or IFG (77, 83, 87). The
inconsistencies in the findings from previous studies could be due to different
study designs, different methods, and most importantly a small sample size.

Our findings are supported by those of a recent large prospective study
investigating the natural history of prediabetes. This study has demonstrated
that individuals who progressed within 5 years from NGT to IIFG displayed
stationary beta-cell failure and progressive hepatic insulin resistance, whereas
those who progressed from NGT to IIGT had low insulin sensitivity with
inadequate compensatory insulin secretory response (217).

Summary

Changes in insulin sensitivity and insulin secretion in response to increasing
glucose levels (regarded as a continuous trait or as categories of glucose
tolerance) in our study suggest that there are two major pathways for the
development of type 2 diabetes. One pathway leads to diabetes via the
elevation of FPG (IFG), most probably due to an insulin secretion defect, and
another via postprandial hyperglycemia (IGT), most probably due to insulin
resistance. This hypothesis is supported by our finding that subjects with
postprandial hyperglycemia within the non-diabetic range (or IGT) displayed
a compensatory increase in total (but not early-phase) insulin secretion,
whereas in subjects with fasting hyperglycemia (or IFG) this compensatory
hypeinsulinemia was entirely missing. Moreover, insulin release (early-phase
and total) linearly decreased with increasing FPG levels, indicating a defect in
insulin secretion. Prospective follow-up studies including subjects with IIFG
and IIGT are needed, however, to confirm this hypothesis.
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6.3 TYPE 2 DIABETES SUSCEPTIBILITY LOCI (Studies II-IV)

Although recent advances in the genetics of type 2 diabetes have led to the
identification of 20 diabetes risk SNPs, little is known about their function and
the mechanisms whereby they increase the risk of diabetes. We investigated a
total of 18 diabetes-risk SNPs in two populations for their associations with
insulin secretion, insulin resistance, and proinsulin conversion.

6.3.1 Loci associated with insulin secretion

Insulin secretion has an important genetic component, as suggested by twin
studies reporting heritability estimates >50% (99,218). We found that out of 18
diabetes  risk  loci,  eight  loci  (TCF7L2, SLC30A8, HHEX, CDKN2B, CDKAL1,
MTNR1B, KCNJ11, and IGF2BP2) were associated with impaired insulin
release. This finding confirms the importance of the genes regulating insulin
secretion in determining the genetic susceptibility to type 2 diabetes.

6.3.1.1 CDKAL1

CDKAL1 was identified by GWAS as a susceptibility gene for type 2 diabetes
(109-112). We replicated the association of CDKAL1 rs7754840 with type 2
diabetes in the initial sample of 3900 Finnish men from the METSIM study.
Furthermore, we demonstrated in two studies that the type 2 diabetes risk
allele of rs7754840 was significantly associated with impaired early-phase
insulin secretion measured either directly by an IVGTT (EUGENE2 study) or
estimated from an OGTT (METSIM Study), but not with insulin sensitivity
(measured by clamp or OGTT). The association remained significant after
adjustment for covariates including BMI and insulin sensitivity.

An association of CDKAL1 variants with insulin release during an
OGTT was first found in two GWA studies (110, 112), and replicated in several
subsequent studies (159, 160, 172, 219, 220). However, the OGTT applied in the
initial studies does not allow the accurate estimation of either the first- and
second-phase insulin secretion, or insulin sensitivity. We showed that the
effect of rs7754840 on insulin secretion was mainly due to impaired first-phase
insulin release. Several prospective studies have indicated that impaired first-
phase insulin secretion is an independent predictor for the progression from
NGT or IGT to type 2 diabetes (221, 222).

The mechanisms underlying the association of rs7754840 with impaired
insulin secretion are not clear. Considering the similarity of the CDKAL1



49

protein product and CDK5RAP1 (CDK5-inhibitor) in the brain, it is possible
that CDKAL1 is involved in CDK5-mediated regulation of beta-cell function.
Inhibition of CDK5 activity seems to have a positive impact on insulin gene
expression and secretion during glucotoxic conditions (223). However, further
studies are needed to fully elucidate the function of CDKAL1 in CDK5-
mediated pathways in pancreatic beta-cells.

6.3.1.2 HHEX

Two SNPs near the HHEX gene, rs1111875 and rs7923837 (both in strong LD),
have been associated with increased risk of type 2 diabetes in GWAS (108-111).
Moreover, rs1111875 has been shown in initial studies to affect the acute
insulin response during an OGTT (166) and �-cell glucose sensitivity (219). We
found an association of the type 2 diabetes risk allele in rs7923837 with
impaired first-phase insulin release during IVGTT in the EUGENE2 study.
Furthermore, we confirmed the association of rs1111875 with early-phase
insulin secretion during an OGTT in the METSIM study, and this SNP had the
largest effect size (-6.7% per diabetes risk allele) among 18 type 2 diabetes
susceptibility SNPs tested. These associations remained significant after
adjustment for covariates and correction for multiple testing. In agreement
with our observations, several studies have also reported an association of
HHEX with impaired insulin secretion measured by OGTT or IVGTT (155, 160,
166, 219, 220, 224).

In spite of the growing evidence that HHEX affects insulin secretion, the
mechanisms behind this association remain unclear. HHEX is a transcription
factor highly expressed in pancreatic islets, necessary for embryonic formation
of the ventral pancreas (152). Therefore, the defect in glucose-stimulated
insulin release associated with rs1111875 could arise from mild alterations in
the embryonic organogenesis of the ventral pancreas. It is noteworthy that the
signal tagged by rs1111875 is a region of extended linkage disequilibrium that
includes IDE (insulin degrading enzyme) and KIF11 (kinesin-interacting factor
11) genes, which could also be potential candidates.

6.3.1.3 Other loci

In addition to CDKAL1 and HHEX, TCF7L2, SLC30A8, CDKN2B, MTNR1B,
KCNJ11, and IGF2BP2 loci were also associated with impaired early-phase
insulin release in the METSIM study, although only associations of TCF7L2,
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SLC30A8, CDKN2B, and MTNR1B remained significant after correction for
multiple testing.

TCF7L2 is the most important candidate gene for type 2 diabetes to
date, confirmed in many populations. Since its discovery, several studies have
reported associations of TCF7L2 variants (especially rs7903146) with impaired
insulin response to glucose during an OGTT or IVGTT (135, 160, 225-227). Our
results are in agreement with those of these reports. TCF7L2 is known to play a
crucial role in the WNT signalling pathway, which is required for beta-cell
growth, differentiation and function. Moreover, it is also important for the
regulation of GLP-1 expression and secretion in intestinal L cells. Schäfer et al.
showed that variations in TCF7L2 are associated with impaired GLP-1-induced
insulin secretion (228), so it is likely that TCF7L2 variants affect beta-cell
function  both  directly  and  indirectly  through  impaired  GLP-1  secretion  or
signalling.

MTNR1B is the most recent candidate gene for type 2 diabetes, found to
be strongly associated with the risk of type 2 diabetes, higher FPG levels, and
lower basal insulin secretion measured by HOMA-B in a GWA meta-analysis
(MAGIC) (117). Subsequent reports found an association of type 2 diabetes risk
allele in rs10830963 with decreased early insulin secretion during an OGTT
and IVGTT (201, 229). These results are in agreement with our finding. The
relationship between the MTNR1B variant and insulin secretion seems to be
biologically credible, since MTNR1B is expressed in the beta cells, and is
thought to mediate an inhibitory effect of melatonin on insulin secretion (200).
Moreover, melatonin receptors are overexpressed in the islets of patients with
type 2 diabetes (230).

The  effects  of  the  SNPs  in  or  near KCNJ11, SLC30A8, CDKN2B, and
IGF2BP2 on insulin secretion in the METSIM Study were more modest in size
(<5% reduction per risk allele). Previous studies assessing the effects of these
loci on the measures of insulin secretion have been inconclusive (112, 127, 155,
160, 172, 220, 224, 231), most probably due to insufficient power to detect
modest effects of these SNPs. The mechanisms of action of these SNPs are also
mostly a matter of speculation (CDKN2B, SLC30A8) or are unknown
(IGF2BP2). CDKN2B, similarly as CDKAL1, plays a role in the regulation of the
cell cycle, suggesting a possible link between cell cycle regulation and beta-cell
function. On the other hand, the effect of KCNJ11 rs5219 (Glu23Lys) on insulin
secretion is biologically plausible, since KCNJ11 encodes the Kir6.2 subunit of
the KATP channel, which is necessary for insulin secretion. Experimental studies
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suggest that rs5219 causes an insulin secretion defect through a small increase
in KATP channel activity (232, 233).

A few studies have reported associations of variants in WFS1 (234),
TSPAN8 (235), JAZF1 (235), CDC123 (235), LOC387761 (231), and KCNQ1 (116)
loci with insulin secretion, but our study failed to confirm such associations.

6.3.1.4 Combined effect of 8 SNPs on insulin secretion

When type 2 diabetes risk alleles in the 8 insulin secretion-related SNPs
(TCF7L2, SLC30A8, HHEX, CDKN2B, CDKAL1, MTNR1B, KCNJ11, and
IGF2BP2) were combined, we observed a gradual decrease in early-phase
insulin  secretion  during  an  OGTT  with  an  increasing  number  of  risk  alleles,
reaching -32% in subjects with �11 compared with subjects with �3 risk alleles.
An observation similar to our results was reported in a study by Pascoe et al.
(225), where carriers of 9 or more risk alleles in 7 genes exhibited 21.8% lower
insulin secretion (assessed by the insulinogenic index), and 26.6% lower
glucose sensitivity of beta-cells, than carriers of 4 or less risk alleles.

6.3.2 Loci associated with proinsulin conversion

A total of four insulin secretion-related loci (TCF7L2, SLC30A8, HHEX, and
CDKAL1) were also associated with indices of proinsulin conversion in the
METSIM Study, suggesting that these loci may affect insulin secretion, at least
partially, through impaired proinsulin conversion.

An association of TCF7L2 rs7903146 with proinsulin levels (236, 237) or
the proinsulin/insulin ratio (238, 239) has been previously reported. Although
the mechanisms behind this association are not clear, impaired glucagon-like
peptide 1 signaling seems to be involved (228). Moreover, binding sites for
TCF7L2 have been found in the promoters of genes encoding proprotein
convertase 1 and 2 (237), supporting this mechanism.

The association of SLC30A8 rs13266634 and CDKAL1 rs7754840 with the
proinsulin/insulin  AUC  ratio  during  an  OGTT  was  also  shown  in  a  recent
study (160). Since SLC30A8 encodes the zinc transporter ZnT8, which plays an
important role in the storage and maturation of insulin in the granules of the
beta-cells (240), there is a possibility that genetic variants affecting the function
of  ZnT8  could  impair  proinsulin  processing.  However,  currently  it  is  not
known whether rs1326634 (Arg325Trp) SNP affects the functional properties of
ZnT8.
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Our finding of the association between the HHEX variant and impaired
proinsulin conversion has not previously been reported, and the mechanism
behind this association is not known. On the other hand, one study has
reported an association between MTNR1B rs10830963 and the
proinsulin/insulin  ratio  (201),  which  we  could  not  confirm in  our  study.  It  is
noteworthy that the increased proinsulin/insulin ratio does not necessarily
represent a specific defect in proinsulin processing, as proinsulin
concentrations rise under most conditions of stressed beta-cells. Therefore,
these findings require further investigation.

6.3.3 Loci associated with insulin sensitivity

It is well accepted that insulin resistance is mainly modulated by lifestyle
factors, such as a lack of physical activity and diet rich in carbohydrates and
saturated fatty acids, leading to obesity. However, twin studies have shown
that the genetic component of insulin resistance is also significant, although
less than that of insulin secretion. The estimated heritability of insulin
resistance is ~40% (241).

Out of 18 type 2 diabetes risk loci, KCNJ11, HHEX, and TSPAN8 were
nominally associated with peripheral insulin resistance (Matsuda ISI) in the
METSIM Study. The associations did not persist after the correction for
multiple testing. Surprisingly, we did not confirm an association of PPARG
with Matsuda ISI, the only diabetes risk gene known to affect insulin
sensitivity to date, although a trend for the association was present. Most of
the previous studies reporting the association between PPARG2 rs1801282
(Pro12Ala) and insulin resistance have applied HOMA-IR, which reflects
mainly insulin resistance in the liver (120, 242-248). PPARG isoform 2, bearing
the Pro12Ala polymorphism, is expressed prominently in adipose tissue and to
a lower extent in the liver (249), but not in skeletal muscle. Therefore it is
possible that Pro12Ala affects insulin sensitivity predominantly in adipose
tissue and the liver, whereas Matsuda ISI representing mostly muscle insulin
sensitivity might not reflect sufficiently insulin sensitivity in these tissues.
Interestingly, mice with deleted PPAR� in adipose tissue display insulin
resistance in adipose tissue and the liver, but not in muscle (250), which is
consistent with our hypothesis.

 Type 2 diabetes risk alleles of KCNJ11 rs5219 and HHEX rs1111875
were, surprisingly, nominally associated with greater sensitivity in our study.
Although a similar observation has not been reported for HHEX, a recent
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study has shown that homozygous carriers of type 2 diabetes risk allele of
rs5219 of KCNJ11 had, besides an insulin secretion defect, a ~40% increase in
liver insulin sensitivity measured by clamp and tracer infusion (251).
Therefore, increased insulin sensitivity in non-diabetic carriers of the risk
alleles might reflect a compensation for impaired insulin secretion.

The association of TSPAN8 rs7961581 with Matsuda ISI became
nominally significant only after adjustment for obesity (BMI). Only one study
has reported a similar nominal association of rs7961581 with Matsuda ISI and
HOMA-IR (252). TSPAN8 encodes for a widely expressed cell surface
glycoprotein tetraspanin 8, and its role in the pathogenesis of diabetes is
unclear.

A few studies have also found an association between TCF7L2 variants
and insulin sensitivity (140, 253, 254). However, we could not confirm such an
association.

6.3.4 Loci with unknown function

We did not find any associations with indices of insulin secretion, insulin
sensitivity and proinsulin conversion for 8 of 18 loci (LOC387761, WFS1,
JAZF1, CDC123, THADA, ADAMTS9, NOTCH2, and KCNQ1).  This  might  be
due to the insufficient power of the METSIM Study to detect potentially very
modest effects of these SNPs on the measured parameters, indicating that even
larger studies are needed to clarify their mode of action. There is also a
possibility that mechanisms other than impaired insulin secretion, proinsulin
conversion, and peripheral insulin resistance (such as tissue-specific insulin
sensitivity of the liver, adipocytes, and brain, glucagon and incretin secretion,
etc.) explain their associations with the diabetes risk.

6.4 CONCLUDING REMARKS

Investigation of the pathophysiology and genetics of type 2 diabetes has
attracted considerable interest for many years. However, most progress in both
fields has been made only recently, due to the availability of larger, well-
powered study populations, and more precise and/or efficient phenotyping
methods.

Although both impaired insulin secretion and insulin resistance play
indisputably important roles in the development of prediabetes and type 2
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diabetes, recent studies (including this work) suggest that insulin secretion is
probably more important than insulin resistance. According to our findings, a
reduction of insulin sensitivity by as much as 50% did not lead to diabetic
hyperglycemia, whereas the reduction of early-phase secretion by >25% (and a
much smaller reduction in total insulin secretion) increased fasting and 2-hour
glucose levels into the diabetic range. Nevertheless, type 2 diabetes could be
developed via at least two distinct pathways: one leading to diabetes through
an increase in FPG, where an insulin secretion defect plays a crucial role, and
another leading to diabetes through an increase in 2hPG, where insulin
resistance is likely to play a dominant role. This hypothesis could be tested in a
longitudinal large population-based study.

Results from the genetic studies of type 2 diabetes (including this work)
also confirm the importance of insulin secretion in the pathogenesis of type 2
diabetes, since most of the confirmed type 2 diabetes risk loci were shown to
affect insulin secretion. On the other hand, with the exception of PPARG2, no
convincing candidate gene for insulin resistance was found. This lack of
"insulin-resistance genes" might indicate that environmental and lifestyle
factors rather than genetic variations are central in determining a common type
of insulin resistance.

In spite of the considerable progress in studies of the genetics of type 2
diabetes, gaps in our knowledge remain. For example, the diabetes-
susceptibility SNPs discovered to date explain only 5–10% of the variation of
genetic risk of type 2 diabetes (255), and therefore many more variants are
expected to be discovered. Studies on the copy number variation and rare
mutations especially could bring new information. Moreover, many of the
SNPs identified so far are located far (even hundreds of kilobases) from the
known genes and do not necessarily represent the causal variants, but only a
signal from a genomic region associated with type 2 diabetes. Therefore,
further investigation of these loci (including fine-mapping and functional
studies) is necessary to clarify their roles in the pathophysiology of type 2
diabetes.

In conclusion, the findings of our studies contribute new knowledge on
the pathophysiology and genetics of type 2 diabetes. Future progress in this
field could provide information enabling better prediction of an individual's
risk of type 2 diabetes and individually tailored lifestyle modification
programs and pharmacological therapy to prevent or treat type 2 diabetes.
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7. Summary
The main findings of Studies I-IV were:

Study I: The impairment of peripheral insulin sensitivity starts at relatively low
fasting and 2-hour glucose levels, already within the normoglycemic range. In
contrast, the impairment of insulin secretion progresses substantially only in
the diabetic range of fasting and 2-hour glucose levels. Peripheral insulin
resistance is the predominant feature of IIGT, whereas impaired insulin
secretion characterizes IIFG.

Study II: CDKAL1 rs7754840 was associated with type 2 diabetes in Finnish
men, and with impaired first-phase insulin release in young non-diabetic
offspring of type 2 diabetic patients.

Study III: HHEX rs7923837 was associated with impaired first-phase insulin
release  in young non-diabetic offspring of type 2 diabetic patients.

Study IV: From a total of 18 type 2 diabetes-related loci, eight loci were
significantly (TCF7L2, SLC30A8, HHEX, CDKN2B, CDKAL1 and MTNR1B) or
nominally (KCNJ11, and IGF2BP2) associated with impaired early-phase
insulin release during an OGTT. The effects of TCF7L2, SLC30A8, HHEX, and
CDKAL1 on insulin secretion could be explained, at least in part, by impaired
conversion of proinsulin to insulin. HHEX, KCNJ11 and TSPAN8 were
nominally associated with the Matsuda index of peripheral insulin sensitivity.
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