Show simple item record

dc.contributor.authorLaw Cliff S
dc.contributor.authorSmith Murray J
dc.contributor.authorHarvey Mike J
dc.contributor.authorBell Thomas G
dc.contributor.authorCravigan Luke T
dc.contributor.authorElliott Fiona C
dc.contributor.authorLawson Sarah J
dc.contributor.authorLizotte Martine
dc.contributor.authorMarriner Andrew
dc.contributor.authorMcGregor John
dc.contributor.authorRistovski Zoran
dc.contributor.authorSafi Karl A
dc.contributor.authorSaltzman Eric S
dc.contributor.authorVaattovaara Petri
dc.contributor.authorWalker Carolyn F
dc.date.accessioned2018-01-29T13:57:14Z
dc.date.available2018-01-29T13:57:14Z
dc.date.issued2017
dc.identifier.urihttps://erepo.uef.fi/handle/123456789/5770
dc.description.abstractEstablishing the relationship between marine boundary layer (MBL) aerosols and surface water biogeochemistry is required to understand aerosol and cloud production processes over the remote ocean and represent them more accurately in earth system models and global climate projections. This was addressed by the SOAP (Surface Ocean Aerosol Production) campaign, which examined air–sea interaction over biologically productive frontal waters east of New Zealand. This overview details the objectives, regional context, sampling strategy and provisional findings of a pilot study, PreSOAP, in austral summer 2011 and the following SOAP voyage in late austral summer 2012. Both voyages characterized surface water and MBL composition in three phytoplankton blooms of differing species composition and biogeochemistry, with significant regional correlation observed between chlorophyll a and DMSsw. Surface seawater dimethylsulfide (DMSsw) and associated air–sea DMS flux showed spatial variation during the SOAP voyage, with maxima of 25 nmol L−1 and 100 µmol m−2 d−1, respectively, recorded in a dinoflagellate bloom. Inclusion of SOAP data in a regional DMSsw compilation indicates that the current climatological mean is an underestimate for this region of the southwest Pacific. Estimation of the DMS gas transfer velocity (kDMS) by independent techniques of eddy covariance and gradient flux showed good agreement, although both exhibited periodic deviations from model estimates. Flux anomalies were related to surface warming and sea surface microlayer enrichment and also reflected the heterogeneous distribution of DMSsw and the associated flux footprint. Other aerosol precursors measured included the halides and various volatile organic carbon compounds, with first measurements of the short-lived gases glyoxal and methylglyoxal in pristine Southern Ocean marine air indicating an unidentified local source. The application of a real-time clean sector, contaminant markers and a common aerosol inlet facilitated multi-sensor measurement of uncontaminated air. Aerosol characterization identified variable Aitken mode and consistent submicron-sized accumulation and coarse modes. Submicron aerosol mass was dominated by secondary particles containing ammonium sulfate/bisulfate under light winds, with an increase in sea salt under higher wind speeds. MBL measurements and chamber experiments identified a significant organic component in primary and secondary aerosols. Comparison of SOAP aerosol number and size distributions reveals an underprediction in GLOMAP (GLObal Model of Aerosol Processes)-mode aerosol number in clean marine air masses, suggesting a missing marine aerosol source in the model. The SOAP data will be further examined for evidence of nucleation events and also to identify relationships between MBL composition and surface ocean biogeochemistry that may provide potential proxies for aerosol precursors and production.en
dc.language.isoENen
dc.publisherCopernicus Publications on behalf of the European Geosciences Unionen
dc.relation.ispartofseriesATMOSPHERIC CHEMISTRY AND PHYSICSen
dc.relation.urihttp://dx.doi.org/10.5194/acp-17-13645-2017en
dc.rightsCC BY 4.0
dc.titleOverview and preliminary results of the Surface Ocean Aerosol Production (SOAP) campaignen
dc.description.versionpublished versionen
dc.contributor.departmentDepartment of Applied Physics, activitiesen
uef.solecris.id51076880en
dc.type.publicationinfo:eu-repo/semantics/articleen
dc.relation.doi10.5194/acp-17-13645-2017en
dc.description.reviewstatuspeerRevieweden
dc.format.pagerange13645-13667en
dc.publisher.countrySaksaen
dc.relation.issn1680-7316en
dc.relation.volume17en
dc.rights.accesslevelopenAccessen
dc.type.okmA1en
dc.type.versioninfo:eu-repo/semantics/publishedVersionen
uef.solecris.openaccessOpen access -julkaisukanavassa ilmestynyt julkaisu
dc.rights.copyright© Authors
dc.type.displayTypearticleen
dc.type.displayTypeartikkelifi
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record