Show simple item record

dc.contributor.authorHasaballah, Mustafa M
dc.contributor.authorBalogun, Oluwafemi Samson
dc.contributor.authorBakr, M. E
dc.date.accessioned2024-11-18T12:47:54Z
dc.date.available2024-11-18T12:47:54Z
dc.date.issued2024
dc.identifier.urihttps://erepo.uef.fi/handle/123456789/33408
dc.description.abstractBased on joint progressive Type-II censored data, we examined the statistical inference of the generalized logistic distribution with different shape and scale parameters in this research. Wherever possible, we explored maximum likelihood estimators for unknown parameters within the scope of the joint progressive censoring scheme. Bayesian inferences for these parameters were demonstrated using a Gamma prior under the squared error loss function and the linear exponential loss function. It was important to note that obtaining Bayes estimators and the corresponding credible intervals was not straightforward; thus, we recommended using the Markov Chain Monte Carlo method to compute them. We performed real-world data analysis for demonstrative purposes and ran Monte Carlo simulations to compare the performance of all the suggested approaches.
dc.language.isoeng
dc.publisherAIMS Press
dc.relation.ispartofseriesAIMS mathematics
dc.relation.urihttps://doi.org/10.3934/math.20241422
dc.rightsCC BY 4.0
dc.subjectgeneralized logistic distribution
dc.subjectmaximum likelihood estimation
dc.subjectloss function
dc.subjectBayesian estimation
dc.subjectMarkov chain Monte Carlo
dc.subjectjoint progressive censoring scheme
dc.titleFrequentist and Bayesian approach for the generalized logistic lifetime model with applications to air-conditioning system failure times under joint progressive censoring data
dc.description.versionpublished version
dc.contributor.departmentTietojenkäsittelytieteen laitos
uef.solecris.id0dd1e05f-35bb-4acd-96cd-f69ada575bd3en
dc.relation.doi10.3934/math.20241422
dc.description.reviewstatuspeerReviewed
dc.format.pagerange29346-29369
dc.relation.issue10
dc.relation.volume9
dc.rights.accesslevelopenAccess
dc.type.okmA1
uef.solecris.openaccess1
dc.rights.copyright© 2024 the Authors
dc.type.displayTypeArtikkelifi
dc.type.displayTypeArticleen
uef.rt.id17251en
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record