Show simple item record

dc.contributor.authorKorhonen, Paula
dc.contributor.authorMalm, Tarja
dc.contributor.authorWhite Anthony R
dc.date.accessioned2018-10-31T12:46:59Z
dc.date.available2018-10-31T12:46:59Z
dc.date.issued2018
dc.identifier.urihttps://erepo.uef.fi/handle/123456789/7117
dc.description.abstractNeurodegenerative disorders have an enormous impact on society and healthcare budgets. There has been a high degree of failure in many recent clinical trials for disease-modifying therapeutics. A major factor in this failure is the difficulty of translating findings from animal-based cell models to human patients. The majority of non-animal neurodegenerative disease research has been conducted in 2 dimensional models of rodent neonatal neurons and glia. While these systems have provided valuable insights into neural cell function and dysfunction, they have largely reached the end of their useful life, as human stem cell technologies combined with major advances in microfluidic technologies have opened the door to development of patient-derived 3D brain cell models. These have major advantages in providing a micro-physiological system more closely reflecting the in vivo brain environment, and promote the interaction between different patient-derived brain cell-types. However, major challenges remain before these model systems will replace the 2D rodent models as the workhorse for neurodegenerative disease studies. Despite these challenges, we are likely to experience a rapid transition of research from old models to new patient derived 3D brain cell systems, which will likely improve translational outcomes for disease therapeutics.
dc.language.isoenglanti
dc.publisherElsevier BV
dc.relation.ispartofseriesNEUROCHEMISTRY INTERNATIONAL
dc.relation.urihttp://dx.doi.org/10.1016/j.neuint.2018.08.012
dc.rightsCC BY-NC-ND 4.0
dc.subject3D culture
dc.subjectiPSC
dc.subjectorganoid
dc.subjectco-culture
dc.subjectmicrofluidics
dc.subjectneurodegenerative diseases
dc.title3D human brain cell models: New frontiers in disease understanding and drug discovery for neurodegenerative diseases
dc.description.versionfinal draft
dc.contributor.departmentA.I. Virtanen -instituutti
uef.solecris.id56955627en
dc.type.publicationTieteelliset aikakauslehtiartikkelit
dc.relation.doi10.1016/j.neuint.2018.08.012
dc.description.reviewstatuspeerReviewed
dc.format.pagerange191-199
dc.publisher.countryAlankomaat
dc.relation.issn0197-0186
dc.relation.volume120
dc.rights.accesslevelopenAccess
dc.type.okmA1
uef.solecris.openaccessEi
dc.rights.copyright© Elsevier Ltd
dc.type.displayTypearticleen
dc.type.displayTypeartikkelifi
dc.rights.urlhttps://creativecommons.org/licenses/by-nc-nd/4.0/


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record