Iliac crest histomorphometry and skeletal heterogeneity in men
Files
Self archived version
published versionDate
2017Author(s)
Unique identifier
10.1016/j.bonr.2016.11.004Metadata
Show full item recordMore information
Self-archived item
Citation
Tong Xiaoyu. Burton Inari S. Jurvelin Jukka S. Isaksson Hanna. Kröger Heikki. (2017). Iliac crest histomorphometry and skeletal heterogeneity in men. Bone reports, 6, 9-16. 10.1016/j.bonr.2016.11.004.Rights
Abstract
Purpose
The cortical characteristics of the iliac crest in male have rarely been investigated with quantitative histomorphometry. Also it is still unknown how cortical microarchitecture may vary between the iliac crest and fractures related sites at the proximal femur. We studied the microarchitecture of both external and internal cortices within the iliac crest, and compared the results with femoral neck and subtrochanteric femoral shaft sites.
Methods
Undecalcified histological sections of the iliac crest were obtained bicortically from cadavers (n = 20, aged 18–82 years, males). They were cut (7 μm) and stained using modified Masson-Goldner stain. Histomorphometric parameters of cortical bone were analysed with low (× 50) and high (× 100) magnification, after identifying cortical bone boundaries using our previously validated method. Within cortical bone area, only complete osteons with typical concentric lamellae and cement line were selected and measured.
Results
At the iliac crest, the mean cortical width of external cortex was higher than at the internal cortex (p < 0.001). Also, osteon structural parameters, e.g. mean osteonal perimeter, were higher in the external cortex (p < 0.05). In both external and internal cortices, pore number per cortical bone area was higher in young subjects (≤ 50 years) (p < 0.05) while mean pore perimeter was higher in the old subjects (> 50 years) (p < 0.05). Several cortical parameters (e.g. osteon area per cortical bone area, pore number per cortical area) were the lowest in the femoral neck (p < 0.05). The maximal osteonal diameter and mean wall width were the highest in the external cortex of the iliac crest (p < 0.05), and the mean cortical width, osteon number per cortical area were the highest in the subtrochanteric femoral shaft (p < 0.05). Some osteonal structural parameters (e.g. min osteonal diameter) were significantly positively correlated (0.29 ≤ R2 ≤ 0.45, p < 0.05) between the external iliac crest and the femoral neck.
Conclusions
This study reveals heterogeneity in cortical microarchitecture between the external and internal iliac crest cortices, as well as between the iliac crest, the femoral neck and the subtrochanteric femoral shaft. Standard iliac crest biopsy does not reflect accurately cortical microarchitecture of other skeletal sites.
Keywords
Link to the original item
http://dx.doi.org/10.1016/j.bonr.2016.11.004Publisher
Elsevier BVCollections
- Terveystieteiden tiedekunta [1793]