Skip to main contentSkip to search and navigation

UEF eREPOSITORY

    • English
    • suomi
  • English 
    • English
    • suomi
  • Login
View Item 
  •   Home
  • Artikkelit
  • Terveystieteiden tiedekunta
  • View Item
  •   Home
  • Artikkelit
  • Terveystieteiden tiedekunta
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Harmonization of the pipeline for seizure detection to phenotype post-traumatic epilepsy in a preclinical multicenter study on post-traumatic epileptogenesis

Thumbnail
Files
Article (1.293Mb)
Self archived version
final draft
Date
2019
Author(s)
Casillas-Espinosa, PM
Andrade, P
Santana-Gomez, C
Paananen, T
Smith, G
Ali, I
Ciszek, R
Ndode-Ekane, XE
Brady, RD
Tohka, J
Hudson, MR
Perucca, P
Braine, EL
Immonen, R
Puhakka, N
Shultz, SR
Jones, NC
Staba, RJ
Pitkänen, A
O'Brien, TJ
Unique identifier
10.1016/j.eplepsyres.2019.04.011
Metadata
Show full item record
More information
Research Database SoleCris

Self-archived article

Citation
Casillas-Espinosa, PM. Andrade, P. Santana-Gomez, C. Paananen, T. Smith, G. Ali, I. Ciszek, R. Ndode-Ekane, XE. Brady, RD. Tohka, J. Hudson, MR. Perucca, P. Braine, EL. Immonen, R. Puhakka, N. Shultz, SR. Jones, NC. Staba, RJ. Pitkänen, A. O'Brien, TJ. (2019). Harmonization of the pipeline for seizure detection to phenotype post-traumatic epilepsy in a preclinical multicenter study on post-traumatic epileptogenesis.  Epilepsy research, 156, 106131. 10.1016/j.eplepsyres.2019.04.011.
Rights
© Elsevier B.V
Licensed under
CC BY-NC-ND https://creativecommons.org/licenses/by-nc-nd/4.0/
Abstract

Rationale
The Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx) Centre without walls is an NIH funded multicenter consortium. One of EpiBioS4Rx projects is a preclinical post-traumatic epileptogenesis biomarker study that involves three study sites: The University of Eastern Finland, Monash University (Melbourne) and the University of California Los Angeles. Our objective is to create a platform for evaluating biomarkers and testing new antiepileptogenic treatments for post-traumatic epilepsy (PTE) using the lateral fluid percussion injury (FPI) model in rats. As only 30–50% of rats with severe lateral FPI develop PTE by 6 months post-injury, prolonged video-EEG monitoring is crucial to identify animals with PTE. Our objective is to harmonize the surgical and data collection procedures, equipment, and data analysis for chronic EEG recording in order to phenotype PTE in this rat model across the three study sites.

Methods
Traumatic brain injury (TBI) was induced using lateral FPI in adult male Sprague-Dawley rats aged 11–12 weeks. Animals were divided into two cohorts: a) the long-term video-EEG follow-up cohort (Specific Aim 1), which was implanted with EEG electrodes within 24 h after the injury; and b) the magnetic resonance imaging (MRI) follow-up cohort (Specific Aim 2), at 5 months after lateral FPI. Four cortical epidural screw electrodes (2 ipsilateral, 2 contralateral) and three intracerebral bipolar electrodes were implanted (septal CA1 and the dentate gyrus, layers II and VI of the perilesional cortex both anterior and posterior to the injury site). During the 7th post-TBI month, animals underwent 4 weeks of continuous video-EEG recordings to diagnose of PTE.

Results
All centers harmonized the induction of TBI and surgical procedures for the implantation of EEG recordings, utilizing 4 or more EEG recording channels to cover areas ipsilateral and contralateral to the brain injury, perilesional cortex and the hippocampus and dentate gyrus. Ground and reference screw electrodes were implanted. At all sites the minimum sampling rate was 512 Hz, utilizing a finite impulse response (FIR) and impedance below 10 KΩ through the entire recording. As part of the quality control criteria we avoided electrical noise, and monitoring changes in impedance over time and the appearance of noise on the recordings. To reduce electrical noise, we regularly checked the integrity of the cables, stability of the EEG recording cap and the appropriate connection of the electrodes with the cables. Following the pipeline presented in this article and after applying the quality control criteria to our EEG recordings all of the sites were successful to phenotype seizure in chronic EEG recordings of animals after TBI.

Discussion
Despite differences in video-EEG acquisition equipment used, the three centers were able to consistently phenotype seizures in the lateral fluid-percussion model applying the pipeline presented here. The harmonization of methodology will help to improve the rigor of preclinical research, improving reproducibility of pre-clinical research in the search of biomarkers and therapies to prevent antiepileptogenesis.

Subjects
common data elements   electroencephalogram   post-traumatic epilepsy   seizures   traumatic brain injury   
URI
https://erepo.uef.fi/handle/123456789/7776
Link to the original item
http://dx.doi.org/10.1016/j.eplepsyres.2019.04.011
Collections
  • Terveystieteiden tiedekunta [1324]
University of Eastern Finland
OpenAccess
eRepo
erepo@uef.fi
OpenUEF
Service provided by
the University of Eastern Finland Library
Library web pages
Twitter
Facebook
Youtube
Library blog
 sitemap
Search

Browse

All of the ArchiveResource types & CollectionsBy Issue DateAuthorsTitlesSubjectsFacultyDepartmentFull organizationSeriesMain subjectThis CollectionBy Issue DateAuthorsTitlesSubjectsFacultyDepartmentFull organizationSeriesMain subject

My Account

Login
University of Eastern Finland
OpenAccess
eRepo
erepo@uef.fi
OpenUEF
Service provided by
the University of Eastern Finland Library
Library web pages
Twitter
Facebook
Youtube
Library blog
 sitemap