Five-class differential diagnostics of neurodegenerative diseases using random undersampling boosting
Files
Self archived version
published versionDate
2017Author(s)
Unique identifier
10.1016/j.nicl.2017.06.012Metadata
Show full item recordMore information
Self-archived item
Citation
Tong T. Ledig C. Guerrero R. Schuh A. Koikkalainen J. Tolonen A. Rhodius H. Barkhof F. Tijms B. Lemstra AW. Soininen H. Remes AM. Waldemar G. Hasselbalch S. Mecocci P. Baroni M. Lötjönen J. Flier WV. Rueckert D. (2017). Five-class differential diagnostics of neurodegenerative diseases using random undersampling boosting. NEUROIMAGE: CLINICAL, 15, 613-624. 10.1016/j.nicl.2017.06.012.Rights
Abstract
Differentiating between different types of neurodegenerative diseases is not only crucial in clinical practice when treatment decisions have to be made, but also has a significant potential for the enrichment of clinical trials. The purpose of this study is to develop a classification framework for distinguishing the four most common neurodegenerative diseases, including Alzheimer's disease, frontotemporal lobe degeneration, Dementia with Lewy bodies and vascular dementia, as well as patients with subjective memory complaints. Different biomarkers including features from images (volume features, region-wise grading features) and non-imaging features (CSF measures) were extracted for each subject. In clinical practice, the prevalence of different dementia types is imbalanced, posing challenges for learning an effective classification model. Therefore, we propose the use of the RUSBoost algorithm in order to train classifiers and to handle the class imbalance training problem. Furthermore, a multi-class feature selection method based on sparsity is integrated into the proposed framework to improve the classification performance. It also provides a way for investigating the importance of different features and regions. Using a dataset of 500 subjects, the proposed framework achieved a high accuracy of 75.2% with a balanced accuracy of 69.3% for the five-class classification using ten-fold cross validation, which is significantly better than the results using support vector machine or random forest, demonstrating the feasibility of the proposed framework to support clinical decision making.
Keywords
Link to the original item
https://doi.org/10.1016/j.nicl.2017.06.012Collections
- Terveystieteiden tiedekunta [1793]